Course detail
Vibration and Noise of Vehicles
FSI-QDZAcad. year: 2016/2017
The subject should serve as an introduction of the most important problems of noise, vibration and harshness applied on motored vehicles. There are presented current calculation models and experimental methods used in the development of state-of-the-art powertrains and vehicles to the students. The emphasis is laid upon the mathematical and physical foundations of calculation models and the respective software as well as the verification of results of the computer modelling by way of appropriate experimental methods. There are presented examples of noise and vibration solutions like acoustic sources, acoustic properties of vehicle components, passive or active methods for noise decrease.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
The orientation at physical fundamentals of presented problems and the knowledge of practical solving methods , leading to individual work especially on a diploma thesis and in engineering practice after completing studies. The ability to solve problems using computer technology and necessary advanced software equipment. Students have to individually elaborate assigned tasks without significant mistakes. Together with evaluating them the continuous study checking is carried out.
Final examination:
The course is concluded by a final test, as well as oral discussion.
Final evaluation consists of:
1. Evaluation of the individual work on seminars (individually elaborated tasks).
2. The results of written and oral parts of the exam.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
- compulsory co-requisite
Tractors
Basic literature
NOVÝ R., KUČERA M. Snižování hluku a vibrací. Praha: Vydavatelství ČVUT Praha, 2009.
SMETANA, C. et al. Hluk a vibrace: měření a hodnocení. Praha: Sdělovací technika, 1998. ISBN 80-901936-2-5. (CS)
Recommended reading
NGUYEN-SCHÄFER, Hung. Aero and Vibroacoustics of Automotive Turbochargers. 1. Stuttgart, Germany: 3, 2013. ISBN 978-3-642-35069-6. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Fundamentals of numerical methods
3. Finite Element Method
4. Finite Element Method in dynamics
5. Boundary Element Method and Statistic Energy Method
6. Fundamentals of experimental methods
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Finite element Method – harmonic analysis
3. Finite element Method – acoustic analysis
4. Finite element Method – coupled acoustic-structural analysis
5. Application of Multibody dynamics in acoustic
6. Application of experimental methods