Course detail
Analogue electronic circuits
FEKT-CAEOAcad. year: 2016/2017
Contents of the course are theoretical basics and principles of analog electronic circuits, an explanation of functioning of typical connections of particular types of the circuits, including methods of their analysis. Students will become familiar with classification and description of electronic circuits, circuits elements and functional blocks, with fundamentals of real circuits elements modelling, with stability and feedback theories and their practical applications. An emphasis is put on an explanation of the function and the application of basic kinds of the analog circuits, as are circuits with operational amplifiers, electrical filters, basic transistor stages and circuits, amplifiers, rectifiers, stabilizers, signals shapers, analog multipliers, modulators, mixers and oscillators. Students will exercise in the use of Matlab, SNAP and PSpice programs at the computer-aided analysis of analog circuits, and deepen practical skills at measuring their properties.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Learning outcomes of the course unit
- classify electronic circuits and elements, and discuss their models,
- explain principles of basic electronic functional blocks,
- discuss basic knowledge of stability and feedback theories,
- analyze typical circuits with operational amplifiers,
- describe properties of transistor stages and analyze typical circuits with transistors,
- explain principles of electronic filters, and analyze their typical circuitries,
- classify amplifiers in terms of classes, frequency band and output power, describe their functioning,
- explain principles of rectifiers and stabilizers of voltage and current,
- explain principles of typical representatives of signal converters,
- explain principles of harmonic LC and RC oscillators, and analyze their typical circuitries,
- apply PC for the analysis of analog circuits in Matlab, SNAP and PSpice programs,
- apply proper measuring modes at testing properties of analog circuits.
Prerequisites
- discuss basic principles and theorems valid for electrical circuits,
- solve linear and simple nonlinear resistive circuits,
- solve linear circuits in a harmonic steady state,
- discuss properties of passive linear circuits of the 1st and 2nd order – RC and RL networks, RLC resonant circuits,
- express transfer and immittance functions in complex and operational forms,
- specify types of semiconductor diodes and transistors and discuss their functioning,
- choose and use proper measuring instruments to measure parameters of an electronic circuit,
- use basic regimes of the PSpice simulator,
- form a simple program (function) in the Matlab language.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Elements of electronic circuits: linear and nonlinear two-poles and two-ports, controlled sources, functional blocks, operational amplifiers.
3. Modelling of real circuits elements: approximation of characteristics, semiconductor diode, transistor, operational amplifier.
4. Electronic circuit as a linear dynamical system: principles of stability and feedback theories.
5. Circuits with operational amplifiers: voltage and current amplifiers, transducers V/I and I/V, functional blocks and nonlinear converters.
6. Electrical filters: classification, passive filters of the 1st and 2nd order, active filters, higher-order filters, filters with synthetic elements.
7. Basic transistor stages: common-emitter, common-collector and common-base connections, feedback in transistor stages, frequency properties.
8. Transistor circuits: current sources, current mirrors, Darlington circuit, casdade connection of basic stages, differential amplifier.
9. Amplifiers: classification and properties, amplifiers classes, wideband and narrowband (tuned) amplifiers, high-frequency amplifiers in C class.
10. Power audio amplifiers: classification, A, B and AB class amplifiers, special classes amplifiers.
11. Power supplies circuits: current and voltage stabilizers, rectifiers, voltage multipliers and converters.
12. Signal converters: limiters, analog multipliers, AM modulators, frequency converters and mixers.
13. Signal generators: oscillators with negative differential resistance, LC and crystal oscillators, RC oscillators, variable-frequency oscillators.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
JAKUBOVÁ, I. Analog Electronic Circuits. Laboratory Experiments. FEEC BUT Brno, 2011, p.1-70. (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Circuit elements and functional blocks.
Modelling of circuit elements.
Circuit as a linear dynamical system, stability, feedback.
Circuits with operational amplifiers.
Electrical filters.
Basic circuits with BT and FET transistors.
Multistage circuits with transistors.
Amplifiers, LF, HF, wideband, narrowband, with tuned circuits, power.
Power-supply units, rectifiers, stabilizers, DC/DC converters.
Signal converters and shaping circuits, mixers, modulators and demodulators.
Signal generators, oscillators LC, RC, with PCU,
tuned electronically.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Symbolical circuits analysis by the SNAP program.
Basic introduction to the PSPICE program, verification of basic circuit theorems.
DC and AC analysis of electrical circuits, real OA properties, BJT.
Time analysis, models of basic elements, simulation of selected analog circuits.
Laboratory exercise
Teacher / Lecturer
Syllabus
Transistor amplifier and limiter.
Half-wave and full-wave diode rectifiers.
Amplifiers with integrated OA.
Final test.