Course detail
Selected Lectures on Mathematics
FEKT-MPA-SLMAcad. year: 2022/2023
The proposed course is a compulsory basic theoretical course profiling the basis, which focuses on the use of selected mathematical methods in the field of space technology. It provides not only a theoretical apparatus for the design and implementation of space applications, but also their practical verification in simulations. The Matlab programming environment will be used for this purpose.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Teaching methods include lectures and computer exercises. Student develops individual tasks during computer exercises.
Assesment methods and criteria linked to learning outcomes
- obtaining credit on the basis of a test for 16 points and active participation in exercises for 14 points (max. 30 points, min. 15 points),
- Written parts of the final exam (max 70 points, minimum 35 points)
Course curriculum
1. Vector algebra and analysis
2. Differential geometry
3. Differential calculus of a function of two or more variables (including extrema)
4. Integral calculus of functions of two and more variables (double, triple integrals; use in geometry and physics)
5. Transformation: Z-transformation, KLT, SVD, FFT.
6. Relationship of impulse char, and LTI transfer functions. FIR filters
7. Basics of probability and statistics. Random variable. Moment characteristics.
8. Theory of estimation in general: BLUE, ML, LS. Estimation quality criteria.
9. Theory of estimates and testing (point and interval estimation, testing of moment characteristics).
10. Reliability of systems.
11. Random processes. Stationary, ergodic.
12. Spectral analysis of stochastic signals. Autocorrelation.
13. Detection of signals hidden in noise.
Exercises
1. Vector algebra and analysis
2. Examples from the field of differential geometry
3. Differential calculus of a function of two or more variables (including extrema)
4. Integral number of functions of two or more variables
5. Modeling and use of KLT, SVD, FFT transformations in Matlab.
6. Design of filters and modeling of the relationship between impulse response and transfer function of the system.
7. Test or individual work
8. Modeling of a random variable and calculation of their characteristics.
9. Work with estimates and measurement of their quality.
10. Hypothesis testing: simulation, numerical analysis and testing in Matlab.
11. Simulation of random processes.
12. Spectral analysis of stochastic signals. Autocorrelation.
13. Detection and testing of signals hidden in noise. ROC curve.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MOON,T., STIRLING, W. Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, New Jersey 2000, pp. 978. ISBN 0-201 -361 86-8 (EN)
Recommended reading
JAN, J. Digital Signal Filtering, Analysis and Restoration. volume 44. volume 44. London: The Institution of Electrical Engineers, 2000. 407 s. ISBN: 0-85296-760- 8.
REKTORYS, K. Přehled užité matematiky I, II, Prometheus, Praha 2002, 720 s., ISBN80-7196-181-7 (EN)
Classification of course in study plans
- Programme MPA-SAP Master's 1 year of study, summer semester, compulsory