Course detail
Functions of a Complex Variable
FSI-9FKPAcad. year: 2020/2021
Functions of a complex variable. Elementary functions. Limit of a function of a complex variable. Continuity of a function of a complex variable. Derivative of a function of a complex variable. Integral of a function of a complex variable. Power series and Taylor series. Laurent series. Isolated singularities. Residues. Conform mapping. Entire functions. Principle of maximum of the modulus. Meromorphic functions.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Noguchi, J.: Introduction to Complex Anylysis. AMS, Providence, 1997.
Recommended reading
Druckmuller, M., Svoboda, K.: Vybrané statě z matematiky I. FS VUT, Brno, 1986.
Druckmuller, M., Ženíšek, A.: Funkce komplexní proměnné. PC-DIR real, Brno, 2001.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Week 2: Elementary functions.
Week 3: Limit and continuity of a function of a complex variable.
Week 4: Derivative of a function of a complex variable, holomorphic functions.
Week 5: Integral of a function of a complex variable.
Week 6: Cauchy´s integral theorem and Cauchy´s integral formula.
Week 7: Power series.
Week 8: Taylor series, Laurent series.
Week 9: Isolated singularities, residues.
Week 10: Conformal mapping.
Week 11: Entire functions.
Week 12: Priciple of maximum of the modulus.
Week 13: Meromorphic functions.