Course detail
Advanced Digital Systems
FIT-PCSAcad. year: 2017/2018
Combinatorial and sequential logic design techniques, algorithms, and tools review. Review of digital design target technologies (ASIC, FPGA). Algorithms for minimization of digital circuits. Advanced synthesis techniques (pipelining, retiming). Constraint conditions. Modern approaches to synthesis of digital circuits (models, methods, logic optimization, optimization for target technology). Synergy of modern syntehesis and verification. Low power design methodologies. Reconfigurable computing. Verification of digital circuits (OVM methodology).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Requirements for class accreditation are not defined.
Course curriculum
- Syllabus of lectures:
- Combinatorial and sequential logic design techniques, algorithms, and tools review.
- Review of digital design target technologies (ASIC, FPGA).
- Algorithms for minimization of digital circuits.
- Advanced synthesis techniques (pipelining, retiming).
- Constraint conditions.
- Models and methods for modern synthesis of digital circuits (AIG, BDD, SAT solvers).
- Modern synthesis of digital circuits (logic optimization).
- Modern synthesis of digital circuits (optimization for target technology).
- Synergy between synthesis and verification of digital circuits.
- Low power design methodologies.
- Reconfigurable computing.
- Verification of digital circuits (OVM methodology).
- Synthesis of the basic logic circuits, pipelining, retiming.
- Constraint conditions.
- Synthesis of basic digital circuits using ABC tool.
- Synthesis of advanced digital circuits using ABC tool.
- Verification of digital circuits.
- Individual project focused on digital design using CatapultC environment.
Syllabus of computer exercises:
Syllabus - others, projects and individual work of students:
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Rabaey J., Pedram M.: Low Power Design Methodologies, Kluwer, ISBN 0792396308, 1996 (EN)
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MBI , 0 year of study, winter semester, compulsory-optional
branch MSK , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, elective
branch MBS , 0 year of study, winter semester, elective
branch MPV , 2 year of study, winter semester, compulsory
branch MIS , 0 year of study, winter semester, elective
branch MIN , 0 year of study, winter semester, elective
branch MGM , 0 year of study, winter semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Combinatorial and sequential logic design techniques, algorithms, and tools review.
- Review of digital design target technologies (ASIC, FPGA).
- Algorithms for minimization of digital circuits.
- Advanced synthesis techniques (pipelining, retiming).
- Constraint conditions.
- Models and methods for modern synthesis of digital circuits (AIG, BDD, SAT solvers).
- Modern synthesis of digital circuits (logic optimization).
- Modern synthesis of digital circuits (optimization for target technology).
- Synergy between synthesis and verification of digital circuits.
- Low power design methodologies.
- Reconfigurable computing.
- Verification of digital circuits (OVM methodology).
Exercise in computer lab
Teacher / Lecturer
Syllabus
- Synthesis of the basic logic circuits, pipelining, retiming.
- Constraint conditions.
- Synthesis of basic digital circuits using ABC tool.
- Synthesis of advanced digital circuits using ABC tool.
- Verification of digital circuits.