Course detail
Diskrétní matematika
FEKT-ZDMAAcad. year: 2017/2018
The sets, relations and mappings. Equivalences and partitions. Posets. The structures with one and two operations. Lattices and Boolean algebras.The propositional calculus. The normal forms of formulas. Matrices and determinants. Vector spaces. Systems of linear equations.The elementary notions of the graph theory. Connectedness. Subgraphs and morphisms of graphs. Planarity. Trees and their properties. Simple graph algorithms.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Combinatoric properties of sets. The principle of inclusion and exclusion. Proof techniques and their illustrations.
3. Binary relations and mappings. The composition of a binary relation and mapping.
4. Abstract spaces and their mappings. Real functions and their basic properties.
5. Continuity and discontinuity. The functions defined by recursion.
6. More advanced properties of binary relations. Reflective, symmetric and transitive closure. Equivalences and partitions.
7. The partially ordered sets and lattices. The Hasse diagrams.
8. Algebras with one and two operations. Morphisms. Groups and fields. The lattice as a set with two binary operations. Boolean algebras.
9. The basic properties of Boolean algebras. The duality and the set representation of a finite Boolean algebra.
10. Predicates, formulas and the semantics of the propositional calculus. Interpretation and classification of formulas. The structure of the algebra of non-equivalent formulas. The syntaxis of the propositional calculus. Prenex normal forms of formulas.
11. The elementary notions of the graph theory. Various representations of a graph.The Shortest path algorithm. The connectivity of graphs.
12. The subgraphs. The isomorphism and the homeomorphism of graphs. Eulerian and Hamiltonian graphs. Planar and non-planar graphs.
13. The trees and the spanning trees and their properties. The searching of the binary tree. Selected searching algorithms. Flow in an oriented graph.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Anderson I., A First Course in Discrete Mathematics, Springer-Verlag, London 2001.
Grimaldi R. P., Discrete and Combinatorial Mathematics, Pearson Addison Valley, Boston 2004.
Johnsonbaugh, R., Discrete mathematics, Macmillan Publ. Comp., New York, 1984.
Recommended reading
Grossman P., Discrete mathematics for computing, Palgrave Macmillan, New York 2002.
Kolář, J., Štěpánková, O., Chytil, M., Logika, algebry a grafy, STNL, Praha 1989.
Kolibiar, M. a kol., Algebra a príbuzné disciplíny, Alfa, Bratislava, 1992.
Kolman B., Busby R. C., Ross S. C., Discrete Mathematical Structures, Pearson Education, Hong-Kong 2001.
Lipschutz, S., Lipson, M.L., Theory and Problems of Discrete Mathematics, McGraw-Hill, New York, 1997.
Lovász L., Pelikán J., Vesztergombi, Discrete Mathematics, Springer-Verlag, New York 2003.
Matoušek J., Nešetřil J., Kapitoly z diskrétní matematiky, Karolinum, Praha 2000.
O'Donnell, J., Hall C., Page R., Discrete Mathematics Using a Computer, Springer-Verlag, London 2006.
Preparata, F.P., Yeh, R.T., Úvod do teórie diskrétnych štruktúr, Alfa, Bratislava, 1982.
Rosen, K.H., Discrete Mathematics and its Applications, AT & T Information systems, New York 1988.
Classification of course in study plans