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Abstrakt

Fotografovani slunecni korény patii mezi nejobtiznéjsi tlohy astrofotografie a zaroven
je jednou z klicovych metod pro studium korény. Tato prace prinasi uceleny souhrn
metod pro pozorovani slunecni koréony pomoci snimku. Préce obsahuje nutnou mate-
matickou teorii, postup pro zpracovani snimku a souhrn adaptivnich filtra pro vizualizaci
koronalnich struktur v digitalnich obrazech. Dale pfinasi navrh novych metod urcenych
predevsim pro obrazy s vyssim obsahem Sumu, nez je bézné u obrazi bilé korény potize-
nych béhem uplnych zatmeéni Slunce, napt. pro obrazy potizené pomoci tizkopasmovych
filtru. Fourier normalizing-radial-graded filter, ktery byl navrzen v ramci této prace, je
zalozen na aproximaci hodnot pixelu a jejich variability pomoci trigonometrickych poly-
nomu s vyuzitim dalsich vlastnosti obrazu.

Abstract

Solar corona photography counts among the most complicated tasks in astrophotography.
It also plays a key role for research of the solar corona. This thesis brings an a complete
overview of methods for imaging the solar corona. The thesis contains necessary methe-
matical background, the sequence of steps for image processing, an overview of adaptive
filters used for visualization of corona structures in digital images, and new methods are
proposed, especially for images which contain more noise than it is typical for images of
the white corona taken during total solar eclipses, e.g. images taken with narrow-band fil-
ters. The Fourier normalizing-radial-graded filter method that I proposed during my PhD
study are based on approximation of pixel values and their variability with trigonometric
polynomials using other properties of the image.
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Chapter 1

Introduction

The Sun is the nearest star to the Earth, therefore the research of the Sun gives the
mankind a unique opportunity to study the physical parameters and properties of a star.
Of course, there are both smaller and much bigger stars in the Universe, but the Sun is
the most important star for us. The intensity and the spectral composition of the light
emitted by the Sun as well as other particles that are spread from the Sun play a vital role
for the life on the Earth. Since people are using more and more complicated electronic
devices both on the Earth and in the Space and some of these devices are connected in
large (global) networks, it is necessary to understand how and when the phenomena on
the Sun can harm them.

As an example of what happened at a time when the electronics and computer networks
were not as advanced as today can be the flare of March 9, 1989, when the subsequent
geomagnetic storm caused the collapse of Hydro-Québec’s electricity transmission system
and other blackouts including a melted transformer in New Jersey, U.S.A. A very nice
popular-scientific text on the danger of a massive solar flare including information about
the March 1989 flare can be found on [dGrel2]. A scientific article on this topic is for
instance [cSta02]. Current electronic devices are even more sensitive than those in 1989.

Among other methods of the solar corona research, imaging methods play a cru-
cial role. Due to the problems described in Chapter [2| sophisticated image processing
techniques are necessary for taking full advantage of the current mechanical and optical
systems for both Earth-based and space-born observations. Chapter [2| not only covers
why it is complicated to take full advantage of the corona observations, but also gives a
historical overview of mechanical and optical methods of solving these problems and an
overview of numerical methods used from the early times of use of computers for image
processing to nowadays. Chapter |3| describes the mathematical notions and theory that
are necessary in the next chapters. Image acquisition and the steps of processing images
(with mathematical reasoning) both from total solar eclipses and from cosmic probes to-
gether with a list of the most important cosmic probes that study the Sun is the content
of Chapter |4, The final or almost-final step of the process is the enhancement of coronal
structures. An overview of the most important methods which have been used for coronal
structure enhancement can be found in Chapter [f

Among them is the Normalizing-radial-graded filter (NRGF'), which was the inspiration
for the Fourier normalizing-radial-graded filter (FNRGF) proposed, implemented, and
tested on many types of data as of part of my Ph.D. study and described in Chapter[6] The
filter brings new possibilities for studying the corona, because its latest implementation
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is relatively fast and some faint structures are enhanced better than with any of the
previous methods. Chapter [6] not only describes the principle of the filter, but also its
software implementation and contains many examples of images processed with this filter.
Chapter [7] is the Conclusion followed by the Bibliography, and the List of used symbols
and abbreviations and the description of the content of the CD which is enclosed to the
thesis.



Chapter 2

Imaging the solar corona

2.1 The solar corona

The Sun can be divided into the interior and the atmosphere. The interior consists of the
core, which is the source of the Sun’s energy, the place where hydrogen is transformed
to heavier elements in thermonuclear reactions, the radiative zone, where energy is trans-
mitted by radiation, and the convective zone. The Sun’s magnetic field has its origin in
the transition layer between the radiative and the convective zone. The tops of the con-
vective cells form the layer called the photosphere, which is also the border between the
interior and the Sun’s atmosphere. The temperature of the photosphere is about 5780 K.
We often refer to the interior and the photosphere as ‘the Sun’, since the edge is clearly
defined. The photosphere is what we see when we look at the Sun during a sunny day
(with a suitable filter, otherwise we would risk damaging our eyes).

The solar atmosphere, which is above the photosphere, has only a fuzzy transition
to the interplanetary space. The solar atmosphere comprises the chromosphere, the
transition region, the corona, and the heliosphere. The chromosphere is a thin layer
of variable thickness containing mainly neutral hydrogen. The temperature reaches its
minimum between the photosphere and the chromosphere, where the temperature rises
with height to about 20000 K. Higher in the solar atmosphere, the notion of tempera-
ture becomes problematic, since the matter is so thin (would be called a good vacuum
in an Earth-based laboratory) that it allows particles of very different energies to coexist
in the same places. Observations and measurement report temperatures of 10° K and
even higher in the corona. The temperature increase from 10* K to 10° K is found within
about 500 km, less than a thousandth of the solar radius (the radius of the photosphere)
lcGoP10].

Due to the extremely low density of the corona, there are extremely high-energy par-
ticles that are spread to the interplanetary space without having interfered with other
particles [cHDMIOb]. The origin of these particles and of their extremely high energy is
still unknown — it is the so called ‘coronal heating problem’ (for a review on the coronal
heating see e.g. [cBaO0T]).

Since the corona is composed of plasma, the features that are visible in the corona from
the extra-ultraviolet part of the spectrum to the infrared one are driven by the magnetic
field that is generated in the transition region. The corona is extremely faint relatively to
the visible disk of the Sun, having a maximum brightness ratio of ~ 1 : 10°, decreasing
to &~ 10% within a single diameter away from the visible limb. [cGoP10]. This is the
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2.2 BRIGHTNESS GRADIENT IN THE SOLAR CORONA

reason why the corona cannot be observed directly from the Earth without any special
instruments — that it is too faint next to the bright photosphere. Section is devoted
to the possibilities that we have to observe the corona. An example of an image of the
inner corona observed in the ultraviolet part of the spectrum can be found in Figure 2.1]

Figure 2.1: An image of the inner corona as observed by the Atmospheric Imaging Assembly,
which is a part of the Solar Dynamics Observatory (NASA) in the ultraviolet part of the spectrum
~ 171A. For more information about this instrument see page Image downloaded from

[dVsol3], in negative.

Due to the extreme brightness gradient in the corona, the photography of the inner
corona counts among the most complicated tasks in astrophotography — the reasons to
be discussed in details in Section Therefore, sophisticated image processing methods
have to be employed. The results of the processing can help to understand the processes
in the corona and broaden our knowledge about the Sun.

2.2 Brightness gradient in the solar corona

The brightness of the corona is approximately exponentially decreasing with height above
the photosphere, see the graphs in [cKSKT78| [cNDS70]. The decrease was described em-
pirically for the first few solar radii with the Baumbach-Allen formula [cASCO05]

R —16 R —6 R —1.5
J(R)=10% 2. - 1. - . - -3
ne(R) = 10 ( 99(Rs> +1.55 (RS> +0.036 <R8> cm 2,

where n, is the line-of-sight integrated density of the corona, which has three components:
the K-corona (photospheric light scattered on free electrons), the E-corona (emission of
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2 IMAGING THE SOLAR CORONA

highly ionized atoms) and the F-corona (scattered light on dust particles). The light
intensity is proportional to the density of the corona. There are newer measurements of
the electron density, among the latest [cCLW09], whose results are presented in Figure .
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Figure 2.2: Comparison of different models of electron density taken from [cCLW09]. The black
line is a renormalized Baumbach-Allen formula, the green line is work of [cCLWQ9], the blue
line is a renormalized Newkirk formula [cNew61]. The red line is not of interest for our purpose
here.

The radial brightness decrease can also be estimated with methods proposed in this
thesis (FNRGF), even though they do not give absolute numbers on the y-axis as in
Figure 2.2l With the distance from the Sun, not only the absolute brightness, but also
the contrast of the structures decreases. This is illustrated by Figure on page (82 and
then further in Section [6.2.4

The problem is that even if there was a method, either by means of classical or digital
photography, to capture the whole brightness range in the field of view of a lens into one
frame or image file, there is no technical means to make it visible for the human vision
due to the enormous brightness range of the image. There is no printing method, screen
or projector that would be capable of visualizing such high number of brightness levels.
As a result, we are unable to directly interpret the information in the images. For viewing
the images we need a method that removes information that is unnecessary for the human
vision and lowers the dynamic range of the image from originally 16 or even more bits
per pixel (in a gray-scale image) to 8 bits, since human vision is only able to distinguish
about 150 to 250 levels of brightness in images with contrast typical for computer displays
or for prints (depending on the conditions). Of course, the original high-dynamic-range
images are necessary for photometric measurements alongside with structure-enhanced
images that give us a clue what to focus on in the original images.

Remark 2.1. The term radial gradient is commonly used among solar astronomers. It
means that the brightness gradient of the image is a vector whose direction is approxi-
mately radial, i.e. there is a high directional derivative of the image in the radial direction.
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2.3 IMAGING POSSIBILITIES FOR THE SOLAR CORONA

2.3 Imaging possibilities for the solar corona

Before the development of coronagraphic and later space-born observations, total solar
eclipses provided the unique opportunity for exploring the properties of the plasma in
the inner corona both through imaging and spectroscopy (we are not going to deal with
spectroscopy in this thesis), since the photosphere, which is about one million times as
bright as the inner corona, is obscured by the Moon and the sky brightness is significantly
reduced. The invention of the coronagraph by Bernard Lyot in 1930 brought
completely new possibilities by enabling daily observations of the inner corona in visible
light and in specific spectral lines as well as the polarization research. Current cosmic
probes such as SOHO LASCO [cBHKO95] still use coronagraphs. However, due to diffrac-
tion on the edge of the occulter (see Figure , the innermost part of up to 1.05 solar
radii (1.05Rg) the corona still remains unobservable with coronagraphs.

Figure 2.3: A sample image from LASCO C2 coronagraph (in negative). Blooming of the image
of Venus and the diffraction patterns on the edge of the occulter are clearly visible. Downloaded

from [dVsol3].

A possibility to observe the innermost corona is imaging in the ultraviolet, extra-ultra-
violet (EUV) part and X-ray wavelength ranges, where the photosphere is completely
black. This has to be done from outside the Earth’s atmosphere, which filters out ultravi-
olet and extra-ultraviolet radiation. Among the instruments that observe in EUV is the
instrument SWAP in Proba2 cosmic probe (a project of Centre Spatial de Liege and the
Royal Observatory of Belgium), which observes the radiation of Fe X at the wavelength
of 17.4nm (see page . However, such spectral lines are only collisionally excited and
cannot be observed as high as the lines that have a radiative component as well, such as
Fe X 637.4nm, which have significantly higher wavelength. A comprehensive discussion
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2 IMAGING THE SOLAR CORONA

on the spectral lines with and without a radiative component, i.e. on the collisional and
collisionless plasma is given in [aHDMTI].

Even though there are sophisticated methods of continuous observation of the solar
corona, the rare occasions of total solar eclipses are still the only times when the innermost
corona can be observed in the visible part of the spectrum with by orders of magnitude
cheaper equipment than spaceborn missions and with high resolution.

The process of acquisition and processing images of the solar corona mostly from total
solar eclipses is described in Sections [4.1] and [4.2] The most important cosmic probes
that study the Sun are listed in Section together with methods of processing of
these images.

2.4 Methods of compensation for the brightness gra-
dient

2.4.1 Mechanical and optical methods

This section gives an overview of mechanical and optical methods used for removing the
steep brightness gradient in the images of the solar corona, this means modifying the
image before it is taken.

Rotating sector

The first attempts to use optical or mechanical methods to compensate for the steep
decrease of brightness in the solar corona long before the era of digital photography were
mechanical. They were prepared for the 1962 total solar eclipse by Owaki and Saito
as a special rotating sector [cOwS67], which attenuated the brightness decrease, but its
integrated transmission (over time when the sector is rotating) was not smooth enough.
The profile of the sector is shown in Figure [2.4]

Radially graded filter

A step forward was made in early 1960s by Laffieneur and his colleagues [cGoP10] who
pioneered the technique of a radially graded filter with density chosen to match the model
of the average profile of the corona intensity. Newkirk and his colleagues [cNDST70],
incorporated his own filter of similar properties in the optical system. He used a radially
graded filter for some of his eclipse images from November 12, 1966 and later. The
transmission function of the filter is shown in Figure They state:

In order to photograph the entire corona with a single exposure, two frames
were made through a radially graded, neutral filter whose transmission func-
tion was chosen to compensate for the steep decrease of coronal radiance with
distance above the photosphere. We did not employ either of these photographs
for quantitative analysis.

