Course detail
Robotics
FIT-ROBaAcad. year: 2017/2018
Basic components of the stationary industrial robots. Kinematic chains. Kinematics. Solution of the inverse kinematic task. Singularities. Dynamics. Equations of motion. Path planning. Robot control. Elements and structure of the mobile robots. Models and control of mobile robots. Sensoric systems of mobile robots. Localization and navigation. Environment maps. Man-machine interface, telepresence. AI in robotics. Microrobotics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
- Syllabus of lectures:
- History, evolution, and current trends in robotics. Introduction to robotics. Robotic applications. Robotic competitions.
- Kinematics and statics. Direct and inverse task of kinematics.
- Path planning in the cartesian coordinate system.
- Models and control of the stationary robots.
- Effectors,sensors and power supply of robots. Applications of the cameras, laser distance meters, and sonars.
- Basic parameters of the mobile robots. Model and control of the wheel mobile robots.
- Robotic middleware. Robot Operating System (ROS), philosophy of ROS, nodes and communication among them.
- Maps - configuration space and 3D models.
- Probability in robotics. Introduction. Bayesian filtering, Kalman and particle filters. Model of robot movements and measurement model.
- Methods of the global and local localization. GPS based localization, Monte Carlo method.
- Map building. Algorithms for simultaneous localization and mapping (SLAM).
- Trajectory planning in known and unknown environment. Bug algorithm, potential fields, visibility graphs and probabilistic methods.
- Introduction to control and regulation.
- Lego Mindstorms
- Basics of ROS, sensor reading
- Advanced work in ROS
Syllabus of laboratory exercises:
Syllabus - others, projects and individual work of students:
Project implemented on some of the robots from FIT.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
- Mid-term written test.
- Evaluated project with a defence.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MMI , 0 year of study, winter semester, elective
branch MBI , 0 year of study, winter semester, elective
branch MSK , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, elective
branch MBS , 0 year of study, winter semester, elective
branch MPV , 0 year of study, winter semester, elective
branch MIS , 0 year of study, winter semester, elective
branch MIN , 0 year of study, winter semester, compulsory-optional
branch MGM , 0 year of study, winter semester, elective - Programme IT-MGR-1H Master's
branch MGH , 0 year of study, winter semester, recommended course