Course detail
Biomechanics III
FSI-RBMAcad. year: 2015/2016
The course is aimed at getting acquainted with the structure of cardio-vascular system, the properties of its elements and with possible ways of solving biomechanical problems by modelling, computational modelling in particular. It offers an overview of these properties and an analysis of their importance from the point of view of solutions of various biomechanical problems. In more detail it deals with computational modelling of specific material properties, which are typical for soft tissues (viscoelasticity, hyperelasticity, anisotropy, material non-linearity), and with practical exploitation of the potentials of the FEM program system ANSYS and analysis of its limitations in solving biomechanical problems. An overview of basic reological properties of blood is presented as well. Further, man-made replacements used in cardio-vascular surgery are dealt with (artificial cardiac pumps, heart valves, arterial stents, vascular grafts); their construction principles, basic requirements of biocompatibility, possibilities of their quantitative assessment and improving their properties are discussed, as well as problems of their lifetime.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Humphrey: Cardiovascular solid mechanics. Cells, Tissues and Organs.Springer, 2002. (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Definition of cardio-vascular system, fundamentals of its anatomy.
3. Fundamentals of physiological processes in heart and blood vessels, their interpretation.
4. Structure and rheological properties of blood, models of blood behaviour, velocity profiles of non-Newtonean liquids, Fahraeus-Lindqvist effect.
5. Structure and components of vascular and myocardial walls, mechanical properties of components.
6. Constitutive models of soft tissues, residual stresses in arteries.
7. Mechanical properties of smooth muscle cells and their computational modelling.
8. Mechanical influence on atherosclerotic processes, principals of treatments.
9. Arterial stents, principals of function, design and production.
10. Vascular grafts (arterial replacements), types, properties, practical use, production.
11.Natural and artificial heart valves, principals of function, overview of products.
12.Ventricular assist devices and total artificial hearts.
13.Actual possibilities of FEM in modelling of heart and blood vessels.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2.Analytical solutions to stresses in arterial wall – limitations.
3.The simplest FE models of arterial wall.
4.Application of the multielastic constitutive model.
5.Computer simulation of basic mechanical tests of hyperelastic materials.
6.Application of hyperelastic constitutive models in stress-strain analysis of arterial wall.
7.Modelling of viscoelastic material behaviour.
8.Viscoelastic model of vascular wall.
9.Orthotropic model of vascular wall.
10.Evaluation of residual stresses in arterial wall.
11.Fictive temperature method in calculation of residual stresses.
12.Formulation of closing project.
13.Evaluation of the closing project, test of basic knowledge, credit.