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1 INTRODUCTION

The proposed thesis is focused on the problem of process optimization that can be applied in various fields of

industry and anywhere else where it is possible to define activities as standardized processes (hereinafter re-

ferred to as jobs) consisting of further indivisible operations (hereinafter referred to as tasks). The validation of

the proposed optimization algorithm will be done in the area of logistics. It is clearly the Online Combinatorial

Optimization problem with many parameters. This area was chosen because there is a possibility to consult

the work with a qualified expert in this area and the real operational data from the logistic warehouse are

available. These facts should ensure the validity and reliability of the proposed work. Besides, thesis is a part

of the project FR-TI1/444 ”Research and Development of the System for Manufacturing Optimization”.

According to Tompkins et al. [1] the time spent on each of these operations can be divided into the following

time segments: traveling (50 %), searching (20 %), picking (15 %), setup (10 %), and other unpredictable

circumstances (5 %). The most obvious part to optimize is the time spent on traveling, searching and picking.

This optimization was to this point done by a skilled operational manager and if he was using some optimization

techniques, it was just weighting of parameters, which made together a fitness function of desired solution.

The main weakness of this approach is the human factor. The operational manager is in stress, most

frequently at the pre-Christmas time etc., and the planning and scheduling of warehouse processes is failing

and the whole buffer of jobs is allocated in a hurry and the performance of employees goes rapidly down. The

first motivational factor is a significant demand from the industry to solve the problem of work-flow scheduling

by an automated method and to help the operational manager with decision making, or even replace the

manager with an automated optimization algorithm. The second motivationl factor is to bring the latest and

most effective concepts of optimization in scheduling from the scientific world into the logistics world.

Of course, there are also fully automated logistic warehouses supported by various robots, hoists, automated

guided vehicles, automated storage and retrieval systems etc., and the benefits of such solution of warehouse

are indisputable, e.g. reductions in manpower and labor costs, fork-lift equipment and its maintenance, which

implies that the work efficiency is improved. But, on the other hand, such a warehouse requires high capital

investment, there is a problem with low tolerance to discrepancies due to mechanization, steep cost of downtime

– the warehouse operation comes to a complete halt, reduced flexibility of the warehouse, and much higher

maintenance costs. So, logistic companies are not willing in most cases to implement such a solution.

1.1 Research Challenges

The first challenge is to design an automated optimization algorithm and support the decision making of

operational manager. If the results of algorithm will surpass the results of the manager, the challenge will

be to deploy the algorithm as a stand-alone system without any supervision. The second challenge is to

develop this algorithm as a general problem solving algorithm with a possibility to define new criteria how to

influence the convergence to the solution. This should be done by multi-criteria fitness function which will take

into account various parameters such as: the makespan, utilization o employees and equipment, and possible

warehouse congestions. The fourth challenge is to reach better warehouse performance and productivity.

1.2 Research Contribution

A comprehensive literature review of the warehouse optimization connected to the scheduling and the vehicle

routing was written. This helped to define the hypothesis and goals, and to extend the mathematical model for

the warehouse work-flow optimization. The new, extensible, and multi-platform Evolutionary Framework with

the computational core based on Genetic Programmin (GP) driven by the Context-Free Grammar (CFG) based

on existing Grammar Guided GP (GGGP) approach was developed, implemented, and validated. The new

algorithm for the warehouse work-flow optimization problem based on the proposed framework was developed

and supported by several new genetic operators, which give the possibility of co-operative job processing. The

fitness function can respect multiple criteria. The set of benchmark tests was created as well as the evaluation

process, which together give the reference baseline of the results for the optimization.
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2 THEORETICAL BACKGROUND

According to [2] the activities of the warehousing optimization can be divided into three groups. First, the

basic technical structure of warehouse. Second, the operational and organizational framework, which is in

special attention in this work. Third, the coordinating and controlling systems for warehouse operations.

2.1 Warehouse Optimization

The basic technical structure involves e.g. the layout design of the warehouse or whole distribution center,

the choice and dimensioning of conveyors and warehouse equipment, the design of the physical interfaces

to neighboring systems and others. The layout design of the warehouse [3] is a key component of further

optimization tasks and has a significant impact on order-picking and traveling distances in the warehouse.

The layout is usually of rectangular shape and based on pallet manipulation [4]. According to [5] and [6] there

are a few factors to be considered in the layout design, such as: number of blocks; length, width, and number

of picking aisles; number and shape of cross aisles if they are present; number of levels in the rack; and position

of input and output gates in the warehouse. All the equipment is standardized according to the dimensions,

but the standardization is mostly only for a specific continent.

The operational and organizational framework combine different aspects from many areas, e.g. business

management, inventory management, organization management, transportation management and many other

areas of management. There are two basic slotting strategies: random and dedicated. While random strategy

allows to store a pallet to an arbitrary empty location with the same probability or to the closest empty

location [5], the dedicated strategy allows to store a pallet only to specified locations [7]. The routing policies

should ensure an optimal travel path through the warehouse for order-picking. One of the first algorithms

for optimal order-picking path design was introduced in [8]. Since the algorithm can be applied only to

conventional warehouses, the problem is mostly solved by heuristic methods. The common routing methods

were described in [9]. All the methods were primarily developed for single-block warehouses. Modified methods

for multiple-block warehouses were proposed in [10].

Manufacturer

Warehouse

Put-away

Receiving

Replenishment

Transportation

Checking

Picking

Returns

Packing Shipping

Cross-

docking

Storing

Fig. 2.1: An example of the logistic flow from the manufacturer to the warehouse.
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The basic processes in the warehouse are receiving, storing, putting-away, picking/retrieving and shipping

goods (see Fig.2.1). The shipping operation can also consist of many sub-tasks such as consolidation of goods

if the batching, grouping or zoning is applied, checking the order according to its completeness, packing and,

of course, shipping itself. The literature also mentions cross-docking as a special warehouse operation.

Receiving starts by notification of the arrival of goods. Then the process of unloading, counting, identify-

ing, quality control, and goods acceptance begins (which is together known as incoming inspection), according

to the company rules. Storing operations consist of distribution of goods to storage areas (transportation to

a storage place or cross-docking, which is transportation directly to the shipping department), identification

(if it was not done during acceptance), assignment of the storage bin and putting-away which is a simple

determination of storage bin concerning the physical dimensions and weight of goods, storage monitoring is

also a part of management systems. Picking (also called Retrieval) is a process which covers a lot of is-

sues. Firstly, the pick lists are given to the employee. The picking takes about 55 % of operating costs [4].

Shipping ensures that the packed consignment is provided by transport destinations, assigned to the truck

and optimally loaded on the truck. The shipping process is ensured by shipping department which can also

secure following operations, such as: consolidation, checking, and packing. textbfCross-docking is a process

which minimizes the storage and order-picking time while the receiving and shipping operations are still al-

lowed to the full scope. The basic idea is to transfer goods directly from incoming to outgoing departments

without any other warehouse operations in between. The analytical models for pre-distribution cross-docking

(on the side of manufacturing company) and post-distribution cross-docking (on the side of warehousing com-

pany) proposed in [11] were compared with a traditional distribution center system. Analytical results showed

a pre-distribution cross-docking as a preferred solution for centers with a shorter supply lead time and lower

uncertainty of demand, but in general the preference depends on the business environment [11].

The relationship between pick density and throughput, which has demonstrated the significance of blocking,

was determined in [12]. The throughput analysis for order-picking with multiple pickers and aisle congestion is

investigated in [13]. The batching in the narrow-aisle order-picking system with picker blocking consideration

was investigated in [14]. The alorithm for two order pickers with consideration of congestions was proposed in

[15]. The paper analyzes the warehouse layout and its impact on order-picking system performance and proves

a good performance in dealing with the congestions if two pickers are used simultaneously. Also the online

version of the multiple picking agents for warehouse was studied in [16]. The dynamic order-picking and cost

reduction generated by optimal policies is discussed in [17]. Another heuristic approach for online batching

based on offline batching is introduced in [18] and [19]. The algorithms are evaluated in a series of experiments

and it is shown that the choice of an appropriate batching method can lead to significant minimization of

a makespan. A*-algorithm for routing and Simulated Annealing for batching were proposed in [20].

2.2 The Job Shop Scheduling

The process of scheduling plays an important role in optimization area from the beginning of the previous

century with the work of Henry Gantt. In spite of that the problem of scheduling is known for such a long time,

the first publications were released in the early fifties of the previous century. This thesis is mostly inspired

by Job Shop Scheduling (JSS) which can be described as follows: the set of n jobs and m machines is given as

input. Each job j comprises a set of tasks t. The tasks cannot be interrupted and each machine can process

only one task in a time. The successive tasks are mostly processed on different machines. The problem is to

find an optimal configuration to a given objective. JSS representatives are custom-made products or piece

production, in other words, it is a problem for production and assembly lines in piece production with a large

number of different products. The general JSS problem is very hard to solve optimally, the 10-job 10-machine

problem formulated in 1963 [21] was solved for the first time in [22]. The solution in that year took 4 hours

(17982 s) and the solution was only for a problem with no new jobs and no machine breakdowns. The most

convenient problem representation of JSS is possible by disjunctive graph models. The special emphasis is

given on machine blocking and no-wait constraints.
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The JSS was often solved by linear programming, constrained programming, disjunctive programming,

shifting bottleneck approaches algorithms. The problem was also solved by many algorithms from are of

artificial intelligence and machine learning, such as: Tabu Search [23], Simulated Annealing and Genetic

Algorithms [24], Particle Swarm Optimization [25], Shifting Bottleneck Algorithms [26], Biogeography-Based

Optimization [27] and many other algorithms and their combinations.

One of the first integration of GP into JSS was introduced in [28] (2003). Unfortunately, more details are

not known about this implementation, because the paper is not available for download and it was not possible

to contact the authors. Another application of GP on Cmax optimization of JSS problem was described in [29]

(2009). This paper briefly reviews the JSS problem and various algorithms applied to this field of interest. The

implementation of GP to JSS was described and many benchmarks were successfully tested. Also, reasonable

parameters settings for the GP algorithm were discussed. The problem was objected to minimization of Cmax.

In the recent years, the GP were applied in two known cases. The first case [30] (2012) described the method for

scheduling policies evolving for the Dynamic Multi-Objective JSS problem. The new hyper-heuristic method

based on GP was proposed for an automatic design of scheduling policies including dispatching rules and due-

date assignment rules. The evolved policies showed a promising performance on various types of scheduling

configurations. The proposed algorithm was successfully compared to NSGA-II and SPEA2 algorithms. The

second paper [31] (2013) also discussed dispatching rules, in particular the iterative learning.

2.3 Discussion

The optimal operation of a warehouse is achieved when each customer is satisfied completely according to

his order, in due time and when all warehouse and logistic processes are done in the shortest possible time

with minimal cost and optimal utilization of resources under dynamically changing conditions. The literature

presented in this chapter gives great ideas of warehousing optimization possibilities, but only some of them are

really applied in real-world warehouses. The problem of warehouse layout lies mainly in the effective use of

space so that the typical rectangular warehouses with narrow-aisles are most utilized. There is also a critical

pressure on the effective utilization of equipment and labor and its minimal quantity in the warehouse, which

can also significantly save the costs. The dedicated assignment based on the frequency of manipulation with

goods is broadly used, but some big and well-known companies, e.g. Amazon, use the chaotic assignment

system and its seems to be a good solution as well. The routing methods supporting order-picking and

picking itself has been investigated for single picking tours, but batching seems to be a standard for many

companies. Moreover, the most of the scientific papers do not take into account the real conditions as the

blocking and congestion are, but there are dozens of workers working simultaneously in real-world warehouses

or multiple-block warehouses and the blocking, congestions or even collisions must be taken into account.

The shop scheduling techniques can be employed when the work is scheduled in the warehouse, even when

the work must by scheduled dynamically. The machines in the shop scheduling problem are represented

in the warehouse by any equipment needed for each job, such as trucks driven by workers (fork-lift hand

pallet truck, fork-lift low truck, fork-lift high truck), checking units (workers), packing units (workers with

special equipment) and others. The operations in the warehouse, called jobs in scheduling, represent the single

assignment given to the worker by operational manager, e.g. the employee has to unload the pallet from a lorry,

go through the warehouse and store it in the shelf. The job is composed of sub-operations, called tasks. The

task represents each single operation of job e.g. receiving, unloading, putting-away, moving and storing etc.

