Course detail
CAD in Microwaves
FEKT-MCVTAcad. year: 2017/2018
Students become familiar with principles and application of basic numerical methods (finite differences, finite elements, method of moments) for the analysis of microwave structures on frequencies hundreds of MHz up to tens of GHz. Further, standard and non-standard optimization methods (gradient and Newton algorithms, genetic algorithms) and their application to the design of microwave circuits and antennas are described. In frame of an individual project, students will design, manufacture and measure a given planar structure.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Finite-difference method: potential distribution, wave propagation in waveguide
3. Finite-element method: potential distribution, wave propagation in waveguide
4. Finite elements: analysis of 2D and 3D structures
5. Time domain finite differences: transients in waveguides
6. Time domain finite elements: transients in waveguides
7. Moment method: analysis of wire antennas
8. Commercial software: ANSOFT HFSS, ANSOFT Designer
9. Conventional optimization methods: steepest descent, Newton method, Optimization Toolbox of MATLAB
10. Global optimization: genetic algorithms, swarm optimization, multi-objective optimization
11. Design of planar filters
12. Design of power dividers
13. Design of other planar components
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Finite element method: computing potential in a condenser, wave propagation in a waveguide
Finite element method: analysis of 2D and 3D structures
Finite element method: verifying computations in FEMLAB
Time domain finite differences: transient phenomena in waveguides
Time domain finite elements: transient phenomena in waveguides
Moment method: analysis of wire antennas
Moment method: analysis of planar antennas
Moment method: verifying computations in FEMLAB and ANSOFT Designer
Classical optimization methods
Global optimization methods
Artificial neural networks
Exercise in computer lab
Teacher / Lecturer
Syllabus
Finite element method: computing potential in a condenser, wave propagation in a waveguide
Finite element method: analysis of 2D and 3D structures
Finite element method: verifying computations in FEMLAB
Time domain finite differences: transient phenomena in waveguides
Time domain finite elements: transient phenomena in waveguides
Moment method: analysis of wire antennas
Moment method: analysis of planar antennas
Moment method: verifying computations in FEMLAB and ANSOFT Designer
Classical optimization methods
Global optimization methods
Artificial neural networks