Course detail
Theory of Communications
FEKT-MPA-TOCAcad. year: 2020/2021
The course deals with principals, methods and characteristics of communication systems. It focuses on modern digital systems and modulation methods in particular. However, student of the course can also intensify his/her knowledge of analog modulations, their parameters and implementations. The theoretical information obtained at lectures are subsequently verified by computer simulations with models built in the MATLAB-SIMULINK environment. At the same time, student learns lot of technical terms and expands his/her vocabulary for the field of communication technology.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
- to distinguish basic types of binary signals, to compute and draw their spectra and describe principles and characteristics of the most widely used line codes,
- to list individual blocks of the digital communication system and explain their functions,
- to describe additive white Gaussian noise (AWGN) channel model, to define bit error rate, to compute probability of error reception in case of both baseband and passband binary signal transmission affected by AWGN,
- to describe principles, to define parameters and to list characteristics of basic and modern modulation methods,
- to explain the cause of intersymbol interferences (ISI) and Nyquist strategy of zero ISI in sampling moments, to draw and describe impulse responses of both raised cosine and Gaussian shaping filters,
- to describe the principle of channel equalization, to explain operations of adaptive equalizer and decision feedback equalizer,
- to explain the principle and importance of synchronization in the communication system, to explain the purpose of scrambling, to design the block diagram of a simple self-synchronizing scrambler,
- to describe principles of the automatic repeat request (ARQ) and the forward error correction (FEC), to explain the principle of interleaving, to describe methods of block and convolutional interleaving,
- to explain the difference between natural and uniform methods of sampling, the cause of aperture distortion and methods of its suppression,
- to describe principles of the pulse width modulation (PWM), the pulse position modulation (PPM) and the pulse density modulation (PDM),
- to explain the difference between uniform and non-uniform methods of quantization, to compute the power of the quantization noise, to draw the graphs of compressor and expander transfer functions,
- to describe principles and to list basic characteristics of pulse coded modulations (PCM, DPCM, DM, SDM),
- to explain principles of basic methods of signal multiplexing and multiple access,
- to describe and design the orthogonal frequency division multiplex (OFDM), to define its basic parameters and to list its typical characteristics and examples of application,
- to describe basic types of intensity modulations of light used in optoelectronics,
- to define and compute basic quantities used in the information theory (self-information, entropy, redundancy, mutual information, channel capacity), to explain the principle of the trellis coded modulation (TCM).
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
1) Signals in communication systems. Basic waveform representations of binary digits. Bit rate and modulation (symbol) rate.
2) Line codes. Minimum channel bandwidth needed for baseband digital signal transmission. Digital communication system.
3) Noise in communication systems. Receiving of noised signal.
4) Amplitude and frequency modulations and keyings.
5) Phase modulation and keying. Problems of BPSK data transfer.
6) Digital modulations with harmonic carrier (QPSK, 8PSK, O-QPSK, MSK, FFSK, GMSK).
7) Digital modulations with harmonic carrier (π/4-DQPSK, 8PSK, MQAM, CAP).
8) Reduction of intersymbol interference (ISI). Equalizers. Synchronization. Scrambling.
9) Synchronization. Scrambling. Methods of error control. Pulse modulations (PAM, PWM, PDM, PPM).
10) Digital representations of analog signals. Quantization. Pulse coded modulations (PCM, DPCM, DM, SDM).
11) Multiplexing and multiple access. Orthogonal frequency division multiplex (OFDM).
12) Modulations in optoelectronics. Effect of the noise in passband.
13) Introduction to the information theory. Coding. Trellis coded modulation (TCM).
Computer excercises:
1) MATLAB, HDB3 encoder, AWGN channel model.
2) Matched filter and correlation receiver.
3) Basic keying techniques (ASK, FSK, PSK).
4) Principle of quadrature modulations (QPSK, 16QAM).
5) Pulse modulations (DM, ADM, SDM, PCM).
6) Spread-spectrum techniques.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
PROAKIS, J. G. Digital Communications. 4th ed., New York (USA) : McGraw-Hill, 2001. 1002 p. ISBN 0-07-232111-3 (EN)
Recommended reading
HSU, H. P. Schaum's Outline of Theory and Problems of Analog and Digital Communications. 2nd ed., New York (USA) : McGraw-Hill, 2003. 331 p. ISBN 0-07-140228-4 (EN)
SKLAR, B. Digital Communications. 2nd ed. Upper Saddle River (USA) : Prentice Hall, 2003. 1080 p. ISBN 0-13-084788-7 (EN)
XIONG, F. Digital Modulation Techniques. 1st ed. Norwood (USA) : Artech House, 2000. 653 p. ISBN 0-89006-970-0 (EN)
Elearning
Classification of course in study plans
- Programme MPAJ-TEC Master's 1 year of study, summer semester, compulsory-optional
- Programme MPAD-CAN Master's 1 year of study, summer semester, compulsory
- Programme MPC-TIT Master's 0 year of study, summer semester, elective
- Programme MPC-MEL Master's 0 year of study, summer semester, elective
- Programme MPAD-CAN Master's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Line codes.
3. Effect of the noise in baseband communication.
4. Modulations with harmonic carrier wave (AM, FM, PM).
5. Basic keying techniques (ASK, FSK, PSK).
6. Advanced keying techniques - part I (QPSK, O-QPSK, MSK, FFSK, GMSK).
7. Advanced keying techniques - part II (pi/4-DQPSK, 8PSK, MQAM, CAP).
8. Intersymbol interference and equalization of communication channel.
9. Pulse modulations - part I (PAM, PWM, PPM).
10. Pulse modulations - part II (PCM, DPCM, DM, ADM, SDM).
11. Multiplexing and multiple access.
12. Effect of the noise in bandpass communication and modulations in optoelectronic.
13. Introduction to the information theory and coding.
Exercise in computer lab
Teacher / Lecturer
Syllabus
2. Matched filter and correlation receiver.
3. Basic keying techniques (ASK, FSK, PSK).
4. Principle of quadrature modulations (QPSK, 16QAM).
5. Pulse modulations (DM, ADM, SDM, PCM).
6. Spread-spectrum techniques.
Elearning