The most promising technique for solution appears to be an approach based on evolutionary computation, such

as GA with some degree of hybridization. Since the hypothesis is stated, but the structure of chromosome is

not strictly given, the GP seems like a better solution then GAs. The GP is not wide spread for this type of

problems, but there are some papers. The proposed GP algorithm as well as the Evolutionary Framework is

described in [37], [38]. The algorithm was then adjusted to the JSS applied in logistics, which is described in

[39]. The proposed GP algorithm was tested also on other examples, such as text processing and the emotion

recognition [40], [41], and image processing and image mining [42], [43], [44], and [45].
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3 THE OBJECTIVES OF DISSERTATION

The testing hypothesis of proposed doctoral thesis has been determined as follows:

If an appropriate combination of the Job Shop Scheduling and the Vehicle Routing Problem solving techniques

will be implemented by the Genetic Programming algorithm driven by the Context-free Grammar and the Multi-

Criteria Fitness Function, then the current state-of-the-art of work-flow scheduling in logistic warehouses and

distribution centers used in real-world warehouse environments can be outperformed.

The main goal, coming from the hypothesis stated in the previous section, is a

“substantial increase of productivity and reduction of operating costs”.

The specified goal can be reached when the number of executed manipulations with commodities will be con-

tinuously increased over time, the bottlenecks will be analyzed and the material flow in the warehouse will be

increased, the transportation paths will be shortened as much as possible, the scheduling of jobs will be done

also with respect to employees’ performance, trucks’ velocity, size and manipulation possibilities, the number

of employees and trucks will be reduced as well as the overtime bonuses, which will together lead to reductions

in operating costs and significant acceleration of the return on investment in the warehousing environments.

The partial goals of the thesis are defined as follows:

1. Involvement of the human factor in the optimization parameters enhances the standard mathe-

matical model, which becomes more complex, but could also help to save the processing time. Heretofore,

only the parameters related to jobs and machines have been considered. Since the performances of par-

ticular employees considerably differ from each other, it is possible to save the processing time when the

jobs are scheduled with respect to this parameter.

2. Involvement of the multi-criteria fitness function for optimization process can respect more than

one customer’s requirement to which we are trying to optimize the solution. This approach also includes

a subjective weighting factor used in the current software used by warehouse operators. This partial goal

basically describes the fitness function working with respect to the optimization of time processing and

the number of collisions, as well as other factors such as the balanced workload of employees.

3. The variability of time planning and simulation (minutes/hours/shift). Thanks to the databases

of incoming jobs and evolutionary processes the system should be able to schedule the work for a few

next minutes as well as for the whole working shift. There is no problem to make the plan presently, but

for the sake of missing simulation and visualization, nobody is able to say where the employee is working

in the specific time, which leaves a space for further time optimization.

4. The possibility of co-operative jobs. The co-operative jobs are a great possibility how to decrease

the time of job processing. Generally, each employee has his own work-plan and has to fulfill assigned

jobs. The co-operative jobs help to solve situations when one employee is able to unload the pallet from

the truck, move it to a specific cell in the warehouse, but is not able to store it to the rack due to the

limits of used equipment. So, another employee can continue the work and store the pallet to a higher

level of the shelf, which could not be carried out by the first employee with the fork-lift hand pallet truck

without changing the equipment.

5. Design, implementation, and validation of the framework. Another goal is to design and to

implement the evolutionary framework, which should be able to run on GP algorithm driven by CFG.

The possibility of an easily extensible design is very welcomed as well as a flexible fitness function

definition with further extension possibilities. The GP algorithm has to be validated, and then adapted

in the way that they could work with a defined JSS problem applied to the logistic warehouses.

6. Design, implementation, and validation of benchmark tests. The last, but not least, goal is to

design and to implement benchmark tests, which would prove the functionality of the proposed solution

and prove that the hypothesis is true. The validation will be done also by benchmark tests extracted

from the real-world warehouse environments.
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4 THE MATHEMATICAL MODEL

The standard Flexible JSS problem is formulated as follows. The Flexible JSS problem has m machines and

n jobs. Each job consists of a sequence of operations Oj,h, h = 1, . . . , l, where Oj,h stands for the h-th

operation of job j and l stands for the number of operations required for job j.

The set of machines is noted M,M = M1, . . . ,Mm. The specific machine is indexed by i. The set of jobs is

noted J, J = J1, . . . , Jn. The specific job is indexed by j and the specific operation of job is indexed by h. The

specific operation of job is noted as Oj,h and requires one machine of suitable machines Mj,h out of a machine

set M (Mj,h ⊂ M), which are together described by processing time Pi,j,h. The subset Mj,h is defined by

ai,j,h. Then, the index k is defined for each machine which describes the sequence of allocated operations

according to the weight of job (a priority factor) wj . The complete notation is described in Tab. 4.1.

Tab. 4.1: The general notation of the Flexible JSS problem.

h index of operation, Oj,h denotes operation h in job j, h = 1, . . . , l

i index of machine, Mi denotes machine i, i = 1, . . . ,m

j index of job, Jj denotes job j, j = 1, . . . , n

k index of allocated operation for specific machine,

ki number of operations assigned to machine i

l number of operations, each job has a different number of operations

m number of machines which can be used for job processing

n number of jobs, each job consists of a sequence of operations

w weight also called a priority factor, wj weight of job j

In order to describe the Flexible JSS model precisely, the following parameters and decision variables must be

introduced (see Tab. 4.2). The mixed integer linear programming model is also described in the next text.

Tab. 4.2: The parameters of the Flexible JSS problem.

ai,j,h describes the capable machine set Mj,h assigned to operation Oj,h

pi,j,h processing time of operation Oj,h performed on machine Mi; pi,j,h ¿ 0

Psj,h processing time of operation Oj,h after selecting a machine

tj,h start time of the processing of operation Oj,h

Tmi,k start of working time for machine i in priority k

L a large number

ai,j,h =

{
1 If Oj,h can be performed on machine i,

0 Otherwise,

xi,j,h,k =

{
1 If Oj,h is performed on machine i in priority k,

0 Otherwise,

yi,j,h =

{
1 If machine i is selected for operation Oj,h,

0 Otherwise,

The objective is to minimize the makespan (Cmax), subjected to the following constraints:

Cmax ≥ tj,hj
+ Psj,hj

(∀ j); (4.1)

∑
i

yi,j,h · pi,j,h = Psj,h (∀ j, h); (4.2)

tj,h + Psj,h ≤ tj,h+1 (∀j, h = 1, . . . , l − 1); (4.3)
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Tmi,k + Psj,h · xi,j,h,k ≤ Tmi,k+1 (∀ i, j, h, k = 1, . . . , ki − 1); (4.4)

Tmi,k ≤ tj,h + (1 − xi,j,h,k) · L (∀ i, j, h, k); (4.5)

Tmi,k + (1 − xi,j,h,k) · L ≥ tj,h (∀ i, j, h; k); (4.6)

yi,j,h ≤ ai,j,h (∀ i, j, h); (4.7)

∑
j

∑
h

xi,j,h,k = 1 (∀ i, k); (4.8)

∑
i

yi,j,h = 1 (∀ j, h); (4.9)

∑
k

xi,j,h,k = yi,j,h (∀ i, j, h); (4.10)

tj,h ≥ 0 (∀ j, h); Psj,h ≥ 0 (∀ j, h); Tmi,k ≥ 0 (∀ i, k); (4.11)

xi,j,h,k ∈ {0, 1} (∀ i, j, h, k); yi,j,h ∈ {0, 1} (∀ i, j, h); (4.12)

The minimization objective is the makespan (Eq. 4.1). Constraint Eq. 4.2 determines the processing

time of operation Oj,h done on machine i. Constraint Eq. 4.3 ensures that each job will follow the specified

processing order of operations. Constraint Eq. 4.4 ensures that each machine will process only one operation

simultaneously. Constraint Eq. 4.5 and Eq. 4.6 ensure that each operation Oj,h is allowed to be processed

when the previous operation Oj,h−1 is completed. Constraint Eq. 4.7 declares suitable machines for each

operation. Constraint Eq. 4.8 assigns the operations to a machine. Constraints Eq. 4.9 and Eq. 4.10 ensure

that all operations will be performed only on one machine with a certain priority. Constraint Eq. 4.11 describes

that the start time of all operations is greater or equal to zero, which means that all operations are prepared

immediately and can be started immediately, the processing time of all operations is not a negative value, and

the operation which is assigned to a machine can start immediately, if the machine is in idle time. Eq. 4.12

describes that Oj,h is performed on machine i with priority k and machine i which is selected for this operation.

The JSS model described in the previous text has been extended for the purposes of this work with respect

to the warehousing environments as follows. The problem has e employees, m machines and n jobs. Each job

consists of a sequence of operations Oj,h, h = 1, . . . , l, where Oj,h stands for the h-th operation of job j and l

stands for the number of operations required for job j.

Since we are not talking about automatic production lines, but the warehouses and distribution centers,

the labor in the warehouse environment has the same importance as the warehouse equipment or machines.

The set of employees is noted E,E = E1, . . . , Eo. The specific employee is indexed by e. The set of jobs is

noted J, J = J1, . . . , Jn. The specific job is indexed by j and the specific operation of job is indexed by h.

The specific operation of the job noted as Oj,h always requires one employee of suitable employees Ej,h out

of an employee set E (Ej,h ⊂ E), which are together described by processing time Pe,j,h. Some operations

require one machine of suitable machines Mj,h out of a machine set M (Mj,h ⊂M), which could be described

by processing time Pi,j,h. Since not every employee has authorization for all equipment, the suitable set of

machines for employee is stated as Me,j,h out of suitable machines for operation Mj,h (Me,j,h ⊂ Mj,h ⊂ M).

The subset Mj,h is defined by ai,j,h and the subset Ej, h is defined by be,j,h. The operation can be performed

on the machine i only if the employee e has an authorization for the specific machine.
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Tab. 4.3: The extended notation of the Flexible JSS problem.

e index of employee, Ee denotes employee e, e = 1, . . . , o

o number of employees which can be used for job processing

Tab. 4.4: The extended parameters of the Flexible JSS problem.

be,j,h describes the capable employee set Ej,h assigned to operation Oj,h

pe,i,j,h processing time of operationOj,h performed on machineMi by employee Ee; pe,i,j,h

¿ 0, this replaces the original pi,j,h

Psj,h changes to processing time of operation Oj,h after selecting a machine and an

employee, this notation definition is also changed

Ci,j,h the completion time of operation Oj,h is not known a priori

Cj the completion time of job i is not known a priori

Dj the due date for job j is given a priori

D̄j the deadline for job j should also be given a priori

be,j,h =

{
1 If Oj,h can be performed by employee e,

0 Otherwise,

ce,i =

{
1 If employee e is authorized for machine i,

0 Otherwise,

ze,j,h =

{
1 If employee e is selected for operation Oj,h,

0 Otherwise,

In the warehouse environment, performing an operation on machine i by authorized employee e has no setup

time and also no setup cost. So, that is the advantage of the warehouse environment. The batch processing,

which is the performing of the same operations on the set of jobs, is an advantage only when the next job is

located in the a distant part of the warehouse and the employee with a truck should relocate to that position.

The constraints are extended as follows:

ze,j,h ≤ be,j,h (∀ e, j, h); (4.13)

ce,i = 1 (∀ e, i); (4.14)

yi,j,h · ze,j,h = ce,i (∀ e, i, j, h); (4.15)

∑
e

ze,j,h = 1 (∀ j, h); (4.16)

Dj ≥ Cj (∀ j); (4.17)

D̄j ≥ Dj (∀ j); (4.18)

ze,j,h ∈ {0, 1} (∀ e, j, h); (4.19)

Constraint Eq. 4.13 declares a suitable employee for each operation. Constraint Eq. 4.14 ensures that

employee e is authorized for machine i. Constraint Eq. 4.15 ensures that the selected employee is authorized

for the selected machine. Constraint Eq. 4.16 ensures that all operations will be performed only by one

employee. Constraint Eq. 4.17 ensures that the due date is less or equal to the completion time of the specific

job. Constraint Eq. 4.18 ensures that the deadline for job j has to be fulfilled, and the Eq. 4.19 describes the

parameter interval of the selected employee for operation Oh,j .
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5 THE COLLISION PREDICTION ALGORITHM

Collision is a phenomenon, limited in time and space, in which two or more objects mutually affect each other

[32]. During the mutual affection of objects the redistribution of momentum (p) and kinetic energy (Ek) dawn

in the system. There are two basic types of collisions: elastic and inelastic (plastic). The collision of two

particles is called binary collision and the collision of more particles is called multi-particle collision. If the

particles are physically in contact it is a near collision, e.g. billiards, if they are not in physical contact it is

a distant collision which is represented by a gravitational force, magnetic force, electric force, e.g. the earth

circulates around the sun. Since the perfect conditions are impossible to reach in a real-world, the simulations

are done in an isolated system. The isolated system respects the law of conservation of momentum and kinetic

energy, and also the internal structure of particles. The elastic collisions conserve both, the momentum and

the kinetic energy, while inelastic collisions conserve only the momentum but not the kinetic energy. The

collisions are categorized based on the conservation of Ek.

