Course detail
Operational and Systems Analysis
FSI-FOA-KAcad. year: 2016/2017
The introductory part of this course deals with systems theory and systems analysis. It explains the essence of a system and relationships between the system and its environment. The next part of this course, operations research, presents tools for solving various types of decision problems. This part shows possibilities of optimizing structure and behaviour of systems, and gives foundations for applying the system approach to solving decision problems. On one hand, the course is focused on typical problems of socio-technical systems, and on the other hand on theoretical and application aspects of solution methods. The course gives foundations for applying the system approach to solving decision problems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
LITTLECHILD, S.; SHUTLER, M. (eds.): Operations Research in Management. Prentice Hall, New York, pp. 298, 1991. ISBN 0-13638-8183
SKYTTNER, L.: General Systems Theory. An Introduction. Macmillan Press, London, pp. 290, 1996. ISBN 0-333-61833-5.
Recommended reading
Classification of course in study plans
Type of course unit
Guided consultation
Teacher / Lecturer
Syllabus
2. Modelling systems. Systems analysis and operations research.
3. Linear programming problems and their properties.
4. Methods of solving linear programming problems.
5. Sensitivity analysis and duality.
6. Transportation and distribution problems.
7. Formulation and properties of nonlinear programming problems. Optimality conditions.
8. Methods of solving nonlinear programming problems.
9. Integer programming problems, branch-and-bound method.
10. Stochastic optimization problems.
11. Multicriteria decision problems.
12. Problems and methods of game theory.
13. Models of queuing systems.