Course detail
Mechanisation, Automation and Handling
FSI-HMEAcad. year: 2019/2020
The course introduces students to basic types of mechanization, handling and automation components and their theory and their utilization in industrial applications of manufacturing systems for forming, machining, welding, foundry and unconventional technologies is explained. The theory focuses on all kinds of transport systems, cranes, carts and all types of containers, feeders, conveyors, orientators and other peripherals used in automated systems. Furthermore, flexible production systems, automated production lines, integrated production systems, including the analysis of robots and manipulators, are discussed, including computer technology support.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
The acquired knowledge can be applied by the students in both structural and technological departments, even in designing their own proposals of manufacturing productions. The course will be supported by the computer aided technology, which the students will become acquainted with.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
RUMÍŠEK, Pavel. Automatizace výrobních procesů II: tváření. Praha: Mezinárodní organizace novinářů, 1990. ISBN 80-214-0221-0. (CS)
URBÁNEK, Jiří. Automatizace výrobních procesů: obrábění. Brno: Ediční středisko VUT, 1990. Učební texty vysokých škol (Vysoké učení technické v Brně). ISBN 80-214-0161-3. (CS)
Recommended reading
Novák - Marcinčin, Josef. Application of virtual manufacturing in area of robotic workplaces design and operation. Univerzity of Zenica. Faculty of Mechanical Engineering. 2006. ISBN 9958617307 (EN)
Palko, Anton a Juraj Smrček. Robotika: koncové efektory pre priemyselné a servisné roboty: navrhovanie - konštrukcia a riešenie. 1.vyd. Košice. 2004. 272 s. ISBN 80-8073-218-3 (SK)
Rumíšek, P.: Automatizace výrobních procesů II. - tváření, Brno 1990, VUT - učební texty
Urbánek, J.: Automatizace výrobních procesů - obrábění, Brno 1990 , VUT - učební texty
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Introduction, shape division of components, classification, mechanization and automation equipment
3. Logic, logical circuits, detecting elements and sensors
4. Numerical control systems NC-CNC-DNC-HNC
5. Objects and solutions of mechanization, automation and manipulation in the field of metal forming technology
6. Objects and solutions of mechanization, automation and manipulation in the field of machining technologies,
welding, casting and cutting
7. Solution of mechanization and automation problems in packaging, brazing, soldering, main principles
8. NC and CNC machines and its application in different technologies, principles
9. Production centers, automated production lines and transport systems
10. Materials handling means, cranes, low- and high- lift trucks, transport and handling systems
11. Industrial robots and manipulators - principles, structure, controlling
12. Conditions for using the industrial robots at production systems, heads, robot equipment
13. Automation production systems and complex handling
Exercise
Teacher / Lecturer
Syllabus
2. Automation elements - their use, circuits, project assignment
3. Boolean algebra
4. Introduction to automation and mechanization evaluation software
5. Working with the software (conveyors, slides)
6. Working with the software (low- and high- lift trucks, manipulators and conveyors)
7. Working with the software (flexible production line, integrated production section)
8. Project solution with regard to mechanization and automation
9. Solutions for handling in warehouses and warehousing systems
10. Classical elements of mechanization and manipulation in connection with production machines
11. Progressive methods for automation
12. Design of an AVS system using computer technology
13. Projects evaluation, test and attendance evaluation, course-unit credit