Course detail

# Electrical Engineering 2

The course deals with the basics of electrical engineering and extends the knowledge obtained in the course BEL1. At the beginning of the course are discussed universal and special methods of analysis of linear circuits in harmonic steady state, including the polyphase circuits. In the next section, students learn about the characteristics of basic passive two-port networks and resonant circuits. The following part explain classical and operator method of transient solution in linear circuits, students will learn how to determine the response of the circuit to the standard and arbitrary signals. The last part of the course is theory of homogeneous transmission lines.

Learning outcomes of the course unit

After completing the course student acquires the qualifying degree § 5 "competent worker" according to the Notice No. 50/1978 Coll. Students will also be able to:
- define the terms in the field of circuit analysis in HUS as a phasor, complexor, impedance, admittance, etc., and to analyze linear electrical circuits in harmonic steady state;
- list the primary and secondary line parameters and explain the propagation of waves on transmission lines in the steady state and the transient;
- explain the behavior of RLC circuits, meaning of resonance response of the circuit;
- discuss the importance of three-phase distribution systems and distinguish the concepts associated with it;
- apply the Laplace transform to solve transients in linear circuits;
- calculate the response of a linear circuit on the basic input signals.

Prerequisites

Student must for successful completion of the course manage the content of the course KEL1 and be able to: - define the concepts of electrical resistance, capacitance and inductance; - express in their own words the basic laws of electrical circuits and be able to explain the relationship between voltage and current at the fundamental elements R, L and C; - use appropriate methods to analyze linear circuits; - calculate the basic parameters of the time-varying signals; - apply the methods of mathematical analysis calculations for systems of equations using matrix methods; - use mathematics in the field of complex numbers; - manage general calculate derivatives and integrals simple basic functions; - calculate linear ordinary differential equations.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

SEDLÁČEK, J., VALSA, J. ELEKTROTECHNIKA II. Brno: VUT Brno , FEKT, 2004. s. 1 ( s.)ISBN: 80-214-2573- 3. (CS)
SEDLÁČEK, J.; MURINA, M.; STEINBAUER, M.; KROUTILOVÁ, E. Elektrotechnika 2 - laboratorní a počítačová cvičení. BRNO: Ing. Zdeněk Novotný, CSc., Ondráčkova 105, 628 00 Brno, 2008. s. 1 ( s.)ISBN: 978-80-214-3575- 9. (CS)
MIKULEC, M., HAVLÍČEK, V.:Základy teorie elektrických obvodů, ČVUT Praha 2003 (CS)
SEDLÁČEK, J. Elektrotechnika 2. Brno: VUT Brno , FEKT, 2003. s. 1 ( s.) (CS)
KALÁB, P.; STEINBAUER, M.; VESELÝ, M. Bezpečnost v elektrotechnice. Brno: Ing. Zdeněk Novotný, CSc, Ondráčkova 105, 628 00 Brno, 2009. s. 1-68. ISBN: 978-80-214-3952- 8. (CS)

Planned learning activities and teaching methods

Teachning methods include lectures and computer laboratories. Course is taking advantage of e-learning (Moodle) system. Student works out lab reports.

Assesment methods and criteria linked to learning outcomes

Total number of points is 100, including 30 points in the individual works (5 works for up to 6 points), and 70 points in final exam. Students have to submit all 5 individual works and obtain at least 15 points from 30 possible, as well as active participation in both exercises. Requirements for completion of a course are: to gain examination and to perform a written final test. Minimal necessary achieved total mark to pass this course is 50 points.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1. Harmonic steady state, symbolic method of linear circuit analysis in harmonic steady state
2. Three-phase circuits, power in three-phase circuits
3. Properties of passive linear two-port networks. Resonant circuits
4. Transient processes in linear circuits of 1. and 2. order. Exam to acquire the qualifying degree § 5 "competent worker"
5. Transmission lines

Aims

The course develops the knowledge gained in Electrical Engineering 1 and prepares the students for following courses of specializations in electrical engineering. In last week students will be examined to obtain qualification level "competent worker".

Specification of controlled education, way of implementation and compensation for absences

Attendance at laboratory classes is mandatory. Properly excused absences can be substituted, usually in the last week of the semester.

Classification of course in study plans

• Programme EEKR-BK Bachelor's

branch BK-AMT , 1. year of study, summer semester, 6 credits, compulsory
branch BK-EST , 1. year of study, summer semester, 6 credits, compulsory
branch BK-MET , 1. year of study, summer semester, 6 credits, compulsory
branch BK-SEE , 1. year of study, summer semester, 6 credits, compulsory
branch BK-TLI , 1. year of study, summer semester, 6 credits, compulsory

• Programme EEKR-CZV lifelong learning

branch ET-CZV , 1. year of study, summer semester, 6 credits, compulsory

#### Type of course unit

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise in computer lab

19 hours, compulsory

Teacher / Lecturer

Laboratory exercise

20 hours, compulsory

Teacher / Lecturer