Course detail
Design of Antennas and Radio Links
FEKT-LASVAcad. year: 2013/2014
The subject is focused on the explanation of basic principles of the antenna theory and radio wave propagation, and their exploitation for antenna and radio links design. Students will practice their knowledge on the design, manufacturing and measuring of a given antenna, and on the design of selected radio links in a real environment.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Wire antennas.
3. Antenna arrays.
4. Microstrip antennas.
5. Horn antennas, slot antennas.
6. Reflector antennas and wideband antennas.
7. Antennas for special applications, antenna auxiliary circuits.
8. Materials for antenna technique, structure and fabrication of antennas, antenna measurement.
9. Radiocommunication services, exploitation of radio spectrum, conditions of radiocommunication, basic concept of radio links design.
10. Propagation of radio waves close to Earth surface, space and surface wave.
11. Mobile radio communication, propagation models for macrocells, microcells, and picocells, indoor radiowave propagation.
12. Influence of atmosphere on radio links
13. Microwave links.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
ČERNOHORSKÝ,D. a NOVÁČEK,Z. Navrhování rádiových spojů. Skriptum FE VUT Brno, Brno 1992. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Antenna array pattern, its optimization and synthesis
Impedance of linear antennas and of antenna arrays. Losses and efficiency of antenna
Radio waves reception, receiving antennas, polarization, antenna parameters
Propagation along the earth surface. Surface- and space-waves, obstacle losses
Ionospheric propagation, design of ionospheric link and operational frequency
Tropospheric scattering communication,atmospheric losses, properties of microwave links
Calculation of field strength and reliability, conditions of radio communication
Broadcast antennas for LW and MW, short-wave antennas
Antennas for UHF band, matching and balancing
Microwave antennas. Extremely wideband antennas
Signal processing antennas, adaptive antennas
Electronic scanning, near-field measurement
Exercise in computer lab
Teacher / Lecturer
Syllabus
Input impedance of antennas and of antenna arrays
Losses and efficiency of antenna. Antenna parameters
Design of antenna array, matching
Propagation of surface- and space-wave, obstacle losses
Sky-wave propagation, sky-wave link design
Radio wave reception, radio link design
Laboratory exercise
Teacher / Lecturer
Syllabus
Field strength of broadcast and TV transmitters
Properties of signal with fading
Current distribution on linear antennas
Properties of ferrite antenna
Radiation pattern and impedance of microwave antennas
Polarization properties of antenna