Course detail
Chemical Thermodynamics and Kinetics
FSI-WCTAcad. year: 2020/2021
Course deals with basic terms, principles and relations of classical chemical thermodynamics and kinetics, which are necessary for understanding of physical-chemical problems of material science. Chemical thermodynamics is focused on basic thermodynamic principles, variables and relations, description of equilibrium in single- and multi-component homogenous and heterogeneous systems, and on phase diagrams. Multi-component chemical reactive systems and problem of capillarity are also mentioned.
Kinetics shows basic kinetic philosophy of physical-chemical processes in heterogeneous systems, particularly phase transformations diffusion and sintering.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
There will be two written tests during the semester. Student has to be classified better than F at both tests. The assistant determines dates of corrective tests.
Examination verifies the knowledge of the theory and particularly its application. It contains written and oral parts. Examiner assesses the relative importance of oral and written parts of the exam, he can take into account student’s activity during the semester. The examiner has to familiarize students (at the latest during the last lecture) with the course of examination and with the principles of classification
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
R. T. De Hoff: Thermodynamics in Materials Science, McGraw Hill, New York 1993 (EN)
W. J. . Moore, Fyzikální chemie, SNTL, Praha 1979 (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme N-MTI-P Master's 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Thermodynamics principles. 1st, 2nd and 3rd thermodynamic principle.
3. Thermodynamic relations and variables. General strategy of thermodynamic relations derivation.
4. Equilibrium in thermodynamic systems. General criteria and general conditions of thermodynamic equilibrium derivation.
5. Single-component heterogeneous system. Single-component phase diagrams in (p,T) range. Clausius-Clapeyron equation.
6. Multi-component, homogenous non-reactive systems – solutions. Partial molar quantities. Behaviour of diluted solutions. Models of solutions.
7. Multi-component heterogeneous non-reactive systems. Description of multi-phase, multi-component, non-reactive systems. Equilibrium criteria.
8. Thermodynamics of phase diagrams. Diagrams G-x. Thermodynamic models of binary and ternary phase diagrams.
9. Multi-component, multi-phase, reactive systems. Reactions in multi-phase systems. Components and compounds in phase diagrams.
10. Equilibrium criteria in systems with curved surfaces. Capillary effects in phase diagrams. Surfaces and intersurfaces. Grain boundaries.
11. Kinetics and dynamics of solid-state processes. Diffusion. Transport in solid substances. Kinetic parameters.
12. Phase transformation. Non-diffuse and diffuse phase transformation.
13. Sintering and grain growth. Solid-state sintering. Liquid phase sintering.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Chemical equations, calculations according to chemical equations
3. Redox reactions
4. Thermochemistry – heat capacity, reaction heat
5. First written test
6. Dependence of Gibbs energy on temperature
7. Energy balance of chemical reactions
8. Claussius-Clapeyron equation
9. Two-component systems, Raoult’s law, equilibrium constant
10. Second written test
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Laboratory work - CEITEC
Elearning