Course detail
Data Communication
FEKT-MPA-DAKAcad. year: 2022/2023
Students will be introduced in detail to data transmission systems and the possibilities of realizing data communication. The course covers issues of information theory, information source and discrete communication system description. Furthermore, it focuses on data transmission, in particular on the basic concepts, data and signal description, transmission methods, transmission reliability, coding of analog and discrete signals. In greater detail it also focuses on coding: redundancy reducing code - prefix codes, the Huffman code, data compression principles. Forward error coding: Block codes, tree codes, turbo codes, concatenated codes, error security system. Last but not least, it also focuses on modulations, cryptography basics and other fields of data transmission.
Guarantor
Department
Learning outcomes of the course unit
- explain the concepts of information, information content and redundancy
- evaluate the static properties of the information source, in particular redundancy, and propose an appropriate code to reduce redundancy
- explain the concept of channel capacity, the Shannon-Hartley theorem, and determine it for discrete and analog channels
- describe the principle of FEC and ARQ systems
- explain the principle of error protection using codes
- explain the concepts of the Hamming distance and weight
- determine the detection and correction capabilities of code
- explain the principle of security using block, cyclic, tree and concatenated codes
- secure data by the previously mentioned codes based on the specified generation matrix or polynomial
- find the encoder and the decoder diagram of the block, cyclic or tree code
- draw a tree diagram, trellis diagram and state diagram of the tree code
- describe the principle of the Viterbi decoding algorithm
- list the transmission methods in the base-band and pass-band
- list and describe some line codes and their utilization
- list and describe the basic keying methods and combined keying methods
- list and describe the principle of single carrier and multicarrier transmission with application examples
- list the basic concepts of data encryption and cryptographic systems
- list the services provided by cryptographic systems
- describe and compare symmetric and asymmetric cryptographic systems
Prerequisites
Co-requisites
Recommended optional programme components
Literature
MORELOS-ZARAGOZA, Robert H. The art of error correcting coding. Chichester : John Wiley & Sons, 2002. 221 s. ISBN 04-714-9581-6. (EN)
BIGGS, Norman L. Codes : an introduction to information communication and cryptography. London : Springer, 2008. 273 s. ISBN 978-184-8002-722. (EN)
LIN, Shu; COSTELLO, Daniel J. Error control coding : fundamentals and applications. 2nd ed. Upper Saddle River : Pearson Prentice Hall, 2004. 1260 s. ISBN 01-304-2672-5. (EN)
MOON, Todd K. Error correction coding : mathematical methods and algorithms. Hoboken : John Wiley & Sons, 2004. 756 s. ISBN 04-716-4800-0. (EN)
GLAVIEUX, Alain. Channel coding in communication networks : from theory to turbocodes. London : ISTE, 2007. 418 s. ISBN 19-052-0924-x. (EN)
GITLIN, Richard D; HAYES, Jeremiah F; WEINSTEIN, Stephen B. Data communications principles. New York : Plenum Press, 1992. 733 s. ISBN 03-064-3777-5. (EN)
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Language of instruction
Work placements
Course curriculum
2. Information transmission systems
3. Data transmission
4. Coding for redundancy reduction
5. Error control coding
6. Block codes
7. Cyclic codes
8. Examples of cyclic codes
9. Tree codes
10. Turbo codes
11. Forward error correction coding systems
12. Modems in data communication systems
13. Cryptography basic
Aims
Specification of controlled education, way of implementation and compensation for absences
Classification of course in study plans
- Programme MPA-EAK Master's, 1. year of study, summer semester, 6 credits, compulsory-optional