At their time, it was a big step forward to photograph the entire corona in a single
frame and the technique was used over three decades as the best imaging technique for
eclipse images of the corona.



2.4 METHODS OF COMPENSATION FOR THE BRIGHTNESS GRADIENT

Figure 2.4: The profile of the rotating sector of Owaki and Saito taken from [cOwS67]. As they
say in their article, this rotating sector vane, 82 mm in radius, was placed at the focal plane and
driven at a speed of 750 rpm by a synchronous motor which is not visible.

However, this approach has big drawbacks. First of all, the production of the radial
filter is expensive. Moreover, the filter has to be centered precisely to the center of the
Sun. Even with a precise mount and good observing conditions, it is not an easy task
to center the center of the frame to the center of the Sun (which is obscured by the
Moon), centering to the center of the Moon may not be precise enough. The photograph
shows the corona in the whole field of view, but later photometric analysis and use of
other image-processing techniques (that may even be invented after the photograph is
taken) is very problematic, since the image has to be compensated for the filter before
the analysis. The transmissivity of the filter has to be known with high precision and
since the transmissivity differs in orders of magnitude, the compensation is numerically
problematic.

Furthermore, the filter is more suited for eclipses during the maximum of solar activity,
when the plumes and streamers are about evenly spread around the Sun. Otherwise the
intensity profile is very different in different directions and the universal profile of the
filter may cause misleading dark areas in the corona images during the solar minimum.
In principle, it might be possible to use a filter that is not radially symmetric for these
images. The transmission of such filter would have to take into account the predicted
shape of the corona (for an example of the predicted shape of the corona for the 2008
eclipse see [cCRDAT0]). Such filters would have to be produced one-purpose for each eclipse
and in a short time before the eclipse. Also the alignment of the filter is more complicated.
For a radially symmetric filter, it is enough to center the filter to the center of the Sun.
For the specially designed filter, it would also be necessary to set correctly the rotation
of the filter.

Some observers used the Newkirk filter together with computer image processing tech-
niques of composing images of different exposures and then enhancing coronal structures
(see e.g. http://touro.ligo-la.caltech.edu/~jkern/Eclipse01/), but the explana-
tion of some of the structures in the image may be rather complicated. Figure shows
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2 IMAGING THE SOLAR CORONA

one of the images that Jonathan Kern (the author of the previous link) took together

with Wendy Carlos and used for the composition.
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Figure 2.5: The transmission function of the radially graded filter used by Newkirk. Taken from

[ENDS70].

Figure 2.6: An example of an image taken through the Newkirk filter. Downloaded from

[dKer(01]. Courtesy of Jonathan Kern and Wendy Carlos.

Modern negative films

Negative films since 1980s have been able to record a dynamic range of many stops (about
10, different sources give very different numbers). This made it possible to use techniques
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2.4 METHODS OF COMPENSATION FOR THE BRIGHTNESS GRADIENT

such as moving a paper disk at various heights in the photographic enlarger between the
head and the baseboard when producing a paper photograph. The information about
the brightness in the whole corona was recorded in one frame and the purpose of the
technique was to make it visible in a single photographic paper. The original negative
films are untouched by image processing and can be later used for photometry or other
image-processing techniques can be applied to them after digitalizing them. An example
of the enormous dynamic range of negative films and of an image processed by a technique
proposed after the image was taken is the image set by Ronald E. Royer of the eclipse in
1991, where the whole brightness range of the observed corona was recorded in a single
frame of a 6 cm x 6 cm negative film. The resulting image that I made together with my
father with a description of the image set can be found on http://www.zam.fme.vutbr.
cz/~druck/eclipse/Ec11991m1/Tse1991rdd_c1/0-info.htm.

2.4.2 Mathematical methods

Since the 1980s, the increasing power of computers enabled software implementation of
mathematical image-processing techniques and they can be more and more complicated
with more powerful computers. Apart from classical high-pass filters with relatively small
kernels of 3 x 3 or 5 x 5 pixels, which brought about significant noise enhancement,
other methods of digital image processing were proposed, e.g. the MaD Max II method
introduced by Olga Koutchmy and her colleagues [cKKNS8§|. The method is based on
searching for the direction with the largest square of the second directional derivatives
(or rather differences). As Koutchmy stated, the method gives less noisy images and is
therefore suitable even for images recorded in spectral lines.

In late 1990s, the increasing power of computers made possible the use of larger ker-
nels for filters and went together with the development of image processing software for
common users. In 2000 Fred Espenak described a powerful technique for visualization of
coronal structures in digitalized images which uses a common image-processing software
— Adobe Photoshop [cEsp00]. This technique (with more details given in Section and
its variations have been commonly used since that time.

The method proposed and implemented by myself and by my father Miloslav Druck-
miiller [bDru03l, laDru05, ckDRMO0G] in the Corona software gives results that are closer
to human sensation during the total solar eclipse (TSE), because they use multiple
two-dimensional direction-invariant kernels with different sizes. This method, which is
later referred to as the Adaptive Circular High-pass Filter (ACHF)EI is described in Sec-
tion 5.2l

The Normalizing-radial-graded-filter (NRGF) was published by Huw Morgan and his
colleagues in 2006 [cMHWO6]. It is completely automated, therefore it has been used as
a standard tool for processing images from coronagraphs. Section is dedicated to the
NRGF.

During my Ph.D. study I proposed and implemented the Fourier normalizing-radial-
graded filter (FNRGF), which was first published in [aDMHI1I]. It is inspired by the
Normalizing-radial-graded filter. The FNRGF is described in Chapter [0}

1T stick to the original capitalization and hyphenation in the names of filters taken from the articles
where the name was first used. Therefore, there are different hyphenation and capitalization styles for
different filters.
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2 IMAGING THE SOLAR CORONA

A recently developed method for visualization of structures in the solar corona on the
solar disk (in extreme ultraviolet images) is the Noise adaptive fuzzy equalization method
(NAFE) proposed, implemented, and published by my father Miloslav Druckmdiller in

[cDrul3|. Its improvement accepted for publication [aDrD14] is our common work. This
filter is described in Section [(.4]

13



Chapter 3

Mathematical background

In this chapter, I describe the mathematical background that is necessary for the applica-
tions in Chapters and [0] I state basic notions about digital images and mathematical
tools for image processing and show the principle of transformation to polar coordinates
that is necessary for the description of filters for solar corona structure enhancement
including the FNRGF method. It is a special kind of transformation used for digital
images that enables us to access the image in polar coordinates, but does not involve
interpolation.

Some of the notions necessary for the image processing techniques described in the fol-
lowing chapters are well known mathematical tools, which therefore will not be explained
here. Among them are the Fourier series, which are very well explained in [cBJS88] and
[cFol92]. Image filters are broadly used, but the definition of a filter or even an adaptive
filter is not given in most of the texts that deal with image filters, and if they are defined,
the definition is not unified. Therefore a systematic introduction to image filters is given.
The definitions of image noise in [aDrul(] will be sufficient for this text. The topic of
image noise involves some basic notions from probability and statistics, which can be
found in [cLiM82] and [cWil01]. These are not repeated in the thesis.

3.1 Digital image

The digital image is defined in various ways depending among other aspects on the field
the author specializes in and how technical or theoretical the text is. The definition that
is used in this thesis was chosen so that the image can be read both in Cartesian and polar
coordinates and so that we do not need to care about the dynamic range and rounding
in pixel values.

3.1.1 Digital image as a function of two variables in Cartesian
coordinates

Definition 3.1 (Gray-scale image). Let M = {0,1,2,...,w — 1} x {0,1,2,...,h — 1},
where w, h € N, let R C R. Function

f:M—R

is called a gray-scale image. Numbers w and h are called the image width and image
height respectively. Elements of [z,y] € M are called pizels and the value of function

14



3 MATHEMATICAL BACKGROUND

f in pixel [z,y], f(x,y) is called the pizel value. The cardinality of R, |R|, is called the
dynamic range of f. We say that the dynamic range is n bits per pizel (it is an n-bit
image) if R C Z and |R| = 2¢ for a natural d.

Convention 3.2. In most parts of this thesis, we will not care about rounding and the
dynamic range of the image. We will assume for simplicity that set R from the previous
definition is the set of all real numbers, if not stated otherwise, and that all images have
a dynamic range that is high enough for the image processing techniques.

The term image matriz is commonly used, because of the way how images are stored
in computer memories. The only difference is that in mathematics, matrices are indexed
from 1, whereas in computers they are commonly indexed from 0. Even though the image
pixel values are stored in matrices, matrix operations such as multiplication do not have
any sense for image matrices. This is the reason for defining images as functions with
discrete domain. The image matrix then describes the pixel values of the image (as a
function table).

Convention 3.3. For displaying an image, it is necessary to know the orientation of
its axes. The images in this thesis have the origin [0,0] in the top left corner of the
image matrix, which means that the orientation of the coordinate system in the image is
left-handed.

An image taken with a digital camera usually has square sensors arranged in a rectan-
gular grid, therefore if we assume a gray-scale image to take values in discrete points only,
we have to keep in mind that the pixel values originated from integrals of the intensity of
the light recorded over square areas. For simplicity, we can assume that the pixel value
f(z,y) is integrated over <x —5.z+ %) X < — %,y + %)

All images in the thesis will be gray-scale images if not stated otherwise. In most
applications of the filters, the images that are processed have only one color component
(images from coronagraphs, images in spectral lines). If the filters are used on color
images, they have to be applied to the brightness / lightness component only. (A de-
scription of the hue-saturation-lightness/value (HSL / HSV) color spaces can be found on
http://en.wikipedia.org/wiki/HSL_and_HSV.)

Let us define here the notion of a color image.

Definition 3.4 (Color image). Let M ={0,1,2,...,w —1} x {0,1,2,...,h — 1}, where
w,h € N, let R C R3. The vector function

fly): M = R, f(z,y) = (r(z,y),9(z,y),b(z,y))
is called a color image. Functions r, g, b are called the color components of image f.

In the definition above, the color components r, g, b are most often used for the red,
green and the blue components of the image. However, these triples can be converted to
other spaces such as HSV or YC,C, [cZBF98], which also have three color components.
There are also color images that have more than three color components, the other com-
ponents have a different meaning — opacity (alpha channel), elevation etc. Most often,
color images are stored in image matrices where each element of the matrix is a triple.
Alternatively, color images are stored as three separate gray-scale images, each image for
one color component.
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3.1 DIGITAL IMAGE

3.1.2 Indexing a digital image in polar coordinates

Digital images are naturally stored in computer memories in Cartesian coordinates. It
is how they are taken with digital cameras. However, since the solar corona is (very
roughly said) circularly symmetric, many filters (such as ACHF (Section [5.2), NRGF
(Section and FNRGF (Chapter ) that enhance coronal structure are described in
polar coordinates. Storing digital images in polar coordinates would mean that data
originally taken in Cartesian coordinates are transformed to polar coordinates, which
involves interpolation and in most cases also loss of information. Therefore the filters
used for solar corona structure enhancement are applied to images stored in Cartesian
coordinates with the possibility to index the image not only in Cartesian coordinates, but
also in polar coordinates. The reasoning in this section gives us a tool for that, which
enables us to switch between the Cartesian and polar coordinates (and back) without any
difficulties.

Convention 3.5 (Center of the Sun). Since this thesis deals with processing of images
of the solar corona, the information about the position of the Sun in the input images is
a crucial input. It can be known with precision higher than one pixel. In the following
text, the point O = [o,, 0,] € R? will refer to the position of the center of the Sun in the
image to be processed.

As some of the methods described in this thesis involve calculations on whole circles
that lie completely in the image and cannot process parts of images that do not lie on
any circle lying completely in the image, we will need the following denotations:

re = min{o,, 0y, w —1 —o0,,h — 1 —0,}

as the radius of the largest circle that has its center in the center of the Sun in the image
and lies completely in the image and denote

M, ={A € M,Round(p(4A,0)) <r.}

as the part of the domain of the gray-scale image that lies inside or on that largest circle,
p stands for the Euclidean metric.
Let ~ be the following binary relation on M,:

A =lay,ay] ~ B =[by,b,] iff Round(p(A,O)) = Round(p(B,O0)),

where Round means the rounding to the nearest integer. It is straightforward that ~ is
reflexive, symmetric, and transitive, and thus is an equivalence relation. Each equivalence
class contains pixels that have the same (rounded) distance from the center of the Sun in
the image. The equivalence classes will be denoted by M,., i.e.

M, = {A € M,,Round(p(A,O)) =r}.

