Course detail

Antennas and Radio Links

FEKT-MPA-ARAAcad. year: 2022/2023

The subject is focused on the explanation of basic principles of the antenna theory and radio wave propagation, and their exploitation for antenna and radio links design. Students will practice their knowledge on the design, manufacturing and measuring of a given antenna, and on the analysis and design of selected radio links in a real environment.

Learning outcomes of the course unit

The graduate is able to: (a) explain a principle of the operation and describe basic steps of a design procedure of selected types of linear antennas (dipole, monopole, folded dipole, log-periodic antenna, Yagi antenna); (b) explain a principle of the operation and describe basic steps of a design procedure of linearly and circularly polarized microstrip patch antennas; (c) explain a principle of the operation and describe basic steps of a design procedure of horn, reflector, and slot antennas; (d) explain basic principles of antenna bandwidth increasing; (e) explain principles of antennas with an extremely wide band of operation; (f) explain a term "electrically small anntena"; (g) describe basic steps of a design procedure selected type sof antennas for RFID, mobile applications, and sensors; (h) explain basic principles of antenna modeling; (i) specify, for a desired frequency band, a dominant mechanism of propagation, appropriate types of antennas, and typical services of operation; (j) describe principles of radio wave propagation close to the Earth’s surface; (k) describe basic steps of a radio link design; (l) describe computation of electric field intensity in a real terrain; (m) describe exploitation of propagation curves for the determination of electric field intensity; (n) explain principles of wave propagation and modeling in the area of mobile communication, and explain deterministic, empirical and semi-empirical propagation model; (o) describe a principle of an empirical model creation; (p) describe influence of atmosphere on radio links; (q) explain "digital microwave link", specify its pros and cons, explain quality criterions and basic steps of digital microwave link design.

Prerequisites

Students who enroll the course should be able to:
- compute with complex numbers;
- apply fundamental principles of integral and differential calculus;
- explain fundamental principles of electromagnetic field theory (Maxwell’s equations, elementary radiation sources, propagation of plane and spherical wave, propagation of a wave along transmission line).

The work in the laboratory is conditioned by a valid qualification of a "instructed worker" according to 50/1978 Coll., which students must obtain before the start of classes. Information on this qualification is given in the Dean's Directive Familiarization of students with safety regulations. 

 

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Literature

BALANIS, C., A., Antenna Theory: Analysis and Design, 3rd Edition, John Wiley and Sons, New Jersey, 2005. (EN)
BARCLAY, L. Propagation of Radiowaves 2nd Edition. IEE,United Kingdom, 2003. (EN)
BALANIS, C. A., Modern Antenna Handbook, John Wilye & Sons, Croydon, 2008. (EN)
FUJIMOTO, K., MORISHITA, H., Modern Small Antennas, Cambridge University Press, Cambridge, 2013. (EN)
SHOEMAKER, K., Pratical Antenna Design, Second Edition, Shoemaker Labs, Indian Harbour Beach, 2016. (EN)
WERNER, D. H., KWON, D.-H., Transformation Electromagnetics and Metamaterials: Fundametal Principles and Applications, Springer, London, 2014. (EN)

Planned learning activities and teaching methods

Techning methods include lectures, computer exercises and laboratory exercises. Course is taking advantage of e-learning (Moodle) system. Students have to write a project during the course.

Assesment methods and criteria linked to learning outcomes

Laboratory exercises (15 points), an individual project (25 points), final exam (15 points written part + 45 points oral part=totally 60 points). 

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. Antenna basics, antenna analysis.
2. Linear antennas, antenna arrays, linear antennas for selected frequency bands.
3. Microstrip antennas.
4. Horn antennas, reflector antennas.
5. Slot antennas and wideband antennas.
6. Electrically small antennas.
7. Antenna for RFID, antennas for mobile applications, antennas for sensors.
8. Antenna auxiliary circuits, materials for antenna technique, structure and fabrication of antennas, antenna measurement.
9. Radiocommunication services, exploitation of radio spectrum, conditions of radiocommunication, basic concept of radio links design.
10. Propagation of radio waves close to Earth surface, space and surface wave.
11. Mobile radio communication, propagation models for macrocells, microcells, and picocells, indoor radiowave propagation.
12. Influence of atmosphere on radio links.
13. Microwave links.

Aims

The subject is aimed to present basic antenna types, their applications and technical design, and further, principles of radio wave propagation and design of selected types of radio links.

Specification of controlled education, way of implementation and compensation for absences

Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Classification of course in study plans

  • Programme MPA-CAN Master's, 2. year of study, winter semester, 5 credits, compulsory-optional
  • Programme MPAD-CAN Master's, 2. year of study, winter semester, 5 credits, compulsory-optional
  • Programme MPA-TEC Master's, 2. year of study, winter semester, 5 credits, compulsory
  • Programme MPAJ-TEC Master's, 2. year of study, winter semester, 5 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise in computer lab

13 hours, compulsory

Teacher / Lecturer

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer

eLearning