Course detail
Experimental Methods
FSI-KEMAcad. year: 2020/2021
The knowledge of physical properties of substances that are not so usual is important for the design of process equipment. These properties cannot be always defined by calculation; therefore they have to be determined experimentally. The result of such experiments is e.g. an invariable required for the design of process equipment based on modelling. To understand better the individual unit operations of the process engineering it is useful to demonstrate these operations in laboratory conditions.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
At seminars reports on experimental measuring are worked out. The attendance is required. Absences must be compensated
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Mason R.L., Gunst R.F., Hess J.L., Statistical Design and Analysis of Experiments with Applications to Engineering and Science, USA, Wiley, 2003, ISBN 0-471-37216-1. (EN)
Pavelek. M. : Termomechanika, skripta VUT Brno, CERM, 2011, ISBN: 978-80-214-4300-6 (CS)
Pavelek.M.-Štětina.J: Experimentální metody v technice prostředí /Brno :Akademické nakladatelství CERM,2007. 3. vyd. 215 s. ISBN 978-80-214-3426-4 [SYSNO: 000078250] (CS)
Šob. F. : Hydromechanika, skripta VUT Brno, CERM, 2008, ISBN: 978-80-214-3578-0 (CS)
Recommended reading
Medek.J.: Experimentální metody, skripta Vysoké učení technické, Brno, 1988 (CS)
Perry, R. H. Chilton, C. H.: Chemical Engineers Handbook, McGraw-H..2008. (CS)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
processing results.
2. Measuring instruments, classification, properties, static and dynamic characteristics.
3. Fundamental measuring, spce, mass, time, basic and derived quantities.
4. Pressure measuring in liquids.
5. Temperature measuring, operating conditions, assembly.
6. Humidity measurement, absulute, relative.
7. Measuring surface and inter-phase tension.
8. Measuring viscosity Newton and other liquids.
9. Heat characteristics of technical materials, heat consumption.
10.Flow measuring and quantity liquid.
11.Liquid velocity measurement.
12.Surface height measuring.
13.Chemical analytic method.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Viscosity measuring according to Englera
3. Viscosity measuring according to Hopplera
4. Density determination of minute corpuscles usingf specific-gravity bottle
5. Density determination of liquid using Mohr`s dragonfly
6. Determination of specific heat capacities bz calorimeter
7. Defining the time constant of a thermometer
8. Atmospheric moisture determination using a psychrometer
9. Defining the porosity of cellular matters
10.Determination of the repose angle of cellular matters
11.Viscosity determination of waters using a capillary viscometer
12.Determination of the flow of loose material from silo
13.Laboratory production of beer
Elearning