It further holds that for a fixed r € {0,1,2,...7.} and any ¢ € (0,27) there is at most
ond’] A € M, such that

p(A,0)cosp =a, —o,, p(A, O)sing = o, — a,. (3.1)

!Note that if the coordinates of the center of the Sun are integers, the set My contains exactly one
element, My = {O}. In other cases, the set may contain either none or one element. For instance, if
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3 MATHEMATICAL BACKGROUND

The coordinates of A and O are swapped between the cosine and the sine, because the
coordinate system of a gray-scale image is left-handed (due to the traditional way a com-
puter screen is addressed), whereas the usual coordinate system where we are used to
calculating sines and cosines is right-handed.

Proof. Let us suppose that there is a pixel A that satisfies Equations . And suppose
that there is another B # A, B € M, such that Equations are satisfied for B. But
since the distance of any two different pixels in the image C' and D, p(C,D) > 1 and
since both points A and B lie on the same ray starting in O, it must hold that

p(B,0) = p(A,0) + 1,

therefore
Round(p(B, 0)) > Round(p(A4, O)),

which is a contradiction. O

Let p : M, — Ny x (0,27) be a vector function assigning to each pixel its rounded
distance r from the center of the Sun, » = Round(p(A4, O)), and oriented angle ¢ such
that for A = [x,y] # O equations (3.1]) are satisfied. For A = O define p(A) = (0,0). Let
us denote

M, ={[r,¢] € Ng x (0,27),3A € M, : p(A) = (r,¢)}.

Then due to the reasoning above, p is a bijection between M, and M,,.
Finally, it holds that

F(M.) = f(p~ (M)

as a gray-scale image restricted to M,. This means that a gray-scale image restricted to
M, can equivalently be read in Cartesian coordinates (z,y) as well as heliocentric polar
coordinates (r, ), where r € {0,1,2,...,7.} and ¢ € (0,27) is a suitable number for
which p~!(r, ) € N2. This enables us to address the part of the image to be used for
some of the filters in polar coordinates without any interpolation, which is exactly how
the FNRGF (Chapter [6]) is implemented.

Some other methods enable us to process also parts of images that do not lie on circles
lying completely in the image. The reasoning above can be used in a similar way, the
only difference would be that r. will be replaced the distance between the center of the
Sun in the image and the most distant pixel in the image and the whole image can be
addressed equivalently in Cartesian and in heliocentric polar coordinates, which is used in
the description of the tangential filter and the Adaptive-Circular-High-pass-Filter (ACHF)
in Sections B.1] and 5.2

O = [115.5,116.5], the set My is empty, since the nearest pixels are g far from O and they belong to
M. If O = [115.9,116.1], there is one element in My, i.e. [116,116]. In a special case when one of the
coordinates of O is integer and the other is an integer plus one half, there are two pixels with distance
0.5 from the center of the Sun, but 0.5 is rounded to 1 and therefore My = ) in this case. However, it is
unimportant for the practical applications what the set My looks like. The filters are applied out of the

Moon (or an occulter) and the the interior of the Moon is irrelevant.
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3.2 FOURIER TRANSFORM

3.2 Fourier transform

The Fourier transform is an integral transform that transforms a function of one or more
variables (in spatial domain) to another function (in frequency domain) of the same
number of variables. Since the Fourier transform of a function is in the general case
a function with a complex image and since a digital image is a function of two spatial
variables, we will deal here for simplicity with functions f : R? — C in Section [3.2.1]
The following Section deals with the Fourier transform of functions with a square-
organized discrete domain. Digital images are rectangles, for simplicity we deal here with
square images only. All computations that use the Fourier transform are performed using
the discrete Fourier transform (or more precisely by special algorithms that speed up
the discrete Fourier transform, such as the Fast Fourier transform [cCiz81]). However,
some derivations of image processing methods are better done with the Fourier transform
of functions with the domain R? since operations like rotation and rescaling are easily
modeled on these functions. The connection between the Fourier transform of functions
defined on R? and the discrete Fourier transform is shown in a part of Section which
starts from page [23] Most of the definitions and theorems in this section are adapted
from my master thesis [aDrul0)].

3.2.1 Fourier transform of functions f: R*? — C

The standard definition of the Fourier transform of a function of two variables is as follows.

Definition 3.6 (Fourier transform). Let f(z,y) : R* — C be a function such that

/ |z, y)| dady

RQ

exists and is finite. The Fourier transform of f is function F {f} = F(§,n) defined as

F(&n) = / / fa,y)e T dzdy.
R2

Function F' is also called the Fourier spectrum of function f.

Other definition of the Fourier transform can be found in literature. They differ in a
multiplicative constant before the integral or a multiplicative constant in the exponent.

The issue of integration over R? is treated e.g. in [aDrul0]. It is not unified in literature
what the double integral over R? means. Some definitions require integrals on parts of
the domain to converge and the original integral exists only if all these integral exist and
converge, some definitions consider the integral in the sense of the Cauchy principal value.
Different theorems can be proved with different definitions of the integral, therefore one
has to be very careful when taking information about the Fourier transform from different
sources.

Remark 3.7. The theory of distributions enables us to define the Fourier transform for
a richer class of functions and even for distributions, which is necessary for working with
functions which are as commonly used as sinz. This topic is treated e.g. in [HuNO1].
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3 MATHEMATICAL BACKGROUND

Definition 3.8 (Inverse Fourier transform). Let F(£,n) : R? — C be a function such

that
J[1Femlacan
R2

exists and is finite. The inverse Fourier transform of function F is function F ' {F'} (x,y)
= f(z,y) : R* = C defined as

flay) = 53 [ [ FlEmem acan,

It is not true in general that the inverse Fourier transform of a Fourier transform of a
function (F~{F {f}}) is the function itself. The inverse Fourier transform may not exist
at all, if it exists, it may differ from the original function values. However, the following
theorem was proved [cFol92) [cStWT5].

Theorem 3.9 (Fourier Inversion Theorem). Let f(z,y) : R? — C be a continuous func-

tion such that
// | f (2, y)| dedy
R2

exists and is finite. Let F(£,7n) be the Fourier transform of f . Then for every (£,n) € R?

f(z,y) hr%ﬂ/ F(€,m)e 1x£+y77 o€

// |F'(&,m)] dédn
R2
exists and is finite, then

FHF Ul = 5 [ [ Fleneem agan = 1(z,).
R2

2 de dn.

If also the integral

Since digital gray-scale images are defined only in a finite number of points, they can
be approximated with arbitrarily smooth functions defined on R?, which also have finite
integrals of the absolute value and the same holds for the Fourier transform. Therefore,
we do not need to worry about the ‘pathologic’ cases when F~1 {F {f}} # f.

The notions of the amplitude spectrum and phase spectrum are commonly used in
image processing. Their definition follows.

Definition 3.10 (Amplitude spectrum, phase spectrum). Let function f(z,y) € L(R?)

have Fourier spectra F'(§,n). The amplitude spectrum [aDrul0] of function f is a function
A(&,n) : R? = Ry defined as

A(&n) = [FAf(z,9)} = [F(&n)].
The phase spectrum [aDrull)] of function f is a function ®(¢,7n) : R* — (0, 27) defined as

ReF(§,n) = A(&,n) cos D(E,n),
JmE(E,n) = A& n)sin®(E, 7).
If A(¢,n) = 0 for some (§,7), we define ®(&,n) = 0.
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3.2 FOURIER TRANSFORM

The Fourier transform gives us a tool to transform convolution to multiplication and
vice versa, which has useful applications in image processing.

Definition 3.11 (Convolution). Let functions fi(x,y), fo(z,y) fulfill the assumptions of
Definition . The convolution [cBJS88] fi * fy of functions fi, f> is a function

f(fll,y)z/ fi(s,t) folz — s,y — t) dsdt.
RQ

Theorem 3.12. Let functions fi(z,y), fo(z,y) fulfill the assumptions of Definition [3.6]
Let F1(&,m), F5(&,n) be their Fourier spectra. Then

F{filz,y) * folz,y)} = F1(&m) - Fa(€,n),

FUR@0) - fole )} = 15 Fr(6) = FalEom).

For proofs see [aDrul(]. Note that the left-hand sides of the equations in the theorem
require that the functions that are transformed fulfill the conditions of Definition of
the Fourier transform. These properties of function multiplication and convolution are
also proved in JaDrul0)].

3.2.2 Discrete Fourier transform

The two-dimensional discrete Fourier transform is most commonly defined for functions
f(z,y) defined on {0, 1,..., Ny—1}x{0,1,..., No—1}, where Ny, Ny are natural numbers.
This notation is used in [cBJS88] and [aDrul0], for instance. Here we treat the simplified
case when N; = Ny = N.

There is also a different notation used in the theory of the discrete Fourier transform,
e.g. in [cCiz81]. The objects that are used are finite sequences (in the case of the one-
dimensional discrete Fourier transform), their elements are a,. This approach might be
confusing in the two dimensional case, it is necessary to use two indexes. Therefore, we
stick here to functions f(x,y) defined on a discrete domain.

Definition 3.13 (Discrete Fourier transform). Let f(x,y) be a function {0,1,..., N —
1} x{0,1,...,N -1} ={0,1,...,N — 1}> = C, N € N. The discrete Fourier transform
of function f(z,y) is function D{f} (&n)=F(&n):{0,1,...,N —1}*> — C defined as

N—-1N-1

F(&n) =) Zf z,y)e” ¥ ), (3:2)

=0 y=
Function F' is also called the Fourier spectrum of function f.

Definition 3.14 (Inverse discrete Fourier transform). Let f(x,y) be a function {0, 1,

N —1}?> - C,N € N and let F(£,n) be its discrete Fourier transform. The inverse
discrete Fourier transform of function F(&,n) is function D' {F} (z,y) : {0,1,..., N —
1}? — C defined as

D{F)} (2,y) = Ni Z Z o% (#tym) (3.3)

£=0 7=0
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Since all the sums in the formulae for the discrete Fourier transform and the inverse
discrete Fourier transform are finite, there is a Fourier inversion theorem that says that
the inverse discrete Fourier transform of the discrete Fourier transform of a function is the
function itself. If the computations are preformed with a finite precision (single, double,
extended), numerical errors was cause that these functions differ slightly. However, this
is a general problem of numerical computations.

Theorem 3.15 (Fourier Inversion Theorem). Let f(z,y) be a function {0,1,..., N —
1}> - C,N € N and let F(£,n) be its discrete Fourier transform. Then the inverse
discrete Fourier transform of function F'(&,n) is function f(z,y), i.e.

DD {f(z,y)}} = f(z.y).
Proof. For proof see [aDrul()]. O

When talking about digital images or signals, the notions high frequencies, low fre-
quencies are commonly used. They refer to parts of the domain of the Fourier spec-
trum of a function. They are rather fuzzy-notions. When talking about functions de-
fined on R2, low frequencies lie in a neighborhood of the origin of the Fourier spec-
trum, whereas high frequencies lie further from the origin. In the case of the discrete
Fourier transform, low frequencies correspond to regions that are close to the corners
([0,0],[N — 1,0],[0, N — 1],[N — 1, N — 1]) of the spectrum, the high frequencies are in
the center of the domain of the spectrum.

The definition of the amplitude and the phase spectrum of functions defined on
{0,1,..., N — 1}? is analogous to the definition for functions defined on R2.

Definition 3.16 (Amplitude spectrum, phase spectrum). Let f(z,y) be a function
{0,1,...,N —1}?> — C, N € N with Fourier spectrum F(¢,n). The amplitude spectrum
[cBJS8S] of function f is function A(&,7n) : {0,1,..., N —1}* — R defined as

A(&n) = [D{f(z,y)} = [F(En)l

The phase spectrum [cBJS88]| of function f is function ®(&,7n) : {0,1,..., N—1}? — (0, 27)
defined as

ReF(§,m) = A(&,n)cos®(E,n),
ImE(En) = A& n)sin®(,n).

If A(¢,n) =0 for some (&,n), we define (&, n) = 0.

