Course detail
Radio and Mobile Communication
FEKT-BRMKAcad. year: 2012/2013
General schematic diagram of a radio communication system. Frequency bands. Modulation techniques. Source and channel coding. Equalisation. Diversity reception. Concept of mobile communication systems. Multiple access systems. Mobile communication networks topology. Spread spectrum techniques at present radio communication systems. Description of 2G systems (GSM, DECT, ERMES), 2,5G systems (GPRS, HSCSD, EDGE), 3G systems (UMTS, Bluetooth, WLAN, WiMAX) and 4G (LTE, LTE Advanced). Next generation mobile systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Laboratory practice:
every practice - max. 3 points,
total number of 10 laboratory works - 30 points.
Writing test:
3 questions from rewiev of information - every question max. 20 points - total number max. 60 points,
2 short questions - every question max. 5 points - total number max. 10 points.
Course curriculum
2. Signal processing (source coding, channel coding)
3. Signal processing (interleaving, digital modulations)
4. Basic concept and functions of radio communication systems, multiple access systems and multiplexing methods, methods of transmission, area structure, frequency band utilization, handover, types of connection, distortion phenomenons and their limitation
5. GSM system (frequency bands, system architecture)
6. GSM system (signal processing)
7. GSM system (data transmission, GPRS, HSCSD, EDGE, specialties of GSM 1800 system, TEMS programme)
8. UMTS system (system architecture)
9. UMTS system (signal processing)
10. Cordless telephone systems (DECT), paging (RDS, ERMES)
11. WPAN systems (Bluetooth), WLAN systems (802.11) and WMAN systems (WiMAX)
12. Future systems (LTE, HAPS), evolution of mobile communications, trends
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme EECC Bc. Bachelor's
branch B-TLI , 3 year of study, summer semester, elective specialised
branch B-AMT , 3 year of study, summer semester, elective interdisciplinary
branch B-EST , 3 year of study, summer semester, elective specialised - Programme EEKR-CZV lifelong learning
branch EE-FLE , 1 year of study, summer semester, elective specialised
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Signal processing (source coding, channel coding)
3. Signal processing (interleaving, digital modulations)
4. Basic concept and functions of radio communication systems, multiple access systems and multiplexing methods, methods of transmission, area structure, frequency band utilization, handover, types of connection, distortion phenomenons and their limitation
5. GSM system (frequency bands, system architecture)
6. GSM system (signal processing)
7. GSM system (data transmission, GPRS, HSCSD, EDGE, specialties of GSM 1800 system, TEMS programme)
8. UMTS system (system architecture)
9. UMTS system (signal processing)
10. Cordless telephone systems (DECT), paging (RDS, ERMES)
11. WPAN systems (Bluetooth), WLAN systems (802.11) and WMAN systems (WiMAX)
12. Future systems (LTE, HAPS), evolution of mobile communications, trends
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Repeaters for GSM system
2. Testing of GSM mobile station
4. Basic parameters of GSM network I
5. Testing of GPRS and EDGE systems
6. Basic parameters of GSM network II
7. Bluetooth and WiFi system parameters
8. Walsh functions and PN sequences, 4G Internet.
9. Testing of ZigBee system
10. ROMES - programme for testing of mobile networks