Přístupnostní navigace
E-application
Search Search Close
Publication detail
MANAKHOV, A. PERMYAKOVA, E. SITNIKOVA, N. TSYGANKOVA, A. ALEKSEEV, A. SOLOMATINA, M. BAIDYSHEV, V. POPOV, Z. JANŮ, L. ELIÁŠ, M. ZAJÍČKOVÁ, L. KOVALSKII, A. SHEVEYKO, A. KIRYUKHANTSEV-KORNEEV, P. SHTANSKY, D. NEČAS, D. SOLOVIEVA, A.
Original Title
Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas
Type
článek v časopise ve Web of Science, Jimp
Language
angličtina
Original Abstract
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 mu g/L/day for Cu2+ versus 15 mu g/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed $0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
Keywords
SARS-CoV-2; nanofibers; antiviral coating; plasma; XPS; silver; copper
Authors
MANAKHOV, A.; PERMYAKOVA, E.; SITNIKOVA, N.; TSYGANKOVA, A.; ALEKSEEV, A.; SOLOMATINA, M.; BAIDYSHEV, V.; POPOV, Z.; JANŮ, L.; ELIÁŠ, M.; ZAJÍČKOVÁ, L.; KOVALSKII, A.; SHEVEYKO, A.; KIRYUKHANTSEV-KORNEEV, P.; SHTANSKY, D.; NEČAS, D.; SOLOVIEVA, A.
Released
1. 2. 2022
Publisher
MDPI
Location
BASEL
ISBN
1420-3049
Periodical
MOLECULES
Year of study
27
Number
4
State
Švýcarská konfederace
Pages count
21
URL
https://www.mdpi.com/1420-3049/27/4/1333
Full text in the Digital Library
http://hdl.handle.net/11012/209162
BibTex
@article{BUT182249, author="Anton {Manakhov} and Elizaveta {Permyakova} and Natalya A. {Sitnikova} and Alphiya R. {Tsygankova} and Alexander Yu. {Alekseev} and Mariia {Solomatina} and Victor S. {Baidyshev} and Zakhar {Popov} and Lucie {Janů} and Marek {Eliáš} and Lenka {Zajíčková} and Andrey {Kovalskii} and A.N. {Sheveyko} and Philip {Kiryukhantsev-Korneev} and Dmitry V. {Shtansky} and David {Nečas} and Anastasiya {Solovieva}", title="Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas", journal="MOLECULES", year="2022", volume="27", number="4", pages="21", doi="10.3390/molecules27041333", issn="1420-3049", url="https://www.mdpi.com/1420-3049/27/4/1333" }