Course detail
Designing of Thermal Power Plant Equipment
FSI-FSEAcad. year: 2021/2022
The course is focused on two areas of energy. The first area contains heat exchangers, ie the applied issue of heat sharing. Students will learn about the types of heat exchangers, operational problems and the basic design of tubular exchangers. The second area includes the use of fuels (biomass, waste, coal, natural gas) to generate heat and power. Students will go through the energy equipment from the fuel, through the combustion chamber to the steam part of the boiler and get acquainted with the specifics of individual fuels.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Credits - award conditions: participation and active work on the exercises, a written test.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
ČERNÝ, Václav, Břetislav JANEBA a Jiří TEYSSLER. Parní kotle: technický průvodce svazek 32. Praha: SNTL-Nakladatelství technické literatury, 1983. Technický průvodce (SNTL-Nakladatelství technické literatury).
VEJVODA, Josef, Pavel MACHAČ a Petr BURYAN. Technologie ochrany ovzduší a čištění odpadních plynů. Praha: Vysoká škola chemicko-technologická v Praze, 2003. ISBN 80-7080-517-X. Dostupné také z: http://www.digitalniknihovna.cz/mzk/uuid/uuid:bdd8c080-106f-11e3-beb8-005056827e51
VILIMEC, L.: Stavba kotlů II. Skripta VŠB-TU Ostrava, 2008. ISBN 978-80-248-1716-3
Recommended reading
DLOUHÝ, Tomáš. Výpočty kotlů a spalinových výměníků. Vyd. 3. V Praze: Nakladatelství ČVUT, 1999.
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Liquid, gas, fuel waste, types, properties, change the fuel.
3. Stoichiometric calculations of solid and liquid and gaseous fuels - the quantity of air and combustion gases.
4. The thermal efficiency, heat balance, the loss of the boiler, fireplace comparison criteria.
5. Classification of boilers in terms of combustion of solid fuels; slatted boilers, fluidized bed boilers.
6. Boilers powder, boilers for combustion of liquid and gaseous fuels and waste heat boilers.
7. Steam boilers
8. Boiler on waste, flow-through boilers.
9. Emissions, water treatment, accessories.
10. Boilers for biomass gasification.
11. Exchangers - heat transfer, calculation.
12. Exchangers - types, konstukční solutions.
13. The operating characteristics of boilers and heat exchangers - inputs, low and high temperature corrosion, abrasion, structural measures to increase the reliability and thermal efficiency.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
3. - 4. Heat exchangers in heat and process diagrams, basic principles of heat transfer and classification of heat exchangers. Heat exchanger balance, temperature gradient. Design and control calculation of heat exchange surfaces.
5. - 6. Heat convection, criteria, natural and forced convection, heat transfer during phase change.
7. - 8. Combined heat transfer. Convection, conduction and radiation and combinations. Combined heat transfer through the plane and cylindrical wall, heat flow, partial temperature calculation.
9. - 10. Design calculation of the heat exchanger tube in the pipe.
11. - 12. Design / Check Calculation of the Supply Water Heater.
13. Credit.
Elearning