Course detail

Modelling and simulation in microelectronics

FEKT-LMSIAcad. year: 2015/2016

The course is focused on computer modelling and analysis of electronic circuits and microelectronic structures. In this course general principles, capabilities and limitations of computer analysis of electronic circuits, meaning, and use of various types of analysis are shown to a students. Practical experience with the usage of computer modelling and simulation can students get during the realization of their individual projects aimed to the development of the model of an electronic part; simulation of the basic parameters and the behaviour of this part, and presentation of the results.

Learning outcomes of the course unit

Successful student of this course is able to:
- Use a tool for a computer analysis and simulation of electronic circuits.
- Select the appropriate type of computer simulation and set its parameters depending on the desired output.
- To perform computer simulation of electronic circuits.
- Analyse and fix any errors preventing the correct computer simulation.
- Obtain, analyse and verify the simulation results.
- Create models of electronic analog and digital elements.


Student who enters this subject, should be able to explain the basic physical and electrical principles; derive and analyse the behaviour of analog and digital electronic components, and discuss the basic concepts of probability and statistics. It is expected to have finished course BMPS and to know the fundamentals of computer simulations.


Not applicable.

Recommended optional programme components

Not applicable.


Biolek, D. Řešíme elektronické obvody aneb kniha o jejich analýze. BEN, technická literatura, 2004. ISBN 80-7300-125-X. (CS)
Vladimirescu, A. The SPICE Book. John Wiley & Sons, Inc., 1994. ISBN 0-471-60926-9. (EN)

Planned learning activities and teaching methods

Techning methods include lectures, computer laboratories and other activities. Course is taking advantage of e-learning (Moodle) system. Students have to write a single project/assignment during the course.

Assesment methods and criteria linked to learning outcomes

up to 25 points for the individual project
up to 5 points for the review of the individual project in Cp
up to 10 points for Cp
up to 60 points per exam
Submission and review of the individual project are necessary conditions for achieving exam. The exam is oral and is focused on verification of knowledge about capabilities, and ways of usage of a computer modelling and simulation on the examples passed within this subject.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction to the problematic of computer modelling and simulations of electronic circuits and microelectronic structures.
2. Standard procedures; characteristics of parts
3. DC analysis; Thermal analysis
4. AC analysis; basic frequency and noise analysis; displaying of an AC analysis results
5. Time domain analysis; Sources in the time domain; Fourier analysis
6. Statistical analysis and optimization
7. Hierarchical modelling
8. Basic digital simulations
9. Digital sources; conversion of a logical level to an analog signal
10. Digital circuits simulations; realization of logic function
11. Analysis of hazardous states of digital circuits
12. Mixed analog-digital circuits and their simulations


Main goal of this course is to follow up on a basic knowledge of the design of analog circuits, semiconductors and microelectronic structures and to provide basic knowledge of computer analysis and modelling of electronic and microelectronic devices and circuits to the students of this course.

Specification of controlled education, way of implementation and compensation for absences

Laboratory lessons and review of individual projects are required.

Classification of course in study plans

  • Programme EEKR-ML Master's

    branch ML-MEL , 1. year of study, winter semester, 6 credits, compulsory

  • Programme EEKR-ML1 Master's

    branch ML1-MEL , 1. year of study, winter semester, 6 credits, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, winter semester, 6 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer

Exercise in computer lab

26 hours, compulsory

Teacher / Lecturer

The other activities

13 hours, compulsory

Teacher / Lecturer