There is a plenty of fork-lift trucks in the logistic environments, manipulating simultaneously with homoge-

nous or heterogeneous pallets between shelves. When the trucks are crossing the aisles and paths of other

trucks the collisions may occur. In consequence of that, the congestion and blocking of aisles in the warehouse

may arise, which spins out the time of job completion of particular workers and decreases the productivity of

warehouse or worse, it leads to complete cut-off of the warehouse work-flow. The main idea of this chapter is to

propose an approach of how to avoid congestions, blocking, and possible financial losses by predicting potential

collisions of trucks and to give a notice to warehouse operator who can prepare an appropriate reaction, e.g.

to send one truck by a different path, to make a time-window for one truck and let it to finish its job before

the second truck will come etc. This section is based on the paper [33].

5.1 Collision of 2 Objects in 2 Dimensions

At the start, the positions and velocities of two objects o1 and o2 are given at time t. The quest is to determine

if and when they will collide with each other.

o1

o2

m1

m2

time = t

o2

o1

σ1 

σ2 

(r'
x1, r'

y1) (rx1, ry1)(vx1, vy1)

(vx2, vy2)

time = t + Δt 

(wx1, wy1)

(wx2, wy2)
F

Fig. 5.1: Another collision in a 2-dimensional environment.

The situation is depicted in Fig. 5.1, where (rx1, ry1) and (rx2, ry2) stand for the positions of objects o1

and o2 at the moment of collision t+δt. When the objects collide, the centers of objects are distant σ = σ1+σ2:
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σ2 = (r
′

x1 − r
′

x2)2 + (r
′

y1 − r
′

y2)2 . (5.1)

Before the collision, the objects were moving on straight-line trajectories with constant velocities. Thus,

r
′

x1 = rx1 + ∆t× vx1 ,

r
′

y1 = ry1 + ∆t× vy1 ,

r
′

x2 = rx2 + ∆t× vx2 ,

r
′

y2 = ry2 + ∆t× vy2 .

(5.2)

Substituting Eq. 5.2 with Eq. 5.1 gives a quadratic equation for ∆t. Selecting the relevant root and

simplifying the expression for ∆t in terms of the known positions, velocities, and radii gives the Eq.5.3:

∆t =


∞ if ∆v ×∆r ≥ 0,

∞ if d < 0,

−∆v×∆r+
√
d

∆v×∆v otherwise,

(5.3)

where

d = (∆v ×∆r)2 − (∆v ×∆v)× (∆r ×∆r − σ2) ,

∆r = (∆rx,∆ry) = (rx2 − rx1, ry2 − ry1) ,

∆v = (∆vx,∆vy) = (vx2 − vx1, vy2 − vy1) ,

∆r ×∆r = (∆rx)2 + (∆ry)2 ,

∆v ×∆v = (∆vx)2 + (∆vy)2 ,

∆v ×∆r = (∆vx)× (∆rx) + (∆vy)× (∆ry).

(5.4)

According to the equations depicted above, the ∆t ≥ 0, only if ∆v ×∆r ≥ 0 or d < 0 the quadratic equation

has no solution for ∆t > 0.

5.2 Types of Fork-lift Truck Collisions

This section describes the collision situations which can occur between two fork-lift trucks. The multiple-truck

collisions are not considered, because they are always simplified into particular collisions between two trucks.

The typical warehouse layout is of a rectangular shape. Only two dimensions are considered, so the layout is

represented by a 2D matrix called the cellular model. The path of each truck is described by particular moves

(i.e. consecutive cells in a model). Consequently, the current position of the truck is given by the coordinates

in the cellular model of the warehouse. The truck is able to move in 4 possible ways represented by the von

Neumann neighborhood (i.e. left, right, up, down, and null). The null value means that the truck is not

moving anywhere or is already on the target cell. The cellular model of the warehouse is limited by the cells

marked as racks and walls.

In the case of collision prediction, the direction of movement is used especially for the determination of

a threshold. The threshold represents the percentage of occupancy of cell by truck when the collision is detected

on the cell. The threshold is a number from the bounded interval < 0, 1 > usually expressed in percentage.

It can be decided if there is a possibility to avoid a collision without any intervention of an operator with the

help of threshold. Of course, it does not mean that the high value of threshold avoids the real collision. The

threshold must be set carefully due to the size of cells and trucks. Note that the warehouse has two types of

cells, wide aisles and narrow aisles. While the wide aisles are located around the perimeter of the warehouse

and the trucks have a possibility to get out of one’s way, it is not possible in the narrow aisles between racks.
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Fig. 5.2: Types of collisions in the warehouse environment.

Collisions can be divided into two basic categories. The first category is the collision in a straight direction,

depicted in Fig. 5.2. The trucks in this category are moving in the opposite directions (see Fig. 5.2a), in the

same direction (see Fig. 5.2b), or only one truck is moving (see Fig. 5.2c). The second category represents the

collisions in a perpendicular direction. Trucks in this category collide in the right angle, either indirectly, i.e.

the first truck is leaving the cell of collision but it is not quick enough and the second truck hits the first truck,

(see Fig. 5.2d), or directly, i.e. both trucks are moving towards the cell of collision (see Fig. 5.2e). Off course,

the other parameters such as the type of aisle (wide aisle or narrow aisle) have to be considered.

5.3 A Numerical Example of Truck Collision

The following text describes a numerical example of collision prediction. Fig. 5.3 shows an indirect perpendic-

ular collision. More particularly, truck o1 (colored blue) is moving from cell [4, 1] to the cell [2, 2] and truck o2

(colored red) is moving from cell [0, 0] to cell [2, 1]. This example describes the situation where truck o1 hits

the back of truck o2. The part of truck o2 on cell [2,0] is 75 %, which is higher than the established threshold

20 % in this case. The complete paths of both trucks, cell by cell, are depicted in Tab. 5.1.

Velocities of trucks are important variables of collisions prediction. Generally, if the velocity of one truck

(e.g. o1 in this case) is very high and the velocity of the second truck (o2) is smaller, the collision can be

avoided. The collision time is calculated from the exact paths of both trucks and their velocities, both related

to the type of cell where the collision is going to occur (i.e. wide or narrow aisles). The path is represented

by the cells which are passed by trucks in the cellular model.

The problem described in Tab. 5.1 is depicted in Fig. 5.3. In the first step the cells containing both trucks

in the same time (i.e. the collision cells) must be calculated. This is not so obvious from Tab. 5.1, but these

are cells [2,0] and [2,1] depicted in Fig. 5.3 in orange color. The process of collision calculation is present in

the next paragraph.
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Fig. 5.3: A numerical example of the collision detection.

Tab. 5.1: The coordinates & paths of truck o1 and truck o2

Index of Step 0 1 2 3 4 5

Coordinates of truck o1 [4, 1] [4, 0] [3, 0] [2, 0] [2, 1] [2, 2]

Percentage of truck o1 100 % 100 % 100 % 100 % 100 % 100 %

Coordinates of truck o2 [0, 0] [1, 0] [2, 0] [2, 1] [2, 1] [2, 1]

Percentage of truck o2 100 % 75 % 50 % 25 % 100 % 100 %

Steps of truck o1 NULL UP LEFT LEFT DOWN DOWN

Steps of truck o2 NULL RIGHT RIGHT DOWN NULL NULL

The velocity of truck o1 is v1 = 4 ms−1 and velocity of truck o2 is v2 = 3 ms−1. The distance which

both trucks have to overcome is for truck o1 equal to s1 = 5 cells and for truck o2 equal to s2 = 3 cells.

With these data t1 and t2 can be simply determined. Then, the time in which both trucks can pass one cell

has to be computed. The results of calculation are depicted in Tab. 5.2. The value sref describes the size of

movement of each truck which is done in the time of one time step of the fastest truck expressed in percents,

e.g. there are only two trucks, so o1 is the truck with the highest velocity, so s1ref = 100 % – every step is

one whole cell, obviously. Truck o2 is slower, so in one step it is moving s2ref = 75 % of the cell. For better

understanding, everything is shown in Fig. 5.3. And this is the process how the collisions are detected. Note

the narrow aisle constraint, so the collision occurs only in t = 1.00 s.

Tab. 5.2: A numerical computation of the collision prediction.

v s t tcell sref

Truck o1 4 5 1.25 0.25 100 %

Truck o2 3 3 1.00 0.33 75 %
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6 THE EVOLUTIONARY FRAMEWORK

This chapter describes the design of the Evolutionary Framework which has been developed for the purposes

of several research projects including the project related to this thesis. At first, a brief introduction and

the motivation of development of a new framework are described. The main motivation to develop the new

framework is that the most of existing frameworks consist of e.g. outdated and unmaintained algorithms,

algorithms which cannot be modified for specific problems and on the other hand, algorithms too specific

without possibility of generalization, with a lack of documentation, a lack of suitable examples and use cases,

with unsuitable license under which the frameworks are distributed and so on. Also the programming language

in which the framework is developed can be unsuitable, which can be a significant problem for integration.

The framework was developed also with the intent to unify the use of optimization algorithms and to use

only one tool inside our research group. This should help to develop a single project implemented in the Java

programming language which could serve as a shared code library and to help increase a cooperation among

researchers in laboratory. Everyone can contribute by their own algorithms, which should enable to improve

and extend the framework, and of course to use different algorithms for each problem and make them easily

comparable to everyone. With such framework each researcher does not have to implement the algorithms

from scratch. Another reason for creating the new optimization framework was to create the library which

can be distributed under the friendly license in the scientific community as well as in the business community.

The framework is distributed under the GNU Library General Public License (LGPL, also called Lesser GPL)

which is a compromise between the strong-copyleft GNU GPL and permissive licenses. The result is that

the software published under the LGPL can be linked with (used by) a non-(L)GPL program which has

a copyrighted source code. The framework is available for free to anyone and it is an open source software.

6.1 Grammar Driven Genetic Programming

The GP module proposed in this section was built on the standard tree-based data structures, proposed by

J. R. Koza, and it was supported by CFG. This combination of methods, so called GGGP, was implemented

on the basis of inspiration by the concept presented in the papers [34] and [35]. The main goal of employing

this technique into the GP module was the fact that the use of grammar simplified significantly the search

space, solved the closure problem, and always facilitated generating of valid individuals.

The Context-free Grammar G is defined as a 4-tuple G = {ΣN ,ΣT , S, P}, ΣN ∩ΣT = ∅, where ΣN stands

for a set of non-terminal symbols, ΣT stands for a set of terminal symbols, S represents the start symbol of

the grammar, and P is the set of production rules written in the Backus-Naur Form. The CFG depicted in

Fig. 6.1 is used in this section to clarify the examples and it is inspired by the grammar defined in [34] and

[35]. An example of syntactical tree generated with respect to the defined grammar is also depicted in Fig. 6.1.

Since the CFG was applied and the initialization method was implemented similar to GBIM, the other

genetic procedures implemented, such as the standard genetic sub-tree crossover and the sub-tree mutation,

have to be adapted to this new concept as well. The adaptation of the genetic operators was done similarly

to the proposed solution by the author of the paper [34].

6.1.1 Grammar Driven Initialization Method

The GP module becomes the GGGP module. In the first stage the initialization process has been adapted.

