Course detail
Digital Filters
FEKT-MPC-CIFAcad. year: 2021/2022
The subject deals with basics properties of digital system (transfer function, impulse response, frequency characteristic, stability and causality), design methods of one-dimensional digital filters with finite and infinite impulse response, special types of filters (Hilbert transformer, differentiator), multi-rate system (decimation, interpolation, filter banks.
Guarantor
Department
Learning outcomes of the course unit
- Explain the meaning of the parameters of microprocessors and digital signal processors
- Explain the progress of the translation of separate C language source files including linking with other libraries
- Explain the importance of intrinsic functions and use them in their programs
- Explain buffering and double buffering and use them in their programs
- Explain the difference between internal and external digital system descriptions
- Include digital system between FIR and IIR systems
- Check the stability of the digital system
- Prepare the quantized coefficients of a digital system for implementation
- Reformulate a canonical form into another form
- Explain the different types of addressing: linear, modulo, bit-reversed
- Explain the principal methods for the design of FIR and IIR filters
- Apply the method for designing FIR filters and IIR filters by the specified tolerance scheme
- Explain the principle of adaptive filters
- Apply the subsampling or the oversampling ratio of rational numbers
- Explain the principle of filter banks
Prerequisites
- describe the function of basic blocks of the microprocessor (CPU, memory, I / O circuits, etc.)
- explain the basic ANSI C commands
- apply the basic commands of the ANSI C language and implement a simple program
- explain the course of sampling the continuous signal
- explain the importance of the frequency response of a system
- explain the importance of stability
- explain the different number systems
- calculate the binary representation of a number.
Appropriate courses, in which this knowledge can be obtained, are compulsory and optional specialised courses of The teleinformatics study area or equivalent:
- Computers and Programming 2
- Signal and System Analysis
- Digital Circuits and Microprocessors
- Digital Signal Processing .
Co-requisites
Recommended optional programme components
Literature
MITRA S.K, KAISER J.F.: Handbook for Digital Signal Processing, John Wiley & Sons, New York, 1993. (EN)
SYSEL, P.; SMÉKAL, Z.: Číslicové filtry. Brno: Vysoké učení technické v Brně, 2012. s. 145. ISBN 978-80-214-4454-6 (CS)
SMÉKAL, Z.; SYSEL, P.: Signálové procesory. 1. vydání. Praha: Sdělovací technika, 2006. 283 s. ISBN 80-86645-08-8 (CS)
PROAKIS, J. G.;MANOLAKIS, D. G.:Digital Signal Processing. Prentice Hall: New Jersey, 1996. 3 edition. 966 p. ISBN 0-13-373762-4 (EN)
Planned learning activities and teaching methods
Lectures are in the nature explaining the basic principles, methodology of the discipline problems and their solutions.
Practice proceeds on digital signal processor development kits and Matlab.
Assesment methods and criteria linked to learning outcomes
2 tests on practical exercises max. 10 marks
Check exercises max. 15 marks
Individual project max. 15 marks
Written examination max. 60 marks
Language of instruction
Work placements
Course curriculum
2. Discrete-time systems, black box description - transfer function, impulse response, stability.
3. State space model of discrete-time systems, signal flow chart, Mason rule.
4. Fixed-point representation effects, modification of structures for fixed-point.
5. Design methods for digital filters with infinite impulse characteristics.
6. Design methods for digital filters with finite impulse characteristics.
7. Design of special filter types - Hilbert transformer, differentiator.
8. Multi-rate system, decimation and interpolation.
9. Filter banks, conditions of perfect reconstruction, quadrature mirror filters.
10. Fraction-octave filters banks, weighting filters.
11. Inverse filtration, optimal Wiener filtration, adaptive filters.
12. Recursive filters design methods, prediction analysis.
13. Introduction to nonlinear systems, homomorphic filtration.
Aims
Specification of controlled education, way of implementation and compensation for absences
Attendance at computer exercises is obligatory
Self-contained project is obligatory
Written examination is obligatory
Classification of course in study plans
Type of course unit
eLearning