In the previous section, we discussed the connection of the convolution and the Fourier
transform. Here we do the same with the discrete Fourier transform and the discrete
periodic convolution. The periodic extension of a function defined on {0,1,..., N —1}? is
necessary for this to be defined. Since Equation can be evaluated for any (£,7) € Z2,
this allows us to define the periodic extension as follows:

Definition 3.17 (Periodic extension of function and its Fourier spectrum). Let f(z,y)
be a function {0,1,...,N —1}*> — C,N € N and let F(£,n) be its Fourier spectrum.
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The periodic extension of the Fourier spectrum F [aDrul0)] is function F(€,7) : Z2 — C
defined as

N—-1N-1
5 n) = Z Flz,y)e I (a&tyn)
=0 y=
The periodic extension of function f is function f (93 y) : Z* — C defined as
| NN
27i .
f(xy_m FfﬁeN(Eﬂm)-
£=0 n=0

It is straightforward that the definition has the following consequences (for details see
[aDrul0]):

Corollary 3.18. Let f(z,y) be a function {0,1,...,N —1}*> — C,N € N. Then for
every (z,y),(&,n) € {0,1,...,N —1}?> and k,l € Z it holds:

flz,y) = f(x + kN,y +IN),

F(&.m) = F(§+ kN,n+IN).
In particular, N N
f(fl‘,?J):f(l‘,y), f(_xa_y):f(N_$7N_y)a
Fem) =F&n),  F(=&-n)=FN-¢N-n).
Definition 3.19 (Discrete Fourier transform of function’s periodic extension). Let f(z,y)
be a function {0,1,...,N —1}> — C,N € N. The discrete Fourier transform of the

periodic extension of function f, f(z,y) : Z* — C is function D{f}(&,n) = F(£,7) :
{0,1,..., N —1}? — C defined as

i
2
I

N ey,
F(&n) = fla,y)e™ v @rvm,

T Y

Il
)
Il
=)

Definition 3.20 (Inverse discrete Fourier transform of function’s periodic extension).
Let f(x,y) be a function {0,1,...,N —1}*> - C,N € N and let F(£,n) be its discrete
Fourier transform with periodic extension F (€,m) : Z* — C. The inverse discrete Fourier
transform of function F(£,7) is function D~{F}(z,y) : {0,1,...,N — 1}? — C defined

as
—-1N-1

D FHa) = o 3 3 FlGap )

£=0 n=0

Corollary 3.21. Let f(x,y) be a function {0,1,...,N —1}?> — C, N € N with Fourier
spectrum F(&,n). For every (x,y) € {0,1,..., N — 1}?, it holds:

D{f(a.y)} = D{f(x.,y)}
DD {fwy)}} =D {Fem} = f@y).
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We can finally give the definition of the discrete periodic convolution and its connection
with the discrete Fourier transform.

Definition 3.22 (Discrete periodic convolution). Let fi(z,y), fo(z,y) be functions
{0,1,...,N —1}> - C,N € N. Function f(z,y) : {0,1,...,N —1}?> — C is called the
discrete periodic convolution [aDrul(] of functions fi, fo, denoted by f(x,y) = fi(x,y) *
f2 ([L’, y)7 if

2

—1N—

H

f18tf2$—8 y—t).
=0

Il
=)

S

Theorem 3.23. Let functions fi(z,y), f2(z,y) : {0,1,...,N —1}> - C,N € N have
Fourier spectra Fy(&,n), Fo(€,n). Then [aDrul0]

D{f1<$,y) * fg(-’lf,y)} = F1(£777) ’ F2(£7n)7

D{file,y) folw9)) = a6 BEn)

For proofs see [aDrul()].

Remark 3.24. The approach with periodic extension used here is used e.g. in [cBJS8S].
There is also another approach which uses modulo arithmetics used e.g. in [cCiz81].

Connection between the Fourier series and the discrete Fourier transform,
sampling

The connection between the discrete Fourier transform and the Fourier series is described
in [cBJS88]. Let f be a p-periodic function R — R and ®(z) its Fourier series. The
Fourier series in the exponential form is [cFol92]

CI)f(I') = Z Ckezﬁ%z = Coeo + Z (Ckegm%z + C_ke_2ﬂ1%> = (34)
k=1

d 2rkx .. 2mkx 2rkx .. 2mkx
:co+z Cp, COS » + ci1sIn » + c_j CcOos » — C_g1SIn » =

2rk 2rk
=cy+ Z ((ck + c_j) cos Wp Ty i(cg + c_g) sin Wp x) : (3.5)

where

1/ —omike
c,=— [ flx)e ™" p
e=0 (z)

are complex numbers. The Fourier series can also be written in the real form as [cFol92]

- 2mk 2mk
:%jL;(akcos pr—l—bksin T x)) (3.6)

p
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3.2 FOURIER TRANSFORM

where ag, b, are real numbers. Comparing Equations (3.5) and (3.6), we obtain these
connections between ¢, and ay, by:

Qo

Co — 3
Cp,+C_ = ag (37)
i(Ck — C,k) = bk (38)

Let us now see what the fact that ay, by are real means for ¢;. Let us split the complex
numbers ¢ in its real and imaginary parts ¢ = oy + fi. Plugging it in Equations (3.7)),
(3.8) and noting that the left-hand side of these equations is real

ek te = (g +ay)+i(By+ Bg) isreal = [ =B

gk —Cp = (g —a_g)+i(Br — B_k) is imaginary — ap = a_g.
Hence ¢, = ;.

Next, function f is sampled with equidistant sampling with N steps of length £ in

each interval of length p. Let us denote

]?(n) =f <n%> : n € 7Z. (3.9)

Plugging formally Equation (3.4) in Equation (3.9) in a point where ®; converges to f,

we get
oo
Z cre?mP R = Z cpe?™ N (3.10)

k=—o0 k=—o00

Function ™% is periodic in variable k with period N, therefore we can separate k as
k=14 Nm, where m € Z,1 € {0,1,... N — 1}, and rewrite Equation (13.10) as

oo N-1 00
27i l+Nm
E E Clenme N " ) = § § Ci4+Nm "

m=—o0 [=0 m=—o0 [=0

Due to absolute convergence we can rearrange the series and swap the order of summation

N-—1 0
omint
:E E ClyNm€ M.

=0 m=—o00
Denoting
F(l) = Z Cl+Nm,
we can write ]F(n) as
N—-1
mn n nl
fln)= ) F()emw,

which is almost exactly the formula for the (one-dimensional) inverse discrete Fourier

transform, just with the factor % missing. Now, knowing the formula for the one-

-
dimensional discrete Fourier transform, we can express F(l) from the last equation.

-1

r nl

Ry = % Fne2ei%
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This yields the final connection between the Fourier series and the discrete Fourier trans-
form as

00 N-1
NFD) =N Y conm= D fn)e 5. (3.11)
n=0

There is something more to be discussed about Equation (3.11)). If there is a sub-

sequence of length N or less of the sequence of ¢, each F(l) equals to zero or to one
particular ¢;. This means that the original function f can be fully reconstructed from
F (1) almost everywhere. These functions are called band-limited. If this is not true about
the function, the so called aliasing effects may occur (more information with applications
to image processing can be found in [cZBF98]). It may help to increase N. If there are
infinitely many non-zero elements of ¢, the original function can never be reconstructed
from finitely many samples (without knowing additional information about function f
- such as “it is a polynomial” or “it is an exponential”). For a band-limited function,
the Fourier series and the discrete Fourier transform of a sampled function (with enough
samples) are equivalent notions.

3.3 Image filters

Image filtering is broadly used in applications for reduction of noise in images, for sharp-
ening, enhancing edges or other desired types of structures. These filters are based on
various operations with the neighborhood of the processed pixel or they make use of
unitary transforms [cPra01] that process the image as a whole. There are thousands of
publications that deal with filters, but they do not define the notion of a filter (or to be
precise, I have not succeeded finding a definition). In this section, I define a filter in a
very broad way. Even a transformation that maps an arbitrary image to an image of a
tiger of the same size is a filter according to this definition.

Definition 3.25 (Size-preserving image transformation). A size-preserving image trans-
formation ® is a mapping ® : f +— g that maps a gray-scale image to a gray-scale image
with the same width and height (in the sense that the width of f is the same as the width
of g, the same with their heights).

This notion includes all transformations that can be made with an image preserving
its size — any local changes, local distortions of the image etc. It even includes creating
a linear combination of two images (one of them fixed in the definition) or replacing an
image with another image of the same size. It does not include transformations that
change the size of the image such as enlarging and rotations by general angles.

Definition 3.26 (Pixel-value transformation, image filter). A size-preserving image trans-
formation ® : f +— ¢ is called a pizel-value transformation if ® can be expressed for each
pixel [x,y] € M as

9(z,y) = ¢(f(z,9)) = (¢ o f)(z,y).

An image transformation that is not a pixel-value transformation is called an image filter.

This means that for a pixel value transformation, only the pixel value f(x,y) is nec-
essary for the evaluation of the transformed image ¢ in a pixel [z, y]. For the evaluation
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3.3 IMAGE FILTERS

of the value of the filtered image ¢ in a pixel [z,y]|, we need the values of more pixels,
usually values of f in a neighborhood of [z,y]. The function ¢ can be constructed in
many different ways, it can contain information about the image like its histogram, but
the most important thing is that there is only one function ¢(t) for the whole image. It
is a function of one variable — the pixel value in the input image. The information about
the position of this pixel cannot be used.

A typical example of the pixel-value transformation is the gamma-transformation,
which preserves the maximal and minimal pixel value while brightening or darkening the
image. If we assume both the input and output values in (0, 1), the transformation is

where 7 is a positive number. 7 is inversed so that v > 1 means brighter images, v < 1
means darker images. The transformation is a power function, e.g. v = 2 means the square
root function. For constructing the function ¢, it is necessary to know the maximal and
minimal pixel value in the image.

3.3.1 Adaptive filters

An adaptive filter is a more complicated notion, which is commonly used, but I have never
seen its definition. It is almost impossible to define an adaptive filter in a mathematically
rigorous way. Therefore, the notion will be defined in this thesis only intuitively. Gener-
ally, an adaptive filter is an intelligent filter which changes the algorithm of image filtering
locally based on the properties of the image. It makes no sense to search for a boundary
of adaptive filters, to say which filter is adaptive and which is not | Adaptive filters may
respect the distribution and properties of structures in the image, the properties of noise
in different parts of the image. They can be designed for processing images of specific
types, such as images of the solar corona, images of the night sky (which contain stars
that must not be interpreted as impulse noise), images of blood cells etc.

The filters for solar corona structure enhancement described in this thesis are adaptive
filters. They were designed one-purpose for enhancing structures in images of the solar
corona, are specific because of the big brightness gradient and the decrease of the contrast
of the structures with distance from the Sun.

3.3.2 Linear filters

An image filter is linear if each pixel value in the filtered image ¢ is an affine combination
of values of pixels in a neighborhood of that pixel in the original image f. A more precise
definition follows.

Definition 3.27 (Incomplete convolution). Let f(x,y) be a gray-scale image with width
w and height h. Let C(i,7) be a function C' : {—n,—n+1,....,n— 1,n} x {—n,—n +
1,...,n—1,n} = R for a natural n and let w(z,y) be a function w : Z? — {0,1}. Then

2Tt is a similar case as if we tried to search for the boundary of algebra or the boundary of variational
methods of solving ODEs.
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function
S 3 fw—1) modw,(y—j) mod h)C(,jw(x— iy — )

t=—nj=-—n

(f ® O)w(*r’y) =

S Clijwls —iy— )

it=—nj=—"n

is called the partial convolution of function f with kernel C' and weight function w (adapted
from [cDru09b.)

The weight function in the definition of the incomplete convolution is set to zero for
pixels out of the domain of the image if incomplete convolution is used for standard image
filtering. Furthermore, it can be set to zero in pixels which are defective or pixels that
belong to a part of the image that is supposed not to be taken into consideration for the
filtration (e.g. the pixel belongs to a completely different part of the image from pixel
[z, 9]).

For most adaptive filters, we also need to define the incomplete convolution with
variable kernel, where the kernel is not a function of only two variables describing the
position in the kernel, but also two other variables describing the position of the processed
pixel in the image. The kernel may vary for different pixels in the image.

Definition 3.28 (Incomplete convolution with variable kernel). Let f(x,y) be a gray-
scale image with width w and height h. Let C(i,j,x,y) be a function C' : {—n,—n +
L...,n—1,n}x{-n,—n+1,...,n—1,n} x M — R for a natural n and let w(x,y) be
a function w : Z* — {0,1}. Then function

S 3 f(w—1i) modw,(y—j) mod h)C(i, iz y)wlz —iy—j)

i=—nj=-n

i=—nj=—n
is called the partial convolution of function f with variable kernel C' and weight function
w.

Definition [3.27] is a special case of Definition [3.28|

Definition 3.29 (Linear filter). An image filter is called linear if it is an incomplete
convolution with a (possibly) variable kernel of an image. A linear filter is called non-
adaptive if its kernel is constant for the whole image (i.e. Def. and the weight function
w(z — i,y — j) is equal to 1 if the pixel to be used [x — i,y — j] belongs to the image
([t —i,y—j] € M) and 0 if the pixel is out of the domain of the image ([z —i,y—j| & M).
A linear filter is called adaptive if its kernel is not constant for the whole image or the
weight function is equal to zero for some pixels of the image.

The definition of a linear adaptive filter is in compliance with the description of an
adaptive filter in Section [3.3.1} Assuming an image with cells on a background, a filter
that blurs the background, omitting from the calculation all pixels that belong to the
cells, is an adaptive filter. It requires information about the position of the cells. Such a
filter has a constant convolution kernel C(i, j) and a weight function w which is equal to
zero for pixels that belong to cells. The tangential filter and the ACHF (Sections and
for solar corona structure enhancement are also adaptive linear filters. They have w
set to zero inside the Moon in the image and most often also a variable kernel. The rest
of the filters in this thesis are non-linear.
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3.3 IMAGE FILTERS

The connection between a linear filter and the Fourier transform

Let us now suppose that the image to be filtered is a square and the weight function is
equal to 1 everywhere. Then the notion of an incomplete convolution is identical with a
specific case of the discrete periodic convolution (Def. , where fo = f,

~ C(x,y) for[z,yl€{-n,—n+1....,n—1n}
0 otherwise

and

=
=

fi(z,y) =1. (3.12)

I
)
I
=)

r Y

With this denotation, the filtered image g = fi1 * f. According to Theorem [3.23]
the Fourier spectrum G(§,7n) = D{g(z,y)} of the filtered image g can be expressed as a

product of the Fourier spectrum of the original image f and the Fourier spectrum of the
the kernel fi,

G n) =D{g(x,y)} =D{(fix f)(z,y)} =D{fi} - D{f} = Fi(&n) - F(&n).

