Course detail
Digital Signal Processing
FEKT-BPC-CZSAcad. year: 2020/2021
One-dimensional and two-dimensional discrete signals and systems. Description of systems, differential equations. Z-transform, solving of systems, transfer function, impulse response properties of the system. Discrete Fourier transform, FFT. Basics of designing FIR and IIR digital filters. Complex and real cepstrums. Application of cepstrums to speech and image processing. Signal quantization in discrete systems. Realization of digital filters in digital signal processors.
Guarantor
Department
Learning outcomes of the course unit
- Discrete signals and their description
- Discrete systems and their description
- Status of description systems
- Z-Transform and its application in solving digital systems
- Frequency analysis of discrete signals
- Discrete system - frequency selective filter
- Discrete Fourier transform
- Technical means of digital signal processing
Prerequisites
Co-requisites
Recommended optional programme components
Literature
OPPENHEIM, A.L., SCHAFER, R.W., Digital Signal Processing, Prentice-Hall, Inc. New Jersey, 1995. (EN)
SMÉKAL,Z., VÍCH,R., Zpracování signálů pomocí signálových procesorů. Radix spol.s.r.o., Praha 1998. (CS)
MIŠUREC,J., SMÉKAL,Z. Číslicové zpracování signálů. Skriptum FEKT VUT v Brně, 2012. (CS)
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
0-10 points - test using computers and software, (optional part).
0-70 points - written exam, compulsory part of the completion of the course.
The exam is focused on verifying students’ orientation in the basic problems of digital processing, their description, calculation methods, characterization of system analysis, and synthesis of digital systems.
Language of instruction
Work placements
Course curriculum
2. Frequency analysis of discrete signals - definition of DFT, DFT properties, vector form of DFT, fast FT calculation algorithm.
3. Discrete systems - initial conditions, representation of discrete systems using block diagrams and signal flow graphs.
4. Transformation Z and its use for solving discrete systems, the relationship between FT discrete signal and bilateral Z transformation.
5. Discrete systems - classification of discrete systems, linear time-invariant discrete system (LTI), connection of partial discrete LTI systems, causality and stability of LTI discrete system, discrete LTI systems of IR and IIR type.
6. State description of linear time-invariant discrete system, implementation structures.
7. Frequency characteristics of a linear time-invariant discrete system. Linear invariant discrete system as frequency filter - LPF, HPF, digital resonator, BPF, notch filter, BRF, comb filter, all-pass filter.
8. Basic methods of discrete system design according to frequency characteristic.
9. Inverse systems and deconvolution - discrete system inversibility, geometric interpretation of frequency characteristics, linear invariant discrete system with minimal, maximum and mixed phase, kepstrum, homomorphic deconvolution.
10. Expression of fixed and floating-point numbers, effect on stability and other features of the discrete LTI system.
11. Modification of the transfer function with regard to quantization effects, subdivision into sub-sections.
12. Implementation of digital signal processing using signal processors.
13. Architecture of digital signal processors.
Aims
Specification of controlled education, way of implementation and compensation for absences
Classification of course in study plans
- Programme BPC-AMT Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-EKT Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-IBE Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-SEE Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-AUD Bachelor's
specialization AUDB-ZVUK , 2. year of study, summer semester, 5 credits, compulsory
specialization AUDB-TECH , 2. year of study, summer semester, 5 credits, compulsory - Programme BPC-TLI Bachelor's, 2. year of study, summer semester, 5 credits, compulsory-optional
- Programme BPC-MET Bachelor's, 3. year of study, summer semester, 5 credits, compulsory-optional
Type of course unit
eLearning