Course detail
Materials in Electrical Engeneering
FP-BelmPAcad. year: 2021/2022
The subject provides basic knowledge in the field of materials for electrotechnics and electronics. The subject familiarizes students with the basic concepts, classification and distribution of substances. The main focus is on metallic conductors, semiconductors, dielectrics and magnetics materials.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- be knowledgeable in electronic and electrical materials,
- classify electrical materials according to electric conductivity and behavior in electric and magnetic fields,
- describe typical properties and parameters of particular categories of electrical materials and links between these properties and material structure and composition,
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Classification of materials and their basic properties
3. Construction materials for electrotechnics
4. Electrical conductors, superconductors, resistive, contact materials, carbon
5. Fundamentals of magnetism
6. Materials for magnetic circuits
7. Fundamentals of dielectric and insulating materials
8. Gaseous and liquid insulants, liquid crystals
9. Solid inorganic and organic insulants, special dielectrics
10. Plastics in electrical engineering, elastomers, composite materials
11. Semiconductor properties of materials and their relation to technology. Basic semiconductor materials.
12. Preparation of semiconductor materials
13. Physiological properties of materials, recycling of materials
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
JIRÁK, J., LIEDERMANN, K., SEDLAŘÍKOVÁ, M., AUTRATA, R., ROZSÍVALOVÁ, Z. Materiály v elektrotechnice, elektronické texty ETE004. Materiály v elektrotechnice. Brno: 2002. (CS)
KAZELLE, J., HAVLÍČEK, S., JIRÁK, J., LIEDERMANN, K., ROZSÍVALOVÁ, Z., SEDLAŘÍKOVÁ, M., VANĚK, J. Elektrotechnické materiály a výrobní procesy, elektronické texty. Brno: 2003. s. 1 ( s.) (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme BAK-PM Bachelor's 1 year of study, summer semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Classification of materials and their basic properties
3. Construction materials for electrotechnics
4. Electrical conductors, superconductors, resistive, contact materials, carbon
5. Fundamentals of magnetism
6. Materials for magnetic circuits
7. Fundamentals of dielectric and insulating materials
8. Gaseous and liquid insulants, liquid crystals
9. Solid inorganic and organic insulants, special dielectrics
10. Plastics in electrical engineering, elastomers, composite materials
11. Semiconductor properties of materials and their relation to technology. Basic semiconductor materials.
12. Preparation of semiconductor materials
13. Physiological properties of materials, recycling of materials
Laboratory exercise
Teacher / Lecturer
Syllabus
Measurement of hysteresis losses and losses by eddy currents of ferromagnetic materials
Task 2:
Measurement of elementary charge using the Millikan device
Task 3:
Influence of lighting on the conductivity of semiconductor materials
Task 4:
Measurement and evaluation of temperature dependence of resistance of thermistors
Task 5:
Measurement of internal and surface resistance of insulators
Task 6:
Measurement of specific losses of ferromagnetic materials by oscilloscopic method
Task 7:
Measurement of temperature dependence of resistance of conductive and resistive materials
Task 8:
Measurement of temperature dependence of initial ferrites permeability
Task 9:
Measuring the width of the prohibited strip of semiconductor material
Task 10:
Monitoring the influence of temperature and frequency on components of complex permitivity of insulating materials
Task 11:
Measurement of the thermoelectric stress of metals
Task 12:
Determination of complex permitivity of insulating materials using Schering bridge
Elearning