Course detail
Electrical Machines
FEKT-BPC-ELMAcad. year: 2021/2022
1) Seminar - introduction
2) Electromechanical energy conversion
3) Transformers - theory, equivalent circuit diagram
4) Transformers - transformer tests, working conditions
5) Induction machines - theory, princip of operation
6) Induction machines - equivalent circuit diagram
7) Induction machines - torque equations, working conditions
8) Synchronous machines - princip of operation, equivalent circuit diagram
9) Synchronous machines - working charakteristics, cooperation with grid
10) DC machines - principle of operation, basic equations
11) DC machines - equivalent circuit diagram, working conditions
12) Seminar
13) Seminar
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- describe main parts of electric machines,
- know classes of insulation and electrical machines costruction,
- describe construction of transformer,
- explain transformer losses,
- understand and explain single and multiphase transformer operation,
- calculate parameters of transformer equivalent circuit from no-load and short – circuit tests,
- draw and explain phasor diagrams of transformer at no load, at short circuit and generally loaded.
- transformer winding connection and phasor diagram for different hour angle,
- explain and calculate transformer voltage regulation,
- describe and explain construction and principle of operation of induction machine with wound rotor and with squirrel cage,
- describe revolving magnetic field generation,
- define basic kinds of AC machine windings,
- sketch curve of magnetic field of AC winding distributed in more slots,
- draw equivalent induction machine circuit diagram, derive torque equation and draw torque - speed characteristic ,
- describe connection of induction motor into public utility network and speed control,
- describe construction and principle of operation of single phase induction motor,
- describe principle operation and construction of nonsalient synchronous machine,
- draw simplified circuit diagram, derive torque equation and draw phasor diagram,
- explain synchronous generator operation with isolated load and with public utility network, use phasor diagram for explanation,
- explain synchronous compensator principle of operation,
- describe DC machine construction and principle of operation,
- describe basic types of DC machine windings,
- derive torque and induced voltage equations,
- explain properties of DC motors and generators,
- describe construction and explain principle of operation of AC single phase commutator machines.
Prerequisites
-explain and define basic terms magnetic field, electric field, magnetic field, circuits with lumped and distributed parameters,
- solve DC, AC and magnetic circuits,
- solve three phase AC circuits,
- define the terms work and energy,
- describe and explain basic properties soft and hard magnetic materials.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Final Exam - 70 points
Course curriculum
Synchronous machines - working charakteristics, cooperation with grid. DC machines - princip of operation, basic equations. DC machines - equivalent circuit diagram, working conditions. Seminar
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MĚŘIČKA, HAMATA, VOŽENÍLEK. Elektrické stroje. Praha: ČVUT, 2000. ISBN: 80-01-02109-2
O'KELLY. Performance and Control of Electrical Machines. McGraw-Hill, 1990. ISBN13: 9780077072384
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Elearning