Course detail
Additive Technologies in Foundries
FSI-PTSAcad. year: 2021/2022
The basics of working methods and data processing, CAD modelling and 3D technical drawing for castings that were made using the RP method. Division and the main principles of the RP methods. Selected foundry technologies and computer support for making molds including methods for their measuring (scanning) and making corrections (welding, surface working, etc.). The composition and division of production costs and the economy of prototype castings manufacturing.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
CAMPBELL, J. Casting, Butterworth-Heinemann, Oxford, 2000, ISBN 0 7506 1696 2. (CS)
FORD, S., MINSHALL, T. Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing. Volume 25, January 2019, Pages 13 -150. https://doi.org/10.1016/j.addma.2018.10.028 (CS)
GIBSON, I., D. W. ROSEN a B. STUCKER. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. New York: Springer, c2010. ISBN 1441911200 (CS)
Herman, A. a kol. Počítačové simulace ve slévárenství, Vydavatelství ČVUT, 2000 (CS)
KAUFMAN, H. UGGOWITZER, P. J. Metalurgy and Processing of High-Integrity Light Metal Pressure Castings. Schiele-Schön, 2007, Berlin. ISBN 3-7949-0754-X (CS)
MITCHELL, A. LAFONT, U., HOŁYŃSKA, M.,SEMPRIMOSCHNIG, C. Additive manufacturing - A review of 4D printing and future applications. Additive Manufacturing, Volume 24, December 2018, Pages 606-626. https://doi.org/10.1016/j.addma.2018.10.038 (CS)
WANG, W., STAL, H. W., CONLEY, J. G. Rapid Tooling Guidelines For Sand Casting, Springer, 2010 ISBN 978-1-4419-5730-6. (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme N-SLE-P Master's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. CAD modelling – principles, methods and tools for making 3D model drawings for RP methods and numerical simulations.
3. Reverse engineering methods.
4. Virtual engineering and industry 4.0.
5. Using virtual reality in engineering.
6. Additive technology - Rapid Prototyping (RP) methods – division of RP methods, principles of the different methods.
7. 3D printing technology of metal materials
8. RP methods suitable for foundry processes, examples of its use, reachable parameters.
9. Selected foundry technologies for RP methods and industry 4.0 – precision investment casting process based on lost-wax casting, die casting technology and selected methods of gravity casting in sand molds.
10. Application of robots and robotic workshops for selected manufacturing technologies of die casting and low pressure casting.
11. Surface finishing of models for RP, surface finishing molds for selected modern technologies, correction welding, Cold Spray method.
12. Casting structure and properties assessment – metallographic assessment of casting structure and properties, NDT testing of castings
13. Manufacturing costs of the castings – composition and calculation of costs, cost prediction and management for prototype and serial casting production.
Laboratory exercise
Teacher / Lecturer
Syllabus
4. Making numerical networks of 3D drawings, preparation for numerical simulations
5. - 8. Numerical simulations of the casting production processes – filling, cooling and solidifying simulations, deformation and inner tension simulations
9. - 11. Making 3D models, molds and casting
12. - 13. Quality control of castings, NDT testing and metallographic assessment of the material structure of the castings
Elearning