The initial population is now generated by the method inspired by GBIM method proposed in [35] which helps

to increase the convergence speed when new individuals are generated. This is caused by the included grammar

with which the proposed method is able to generate always valid individuals belonging to the search space,

because they all represent a candidate solution of the problem. The definition of the grammar establishes

formal rules, syntactical restrictions of the chromosome structure of the candidate solutions.

17
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∑N = {S, E, F, N}

∑T = {0,1,2,3,4,5,6,7,8,9}

P   = { S ::= E = N;

        E ::= E + E | E – E | F + E | F – E | N;

        F ::= N;

        N ::= 0|1|2|3|4|5|6|7|8|9}.
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CS = 2
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=
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=

+

=

+

=

Fig. 6.1: Definition of the Context-free Grammar and an example of the process generating syntactical tree

for the sentence (2 + 5 = 7).

The main difference between the GBIM and the implemented method is that we have narrowed down the

implementation for the method only to the most important things connected to initialization. The rest of the

code was implemented to the grammar or other code elements. The constructed syntactical tree, candidate

solution, in [34] and [35] based on CFG is a little bit different from the proposed syntactical tree in this

paper. In the GBIM the non-terminal symbols such as +, −, ∗, / are handled in the same way as the terminal

symbols. In this proposal, the non-terminal symbols are considered as actions (or operations) of an element

which produces consequent rules. So, when the production rule S ::= E = N is given, the action of S is an

equal sign (=) and the elements of this action are the non-terminal symbols E and N , which can generate

consequent production rules. The initialization method is described below and it is built on the same four

definitions as the GBIM in [34]:

Definition 1 – The length of each terminal symbol is 0; denoted as a ∈ ΣT .

Definition 2 – The length of the production rule that only derives a terminal symbol is 1; L(A ::= α) = 1,

∀A ∈ ΣN and ∀a ∈ ΣT .

Definition 3 – The length of the production rule A ::= α is the result of adding one to the maximal length

of the symbol constituting the consequent; L(A ::= α).

Definition 4 – The length of the non-terminal symbol A is the minimal length of all its productions; L(A).

Fig. 6.1 shows the process of generation of the individual which belongs to the proposed grammar in the

same figure, taking the maximal depth of tree D = 5 as an argument. The grammar computes the necessary

information according to Def. 1 – Def. 4 and then the initialization method is applied:

1. The first step is to create a root of syntactical tree and simultaneously propose the information of the

maximal depth of this tree.

• In the example depicted in Fig. 6.1, there is only one rule for the root symbol derivation, which is

S ::= E = N . If there would be more possibilities, one would be randomly selected.

• Of course, the condition of minimal production length which has to be lower than the maximal

depth of tree has to be satisfied.

• In the beginning, the current size (CS) of tree was 0 and after the first step it was 1.
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2. When the root symbol is generated, the rest of tree is generated randomly according to the given grammar

and the maximal depth of tree.

• CS of tree is increased by 1 in every step until the end of every production rule is reached.

• In each step, the rule which satisfies the condition CS + L(A ::= α) ≤ D is randomly selected.

• This process is repeated until every branch of tree is finished by the leaf of terminal symbol, and

then the CS is incremented by one.

6.1.2 Grammar Driven Crossover Operator

The crossover operator has to be adjusted to the CFG model, because the complete random process of sub-

tree swapping was eliminated when the CFG was employed. So, several rules of how the crossover works

were defined. The crossover operator presented in this section was inspired by the GBX operator proposed in

[35] and slightly simplified in few steps. The process of how the operator works is described below (see Fig. 6.2):

1. The first step is to select one syntactical tree as the first parent and decide if it is suitable to crossover all

nodes, or only non-terminal symbols. As a default option we consider that all nodes can be processed.

Then the set N that contains all appropriate symbols of the first parent, except the root, is created.

2. If N 6= ∅, then one element of this set is selected randomly. This element is called crossover node (CN1).

If N is empty, there is no node of given type to be crossed and the process starts from scratch. The

symbol E shaded gray was selected as CN1 in Fig. 6.2.

3. The parent of CN1 regarding to given CFG in Fig. 6.1 represents the symbol A of the grammar (see

definitions). This symbol produces one or more consequent rules. All of these consequent rules derived

from A are stored in the set R. Regarding our example, the parent of CN1 is the symbol E, therefore

the set R = {E + E,E − E,F + E,F − E,N}.
4. Then, according to [35] the tuple T = (l, p, α) is calculated, where α refers to the production rule which

generates CN1, l is the length of production rule – it means the number of terminal and non-terminal

symbols in the rule, in our example α is E+E and its length is 2, because this rule has two operators of

the symbol E, and p stands for the position of CN1 in the production rule. The tuple T = (2, 1st, E+E).

5. After the tuple T is determined, all the rules of different length of l are removed from the set R. So,

R = {E + E,E − E,F + E,F − E} in this case.

6. Thereafter, each element of R is compared to the rule α which is E + E except the element on the

position p, and those where the change in action or in symbol on the right is detected are removed. So,

the set R is adjusted again R = {E + E,F + E}.
7. In this step, the set X is formed by all symbols which are in R on the position p, so the set X = {E,F}.
8. If X 6= ∅ then the crossover symbol CS is randomly selected from X. The set P is created from the

second parent and filled in by all nodes which include the symbol CS. If X is an empty set, it is not

possible to determine the crossover node in the second parent. In such case, new CN1 has to be randomly

selected from N and the process continues by step no. 2. In this example, CS = F and P contains all

nodes from the second parent the symbol of which is F (only one element in this case).

9. If P 6= ∅ the CN2 is randomly selected from P . Otherwise, CS is removed from X and step 8 is

performed again. In this example, only one node F is present and is stated as CN2.

10. The P1 value is calculated as the depth of node CN1 plus the depth of sub-tree whose root is CN2.

P2 is calculated similarly. If P1 or P2 exceeds the value of the maximal depth of tree D, then CN2 is

removed from the set P and the process continues by step 9. In this case, P1 = 2 + 2 and P2 = 3 + 2,

which means that both P1, P2 ≤ 5, therefore it is possible to cross sub-trees and continue the process.

11. Finally, two new descendants are generated by swapping the sub-trees and given to a new population.
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Fig. 6.2: An example of the Grammar Driven Crossover.

6.1.3 Grammar Driven Mutation Operator

The Grammar-Driven Mutation (GDM) works identically with the Grammar-Driven Crossover in the first

seven steps, just the crossover node (CN1) is renamed to a mutation node (MN):

8. If X 6= ∅ the CS is randomly chosen, otherwise it is impossible to find a valid mutation node MN . If the

operation is impossible, the node MN is removed from N and the process continues with step 2.

9. Now, the mutation length (ML) is calculated as the depth of the MN minus the maximal given depth

of the tree D. And the value 0 is assigned to the current depth CD = 0 of the new sub-tree generated

within the scope of mutation.

10. Then the set of production rules PP is stated similarly to GDIM and the condition CD + L(CD ::= α)

≤ ML has to be satisfied, where α ∈ ΣN ∪ΣT . If the PP is an empty set, CS is removed from the set

X and the mutation process continues with step 8.

11. Choose a production rule randomly from the set PP and continue with the random generation of sub-tree

as this were an initialization of a new tree. Of course, the condition of the maximal tree depth has to be

fulfilled, which is (CD + 1) + L(A :: = α) ≤ ML in this case.

6.2 Framework Validation by Use Cases

The fist use case presents one of the first examples which incorporate the use of the GP module of Evolutionary

Framework. The main goal of this task was to design a non-cryptographic hash function comparable to the

other known function of this type e.g. GPHash [36], which is a hash function generated by the GP. GPHash

function is considered a fast algorithm and its results regarding collisions are also quite impressive. The use

case is described in more details in [46] as well as the whole design of the GP algorithm, inputs in the form of

terminal and non-terminal symbols, a fitness measure, configuration parameters etc.

The second use case example presents the use of the GP module in the biomedical image analysis. The

goal of this example is to localize a common carotid artery in B-mode ultrasound images, which is a source

of important information that doctors can use to evaluate the patients’ health in non-invasive way. The most

often measured parameters are arterial stiffness, lumen diameter, wall thickness, and other parameters which

depend on the localization of artery in the image. The GP module in this use case example was used to

automatically design an image filter for initial localization of the artery in the image which must precede the

main measurements. The success of the CCA localization in images of the testing set was approximately 75 %.

More about the experiments using ultrasound images as inputs is described in [47], [48]. The experiment

was further developed and performed on ultrasound video sequences with much better results. The resulting

success of the proposed solution was 82.7 %, which exceeded the current state of the art by 4 % [49].
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7 THE WAREHOUSE OPTIMIZATION ALGORITHM

First of all, the design of the algorithm had to be made with the support of the expert consultant in the area

of logistic optimization, who was willing to tell the basic facts about warehouse optimization, such as basic

building blocks for the GP algorithm. The optimization algorithm was designed from scratch, which means

that five preparatory steps of the GP algorithm were discussed with the expert. [50], [51]

7.1 The Terminals and Non-Terminals

In this case, the terminal symbol represents one single indivisible operation in the warehouse. As terminal

symbols were identified the following operations which represent the very basic tasks, which are common to

all employees in the warehouse, and other warehouse equipment such as trucks and employees. These basic

building blocks, terminal symbols, were stated as follows.

The tasks TaskLoad and TaskUnload are directly connected with the pallet manipulation, while TaskMove,

TaskRelax, and TaskWait can be performed even with an unloaded truck, or even without a truck completely.

The TaskMove represents all transports and transfers of employees and trucks through the warehouse. The

TaskRelax represents a break of an employee for food, toilet etc. The TaskWait represents a waiting time when

the aisle is congested and the employee with the truck has to wait until it will be free, it is quite a variable

time window which should be minimized. Of course, there is a lot more operations such as TaskCheck for

checking the order, TaskPack for packing the order, TaskShip for shipping the order and many other tasks

that represent all operations in the warehouse. The Employee represents an employee of the warehouse. All

employees have to have assigned a truck of following three types: ForkLiftHand pallet truck, ForkLiftLow pallet

truck, or ForkLiftHigh pallet truck. The trucks have different parameters, such as maximal velocity, size, level

of loading the goods in the axis z, etc. Of course, there can be lots of other instruments and machines.

The set of non-terminal symbols was determined as follows. The basic function is represented by the

Workplan. The work-plan represents the structure of the jobs which must be fulfilled by one employee. The

work-plan consists of Jobs. This is a function which can directly represent a JobInStore or JobOutStore or

can be divided into one of these particular jobs and other jobs. The JobInStore represents the job which

starts both in the warehouse or outside the warehouse, but always ends in the warehouse, such as storage.

The JobOutStore represents the job which starts in the warehouse, but ends outside the warehouse.

7.2 The Design of Objective Function

The next step is to define the objective function for the suitability measurement of particular individuals of the

population. In most cases, the suitability is defined as an error of the resulting individual of the GP algorithm.

The closer this value is to zero, the better solution it is. Due to the NP-hardness of this problem, it is not

possible to clearly determine an optimal solution to the problem of scheduling. However, the main task is to

achieve the lowest time required to successfully carry out all jobs in the work-plan. The final suitability can

be obtained as the maximal final times among all work-plans, i.e. Cmax = max(C1, . . . , Cn). This maximum

represents the inverse of the suitability solution, therefore the best solution will be an individual with the

lowest maximum of end time, depicted in Eq. 7.1.

1

fitness
= max(C1, . . . , Cn). (7.1)

To avoid unnecessary hassle during deployment in practice, collisions of trucks are expected. Therefore, the

resulting fitness functions will include the sum of the maximum end time and the number of collisions (Θ) that

occurred during all tasks which were processed throughout the warehouse. Also, individual weighting factors

(w1, w2) were assigned to all parts of fitness function and the fitness function will be therefore (see Eq. 7.2):

1

fitness
= w1 × max(C1, . . . , Cn) + w2 × Θ. (7.2)
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Now, the fitness function formed should be sufficient. But, for better results, and even for a better distribution

of jobs through the employees, another parameter will be added. The average duration of a single job. The

resulting fitness function is then a function in Eq. 7.3 and of course, accompanied by the weighting factor w3:

1

fitness
= w1 × max(C1, . . . , Cn) + w2 × Θ + w3 ×

n∑
j=1

Tj

n
. (7.3)

7.3 The Run Controlling and the Termination

Thanks to the grammar defined in section 7.4 it is ensured that the basic criteria for the GP algorithm run, such

as sufficiency requirement and closure requirement, are fulfilled. The parameters for controlling the run of the

algorithm are following: population size, evolution size (the number of generations), simulation time, elitism

rate, path mutation (PA) rate, job order (JO) mutation rate, swap job (SJ) mutation rate, swap work-plan

(SW) mutation rate, and split job (SP) mutation rate.