This gives us a tool for computing a convolution. Since there are really fast algorithms
for the discrete Fourier transform, it may be faster to compute the filtered image is

g=D ' {D{g}} =D ' {F(&n) « F(&n)},

especially for larger kernels.

Some filters do not involve normalization in the sense of Equation ([3.12). They can
change significantly the range of pixel values in the image. They usually work with
floating-point data formats and the author of the algorithm does not have to care about
the range of the pixel values. The pixel values are only transformed to {0, 1,2,...,255}
for displaying the image on a screen or saving the results in a standard file format.

Unsharp masking

A commonly used method for applying high-pass filters on images is computing a so called
(unsharp) mask, which is subtracted from the original image to obtain the filtered image.
The mask is the core of the filter. The idea is derived below.

A high-pass filter is a filter that enhances information on higher spatial frequencies
and reduces information on lower spatial frequencies. High-pass filters are used e.g. for
sharpening images. A high-pass filter can be described with convolution as (adapted from
[cDrul3])

g=fixf=k-[(dx,y)—l(z,y)xfl+tq=k-(dxf =1 f)+q=Fk-(f —m)+q, (3.13)

where k and ¢ are suitable constants that ensure that f; is normalized to 1 in the sense
of Equation . We do not care about the image edges here, so we approximated
an incomplete convolution with a discrete periodic convolution. Function d(z,y) is the
discrete impulse function [CC1’281, aDrul0], a function that plays the analogous role for the
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discrete Fourier transform as the Dirac distribution for the Fourier transform of functions
defined on R2. It is a function defined on {0,1,..., N —1}? as

day) = {1 if (z,y) = (0,0)

0 else.

Applying the discrete periodic convolution with the discrete impulse function on func-
tion f does not change the function, d * f = f xd = f. The digital image m(z,y) in
Equation (3.13)) is called the (unsharp) mask.

We can also read only the first and the last terms in Equation (3.13) skipping the
steps that involve convolution. It would mean that the filter is applied by subtracting
a mask from the original image (and applying a linear pixel-value transformation). The
important step is creating the unsharp mask. There are many sophisticated filters that
are not linear in the sense of Definition [3.29] but they involve unsharp masking. Several
filters for enhancing structures in images of the solar corona are presented in this work.
Most of them are based on unsharp masking, the difference between them is in the way
the mask is computed.
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Chapter 4

Image acquisition and processing

This chapter is devoted to the process that the images of solar corona undergo from their
acquisition to structure enhancement. The process consists of many steps. We are going
to discuss how the steps are done, and if possible, also the mathematical reasons and
principles of these steps. The largest part of the chapter deals with processing of images
taken in white light during total solar eclipses. That is what we started with in 1999 and
what we have developed special a set of one-purpose programs for. The process for this
kind of images will be described first in Section and after that, the following sections
give and overview of the methods used for other kinds of images such as images in spectral
lines taken during total solar eclipses or images from cosmic probes.

4.1 White-light images acquired during total solar
eclipses

By white-light images we will mean images in the whole visible part of the spectrum, not
only specific spectral lines in the visible part of the spectrum. These images are nowadays
taken with regular digital single-lens reflex (DSLR) cameras or with scientific cameras
producing gray-scale images in a broad part of the (visible or near-visible) spectrum.
Earlier they were taken with classical cameras and negative or positive films.

4.1.1 Image acquisition

In this section we are going to discuss the image acquisition of white-light images during
total solar eclipses. This is the most critical step of the whole process, since there is
hardly a way to take back any mistakes that one may have done. A total solar eclipse
lasts only a few minutes at one observing site and all the equipment has to be prepared,
rehearsals should be done to minimize the risks of human error. Bad focusing of the lenses
and incorrect timing the image acquisitions are the most common mistakes. But there
are many aspects that have to be decided ahead — what camera to use, what lens, what
exposure times to take, how to control the camera. Some recommendations can be found

in [dEsA08, bDrD09).
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Camera

The first question is if to use a digital or a classical camera. Glass plates (see [dDru07],
for instance) and later negative films were used for total eclipse observations till 2000s.
From about 2005, DSLR cameras have played a dominant role. Compared to digital
photography, negative films have higher dynamic range, which means that a smaller
range of exposure times is sufficient to capture the whole brightness range of the corona
with a selected lens (see http://www.zam.fme.vutbr.cz/~druck/eclipse/Ec11991m1/
Tse1991rdd_c1/0-info.htm). The nowadays used digital cameras have many advan-
tages compared to the classical ones. The images are directly saved as files, the step of
scanning and the scanned images retouching is not present. They have higher resolution
than regular 36 x 24 mm film frames and low noise and the cameras can be controlled by
computers, which enables us to use several cameras at one observing site operated by one
or two people. What is very important for image processing and analysis, the sensors in
digital cameras have linear response to the intensity of the incident light, whereas classical
frames have non-linear response to incident light.

Generally, any DSLR camera which can save images in a completely raw format, is
suitable for TSE observation. Professional cameras are faster in saving files on mem-
ory cards, have higher resolution and lower noise. Even amateur cameras like Canon
EOS 350D or 450D give high-quality images and their price is their undeniable ad-
vantage, which makes it possible to observe with several cameras at reasonable a cost
(see e.g. the pictures in http://www.zam.fme.vutbr.cz/~druck/eclipse/Ec12008m/
Expedition/O-info.htm). Another option might be cooled scientific cameras, but their
downloading time is usually much longer, which makes them unsuitable for observations
of phenomena as short as total solar eclipses. Nowadays, Nikon cameras have better signal
: noise ratio and higher dynamic range than Canon cameras.

Dust on the chip can be a serious problem. It is necessary to minimize its amount by
cleaning the chip before the observation. There are special wipes or sticks that can be
used for removing the most prominent dust particles. However, it is advised to have the
camera body cleaned in a special service[l| Newer models of DSLR cameras have a sensor
cleaning tool, which usually means that the camera vibrates the chip to remove the dust
from the chip. The dust is then collected on a sticky surface. Most often, cameras run this
vibration when they are turned on. This feature can remove most of the dust particles
from the chip. A problem is that some of the particles are not removed with the vibration
and they move on the chip as the chip vibrates. To remove dark spots in images caused
by dust particles, it is necessary that they are at the same position in all images including
the calibration images (flat-fields). Therefore, the sensor cleaning function can be used
before the eclipse to remove as many dust particles as possible. Then it must be disabled
until all images in the observing series including the calibration images are taken.

The camera and the lens have to be attached to a parallactic mount (in the case of
shorter focal lengths such as 200 mm a tripod is sufficient) that is robust enough to hold
the system even during the longest exposure times required for this system.

LA service in Brno both for Nikon and Canon: http://www.afoto.cz/, in Prague for Canon: http:
//www.awh.cz/, in Bratislava for Canon: http://www.prolaika.sk/clanky/servis-2/,
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4.1 WHITE-LIGHT IMAGES ACQUIRED DURING TOTAL SOLAR ECLIPSES

Lens — focal length

Fred Espenak and Jay Anderson in their eclipse bulletin [dESAO8] show the relation
between the diameter d of the solar disk on the camera sensor or a film frame and the
focal length f of the used lens as
S
d=—.
109

The relation is only approximate, because the distance of the Earth from the Sun varies
during the year. The formula implies that with a 1000 mm lens the image of the Sun on
the chip will be about 9.2 mm, with a 200 mm lens about 1.8 mm. Note that the size of a
frame of a classical film or the chip of the full-frame camera is 36 x 24 mm. The choice
of the lens depends on the quality of the parallactic mount that holds the cameras with
lenses. The best solution is to cover the extent of the corona by several lenses such as
200, 500,1 000 and 1600 mm. Amateur and semi-professional cameras have smaller chips,
in the case of Canon cameras they are about 1.6 times smaller (22.2 x 14.8 mm for Canon
EOS 450D [dDpr08]) in the case of Nikon cameras they are 1.5 times smaller. This means
that the same lens has a narrower field of view and the choice of lenses has to be changed
accordingly.

The topic of a particular lens selection (reflector / refractor, brand, f-number) is
beyond this work.

Exposure sequence

The extreme contrast in the corona demands the use of many different exposure times
during the time of totality. Table 4.2 in the TSE 2010 bulletin [dEsA08] summarizes the
relation between the used ISO, the lens’ f-number, the exposure time and what part of
the corona is correctly exposed in the image. Figure|4.1|gives us an idea of a set of images
that are necessary to be taken to record the full extent of the corona for this field of view.
Digital enhancement of coronal structures means strong enhancement of information on
high spacial frequencies including noise. Therefore it is necessary to take not only a
large variety of images with different exposure times, but also to take as many images as
possible to eliminate the noise in the final image. The contrast of structures in the corona
decreases with height, that is why it is better to take more images with longer exposure
times than those with shorter exposure times. An example of suitable sequences can be
found in [bDrD09]. A correct sequence contains images of all exposure times (separated
by one stop or less) starting with an image with correctly exposed prominences and ending
with an image where a large part of the corona is overexposed, but the overexposed part
does not touch the edges of the image.

Camera control

During the eclipse, cameras should be controlled either manually with a cable release or by
a computer. (Pressing the shutter release manually would shake the camera shortly before
the exposure, which makes this option unusable.) Most programs control each camera
with a single USB cable. In this case the camera cannot use its cache and there must be
some time left between taking individual frames to let the camera save the image to a
memory card. Thus an advantage of taking images manually is the possibility to obtain
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1/125s

Figure 4.1: A sequence of images with various exposure times taken during the 2008 TSE. Lens
Maksutov-Cassegrain 3M-6A, 6.3/500 mm, digital camera Canon EOS 350D, ISO 100. Images
are completely raw, linear, before normalization by sensitivity of color sensors.

more images, but every camera has to have its own mount (because the person operating
the camera shakes the mount when setting exposure times on the camera body).

A simple application for Linux that can control up to six Canon cameras of the older
type (EOS 350D, 20D, 5D, 300D), is Multican created by Jindfich Novy [dNov(7]. Its in-
put passed as parameters are files of the format CameraX_YYYYYYYYYY, where X is the
number assigned to a camera connected to a computer in sequential numbering and
YYYYYYYYYY is the serial number of the camera. This number is written on the cam-
era bottom or can be read by calling Multican with no parameter. An example showing
a part of a script ﬁleE] with a correct structure is:

# Camera 1
# Canon EOS 350D
# Ser. Num: 1330441536

2There is also a generator of these scripts available upon request that generates suitable scripts based
on the camera type, lens focal length and f-number and the duration of the eclipse.

w
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# Pentacon, 2.8/135mm
#

00:00:55.990 tv=4000
00:00:56.090 iso0=100
00:00:56.190 shot
00:01:00.000 shot
00:01:03.810 shot
00:01:07.519 tv=2000
00:01:07.619 shot

00:27:51.666 nop

Lines starting with a hash are comments that are skipped by Multican. Time in hours,
minutes, seconds and milliseconds counted from the time when the Enter key was pressed
are followed with commands that are performed at these times — setting exposure times,
setting the ISO and taking images. The sequence must end with nop command.

When Multican is called with script files as parameters

multican Cameral 1330441536 Camera2 5675931124,
it loads the scripts, checks if these cameras are present and waits to start the sequence until
the Enter key is pressed. The times between shot commands must include the exposure
time and the saving time. If the camera receives a command earlier, the communication
with this camera and possibly with the other cameras fails, so this parameter must be
tested ahead.

The advantage of Multican is precise timing of the exposures and the possibility to
generate script files by any tools in a simple way. Some users may consider it a disadvan-
tage that it does not have a GUIL. Other software tools that can control digital cameras
are the Eclipse Orchestrator for Windows (http://www.moonglowtech.com/products/
EclipseOrchestrator/) with Free and Pro, version that can also use the serial port to
control the shutter thus enabling the camera to use the cache, and Solar Eclipse Mae-
stro for MacOS X (http://xjubier.free.fr/en/site_pages/solar_eclipses/Solar_
Eclipse_Maestro_Photography_Software.html) that is a sophisticated tool for observ-
ing solar eclipses.

4.1.2 Image calibration

The theory for this topic is covered by [dCor04]. The following text is based on this
source.

Ideally, an image taked by a CCD (or CMOS) camera would give accurate information
about the light flux distribution over the observed scene. Unfortunately, this is generally
not the case. Instrument properties, imperfections and the discrete nature of light itself
introduce errors in the measured data. The errors (differences between the measured
values and the ‘true’ ones) are the result of several factors, some random in nature, and
some deterministic.

