Course detail

Control Theory 1

FEKT-BPC-RR1Acad. year: 2021/2022

Basic terms is Control Theory .Feedforward and feedback control. Simple on-off and proportional control(continuous and discrete type). Performance evaluation of feedback controllers. Stability of feedback systems. Steady state and dynamics errors. Root locus method and frequency analysis. PID controllers. PID controllers design methods. Systems with multi feedback loops. Digital PSD controllers. Multivariable feedback control.

Learning outcomes of the course unit

Ability to apply measuring and control systems. Ability to design, use and maintain systems of applied infromatics. Automation of industrial technologies.


The subject knowledge on the secondary school and appropriate mathmatics are requested.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Distefano, J. J., Stubberud, A. R. and Williams, I. J.: Feedback and Control Systems. McGraw-Hill Companies, 1994. (EN)
Vavřín:Teorie řízení 1,VUT 1991 (CS)
Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control - analysis and design. Wiley, 2005, ISBN: 978-0-470-01167-6. (EN)
Vavřín, P.:Teorie řízení 1,VUT, 1991. (CS)
Vavřín,Zelina:Automatické řízení počítačem,SNTL 1982 (CS)
Blaha, P., Vavřín, P.: Řízení a regulace I. Základy regulace lineárních systémů - spojité a diskrétní. Elektronické skriptum VUT. (CS)

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Materials for lectures and exercises are available for students from web pages of the course. Students have to write a single project/assignment during the course.

Assesment methods and criteria linked to learning outcomes

30 points from tests and activity during seminars and computer exercises
70 points from final written exam

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction. Control Systems and their examples.
2. Controllers, basic components and properties.
3. Anaysis of feedback control system. Basic transfer functions in feedback control systems, steady state error behavior.
4. Dynamical properties of closed-loop systems. Integral criterion for control performance evaluation.
5. Stability of feedback control systems, Hurwitz, Routh-Schur and Nyquist stability criterion.
6. Root locus analysis.
7. Analysis of control loops in frequency domain. Gain, phase and modulus margin.
8. Controller synthesis in frequency domains. Bode loop shaping method.
9. Optimal module design, method of optimal time response, Ziegler-Nichols method.
10. Digital controller synthesis. Conversion of continuous time PID to discrete PSD controller.
11. Control Systems with additional loops. Cascade control, model based control, Smith predictor (time delay compensation).
12. Multivariable feedback control. Diagonal and disturbance decoupling problem.


Designing, using and managing of simple control systems (feedforward as well as feedback)

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme BPC-AMT Bachelor's, 3. year of study, winter semester, 7 credits, compulsory
  • Programme BIT Bachelor's, 3. year of study, winter semester, 7 credits, elective

  • Programme IT-BC-3 Bachelor's

    branch BIT , 3. year of study, winter semester, 7 credits, elective

Type of course unit



39 hours, optionally

Teacher / Lecturer

Fundamentals seminar

14 hours, compulsory

Teacher / Lecturer

Exercise in computer lab

12 hours, compulsory

Teacher / Lecturer


eLearning: opened course