The final step is to define the initialization conditions which end the algorithm. As the optimal solution is

not known, the termination condition is defined as the maximum number of generations if the desired precision

of result is not met. Then, the best individual is selected and claimed as the optimal solution.

7.4 The Design of Context-Free Grammar

The next step is to define the relationships between the terminal and the non-terminal symbols which form

grammar together. The grammar gives syntactic restrictions to the algorithm and clearly defines a list of

allowed terms in the language understandable to machines. Using the grammar in the GP algorithm can

significantly reduce the search space. The structure of CFG is defined by Algorithm 1, and a descriptive

example is shown in Fig. 7.1.

Algorithm 1 The grammar defined for the warehouse optimization.

Root ::= Workplan Employee Equipment,

Workplan ::= Job | Job Job | JobInStore | JobOutStore
Job ::= JobInStore | JobInStore Job |

JobOutStore | JobOutStore Job
JobInStore ::= TaskLoad TaskMove TaskUnload Coord Coord Commodity

JobOutStore ::= TaskLoad TaskMove TaskUnload Coord Coord Commodity

Equipment ::= Truck | Machine

Truck ::= ForkLiftHand | ForkLiftLow | ForkLiftHigh
Machine ::= PackingMachine | CleaningMachine

The starting symbol is denoted as ROOT . The ROOT has three basic components, which are Workplan,

Employee, and Equipment. The Workplan represents a set of jobs for the Employee which should be done

with the help of Equipment. The Workplan can be rewritten to Job or two Jobs, or directly to JobInStore or

JobOutStore. The Job can evolve to both JobInStore and JobOutStore or one of these functions accompanied

by another Job. The JobInStore and JobOutStore are pretty much the same functions which differ only in

the purpose of use. Both jobs consist of a predefined chain of tasks, i.e. TaskLoad, TaskMove, TaskUnload,

Coord of starting place, Coord of end place, and Commodity which is transferred through the warehouse. The

tasks TaskRelax and TaskWait are added into this chain of tasks at request of an employee. The Employee

is selected from the database of employees. The Equipment is either Truck or Machine. The Truck is of

three types ForkLiftHand, ForkLiftLow, and ForkLiftHigh. The Machine represents everything else.
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ROOT

Workplan Employee

Job

Equipment

Truck

ForkLiftLowJob Job

JobInStore JobOutStore Job

JobInStore

TaskLoad TaskMove TaskUnload Coord Coord Commodity

Fig. 7.1: An example of the tree generated by the context-free grammar.

7.5 The Design of Optimization Operators

The genetic operators are described in this section. The design of all operators is described and accompanied by

a graphical example of how the each of them works. Together, five new operators were designed, implemented

and tested, namely Path Mutation (PA), Job Order Mutation (JO), Swap Job Mutation (SJ), Swap Work-Plan

Mutation (SW), and Split Job Mutation (SP). All mutation operators designed are depicted in figures. The

orange colored blocks depict the movement between two jobs and the brown colored blocks depict the changed,

mutated parts of the task, job, or work-plan.

The Path Mutation 7.2 is the first genetic operator designed for the purpose of this work. This kind

of mutation is the simplest operator and its purpose is to change the path of truck used to process a specific

task during the TaskMove (e.g. transportation of a pallet through the warehouse) between the TaskLoad and

TaskUnload. The advantage of this operator lies in changing the path, especially when the collision of two

trucks is very probable or the aisle between racks is congested for any reason. In the future, this operator

could also be used for the path mutation of TaskMove between jobs, or any other movement, e.g. when the

truck is heading the parking lot in the case of TaskRelax or at the end of employee’s shift. The example in

Fig. 7.2 shows how the operator works. The parameter Rpa represents a percentage of chromosomes which are

selected for this mutation. First, the job is selected at random in a chromosome. In this case, it is job number

one. Second, the TaskMove with Path A is selected in the job. Then, the Path Mutation is applied and the

transportation path is changed to Path B which changes the TaskMove operation and it should be shortened.

The change is depicted in brown in the figure. This operator was published in the paper [52].
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Fig. 7.2: An example of the Path Mutation operator.
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The Job Order Mutation 7.3 is the second genetic operator designed. This operator is also quite simple,

and its aim is to shuffle the jobs in the work-plan of one employee. This operator can show its advantage

especially when the first task in the work-plan looks to be quite distant and it is more logical to process

a closer job and then go further and further and process more distant jobs. This mutation operator brings

the main advantage in cases when the work-plan of employee consists of many distant tasks. This can bring

the continuity of work from one side of the warehouse to another. In other words, the work-plan should be

processed from the closest jobs to more distant jobs. The example in Fig. 7.3 shows how the operator works.

The parameter Rjo represents the percentage of chromosomes which will be mutated by this operator. When

the work-plan is selected based on the probability of Rjo, the operator starts. First, the first job is selected

at random, in this case Job 3. Second, the second job is selected at random, in this case Job 2. Then two

selected jobs are swapped. As it can be seen in the figure, the finish time of work-plan is shorter, because the

third job was closer to the first job and the TaskMove between Job 1 and Job 2 is shorter after the mutation.

This operator was published in the paper [52].
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Fig. 7.3: An example of the Job Order Mutation operator.

The Swap Jobs Mutation 7.4 is the third operator presented. This operator is the first which uses two

work-plans. The mutation is based on the simple principle which is the swap of two jobs between two work-

plans. This operator is advantageous especially in situations when two employees are located in opposite parts

of the warehouse and the jobs are randomly assigned, but the employee can fulfill the closest job instead of

more distant. The operator swaps the jobs between the work-plans, which helps to save the time of processing

and minimizes the path crossing of the trucks. The example in Fig. 7.4 represents how the operator works.

The parameter Rsj denotes the percentage rate of this mutation. First of all, two chromosomes are selected

based on the probability of Rsj . Second, one job is randomly selected in each chromosome. Job 2 is selected

in Workplan A, and Job 3 is selected in Workplan B. The third step is the swap of selected jobs. The swap

also causes a change of TaskMove time, which is given by movement from the first job to second job.
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Fig. 7.4: An example of the Swap Job Mutation operator.
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The Swap Work-Plan Mutation is the fourth operator in use. The Swap Work-Plan Mutation operator

is based on the principle of work-plan swapping among the population of individuals. The work-plan is

bounded with an employee and an assigned truck. The possibility of work-plan swapping could bring another

time improvement, because another employee can have a faster truck, or a truck more suitable for another

batch of jobs due to storage level demands etc. The operator works with the parameter Rsw which denotes

how many individuals will be processed by this operator. When the chromosomes are selected based on this

probability, the process of mutation is started. The first step is to randomly select two work-plans and the

second step is to swap the work-plans.

The Split Job Mutation is depicted in Fig. 7.5 and it is the last operator designed for the problem

solving. The main aim of this mutation is to split the job into two single jobs with the minimal level of

dependence. The key utilization of this operator is in very difficult situations, when it is preferred to process

one job with more employees, e.g. Employee A with the assigned ForkLiftLow truck is going to process Job A

which starts somewhere in the middle of the warehouse, during his transfer he is able to load the commodity

of Job B and move it a little bit closer to Employee B with the ForkLiftHigh truck. Employee B loads the

commodity of Job B and goes to his destination, e.g. at level five of the shelf. During this process Employee

A is working on Job A, because he would not be able to finish Job B anyway, since he is equipped only with

the ForkLiftLow truck. This operator brings an advantage of cooperation into the problem.

The example of mutation operator is depicted in Fig. 7.5. First, genes for mutation were selected with

probability Rsp. Then the first work-plan was randomly selected, as well as the job in this work-plan. In this

example it is Workplan A and Job 1 with the longest TaskMove. The TaskMove was split up into two jobs

Job A.1 and Job A.2. Job A.1 is kept by Workplan A, but Job A.2 was moved to Workplan B.
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Fig. 7.5: An example of the Split Job Mutation operator.

7.6 Maintaining Mechanisms of Algorithm

The maintaining mechanisms connected to genetic operators are as follows. The first mechanism is to ensure

that the job which was split up can be completed successfully. It means that the first part of the job will

be processed before the second part of the job. So, in situations like this, the TaskWait is inserted into the

beginning of the second part of the job, which ensures the continuity. Already split up parts of the job can be

further divided by algorithm. So, ensuring of the continuity is a key feature. A related situation occurs when

the job is split up, then re-ordered or swapped. The continuity of jobs has also to be ensured. The situation

when the job is split up, the parts are swapped and re-ordered and they meet together in one work-plan can also

come up during the generations. In such situation, the parts of one job in one work-plan are again connected

to one single job. So, this is how the work-plans and jobs are maintained, to be completed successfully.
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8 BENCHMARKING AND TEST SETS

The basic assumption for the benchmarking of designed optimization algorithm was the setting of the basic

reference level of results – the baseline which was used in further experiments for the comparison of the state

of the art of real-world warehouse environments and the proposed optimization algorithm. Since the expert

consultant was fully available, and the historical data from the warehouse work-flow were also obtained, the

benchmarks were developed on these foundations. The data obtained were summarized and exported from the

SAP information system. The data represent the full use of the warehouse during the last two weeks before

the Christmas time. The data were provided with expert’s comments and further backstage knowledge of the

expert. The reference level should be set as simply as possible and it should comprehensively describe the

state of the art before the implementation of the new system. It serves as a starting point for evaluating the

results of the new system and the impact of the implementation and deployment of the new system.

8.1 Standardization, Normalization

The standardized warehouse has also standardized operations with fixed time norms. The fixed time norms

were made by expert consultant based on the veritable time of processing measured in the warehouse several

weeks and averaged. The operations and normalized time of these operations are described in Tab. 8.1.

Tab. 8.1: Standardized operations in the warehouse environment.

ID Operation Required Fix Time Norm

1 Unloading Always 2

2 Receiving Always 4

3 Partial Transport Sometimes Distance / Velocity

4 Storing, level 0 Always 2

5 Storing, level 1–2 Sometimes 4

6 Storing, level 3–9 Sometimes 7

7 Shifting up to 30 m Sometimes Distance / Velocity

8 Shifting beyond 30 m Sometimes Distance / Velocity

9 Picking, heterogeneous Always 15

10 Picking, homogenous Sometimes 2–7, based on level

11 Dropping, level 1–2 Sometimes 2

12 Dropping, level 3–7 Sometimes 7

There are also standardized roles for employees. Performance of a specific role is normalized based on

historical data of performance of single employees, see Tab. 8.2. The heading of Tab. 8.2 represents the Role of

an employee, the normalized performance (Perf.) of the role, and the numbers of operations (On). The table

characterizes the roles of employees in the way of suitability, it means which operation is the most suitable for

the specific role. The suitability is described in Tab. 8.3.

Tab. 8.2: Standardized roles of employees in the warehouse environment.

Role Perf. O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

Handler jr. 1 4 1 3 4 3 2 3 4 2 3 3 3

Handler sr. 3 3 4 3 3 4 4 3 2 2 2 2 3

Storeman jr. 1 3 3 3 2 2 2 3 3 3 4 4 3

Storeman sr. 3 2 2 3 2 2 2 3 2 4 3 3 3

Shift leader 5 1 2 1 1 1 1 1 2 1 2 1 1
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Tab. 8.3: The suitability table for the roles of employees and operations.

Suitability Value

May not 1

Unsuitable 2

Suitable 3

Best suitable 4

Not necessary 5

8.2 The Test Set – Real Data

On the basis of the experimental integration research related to benchmarking definition several basic scenarios

representing real situations from the warehouse work-flows were defined. The scenarios were divided into

several specific sets that form logical groups of benchmarks for measuring the performance of the proposed

optimization algorithm which can be easily compared to the results achieved by the operational manager.

