Course detail
Statistics and Probability
FSI-CS1Acad. year: 2021/2022
The subject is aimed at introduce of students to descriptive statistics, random events, probability, random variables and vectors, probability distributions, random sample, parameters estimation, tests of hypotheses, and linear regression analysis. The practices include problems and applications in mechanical engineering. A part of exercises will solving by means of statistical software.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Montgomery, D. C. - Renger, G.: Probability and Statistics. New York : John Wiley & Sons, 2017.
Sprinthall, R. C.: Basic Statistical Analysis. Boston : Allyn and Bacon, 1997.
Recommended reading
Karpíšek, Z.: Matematika IV. Statistika a pravděpodobnost. Brno : FSI VUT v CERM, 2003.
Seger, J. - Hindls, R.: Statistické metody v tržním hospodářství. Praha : Victoria Publishing, 1995.
Elearning
Classification of course in study plans
- Programme B-STR-P Bachelor's
specialization STG , 2 year of study, winter semester, compulsory
specialization AIŘ , 2 year of study, winter semester, compulsory
specialization KSB , 2 year of study, winter semester, compulsory
specialization SSZ , 2 year of study, winter semester, compulsory - Programme B-ENE-P Bachelor's 2 year of study, winter semester, compulsory
- Programme B-PDS-P Bachelor's 2 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Conditioned probability, independent events.
3. Random variable, types, functional characteristics.
4. Numerical characteristics of random variables.
5. Basic discrete distributions Bi, H, Po (properties and use).
6. Basic continuous distributions R, N (properties and use).
7. Two-dimensional discrete random vector, types, functional and numerical characteristics.
8. Random sample, sample characteristics (properties, sample from N).
9. Parameters estimation (point and interval estimates of parameters N and Bi).
10. Testing statistical hypotheses (types, basic notions, test).
11. Testing hypotheses of parameters of N, Bi, and tests of fit.
12. Elements of regression analysis.
13. Linear model, estimations and testing hypotheses.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Descriptive statistics
3. Probability
4. Random variable
5. Random vector
6. Probability distributions (Bi, H, Po, N).
7. Point and interval estimates of parameters N and Bi.
8. Testing hypotheses of parameters N and Bi. Tests of fit.
9. Linear regression (straight line), estimates, tests and plot.
Elearning