The goal of the image calibration is to minimize the contribution of deterministic
factors in the errors, in other words to remove the instrument signature from the data. In
this section, we describe the way the general image calibration process works (also called
image reduction), and in the process we define bias, dark and flat images.
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The whole process is described for gray-scale images, even though standard color
DSLR cameras are commonly used for eclipse observations. However, a vast majority of
DSLR cameras gives gray-scale images. In every pixel they have only one measurement
— of the red, green, or blue part of the observed scene. A color image is then made from
this gray-scale image by interpolating the information about each color component. The
process of calibration has to be done with with the raw gray-scale image. There is a
paragraph about conversion of raw images to color images (if sensors take measurements
in different parts of the spectrum) at the end of this section.

CCD camera response model

Raw pixel values for a CCD frame can be expressed as follows:
s(z,y) = B(z,y) + tD(z,y) +1G(z, y)I(z,y) + R(z,y), (4.1)

where B(x,y) is the bias value of each pixel, ¢ is the integration (exposure) time, D(x,y)
is the dark current, G(x,y) is the sensitivity, I(x,y) is the light flux reaching the pixel,
and R(z,y) is a random component — noise. The bias value is a preset value that is
set to the sensors before the shutter is opened. It ensures that even with negative data
values caused by noise no underflow occurs. The value varies slightly pixel-to-pixel. It is
approximately 128 for Canon EOS 5D, 256 for Canon EOS 350D and 1024 Canon EOS
5D Mark II as an example. The dark current depends on the camera, but for each camera
it depends on temperature. The higher temperature, the higher dark current. That is
one of the reasons why some scientific cameras are cooled. G(z,y) describes not only
the sensitivity of each sensor on the chip, but also the vignetting effectsﬂ of the optical
system and the effects of dust particles on the chip. When taking a photograph, we are
interested in the values of I(x,y) or t1(x,y). R(x,y) will be used in a similar way as a
generic constant in ODEs, even after division by or adding a constant or another function,
it remains R(x,y).

To estimate the flux values entering the optical system, we need to estimate B, D and
G. After that, Equation can be solved for I. B, D and G are calculated starting
from calibration frames taken under controlled conditions: bias, dark and flat frames.

Bias frames

If we take very short exposures without opening the camera shutter — ¢ can be considered
as 0 and I(z,y) = 0 — so called bias frames, Equation (4.1)) becomes

b(z,y) == s(z,y) = B(z,y) + R(z,y).

Since the noise R(x,y) is random, we use b as an estimate of B,

B(x,y) == b(z,y).

3Vignetting is a centrally symmetric darkening of the image with distance from the axis of the optical
system caused by its optical properties. It is almost negligible with some lenses, especially if they are set
to higher aperture numbers, but with most lenses it should be taken into consideration. Therefore, the
Sun should be centered in the field of view so that the center of the vignetting is also the center for the
radial direction in the corona.
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In the whole section about image calibration (Section , we use the tilde to denote
the estimate. If we average more bias frames together, we can get arbitrarily close to B
(its standard deviation decreases with a square root of the number of the images due to
Chebyshev’s inequality [cWil01]). Therefore a better estimate than the last equation is

N-1

bi(x

=0

1
N
We will call this the master bias frame.

Dark frames

If we now take longer exposures with (with exposure time ¢y) with the shutter closed, we
obtain dark frames
d(.’L‘, y) = B(Q?, y) + t0D<£L‘, y) + R(l’, y)

From this, we can subtract the estimation of bias and divide by the exposure time, and
we get our dark current estimate,

Of course, to reduce the noise contribution we can also average several dark frames and
estimate the dark current as

D(r,y) = —— Z di(z,y) — B(z,y).

It is convenient to work with a different form of the dark current frame,

D'(w,y) = toD( Zd (z,y) — B(z,y).

which is called the bias subtracted master dark frame.
If we have a data frame (image of the observed scene) with an integration time of ¢y,
the first two terms in Equation (4.1)) are estimated by the master dark frame Dy

Dui(ey) = Ble,y) + t.D(x,y) = Bla,y) + ﬁ—;ﬁ'@s,y). (4.2)

If the integration (exposure) time of the data frame and the dark frames is the same,
t;1 = tg, the master dark frame can be simply computed as an average of dark frames,

Dy(z,y) = Zd z,y). (4.3)

The function B(z,y) is specific for each camera and it does not change much with time
or temperature. On the contrary, the function D(x,y) depends strongly on temperature
and ISO. Dark-frame images for an image set have to be taken shortly before or after
this image set at the same conditions (not transporting the camera to another place if
possible).
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Flat-field frames

With B and D out of the way, we need a way to estimate G in Equation (4.1)) before we
can recover the incident flux. To do this, we apply a flat-field (even) illumination to the
camera and acquire several flat-field frames

f(x,y) = s(z) = B(,y) + t;D(x,y) + 1;G(z,y) L + R(z,y), (4.4)

where L is the light flux reaching each pixel, assumed equal across the frame. Images of
the blue sky acquired with the lens covered with flimsy paper can be considered as flat-field
frames for white-light images taken with telephoto lenses. For wider-angle lenses, special
panels emitting light evenly have to be used. Flat-field images for a collection of images
have to have the same ISO, aperture value and focusing as the images in the collection.
The camera also should not be moved (and also not switched off and on in the case of
newer cameras with automatic sensor cleaning) between taking the data frames and the
flat-field images so that dust particles on the chip do not move. The exposure should
be selected so that none of the pixels in the flat-field frames is close to saturation, the
best possibility is the image histogram centered in the range of possible values. Aperture
priority mode can often be used for taking flat-field frames.

We then calculate a master dark frame for the flat fields D%, (z,y) and subtract it from
the flats, obtaining

f'(w,y) = f(2,y) — Dy (w,y) = t;G(z,y)L + R(z,y).
The master dark frame for flat fields DI} (z,y) can either be computed by Equation (4.2)
or there are dark frames available with the same exposure time as the flat-fields, then we
can use an average of them, Equation . Again, to reduce the noise contribution, we
usually average several flat frames, to arrive at a master flat frame

Fy(z,y) = foy foy — Diy(,y) (4.5)

If we knew L, we could solve the Equatlon . for G(z,y). However, the absolute value
of L is not known and varies between different sets of images. So, instead of calibrating
the absolute value of G(z,y), we only try to remove its variation across the frame. We
introduce G as the average of G over the whole image

G(z,y) = Gy(z,y),
where the average of g(z,y) across the frame is 1. The variability of G across one image

is caused by different sensitivity of sensors, by dust particles on the chip and by optics
vignetting. Then the estimate of f’ is

/ﬁM(l’, y) = t;Gg(z,y)L + R(x,y). (4.6)
By taking the average of /F\;;M(.CE, y) across the frame

w—1 h—1

= thLZZg(x,y) +R

=0 y=0

=t;GL+R
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(where R is the average of R(z,y) over the image) and then dividing equation by F', we
obtain the estimation of g(z,y)

D@0 _ Ga ), (4.7)

which is the final result we can learn from flat-fields.

The above process assumes a camera where all pixels are equivalent, they all make
measurement in the same part of the spectrum. However, this is not the case of common
DSLR cameras with Bayer matrix, where half of the sensors measure the intensity of
incident flux in the green part of the spectrum, a fourth in the red part of the spectrum
and a fourth in the blue part of the spectrum. The sensors are identical, but there are
color filters that select only a part of the spectrum for each sensor. A typical organization
of the Bayer matrix (as patented by Bryce Bayer in 1976) can be found in Figure

Figure 4.2: A schematic illustration of the Bayer matrix on the chip of a DSLR camera. Image

downloaded from [dCbu06].

The pixel values of the flat-fields measured by red sensors (sensors with filters which
select the red part of the spectrum) will differ from those measured by green sensors and
from those measured by blue sensors due to different transmissivity of the filters, different
sensitivity of the sensors in different parts of the spectrum and of course different spectral
characteristics of the light source used for the flat-fields. Calibrating the images, we need
to compensate for these differences. Let Vi, Vo, Vi be the average values of all red,
green, and blue pixels, respectively, and let V' be the average pixel value in the whole
image. We renormalize the master flat frame from Equation by computing

F (z,y)_ 3 ] 1
R ~MVR V' if pixel [z,y] is red
F(z,y) = %ﬁ’y)v if pixel [z, y] is green
Farlzy) o .
oV if pixel [x,y] is blue.

The renormalized master flat frame is then used instead of the master flat frame in
Equations and . This process is invariant to the spectral properties of the light
source used for calibration, it is only required that all three color components are strong
enough, otherwise the calibration process would bring too much noise in the image.
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Reducing the data frames

Having the master dark and master flat frames, we can proceed to reduce the data frames.
Starting from

s(z,y) = B(z,y) + t1D(z,y) + t1Gy(z,y)I (2, y) + R(x,y),

we subtract the master dark frame (Equation (4.2))) and divide by the normalized master
flat (Equation (4.7))) to obtain

s (s(z.9) = Dulz.y)) = tGI(x,y) + R(z,y) (4.8)

~ 1 F
I = = —
($’y> th FM<x7y)

(stz.9) = Dyl ) (4.9)

We have obtained an estimate of the incident light flux up to a multiplicative constant
(Gt,) which represents the average sensitivity of the camera multiplied by the integration
time, which is the best we can do without a reference source calibrated in absolute units.

In some applications, we want to preserve the information of ¢; in the images, i.e.
keep them brighter if they we exposed longer. Then Equation is the result of image
calibration.

Frame combining methods

Earlier in this section we used the term to ‘average’ several frames (bias and dark frames,
flat-field frames) in order to reduce the noise. It was used as a general term meaning to
compute a quantity what approximates the desired value. The commonly used methods
follow.

Arithmetic average (mean) is the best in noise reduction and is computationally the
fastest, but is strongly affected by outliers, i.e. impulse noise present especially in
longer exposures caused by hot pixels or when high-energy cosmic particles hit the
chip. Another property of the arithmetic average is that the results are not discrete
in the sense that the result is not necessarily one of the original image values, it
may be ‘something in between’.

Median takes more time to compute than the arithmetic average, but there are fast
methods of median computation available (a simple method based on histogram is
implemented in the FNRGF software for estimation of the standard deviation of
the additive noise in the image). Median is very little influenced by outliers, but it
is less efficient in removing noise. Also, when combining integer values, the median
does nothing to smooth out the quantization effects. The following methods are a
combination of both median and arithmetic average to make use of the advantages
of both of them.

Mean-median is a variant of the median method intended to improve the statistical
efficiency of the median, and get around the quantization problem. In the mean-
median method, we compute the standard deviation of the pixel values around the
median, and discard all the values than are farther away than a specified number of
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standard deviations (usually 1.5 or 2). The remaining values are averaged together.
Denoting Iy = {0,1,... N — 1}, where N is the number of images to be combined,

the algorithm for combining images fo, ..., fy_1 can be written as follows:
eo(x,y) = median f;(z,y) (4.10)
i€l
| Nl
o) = \| 7 D0 Uil w) — eol, ) (@.11)

O

1=

Ii(z,y) = {Z € Io, |fz' yy) — ei(r,y)| < Kso}

Zfz:vy

16[

where k is a constant (usually 1.5 or 2, as mentioned above). e; is the result.
Mean-median is fast, and works well for large sets.

rko-clipping is an elaborate method that gives good results even with small sets of images.
It starts by calculating the median and the standard deviation around it. The values
with large deviations relative to the standard deviation are excluded. Then, the
mean and standard deviation of the remaining values are computed. Again, the
values that are farther away for the mean are excluded, and the process is repeated
until there is no change in the mean or the iteration limit is reached. With the
denotation of Equation , each iteration step of the ko-clipping for k = 1,2, ...
is

S (2, y) = \/ﬁ 3 (i) — a2

Ii(z,y) = {i € Iy, | filz,y) — er1(x,y)| < Kspr}

|[|Zﬁmy

i€ly,

k(7,Y)

Transformation of a raw image to a color image

As it was mentioned above, a raw image from a DSLR camera is a gray-scale image where
half of the pixels describe the green part of the incident flux, a fourth of the pixels do the
red part, and a fourth of the pixels do the blue part. They are organized in the Bayer
matrix, see Figure [4.2 The next step of the processing, image registration treated in
Section [4.1.3] applies geometrical transformations like shift by a non-integer vector. A
raw image where different pixels describe different colors would be unacceptable for this
purpose and such transformations. This is the reason for converting the image to a color
image, where the values of color components which are not measured in the pixel are
interpolated from the closest pixels that measure this color. There are various algorithms
for the interpolation — so called demosaicing algorithms. A commonly used method is
the bilinear interpolation, which computes a weighted average of the values in the nearest
four pixels (which form corners of a rectangle in the image) [x1, y1], [x2, y1], [x1, ¥2], [x2, Yo]
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which is linear in both variables,

To — X

Tr— I Y2 — Y
o) = (Fonm) 2D 4 o E2 ) 20
Tg — 1 Ty —T1/) Y2 — U1
To — T Tr—x —
+ (f(xbyz) 2 +f($1,y2) 1) J yl-
To — X1 Ty —T1/) Y2 — U1

An example of these color-interpolated images can be found in Figure .1 The reason
why the images are dominated by green is not that the solar corona is green (it might
be slightly greenish due to the radiation of Fe XIV on 530.3nm, but this contribution
is negligible), it is the sensitivity of the sensors in the camera chip together with the
transmissivity of the filters in the Bayer matrix that have maximum in the green part of
the spectrum. For the next steps of image processing, the colors in the image are kept
as they are, even though they are incorrect for human vision (the values of the color
components would have to be multiplied by suitable constants to obtain an image with
correct colors for human eyes).F_f] These interpolated images are used as input images in
the next step.