First, we get the data, as the jobs were processed, scheduled respectively, by the operational manager. As it

was already written above, these data were extracted from the warehouse work-flows from the pre-Christmas

time, when the operational manager was most burdened by stress and fatigue. These scenarios represent

a set of jobs which were distributed to employees during a working shift. Solving these scenarios by a skilled

operational manager is the reference point for the proposed optimization algorithm. During the experimental

integration of the optimization algorithm 60 scenarios were extracted. These scenarios were divided into 5

categories according to the intensity of work load for employees and the level of difficulty of scheduling.

The first set of scenarios (01–10) represents the most simplified cases extracted from the operational

data. These scenarios are simplified in such a way that all the trucks in the warehouse are the fork-lift hand

pallet trucks. This simplification was introduced because these trucks are used in all types of warehouse

environments and it is possible to demonstrate the performance of the proposed optimization algorithm on the

simplest types of problems where the optimization of work-flow is not so complicated and it could be easily

done only by looking at the problem without the aid of a mathematical or software apparatus. The results

obtained in these examples have demonstrated the competitiveness of the algorithm even though the scenarios

encompassed the minimal space for optimization. This set of scenarios includes the most simple and realistic

scenarios which are defined as follows. Each truck is the fork-lift hand pallet truck. Each employee performs

one simple task from the beginning to the end. The collision of trucks, the distance between the job and the

employee, employee’s performance, and truck’s velocity are not taken into account.

The second set of scenarios (11–20) also includes realistic scenarios of the warehouse work-flow. These

relatively simple examples contain two types of trucks – fork-lift hand pallet trucks and fork-lift low pallet

trucks, which are able to store goods on shelves on level 1 and 2 as well as on the ground level 0.

This set of scenarios is defined as follows. The trucks are of two types, as mentioned in the previous

paragraph. Each employee performs one simple task, collisions of trucks are not taken into account, as well

as the distance between the job and the employee. The velocity of truck is a key parameter since two types

of trucks are used. Deployment of various truck types can also bring visible improvements in terms of time

processing of jobs even in simple scenarios. At the scale of entire shift in the warehouse, many such simple

optimizations can yield significant reductions in the time required for processing the job buffer. A set of

scenarios shares the composition of trucks, employees, pallets and coordinates of jobs with the previous set.

The third set of scenarios (21–30) represents more difficult situations or situations of the previous sets of

scenarios which were extended by further conditions. This set of scenarios is defined as follows. The scenarios

contain three types of trucks, the well-known fork-lift hand pallet truck, the fork-lift low pallet truck and the

fork-lift high pallet truck. The fork-lift high pallet trucks are able to operate in racks with the goods on the

shelves up to level 9. These trucks are proportionately slower when moving from place A to place B then other

trucks, because they are more robust.
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Furthermore, each employee performs only one simple task. The algorithm takes into account the distance

of the job and the employee, employee’s performance and truck’s velocity. Thus, it is ensured that the employee

with the fork-lift hand pallet truck will not pass the routes disproportionately long compared to motorized

pallet trucks. This set of scenarios does not take into account collisions of the trucks yet.

The fourth set of scenarios (31–40) also contains quite complex examples. These are new scenarios and

also more advanced scenarios from the previous sets (the same scenarios but in a wider time scale). Every

employee in this set of scenarios fulfills one or more jobs. Furthermore, the distance between the employee

and the job and the distance between the job and the prospective job are taken into account. In addition, the

performance of employees and the truck velocity are also covered as in the previous sets of scenarios. In this

set of scenarios, for the first time, collisions of trucks are taken into account and the algorithm is trying to

avoid them, or penalize solutions containing collisions. Notice that the trucks overlapping in the aisles around

the perimeter of the warehouse are not considered as collisions, since they are wide aisles.

The last set of scenarios (41–60) contains twenty most complex and difficult cases representing the

warehouse work-flow, which are characterized mainly by the possibility of cooperation of two or even more

employees on one single job. The scenarios may include trucks of all three types mentioned in the paragraphs

above. Each employee performs one single job or a list of jobs with the possibility of job sharing.
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Fig. 8.1: An example of the scenario no. 54 from the fifth set.
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Furthermore, the distance between the employee and the job and the distance between the job and the

prospective job are taken into account. In addition, the performance of employees and the truck velocity

are taken into account in the previous set of scenarios. In this set of scenarios collision of trucks are again

computed and taken into account when the fitness function computes the suitability value. The optimization

algorithm tries to avoid all possible collisions, or penalize such a solution. Trucks overlapping in the aisles

around the perimeter of the warehouse are not considered as collisions, since they are wide aisles where the

trucks can avoid each other. This set of scenarios model the worst case examples of the logistic warehouse

work-flow without any simplification or condition relaxation. The illustrative example is depicted in Fig. 8.1

and described in Tab. 8.4.

Tab. 8.4: An example of the set of scenarios no. 41–60.

Scenario no. 54

Employees
2 x Store-man jr. – coordinates [12, 18]; [0; 6]

1 x Store-man sr. – coordinates [3, 20]

Equipment
2 x Fork-lift low truck – coordinates [12, 18]; [0; 6]

1 x Fork-lift high truck – coordinates [3, 20]

Description The first employee (red) loads the pallet on cell [17, 20] and stores

it on intermediate cell [9, 0] for processing by another employee,

then he moves to cell [17, 0], loads the pallet and stores it on

shelf [19, 4]. The second employee (green) loads the pallet on

intermediate cell and moves it to cell [6, 5], then he continues to

cell [3, 0] loads the pallet and stores it on shelf [3, 16]. The third

employee (blue) loads the pallet on intermediate cell [6, 5] and

stores it on shelf [5, 17]. All employees work simultaneously.

8.3 The Test Set – Synthetic Data

Since the scenarios described in the previous section are quite short (they consist of the units jobs), there

is a need to construct more complex testing data consisting of dozens or hundreds of jobs. This led to the

design and implementation of the synthetic data set generator which is able to generate such tests based on a

few input parameters. The generator consists of four classes, such as the NameGenerator for generating the

fictional names of employees, the GeneratorConfig which allows to set the values of parameters, the Generator

which generates single parts of the warehouse work-flow, such as employees, equipment, commodities, and a

list of jobs. The last class is the BatchFile class which runs the synthetic data generator and generates tests.

The generator uses the same warehouse layout as the real data set of scenarios. The simplified class diagram

is depicted in Fig. 8.2.

The most interesting part of the generator is the Generator class which operates on the basis of several

configuration parameters which are described in Tab. 8.5. At first, the given number of employees is generated.

The employees are assigned the starting coordinates [x, y] which are always placed in some aisle, given by the

formula Eq. 8.1:

x = 2× (i mod
w + 1

2
), (8.1)

where i stands for the number of employees which should be generated, decreased by the number of already

generated employees, and w stands for the width of the warehouse (the number of cells in y axes), which is 21

in this case. The coordinate y is generated at random in the range of the aisle. All coordinates which have been
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GeneratorConfig

BatchFile

+ runGenerator()

Generator

- appConfig : ApplicationConfig

- generateEquipment()

- employeeCount : integer
- forkLiftHandProbab : double
- forkLiftLowProbab : double

- commodityCount : integer
- forkLiftHighProbab : double

- jobInStoreProbab : double

- taskRelaxProbab : double
- intermediateProbab : double

- resources : StorehouseResources
- map : StorehouseMap

- genConfig : GeneratorConfig

- close : List<String>
- employees : List<Employee>
- randomGen : Random

NameGenerator

- names : String[]

+ getName()

- surnames : String[]

genConfig

- generateCommodity()
- generateEmployees()

- generateJobsRelax()
+ createUseCase()
+ runEvolution()

Fig. 8.2: The class diagram of the synthetic test set generator.

already generated are placed in the close list, which prevents that two or more employees will share the same

cell on the map of warehouse. During the generation process, the employee is also assigned a random name,

surname, and a truck. The type of truck is selected based on the input parameters of probability described

in Tab. 8.5. Notice that the probability here is the probability of truck occurrence of all trucks. So, the 50%

probability of fork-lift hand truck means that about 50 % of all generated trucks are fork-lift hand trucks. The

sum of all probabilities is 1.0.

The second part of the synthetic test generator deals with the commodity and job generation. The com-

modity represents only one pallet. The start point as well as the end point of commodity is generated and

assigned to the newly generated job. The number of jobs is directly connected to the number of commodities.

Furthermore, the type of job is generated, i.e. if the job is the in store or out store job, and there is also

possibility that the commodity is placed on an intermediate cell, and that it must be moved in or out the

store. The start point of commodity is generated by the same formula as the employee’s start point. The end

point of the job can be the rack, intermediate cell, or the warehouse gate, which is randomly selected.

Tab. 8.5: The configuration parameters of the synthetic test set generator.

Parameter Description

EmployeeCount The number of employees.

ForkLiftHandProbab The probability of fork-lift hand truck.

ForkLiftLowProbab The probability of fork-lift low truck.

ForkLiftHighProbab The probability of fork-lift high truck.

CommodityCount The number of commodities.

JobInStoreProbab The probability that the job is the in store job.

IntermediateProbab The probability of where the commodity is placed.

TaskRelaxProbab The probability of TaskRelax occurrence in jobs.
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9 MEASUREMENT AND VALIDATION

The parameters for controlling the run and the parameter representing the stop condition were set according

to the values depicted in Tab. 9.1. The precision of the fitness function was not set, because this parameter

is not used in the evolutionary optimization algorithm adapted for the warehouse optimization problem.

All the measurements were applied to 20 individuals in 20 generations, which was quite enough for a crashing

majority of scenarios to outperform the results reached by the operational manager or at least to reach the same

level of performance. The elitism was set to 5 %, so only the best individual of the population will be copied to

the new population without change. The rates of other operators were set to 60 %, which gives a better chance

to breed the population. The Split Job Mutation was set to 10 % because this operator is applicable mostly

in the most complex cases, otherwise this operator could possibly cause a slower convergence to the solution

in simple cases. The high rate of mutations causes high computational demands, but it is helpful during the

breeding process. Finally, only 20 individuals survive in each generation after the decimation process.

Tab. 9.1: The settings for controlling the run of the GP algorithm.

Population Size 20 individuals

Evolution Size 20 generations

Fitness Precision not set

Elitism Rate 5 %

PA Mutation Rate 60 %

JO Mutation Rate 60 %

SJ Mutation Rate 60 %

SW Mutation Rate 60 %

SP Mutation Rate 10 %

The first line (OM) in all tables (Tab. 9.2 – Tab. 9.7) in the following five subsections represents the

results reached by the operational manager, which were set as the reference baseline. Other lines represent the

measurements of the optimization algorithm. The measurements differ in the combinations of the used genetic

operators. The best results reached by the optimization algorithm are depicted in the orange colored box.

Other results, the same level or the worst level in comparison to the reference baseline, are depicted in the black

colored text. If the result reached by OM was outperformed or the same result was reached, the OM result

is in the red colored box. If the result reached by OM is better than all results reached by the optimization

algorithm, the OM result is in the green colored box. This coloration is valid for all measurements.

During the process of benchmarking and testing, all genetic operators were tested alone, to see the perfor-

mance of each single operator. Then, all pairs of genetic operators were tested, all the triplets of operators,

all the quartets of operators, and in the last run of the algorithm all operators were tested together.

The results depicted in the following subsections show that each genetic operator itself is competitive with

the results of the operational manager. The combination of genetic operators was used to get a wider variability

in individuals across the population and to gain more variants of solutions. In general, it can be concluded that

the use of all operators together reduces the computational performance, but the results of the computations

are better than the results of single operators, especially in more complex and difficult situations.

During the development of the optimization algorithm various settings of the algorithm were tested. Various

sizes of population and various numbers of generation steps were given under investigation. The 20 individuals

in the population and 20 generation steps seem to be an optimal setting with respect to the computational

time and the precision of results for the purpose of testing scenarios 1 – 60. The elitism rate was also tested,

but when the population size is 20 individuals, 5 % (one individual) is sufficient to maintain a non-decreasing

character of the fittest individual during the evolution process with the preserved diversity of population.

Furthermore, the rate of all mutation operators was given also under investigation. It was proved that the

rate of the mutation is not a key parameter as well as the parameter used in the evolution process when the
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population size is only 20 individuals. Only one parameter is significantly different: the rate of the Split Job

Mutation. If the scenarios tested are quite simple, the operator can literally break the jobs in to small sub-jobs

and distribute them across the employees. This behavior of the algorithm is not required in such simple tasks.

