Course detail
Measurement and Regulation in Power Engineering
FSI-LMRAcad. year: 2021/2022
The course discusses current trends in the management and regulation of energy devices. The emphasis is on sensors, control circuits of partial components and complex regulation of power units in relation to the electrical system.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Credit - conditions of award: participation and active work on exercises.
Course curriculum
Work placements
Aims
.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
O'Dwyer, A.: HANDBOOK OF PI AND PID CONTROLLER TUNING RULES (2nd Edition), Imperial College Press, 2006, SIBN 1-86094-622-4 (EN)
VILIMEC, L. Řízení a regulace energetických zařízení. Skripta VŠB TU Ostrava, 2008. ISBN 978-80-248-1853-5. (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Feedback elements: temperature, pressure, flow, level sensors, sensors for fuel metering control, safety elements. Key features of feedback elements (resolution, accuracy and response), areas of application and data collection.
3. Actuators: electric heat sources, electrically operated valves, control of pumps, belt conveyors, fuel feeders and safety elements. Key features of actuators (response, controllability and achievable control accuracy), control of actuator functionality.
4. Control systems - electronic devices for control of energy systems - basic properties, areas of use. Regulators and their parameters used in control systems.
5. Control and regulation in the field of electrical system (frequency, voltage, power), primary, secondary, tertiary regulation. Real behavior of electricity producers (nuclear plant, steam plant, combi cycle power plant, hydro, pumped, wind, solar) during the day, week, year.
6. Regulatory options of individual electricity producers. Possibilities of active power regulation, response to power change, control ranges, control stability.
7. Basic control links of the boiler, dynamics of boilers for solid and liquid fuels. Superheated and reheated steam temperature control. Power regulation of drum and flow boilers.
8. Control and regulation of partial functional units (fans, compressors, pumps and other energy equipment.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
10. Exercises - Production of hydrogen from RES. Design of technological solutions, control and regulation. Specification of documents for management.
11. Exercises - Basics of measurement and data collection, temperature measurement and verification of achievable parameters of thermoelectric and resistance temperature sensors.
12. Exercises - Temperature control on a laboratory model, demonstration of pressure and flow measurement in pneumatic circuits.
13. Individual consultations, credits.
Elearning