4.1.3 Image registration — phase correlation

In applications it often happens that the content of images of the same scene taken at
different times has moved. When processing images of the solar corona taken during T'SEs,
it is practically always true. For processing and analyzing the images it is necessary to
transform the images so that the studied structures are at the same position in all the
images. This is the task of image registration — to find the transformation.

In some applications we assume that images were shifted only, in others we allow shift,
rotation and scale change (i.e. similarity), general linear transformation or even general
transformations. If images from a TSE were taken with the same equipment and the
focusing did not change between the frames, we can assume that the images are only
shifted (rotation caused by rotation of the parallactic is negligible within a few minutes).
If images from different cameras and lenses are registered or the lens was refocused, we
assume a similarity between the images.

If the images to be registered overlap only partially, the goal of the registration usu-
ally is to prepare the images for blending in a panorama or a mosaic. If the positions of
the structures in the image differ only slightly among the images, the goal might be in-
creasing the image resolution using subpixel-precision registration or increasing the image
quality (noise, dynamic range) by composing more images in one with the same resolu-
tion. The methods used for registration depend on the expected transformation and on
the structures in the image, e.g. how prominent they are, on which spacial frequencies,
if they are organized in regular patterns or not etc. An overview of image registration
methods can be found in [cZiF03]. Some methods use corresponding structures or points
in the images and then find a global transformation using the measurements of positions
of the structures or points. These methods require these structures to be clearly visible.
Other methods are based on correlation and work with the image as a whole. The phase
correlation proved to be a powerful tool not only for registration of images of the solar

4There is no need for the images to have true colors, it is the opposite — normalizing the colors by the
spectral sensitivity of the human eye would cause the resulting image to be more noisy.
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corona. It can register images taken with different exposure times, different distribution
of diffuse light, can be extended to subpixel precision and can be used to estimate either
image shift or similarity.

The principle of the method

The idea of the phase correlation method for image registration was first published by
Kuglin and Hines in 1975 [cKuH75]. T treated the phase correlation, its principles and
the mathematical background in details in my master thesis [aDrul(] and it was the
main source for this section. The method is based on the Fourier transform. It is more
easily described with the Fourier transform of functions f : R? — C and then the practical
computations are done with the discrete Fourier transform, more precisely the Fast Fourier
transform or other fast algorithms that implement the discrete Fourier transform.

The whole process is done with the brightness component of the image (a weighted
average of the red, green, and blue color components of the image, green has higher weight
than the other components). In the following reasoning, f will be a gray-scale image of
the brightness component of the image.

To show the principle of the phase correlation, we define the normalized cross-power
spectrum of functions fi, fo

- Fl(fﬂ?) ) F;(f,ﬁ)
Zp1,(6m) = FL (&) Ba(En)]

where * means complex conjugation, and the phase-correlation function

P“hcmy)—"FA{Zﬁ¢A&nﬂ~—f“l{

It can be proved that (see [aDrul()]) for real functions fi, f> the phase-correlation function
is real, even with further modifications

(4.13)

-1 {H(f,n)- Fi(&m) - F5 (& n) }

([F (&) +p) - ([F2(8m)] + q)

where H(&,n) is a bounded real function such that H(¢,n) = H(—=£,—n) a p,q > 0 are
arbitrary constants. This is of great value, since it enables us to search for extremes of
the phase-correlation function.

Shifted images: The phase-correlation function of a function with itself is the J-
distribution

[F'(&n) - F(&n)

Prsten) =7 b= r ) = ae).

If two functions are shifted in arguments, fo(z,y) = fi(x — 2o,y — yo), their Fourier
transforms are shifted in phase

F2 (57 77) = F1 (57 n)e_i(§x0+nyo)
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and their phase-correlation function is the d-distribution shifted in arguments by the
opposite shift vector

2o e = LGN F G ()
f1,2\G: 1) = \F1(£77]) ,F1<€,77)e—i(§ro+nyo)| o

Py, p,(z,y) = F {€00mm0)} = §(z + 0,y + yo).

This is the main idea of phase correlation. The task to find a shift between two images
is converted by the phase correlation to the task of finding the only non-zero point in a
matrix (computation using the discrete Fourier transform). If the images are not identical
(up to a shift), the phase-correlation function is more complicated, but it still has a global
maximum at the coordinates corresponding to the shift vector. To keep this maximum
global, Equation (4.12]) can be modified with possibilities suggested in Equation (4.13]) or
modifying directly the original images and the parameters of these modifications can be
optimized.

Rotated and shifted images: The phase-correlation function can be also used for
estimation of image rotation and rescale. The method was first published by Reddy and
Chatterji in 1996 [cReC96].

Let us first describe the method for rotated and shifted images. Let f, be function f;
rotated and shifted in arguments fo(z,y) = fi(zcosd — ysinf — zq, x sin 6 + y cos @ — yo).
Their Fourier spectra and amplitude spectra are related as follows:

Fy(&n) = e~ H(&rotmo) by (£cos@ —nsinf, Esinf + ncosh)
Ay(&,m) = Ai(Ecos@ —nsind, Esinh + ncosh).

The shift results in a phase shift and the spectra are rotated in the same way as the
original functions. A crucial step here is transformation of the amplitude spectra into the
polar coordinate system to obtain functions A}, A5(p, ) : (0, 4+00) x (0,27) — R such
that

AS(p, ) = Af(p, ¢ + 0).

The rotation around an unknown center of rotation was transformed to a shift. The
unknown angle # can be estimated by means of the phase correlation applied on the
amplitude spectra in the polar coordinate system A}, AL. After rotating function fy by
the computed angle 6, the shift vector (o, yo) is then estimated by means of the standard
phase correlation.

Similarity — scaled, rotated, and shifted images: Let f; be function f; scaled,
rotated, and shifted in arguments fo(z,y) = fi(ax cos —ay sin 0 —xq, cx sin 0+ oy cos 6 —
Yo). Their Fourier spectra and amplitude spectra are related as follows:

1 .
F(&n) = —2e"(5x0+”y°)F1 (é cosf — L sin 0, 3 sin @ + T cos 0)
Q Q Q Q a
1
As(&m) = A <§ cosf — L sin 6, S ind + ﬁcos@)
Q a a Q Q
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The shift results in a phase shift, the spectra are rotated in the same way as the original
functions and scaled with a reciprocal factor. A crucial step here is transformation of the
amplitude spectra into the logarithmic-polar coordinate system

e =12+ y? x=¢€"cosp, y=-e’sinp
to obtain A”, A% (p, ) : R x (0,27) — R, such that
AZZP(pv @) = Allp(p —In a, o + 8)

Both rotation and scale change were transformed to a shift. The unknown angle 6 and
unknown factor a can be estimated by means of the phase correlation applied on the
amplitude spectra in the logarithmic-polar coordinate system A% AP After rotating
function f, back by the estimated angle 6 and scaling by factor «, the shift vector (zq, yo)
is estimated by means of the standard phase correlation.

Practical issues: Amplitude spectra of real functions are even functions A(&,n) =
A(—=€, —n), therefore it is sufficient to use only a half of the domain of the spectra, e.g.
¢ > 0. If amplitude spectra (computed by means of the discrete Fourier transform)
are transformed to polar coordinates, only a half of the domain on the angular axis is
sufficient.

The amplitude spectra have very high values in [0, 0] and its close neighborhood com-
pared to the rest of the domain, therefore instead of the values of the amplitude spectra
it is better to use their logarithms In(1 + A;(£,n)),In(1 + A2(&,7n)) to use the dynamic
range of the amplitude spectra more effectively.

The discrete Fourier transform takes images as if they were periodic with period N
on both axes. The image edges thus represent a jump in pixel values. Therefore, it is
necessary to ‘remove’ image edges, to smooth them out by multiplying them with so called
windowing functions. The most common are Gaussian and Hanning window functions.
Most commonly they are applied radial-symmetrically. If there are important structures
closer to image corners, they may also keep untouched a square or a rectangle and then
decrease to zero.

Subpixel-precision image registration: In certain applications, it is necessary to
estimate the shift between two images with higher precision than one pixel. The use of
methods depends on the structures in the image and on the required precision. Oversam-
pling the image is a robust method, but it leads to immense memory demands. Methods
that fit a function through the pixels around the global maximum are suitable for images
that are not too different from each other and do not contain much noise. A robust method
that proved to be suitable for TSE images is based on geometric moments [cDru09al. The
sub-pixel precision estimate of the shift vector (Zg, 7o) is computed as

M, M0,1:|
Mo,o’Mo,o 7

[Zo, Jo] = {

where My, is the geometric moment computed over a circle with center [zg, yo] and radius
e € R, ie.

My =323 "y Plao+ oo +y),  kl=01,

x?24y?<e
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where P(z,y) is the phase correlation function. We may consider the point (Zg, 7o) as the
center of gravity of the peak in P and its neighborhood with radius €. This computation
is then repeated with a center in [Zg, 9] and the process is iterated until the computed
center of gravity is stable. Usual values of ¢ range from 3 to 8. This parameter is a
parameter which needs to be set manually when two image are to be registered.

The subpixel extension of the phase-correlation method was described for estimating
of a non-integer shift between images. It can also be used for enhancing the precision of
the estimation of rotation and scale-change between similar images. The only difference
is that the integer-valued vector (zo,yo) is replaced by a value of (Ina, 8) corresponding
to integer indices in the matrix representing the phase-correlation function. The subpixel
estimation gives us non-integer indices in the matrix, which correspond to a more precise
value of (Ina, 6).

This method is suitable for images of the solar corona during a TSE, where a precision
of a tenth of a pixel is enough. It is not sufficient for detection of local shifts of struc-
tures on the solar disk in images from the Solar Dynamics Observatory as it was shown
in [aKoD13]. The solution for this application is using the modification of the phase-
correlation function of Equation (4.13)) and optimizing the shape of the weight function
H. Constants p, ¢ are kept very low just to prevent division by zero.

Any subpixel precision method requires high ‘quality’ of the phase-correlation function.
Completely different methods from the method described above are used for subpixel
precision registration of images that are almost identical, e.g. images taken shortly one
after another in a video sequence. Among these methods is fitting functions to the values
of P around the global maximum. The shift is then computed as the maximum of the
fitted function.

Registration of TSE images

Digital images of the solar corona taken during total solar eclipses are specific in many
aspects. The extreme contrast of the solar corona yields the necessity of many images
with various exposure times. Images taken with very short exposure times are mostly
underexposed with only a small part of the image correctly exposed. There are no stars
(except for the Sun) in the images, only the structures of the inner corona and the chro-
mosphere. Images taken with longer exposure times have a part which is overexposed
(saturated), a part which is correctly exposed, and a part with very low pixel values con-
taining almost no information. Sometimes, there are stars visible, the innermost corona
is saturated. Images taken with the longest exposure times have a large overexposed part
and the rest is correctly exposed. Registration methods based on matching correspond-
ing structures are unusable for TSE images. The specific methods and extensions of the
phase-correlations used for solar corona image registration are described in [cDru09al.
Usually, there are not many structures visible in the original images. There is very
high contrast, which may be eliminated by using a suitable high-pass weight function on
the normalized cross-power spectrum. However, there are aspects that cause that it is
better to replace the high-pass weight function by another procedure. The most contrasty
structure in solar corona images from total solar eclipses is the edge of the Moon. The
Moon moves in front of the Sun during the eclipse, which causes that registration of
the images with respect to the Moon does not give the same results as registration with
respect to the corona. If we do not remove the Moon edge from the images used for image
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registration, the images will be registered to the Moon and the corona will be registered
incorrectly. Furthermore, a contrasty and sharp structure in the images is the edge of the
saturated part of the image.

A solution to this problem is masking out the Moon and the edge of the saturated part
and removing the information on spatial frequencies in radial direction and preserving the
information on the spatial frequencies in tangential direction only. This cannot be done
by applying a weight function on the spectrum. A weight function is unable to treat the
image differently in its different parts (inside the Moon’s disk, at its edge, in the corona).
This must be done by a filter T, applied on the images

lo

Iy —2

10 0) = Fr) = = [ £ (rot 1) e at (414
lh

The origin (o, 0,) of the polar coordinate system should be in the center of the Sun, which
is not easy to be found at this stage of the process. Therefore the center of the Moon is used
instead as its approximation, which has no influence on the precision of image registration.
The integral in formula may be understood as an unsharp mask created by means
of a one-dimensional low-pass filter with Gaussian kernel applied along a circle centered in
the center of the Sun. Limits [y, [ are usually set to [y = —3¢, [y = 3¢. The value of ¢ must
be chosen according to the image quality. For sharp images, we choose e.g. ¢ = 8, for less
sharp images, we increase ¢ slightly. Since f(x,y) is defined only for integer-valued (x, ),
its values must be interpolated to compute the integral, the final value is then rounded
for each pixel. Such a filter gives both positive and negative pixel values, therefore the
image after filtration is stored in a signed type array, e.g. {—32768,...,32767}.