The results of first ten scenarios are depicted in Tab. 9.2. As it can be seen from the table, all scenarios

except no. 6 was outperformed at least by one single genetic operator or a combination of several genetic

operators. This gives 90 % precision of the first test set of scenarios. It must be said that such good results

were not expected in the simple scenarios like these. The set represents only very simple scenarios where there

is only a very limited space for any optimization. The results in the table suggested that certain optimization

of scheduling can be done even in very simple cases.

Tab. 9.2: The results of the measurement of scenarios no. 01–10.

Method 1 2 3 4 5 6 7 8 9 10

OM 7.00 8.17 7.00 8.17 6.83 7.50 7.67 5.67 7.00 8.17

PA 7.00 8.17 8.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

JO 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

SJ 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

SW 7.00 8.17 12.17 7.50 6.67 11.50 7.00 5.33 6.83 8.00

SP 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

... ... ... ... ... ... ... ... ... ... ...

The results of second ten of scenarios are depicted in Tab. 9.3. As it can be seen from the table, all the

scenarios except no. 2 and no. 6 were outperformed, or the same level of performance was reached, at least

by one single genetic operator or a combination of several genetic operators. This gives 80 % precision of the

proposed optimization algorithm of the second set of scenarios. As this is still quite a simple set of scenarios,

no big improvement of results was expected in comparison to the operational manager, but still, the algorithm

showed the competitiveness.

Tab. 9.3: The results of the measurement of scenarios no. 11–20.

Method 1 2 3 4 5 6 7 8 9 10

OM 6.25 7.33 7.00 7.33 6.33 7.50 7.67 5.50 7.00 8.17

PA 6.25 7.67 8.00 7.33 6.38 7.88 7.13 5.33 6.67 7.00

JO 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

SJ 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

SW 6.25 7.67 10.88 5.13 6.38 10.63 7.13 5.33 6.67 7.00

SP 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

... ... ... ... ... ... ... ... ... ... ...

The results of third ten of scenarios are depicted in Tab. 9.4. As it can be seen from the table, all the

scenarios except no. 9 was outperformed at least by one single genetic operator or a combination of several

genetic operators, which gives together 90 % precision of the optimization algorithm of the third set of scenarios.

Still, one scenario was not solved at the same level of performance as it was solved by the operational manager.

Tab. 9.4: The results of the measurement of scenarios no. 21–30.

Method 1 2 3 4 5 6 7 8 9 10

OM 10.50 11.67 13.75 17.00 13.38 12.25 20.38 21.63 20.38 17.00

PA 10.38 11.67 13.00 11.50 12.63 12.00 19.50 23.13 24.63 16.63

JO 10.00 11.67 14.83 11.50 12.63 11.83 20.75 27.33 24.83 16.63

SJ 9.83 11.67 14.83 11.50 11.88 11.17 19.50 26.88 23.50 16.63

SW 10.00 11.67 14.83 11.50 12.63 12.00 20.88 27.17 21.25 16.63

SP 10.00 11.67 15.33 11.50 12.63 12.00 20.50 27.00 24.83 16.63

... ... ... ... ... ... ... ... ... ... ...

The results of fourth ten of scenarios are depicted in Tab. 9.5. In this case, all the scenarios in the set

were outperformed for the first time at least by one single genetic operator or a combination of several genetic

operators, which is a great result of the optimization algorithm in the fourth set of scenarios. The best results

of this set were obtained by the combination of operators, not any operator alone.
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Tab. 9.5: The results of the measurement of scenarios no. 31–40.

Method 1 2 3 4 5 6 7 8 9 10

OM 14.25 14.25 14.63 16.00 10.75 13.63 20.38 15.33 18.25 14.25

PA,JO,SJ 13.13 16.25 15.75 15.00 10.75 13.13 21.25 16.38 20.50 12.63

PA,JO,SW 14.38 16.13 14.13 15.00 10.75 16.13 22.00 17.33 21.67 15.33

PA,JO,SP 15.67 15.00 14.63 15.00 10.75 13.50 25.00 19.50 22.33 13.50

PA,SJ,SW 13.13 14.13 15.25 12.00 10.75 12.75 22.13 18.33 22.50 13.00

PA,SJ,SP 14.83 18.17 15.38 14.83 10.75 13.00 19.38 17.67 20.67 13.33

PA,SW,SP 14.50 16.50 15.88 14.00 10.75 14.50 22.00 13.63 19.50 13.17

JO,SJ,SW 14.83 16.25 15.88 14.00 10.75 13.67 22.17 18.88 22.67 13.17

JO,SJ,SP 14.83 16.13 17.25 15.00 10.75 13.67 22.88 19.33 22.13 13.50

JO,SW,SP 14.83 16.83 18.38 15.00 10.75 15.25 25.75 21.00 24.13 15.00

SJ,SW,SP 12.33 18.67 16.88 15.00 10.75 15.13 22.50 19.38 22.50 13.38

PA,JO,SJ,SW 13.13 14.75 13.83 14.00 10.75 13.00 23.00 18.17 20.88 13.38

PA,JO,SJ,SP 15.00 15.38 16.63 14.00 10.75 13.50 20.50 20.33 20.25 13.50

PA,JO,SW,SP 8.67 16.63 14.88 15.33 10.75 14.33 22.50 20.17 21.67 11.67

PA,SJ,SW,SP 13.13 14.63 14.50 14.00 10.75 13.00 23.00 18.00 21.00 11.88

JO,SJ,SW,SP 14.83 16.25 15.88 14.00 8.38 14.67 21.25 18.88 13.25 13.17

All operators 13.63 15.17 15.50 14.00 10.75 12.83 22.63 17.67 18.75 11.67

Average 14.33 16.62 15.85 14.51 10.68 14.33 23.16 18.65 21.69 13.49

Variance 1,64 1,96 1,27 0,53 0,17 1,90 3,27 2,68 4,48 0,78

Deviation 1.28 1.40 1.13 0.73 0.41 1.38 1.81 1.64 2.12 0.88

Mode 14.83 16.13 16.63 14.00 10.75 16.00 22.63 18.88 22.50 13.38

Minimum 8.67 14.13 13.25 12.00 8.38 10.25 19.38 13.63 13.25 11.67

Maximum 16.00 19.50 18.38 16.00 10.75 16.25 28.00 21.38 24.75 15.33

The last set of scenarios is twice bigger than the previous sets. It contains 20 examples in total. The results

are depicted in Tab. 9.6 and Tab. 9.7. In this case, all the scenarios in the set were outperformed at least by

one single genetic operator or by a combination of several genetic operators, which give great results in the last

set of scenarios. The best results of this set were obtained by the combination of operators to which no single

operator can compete. Since these are quite complex scenarios, the best time reached by the optimization

algorithm was obtained by the combinations of operators.

Tab. 9.6: The results of the measurement of scenarios no. 41–50.

Method 1 2 3 4 5 6 7 8 9 10

OM 18.25 11.50 15.50 11.00 16.38 10.75 26.88 22.25 16.50 22.75

PA,JO,SJ 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

PA,JO,SW 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 13.00

PA,JO,SP 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

PA,SJ,SW 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

PA,SJ,SP 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

PA,SW,SP 14.25 7.88 8.00 8.00 7.50 7.13 16.88 11.50 8.17 13.00

JO,SJ,SW 12.38 7.88 8.00 8.00 7.75 5.67 16.38 12.00 8.17 12.00

JO,SJ,SP 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

JO,SW,SP 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.88

SJ,SW,SP 9.50 7.88 8.00 8.00 7.75 6.00 16.75 12.00 8.17 12.88

PA,JO,SJ,SW 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.63

PA,JO,SJ,SP 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

PA,JO,SW,SP 12.38 7.88 8.00 8.00 7.50 7.13 16.75 11.50 8.17 12.00

PA,SJ,SW,SP 12.38 7.88 8.00 8.00 7.50 7.13 16.38 10.00 8.17 12.88

JO,SJ,SW,SP 9.50 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

All operators 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

Average 12.55 7.99 8.23 8.09 7.89 7.16 16.84 12.03 8.37 12.75

Variance 2,74 0,40 1,70 0,27 2,34 0,52 3,30 3,52 2,24 3,45

Deviation 1.66 0.63 1.30 0.52 1.53 0.72 1.82 1.88 1.50 1.86

Mode 12.38 7.88 8.00 8.00 7.50 7.13 16.38 12.00 8.17 12.00

Minimum 9.50 7.88 8.00 8.00 7.50 5.67 16.38 10.00 6.25 12.00

Maximum 18.25 11.50 15.50 11.00 16.38 10.75 26.88 22.25 16.50 22.75
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As the examples represent really complex and difficult situations, the combinations of genetic operators

gave very different results as it can be seen from the results of variance and standard deviation. This means

that more difficult situations can result in many possible solutions, but of course, not all of them are considered

as good results, even if they outperformed the reference baseline, because there are much better results given

by the other combinations of genetic operators.

Tab. 9.7: The results of the measurement of scenarios no. 51–60.

Method 1 2 3 4 5 6 7 8 9 10

OM 31.88 27.88 33.50 20.00 29.25 27.50 30.13 37.13 26.38 32.17

PA,JO,SJ 17.75 24.25 23.88 13.50 21.50 14.75 11.50 17.75 13.63 12.63

PA,JO,SW 18.75 23.83 23.50 13.50 25.00 14.75 11.50 17.88 13.63 12.63

PA,JO,SP 17.25 24.00 25.38 13.50 24.75 14.75 11.50 18.25 13.63 13.13

PA,SJ,SW 18.67 23.75 23.88 11.25 21.50 14.75 11.50 18.25 13.63 12.63

PA,SJ,SP 17.83 23.17 23.00 11.25 23.88 14.75 11.50 18.67 13.63 12.63

PA,SW,SP 18.25 23.50 23.75 11.25 25.75 14.75 11.50 17.63 13.63 13.13

JO,SJ,SW 20.75 21.75 22.33 15.75 24.50 14.75 12.83 17.63 13.63 12.63

JO,SJ,SP 21.00 26.63 24.88 15.75 24.00 14.75 12.83 17.63 13.63 12.63

JO,SW,SP 20.38 27.38 26.13 15.75 24.50 14.75 12.83 17.63 13.63 12.63

SJ,SW,SP 18.25 26.63 28.38 15.75 24.63 14.75 12.83 12.88 13.63 13.13

PA,JO,SJ,SW 15.25 24.50 26.25 13.50 21.50 13.25 12.75 17.63 13.63 12.63

PA,JO,SJ,SP 17.00 23.25 24.00 11.63 22.75 14.75 12.75 17.63 13.63 12.88

PA,JO,SW,SP 19.00 21.25 24.17 13.50 23.38 14.75 11.50 17.63 13.63 12.63

PA,SJ,SW,SP 17.25 25.88 25.75 13.50 19.88 14.75 11.50 17.63 13.63 12.63

JO,SJ,SW,SP 21.33 26.00 27.88 15.75 24.63 14.75 11.50 18.25 13.63 12.63

All operators 15.63 24.13 24.50 11.25 21.50 14.75 11.50 17.83 13.63 12.63

Average 19.69 25.20 25.62 14.42 23.49 15.06 12.86 18.22 14.02 13.36

Variance 7,87 2,53 4,51 3,59 3,20 5,13 10,01 12,32 4,92 11,48

Deviation 2.81 1.59 2.12 1.90 1.79 2.27 3.16 3.51 2.22 3.39

Mode 20.38 26.00 24.88 15.75 21.50 14.75 12.83 17.63 13.63 12.63

Minimum 15.25 21.25 22.33 11.25 19.88 13.25 11.50 12.88 13.63 12.63

Maximum 31.88 27.88 33.50 20.00 29.25 27.50 30.13 37.13 26.38 32.17

9.1 The Results of Synthetic Data Set

The parameters for controlling the run and the parameter representing the stop condition were set according

to the values depicted in Tab. 9.8. The precision of the fitness function was not set, because this parameter

is not used in the evolutionary optimization algorithm adapted for the warehouse optimization problem.

