Course detail
Biomechanics I
FSI-RBAAcad. year: 2015/2016
Biomechanics I is an introductory course for Biomechanics II, dealing with biomechanical problems in musculo-skeletal system, and for Biomechanics III, dealing with problems of cardio-vascular system. To manage these two biomechanics, students need basic knowledge on structure and function of cells, on histology, physiology and pathology of tissues in human organism. Biomechanics I comprehends system approach to bioengineering, medicine, structure and functions of cells and elements of tissues. It deals with histology and physiology of epithels, connective, fibrous and bone tissues and of cartilages, especially of joint cartilage, as well as with muscle and neural tissue in greater detail. It deals adequately with pathology of the above tissues, especially from the viewpoint of degradation processes. In the part devoted to biomaterial engineering, the course focuses on constitutive and strength properties of basic biomaterials (collagen, elastin), and on properties of austenitic steels, alloys, high-pressure-polyethylene, and ceramics, being used in implants. Systematic approach to modelling in biomechanics is presented. The course presents also basic information on self-organization and synergy in biological branches.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Odborné články z internetu
PETERSON, D. R.; BRONZINO, J. D. Biomechanics: Principles and Applications. Taylor & Francis, 2007-09-25. 357 p. ISBN: 9780849385346. (EN)
Valenta a kol.: Biomechanika. Academia Praha, 1985.
WINKELSTEIN, Beth A. Orthopaedic Biomechanics.První vydání. CRC Press, 2012. ISBN 978-1439860939 (EN)
Recommended reading
KŘEN, Jiří, Josef ROSENBERG a Přemysl JANÍČEK. Biomechanika. Plzeň: Západočeská univerzita, 1997. ISBN 80-7082-365-8.
VICECONTI, Marco. Multiscale modeling of the skeletal system. První vydání. Cambridge University Press, 2012. ISBN 0521769507 (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Structure of bioengineering branches – 2nd group of branches (from technology to nature), 3rd group of branches (to the fundamentals of engineering).
3. Definition and structure of biomechanics, aimed at human biomechanics.
4. Biomechanical objects, biomechanical problems, procedure of solutions to biomechanical problems.
5. Solution of biomechanical problems concerning musculo-skeletal, cardio-vascular and dental systems and biomechanics of cells.
6. Definition and structure of biomaterial engineering. Biomaterials for implants.
7. Comprehensively on properties of materials in human body. Fundamentals of bionics.
8. Introduction ot medicine. Structure and definition medical branches.
9. Eucaryotic cell – its structure (anatomy), functions (physiology) and pathology.
10. Cells of tissues and organs.
11. Structure of tissues – epithels, bone tissue, cartilage, muscle tissue.
12. Nervous tissue, fat tisssue, blood.
13. Degradation processes in human tissues