Course detail
Methods of digital integrated circuits design
FEKT-LNDOAcad. year: 2015/2016
Aspects of design of digital integrated circuits. Used technologies (bipolar, CMOS, BiCMOS. Novel circuit principles, modern digital building block of ASICs. Computer exercices focused on simulation and design of digital functional blocks. Use of professional design system CADENCE for complex design of digital IC (includig layout).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- is able to describe required steps in digital integrated circuit design
- is able to design advanced combinational and sequential circuits by usin VHDL
- is able to write basic TCL script for RTL synthesis performed in Cadence RTL Compiler
- is able to do analysis of digital circuit regarding speed, area and power consumption
- is able to use modern design tools for digital integrated circuit design
Prerequisites
- design of advanced combinational and sequential digital circuits by using VHDL
- define proper conditions and specifications according to designed digital circuit
- work with documentation and design any digital circuit according to this specification
- implementation of designed digital system into the programmable circuit
- verification and evaluation of designed digital system
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Enhanced VHDL language and advanced syntax
3. Synthesis, static timing analysis, front-end phase
4. Implementation, clock tree synthesis, RC extraction, back-end phase
5. Front-end vs. Back-end
6. Verification - LVS, DRC
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
ASICs, programmable devices. IC layout and fabrication.
Basic functional blocks of digital ICs. Combinational logic circuits.
CMOS circuit characterization. Electric-level and logic-level simulation.
Sequential logic circuits. Dynamic logic circuits.
Alternative logic structures (BiCMOS, GaAs).
Sub-system design (adders, parallel multipliers, ROM, RAM, EPROM)
Low-power CMOS logic circuits.
Design methodologies. Design and simulation tools.
Placement and routing, padding. Chip I/O circuits.
Testing, design for testability, design for manufacturability.
VHDL language.
Intellectual property (IP), system on a chip (SOC). Economical aspects of design and production.
Exercise in computer lab
Teacher / Lecturer
Syllabus
Electrical-level simulation.
Logic simulation, critical path.
Worst-case analysis, hazards.
Basic funtional blocks of digital ICs.
Standard logic famillies of CMOS circuits.
Programmable devices.
Layout and routing.
VHDL - structure and syntax.
VHDL - basic static and dynamic structures.
VHDL - complex example.
Testability, design for test.
Design of ASIC - case study.