Both measurements were applied again to 20 individuals in 20 generations. Both measurements were

started 5 times for all combinations of operators and arithmetically averaged (Avg Duration), and for the

information, the collisions were counted and also arithmetically averaged (Avg Collisions). The algorithm was

set as follows. The elitism remained the same (5 %), so only the best individual of the population was copied

to the new population without change. The first example contains 20 employees in a shift and 50 jobs in the

buffer. The rates of genetic operators were set to 20 % or 60 %. The second example contains 20 employees

and 100 jobs in the buffer. The rates of genetic operators were set to 20 % or 80 % to prove that quite nothing

will change when the rate of mutation will by slightly higher (60 % in the first case or 80 % in the second

case). In this shortened version of ph.d. thesis only the second case is presented.

After several weeks of testing, the results of the optimization algorithm were obtained. After the final

testing and optimization of algorithm, the last measurement of averaged values took 2 days 18 hours 36 minutes

(238907 s). The results of the example of 20 employees and 50 jobs are are in full version of thesis. The results

of the example of 20 employees and 100 jobs are given in Tab. 9.9. Three best results are highlighted in the

orange colored box in each table. All results were measured on the Intel C2D E8400 architecture, 8GB RAM.

The algorithm, more particularly the initialization method of evolutionary process generating all individuals,

and the application of mutation operators during the evolution, was done in 8 threads.
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Tab. 9.8: The settings for controlling the run of the GP algorithm.

Population Size 20 individuals

Evolution Size 20 generations

Fitness Precision not set

Elitism Rate 5 %

PA Mutation Rate Tab. 9.9 = 20/80 %

JO Mutation Rate Tab. 9.9 = 20/80 %

SJ Mutation Rate Tab. 9.9 = 20/80 %

SW Mutation Rate Tab. 9.9 = 20/80 %

SP Mutation Rate Tab. 9.9 = 20/80 %

Tab. 9.9: The results of measurement of the synthetic scenario generated with 20 employees and 100 jobs. All

combinations of genetic operators were tested with 20 % and 60 % of the mutation rate.

Emps Jobs PA JO SJ SW SP Avg Duration Avg Collisions

20 100 0,20 0,20 0,20 0,20 0,20 73,67 721

20 100 0,80 0,20 0,20 0,20 0,20 73,38 705

20 100 0,20 0,80 0,20 0,20 0,20 71,67 731

20 100 0,80 0,80 0,20 0,20 0,20 67,50 783

20 100 0,20 0,20 0,80 0,20 0,20 72,50 797

20 100 0,80 0,20 0,80 0,20 0,20 64,67 711

20 100 0,20 0,80 0,80 0,20 0,20 79,50 687

20 100 0,80 0,80 0,80 0,20 0,20 61,50 637

20 100 0,20 0,20 0,20 0,80 0,20 68,00 603

20 100 0,80 0,20 0,20 0,80 0,20 62,50 643

20 100 0,20 0,80 0,20 0,80 0,20 73,50 637

20 100 0,80 0,80 0,20 0,80 0,20 74,33 663

20 100 0,20 0,20 0,80 0,80 0,20 68,00 547

20 100 0,80 0,20 0,80 0,80 0,20 73,75 739

20 100 0,20 0,80 0,80 0,80 0,20 67,88 690

20 100 0,80 0,80 0,80 0,80 0,20 66,38 680

20 100 0,20 0,20 0,20 0,20 0,80 72,00 740

20 100 0,80 0,20 0,20 0,20 0,80 69,50 637

20 100 0,20 0,80 0,20 0,20 0,80 74,63 612

20 100 0,80 0,80 0,20 0,20 0,80 77,50 800

20 100 0,20 0,20 0,80 0,20 0,80 78,75 624

20 100 0,80 0,20 0,80 0,20 0,80 68,67 774

20 100 0,20 0,80 0,80 0,20 0,80 68,63 677

20 100 0,80 0,80 0,80 0,20 0,80 80,63 743

20 100 0,20 0,20 0,20 0,80 0,80 72,17 680

20 100 0,80 0,20 0,20 0,80 0,80 77,50 736

20 100 0,20 0,80 0,20 0,80 0,80 71,63 681

20 100 0,80 0,80 0,20 0,80 0,80 72,63 747

20 100 0,20 0,20 0,80 0,80 0,80 70,00 683

20 100 0,80 0,20 0,80 0,80 0,80 71,33 728

20 100 0,20 0,80 0,80 0,80 0,80 69,67 750

20 100 0,80 0,80 0,80 0,80 0,80 65,25 668

Average 71.22 695.44

Variance 21.25 3454.68

Deviation 4.61 58.78

Mode 77.50 637.00

Minimum 61.50 547.00

Maximum 80.63 800.00
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10 CONCLUSION

The optimization algorithm showed very good results of the measurements of the real data set. The overall

performance of the optimization algorithm reached 93.33 %, which means that the results of the operational

manager were outperformed in 56 cases of the total number of 60 scenarios. The first three sets of scenarios

reached only 86.67 %, but only because the scenarios in these sets are very simple case studies. It is worth of

noting that in such simple scenarios the improvement of solution was not expected at all. The results worst

or on the same level of performance as the operational manager were expected in these cases.

In fact, it is quite surprising that the algorithm was capable to find the solution which is better than the

original one reached by the operational manager, because the scenarios represent such simple cases where the

space for further optimization is almost unrecognizable. The second three sets of scenarios represent complex

cases of scheduling problems. In these cases, the recognizable optimization was expected, because these cases

are quite difficult to solve with conventional methods used in warehouses in an optimal way. In this cases, all

results reached by the operational manager were outperformed by the proposed optimization algorithm.

The results reached on the real data sets show that any single operator can be used alone on both the very

simple scenarios and the complex scenarios, but the performance of only one single operator, no matter which,

is better in simple cases. More complicated scenarios should be optimized by the combination of at least two

or three genetic operators, but the more operators used the better result should be obtained and the diversity

of population will be supported. The results reached on the synthetic data sets presented show that the time

of processing of job buffer increases linearly. It is also shown that the setting of mutation rate higher than 20

% does not have a significant impact on the results. The only influenced factor is a computational time which

rapidly decreases with a higher rate of mutations.

10.1 Summary of Thesis

The goals stated in chapter 3 were reached. The human factor was involved in the optimization parameters,

which enhanced the standard mathematical model (see chapter 4). So, the performance of particular employees

was taken into account which could positively influence the processing time of the scheduling of jobs. The

multi-criteria fitness function was involved in the optimization process.

The fitness function can respect multiple criteria now. The function works with respect to the optimization

of time processing, the balanced workload of employees, and the number of collisions of trucks. The variability

of time planning and simulation was implemented. The simulation is capable to schedule the work for a few

next minutes as well as for the whole working shift, or also longer time intervals, which of course is much

more time consuming. The possibility of co-operative jobs was analyzed, designed, and implemented to the

optimization algorithm as one of the genetic operators. The co-operative jobs helps to solve situations when

one employee is able to do only a part of job and another employee has to finish the job.

New Evolutionary Framework, which is able to run on genetic programming algorithms driven by context-

free grammar was developed as flexible and robust as possible. The Evolutionary Framework was tested also

on different tasks where the validity of this solution was proved. The last, but not least, the goal was to design

and to implement benchmark tests, which would prove the functionality of the proposed solution and prove

that the hypothesis is true. The design and implementation of benchmark test was done and the results of

measurement proved that the proposed optimization algorithm is competitive to the operational manager, the

results were outperformed in 93.33 % of cases, which leaves a little space for further development.

Of course, the deployment of the algorithm is not suitable in all situations. If the scenarios are quite

simple (small warehouses with units of employees), the performance of the algorithm is not so good as in the

complex scenarios with difficult situations, dozens of employees and trucks. Even if the proposed algorithm

is not suitable in all warehousing environments, the main goal of the doctoral thesis “substantial increase

of productivity and reduction of operating costs” was reached and the hypothesis was proved to be true.
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The main contributions of the proposed doctoral thesis are:

a) A comprehensive literature review of the warehouse optimization connected to the scheduling problems

and the vehicle routing problem was written. The basics found in the literature helped to define the hypoth-

esis and goals (chapter 3), and to extend the mathematical model (chapter 4 for the warehouse work-flow

optimization with the help of employees’ performance which positively influences the processing time of the

scheduling process.

b) The new, extensible, flexible, and multi-platform Evolutionary Framework with the computational core

based on GP driven by the CFG was developed, implemented, and validated (chapter 6). The framework is

based on the existing GGGP approach presented also in this chapter.

c) The new algorithm for the warehouse work-flow optimization problem (chapter 7) based on the proposed

framework (chapter 6) was developed and supported by several new genetic operators, which give the possibility

of co-operative job processing. The fitness function can respect multiple criteria, such as the time of processing

of the whole job buffer (the makespan), balanced workload of employees, and the number of collisions of trucks

which can occure during the work-flow processing (chapter 5).

d) The problem of the warehouse work-flow optimization was described along with the motivation to solve

the problem. The set of benchmark tests was created as well as the evaluation process. These together give

the reference baseline of the results for the optimization (chapter 8).

The most interesting part of the thesis is a design of the optimization algorithm, which uses a new technology

in the form of the high-level object oriented genetic programming, designed specially for this thesis. Such a

solution can find the applications not only in the field of optimization of logistics environments, but also in e.g.

manufacturing companies where the guarantee of smooth flow of material and flow of individual components

must be ensured. The effort is made to prevent shutdowns and/or production interruptions and bring significant

cost savings not only to manufacturing company, but also to other business partners in logistics chain.

10.2 Future of the Work

The future research will be focused on the dispatching rules. The rules will be investigated and implemented

to the optimization algorithm. The aim of this work is to connect the logical priorities of the dispatching rules

with the randomized process of GP. The individuals could be generated based on randomized process inspired

by GBIM, the evolution process could work on the basis of genetic operators designed for the purpose of this

thesis, but the evolution would be supported in every nth step by the dispatching rules.

The further research will also include the genetic operators themselves, the settings of the algorithm with

newly applied operators and the optimization of the performance in the way of memory management and

computational performance. Currently, the algorithm works as a simultaneous algorithm as well as a parallel

algorithm in t threads. The future work could deploy the distributed model of the algorithm. Of course, when

the algorithm is being developed, the test sets and benchmarking tasks have also to be developed. So, the real

data set will be regularly extended on the basis of historical operational data from the logistic environment.
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ABSTRACT
This work is focused on the work-flow optimization in logistic warehouses and distribution centers. The main aim
is to optimize process planning, scheduling, and dispatching. The problem is quite accented in recent years. The
problem is of NP hard class of problems and where is very computationally demanding to find an optimal solution.
The main motivation for solving this problem is to fill the gap between the new optimization methods developed by
researchers in academic world and the methods used in business world. The core of the optimization algorithm is
built on the genetic programming driven by the context-free grammar. The main contribution of the thesis is a) to
propose a new optimization algorithm which respects the makespan, the utilization, and the congestions of aisles
which may occur, b) to analyze historical operational data from warehouse and to develop the set of benchmarks
which could serve as the reference baseline results for further research, and c) to try outperform the baseline
results set by the skilled and trained operational manager of the one of the biggest warehouses in the middle Europe.

ABSTRAKT
Disertačńı práce je zamě̌rena na optimalizaci pr̊uběhu pracovńıch operaćı v logistických skladech a distribučńıch
centrech. Hlavńım ćılem je optimalizovat procesy plánováńı, rozvrhováńı a odbavováńı. Jelikož jde o problém
paťŕıćı do ťŕıdy složitosti NP-težký, je výpočetně velmi náročné nalézt optimálńı řešeńı. Motivaćı pro řešeńı této
práce je vyplněńı pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami
použ́ıvanými v produkčńıch komerčńıch prosťred́ıch. Jádro optimalizačńıho algoritmu je založeno na základě
genetického programováńı ř́ızeného bezkontextovou gramatikou. Hlavńım p̌ŕınosem této práce je a) navrhnout
nový optimalizačńı algoritmus, který respektuje následuj́ıćı optimalizačńı podḿınky: celkový čas zpracováńı, využit́ı
zdroj̊u, a zahlceńı skladových uliček, které může nastat během zpracováńı úkol̊u, b) analyzovat historická data z
provozu skladu a vyvinout sadu testovaćıch p̌ŕıkladů, které mohou sloužit jako referenčńı výsledky pro daľśı výzkum,
a dále c) pokusit se p̌redčit stanovené referenčńı výsledky dosažené kvalifikovaným a trénovaným operačńım
manažerem jednoho z nejvěťśıch skladů ve sťredńı Evropě.
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