The window function must be applied too. Due to the shape of the solar corona,
circular window functions are usually more suitable and also faster. However, a bigger
part of the images is discarded. If the exposure time of the image was long and a large part
of the image is saturated, there is only little space left in the annulus between the edge
of the saturated part and the image edge. Then it is better to use a rectangular window
function so that we use the image structures far from the center of the Sun. Moreover, it is
necessary to remove the edge of the Moon and the edge of the saturated part. Therefore,
the window function has to vanish both at the edge of the Moon / saturated part and the
edge of the image.

The transformation is estimated from the filtered image and then is applied on the
original image too. The whole process of registration of all images in one image set starts
from an image with the longest exposure time that has no saturated part and continues
step-by-step to shorter exposure times and longer exposure times (which have a saturated
part). When the quality of the global maximum of the phase-correlation function becomes
not acceptable, all registered images are averaged in one, it is filtered, and used as the
master image for further registration. An example of original images of the solar corona
(in linear brightness scale) and filtered images used for the estimation of scale-change,
rotation and shift is in Figure 4.3

One more parameter is user-optimized when images of the TSE are registered. It is the
shape of the low-pass weight function H in Equation (4.13)). We use Gaussian low-pass
weight function, the optimized parameter is the variance. If it was not employed, (0,0)
would often be the estimated shift vector, which corresponds to dust particles on the chip
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(c) (d)

Figure 4.3: Example of solar corona images taken during a total solar eclipse. Images were taken
by Constantinos Emmanoulidis in Akademgorodok, Novosibirsk, Russia on August 1, 2008 with
digital camera Canon EOS 400D and Takahashi TSA102 814 mm lens. The exposure times were
1/60s (image a) and 2s (image b). Image (c) was created from image (a) using filter Tg and a
circular window function, image (d) was created from image (b) using filter Tg and a rectangular
window function. The exposure time of image (b) was so long that it was necessary to use a
rectangular window function. Image taken from [aDrul0].

and the structure of the chip. Higher values are generally used for poorer-quality images
and images with bad correspondence.

4.1.4 Image composition

From the previous steps, we have a set of images that all have the same radius of the Sun
and position of the center of the Sun. They were taken with different exposure times.
The next step is composing all these images in one image that covers the whole brightness
range of the set of images. The family of methods that solve this problem is called the
high-dynamic-range imaging (HDR). Many HDR-processed images of landscape can be
found on the Internet. Many of these images are quite realistic, however, they are unusable

47



4.1 WHITE-LIGHT IMAGES ACQUIRED DURING TOTAL SOLAR ECLIPSES

for further scientific analysis. Different parts of the images are processed differently so
that none of the image parts is too dark or too bright. Beautiful galleries of HDR-
processed images can be found on the Internet, for instance: http://www.hdrsoft.com/
gallery/. As a result, the transformation that is applied to the image is not a pixel-
value transformation in the sense of Definition on page [25] Comparing two pixels in
a HDR-processed image, if one of them is brighter than the other, there is no way to tell
if the light intensity in the first pixel is higher than the other. For photometry and for
structure enhancement, the property of monotone dependence of the image brightness on
the intensity of the incident light is crucial.

A suitable method for composing digital images for scientific purposes has to respect
the linearity of the images in the image set. The composed image has to have monotone
(ideally linear) dependence of the pixel value on the intensity of the incident light. Such
a method can be realized by computing a weighted average of the images ignoring those
parts of the images that are saturated or near to saturation and possibly also those parts
of the images that contain only noise.

Linear Digital Image Composer

The method implemented by Miloslav Druckmdiller in the Liner Digital Image Composer
(LDIC) in 2006 produces HDR-composed images that are suitable for structure enhance-
ment and photometry. LDIC computes a weighted sum of the set of the images, the
weights are applied both based on the pixel value and on the exposure time of each image
(more exactly on the brightness of the image, which is closely related to the exposure
time)

i

g(r,p) = ) _w(fi(r,p)) - (ki(p) fi(r, ©) + ai(p)). (4.15)

(2

Il
=)

g is the composed image, { fi}fi—ol is the set of the images that are composed.

w is a weight function depending on pixel value. The lowest part of the dynamic range
contains mostly noise. Adding it to the composed image would only increase its noise, it
would not bring much information. There is also a reason why the highest part of the
dynamic range have to be rejected. The highest value (65535 for word) is in completely
saturated pixels. The camera response to incident light intensity is linear in a majority
of the dynamic range of the images, however, the highest part of the dynamic range (may
start from about 85 % of the dynamic range) does not show perfect linearity. This is the
reason why pixel values in the highest part of the dynamic range have to be rejected too.
This is the role of w. It is equal to one on a majority of the dynamic range, equal to zero
in the highest and the lowest part of the dynamic range, with gradual and continuous
transitions.

k and g are piecewise linear functions of ¢ for each image. They form a linear transfor-
mation. The image is split in n; = 60 angular segments. The composition starts from the
longest exposure times (the list of the image files together with exposure times and much
more information is provided by the user). The linear transformation that transforms
the image to be added to all already added images is determined by liner regression for
each angular segment separately. The next step is approximation of the coefficients of
the linear transformation by a trigonometric polynomial of a low order (0, 1, 2, or 4).
These approximations are then taken as k;(¢) and ¢;(¢), the approximations are a linear
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4 IMAGE ACQUISITION AND PROCESSING

function of ¢ in each angular segment. This means that the sum in Equation is
enumerated step-by-step, functions k;(¢) and ¢;(¢) depend on the sum up to the (i —1)th
image.

Figure 4.4 documents the principle of the composition method used in the LDIC.

Transform of image Matched DSC_2414.bif ¥y = 0.9%416 x + 44 for angle 153°
55718 1

¥ weight

11234 o
11255 x 56001

1.00920 T2

0.592325 - . -206
0° angle 360°

Figure 4.4: A screenshot from the LDIC illustrating the principle of the composition. The
upper panel shows the linear transformation for a certain angular segment, the lower panel
shows the coefficient k£ for the linear transformation for each segment and its approximation
with a trigonometric polynomial of order four. The graph on the background of the upper panel
is the weight function w.

The LDIC is much more powerful and complicated than just computing a weighted
sum of images. It has to compose colors in the image correctly. It has to follow the moving
position of the Moon, possibly even making a sharp composition of the Earth-lit Moon in
the eclipse images. There are many parameters that affect the result. The adaptivity that
functions k£ and g are computed separately for each segment allows to compose images
with different distribution of diffuse light in the optical system (e.g. shortly after the
beginning of the total eclipse and shortly before its end) or even images that were taken
through thin clouds.

49
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As a result, the method fulfills the monotone property that makes it suitable for
scientific analysis. There may be only slight discrepancies in the monotonicity caused by
LDIC compensating for the diffuse light in the optical system or for clouds. The composed
image is very close to eliminating these effects and keeping the monotonicity property for
the incident light (more precisely the light incident to the Earth’s atmosphere above the
clouds and out of the optical system).

After this step, the composed image is ready for structure enhancement. It is an
image that will be called the original image in the chapters about structure enhancement
in images of the solar corona (Chapters @ In some cases, there might be additional
steps required, such as removing darker spots in the images caused by dust particles on
the chip (with patches taken from another image set).

Comment: Determination of the position of the Sun and its radius

The position of the center of the Sun O = [o,,0,] and its radius o, is a substantial
information not only for image composition, but also for structure enhancement. The
images that are composed are registered, i.e. the position of the Sun in all these images
is identical — and unknown. It is quite a simple process described in the appendix of
[aDMHT1] that requires the following information:

e Movement of the Moon in the images described by its position at C2 [y, hy o]
(center of the Moon), the shift vector the Moon moves by in one second (hgy, hay),
and the radius of the Moon in pixels h,. All these values are measured from several
images where the edge of the Moon is clearly visible, i.e. images taken with shorter
exposure times. A minimum is one image after C2 and one before C3. (C2 means
the beginning of the total eclipse, C3 the end of the total eclipse.)

e Duration of the eclipse [, ratio of the size of the Moon and the Sun in the sky
Ry,, umbral depth B in percent (a number that is 100 % on the central line of
the totality belt and 0% on its edges), information whether the observer was to
the north or south from the central line. These information can be calculated for
the particular eclipse and observing site using an eclipse calculator, one of which is
http://www.chris.obyrne.com/Eclipses/calculator.html. It is an important
feature that it uses JavaScript, the form works offline and can be used at remote
observing sites with no access to the Internet.

The position of the Moon in the images is
hx = hz,O +1- hdx
hy =hyo+t-hg, te(0,10).

The radius of the Sun in pixels o, is computed from the measured radius of the Moon A,

and the ratio Moon : Sun as "

- Rho.

The umbral depth B and the north / south position in the totality belt are converted
number 5 € (—0.5,0.5) with = —0.5 on the northern edge of the totality belt and
£ = 0.5 on the southern edge

oy

B h= — (0.5 _ﬁ%) northern part of totality belt
h = 0.5 = 505 southern part of totality belt.
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Next, denote
d =2h(h, — o)

the distance in pixels of the center of the Sun from the center of the Moon in the middle
of the eclipse due to the eccentricity of the observer in the totality belt. § is the length
of the shift vector, we will have to determine its components as well. A vector that is
perpendicular to the motion of the Moon in the images is

(nxvny) = (hda, _hdy)-

The vector of the shift between the center of the Moon and the Sun in the middle of the
eclipse is vector (n,,n,) resized to length §

v = \/ni—i-nf/: \/hgx—khzy

Ty
Nz = o—
v

Ny = 0—

Finally, the center of the Sun in the image [0,, 0,] is the position of the center of the Moon
in the middle of the eclipse shifted by (ns, ns,)
0z = hayp _'_%hfdx 152

)

[
oy = hyp +§hdy N5y

4.2 Images in spectral lines acquired during total so-
lar eclipses

Images in spectral lines are images that show the radiation of one particular atom or ion
at a specified spectral line. In the case of spectral lines in the visible and near-visible
wavelength ranges, an image acquired through a narrow-band filter selecting this line
contains not only the radiation of the ion or atom, but also of the underlying continuum.
This section describes the importance of these observations, how the radiation of the atom
or ion is extracted and how these images are processed.

In the previous section, the process of image acquisition and processing of white-
light images of the solar corona taken during total solar eclipses was described. This
section is much shorter, because most of the steps applied to images taken in spectral
lines are similar to those applied to white-light images. It is partially based Habbal et al.
[aHDMTT].

4.2.1 Importance of observations in spectral lines during total
solar eclipses

Observations from cosmic probes in extreme-ultraviolet (EUV) and X-ray wavelength
ranges enable us to study the structures of the solar corona simultaneously on the solar
disk and off the limb, since the photosphere is completely black in these wavelength
ranges. However, the capabilities of the EUV lines and X-rays are limited to distances
below about 1.5 R due to the inherent dominance of their collisional component in the
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intensity of their emission, which decreases with height as the square of density. Spectral
lines in the ultraviolet typically above 100 nm and in the visible and near infrared part of
the spectrum, on the other hand, have a radiative component, which allow observations
higher in the corona. Due to the radiation of photosphere on these wavelengths, an
occulter is needed. Among successes in this field were the observation of the Lya hydrogen
line and the O VI 103.2nm and 103.7 nm doublet lines from the Ultraviolet Coronagraph
Spectrometer on the Solar Heliospheric Observatory [cKEG95]. The limits of observable
heights were increased from 1.5 Ry to about 10 Ry. Lower heights than 1.5 R were only
observable without a coronagraph, which means with the Moon as the occulter during a
total solar eclipse (of in other wavelength ranges in lines without the radiative component).

Observing conditions during total solar eclipses with the Moon as an ‘ideal” occulter
are unique opportunities for observing the spectral lines of heavy ions with radiative
components both close to the limb and further from the Sun in high quality and resolution.
The team of prof. Habbal recently showed that coronal forbidden lines in the visible and
near infrared wavelength range provide diagnostic capabilities for exploring the inner
corona which had been overlooked so far. Among them revealing the importance of Fe XI
789.2 nm line first observed during the total solar eclipse of 2006 [cHMJOT7]. The radiative
component is also present in other spectral lines of Fe ions in the visible and near infrared
part of the spectrum, namely Fe X 637.4nm, Fe XIII 1074.7 nm, and Fe XIV 530.3 nm
[aHDMT11]. Eclipse observations allow to observe these lines up to 3 Rg.

An important property of the spectral lines with a radiative component of iron ions
Fe IX, Fe X, Fe XI, Fe XIII, and Fe XIV in visible and near infrared wavelength ranges is
that they are forbidden. The life times of the their excited states are longer than 1073 s,
whereas lines in the EUV have a life time about 107'2s. Observations in spectral lines
of Fe ions with a radiative component led to several discoveries of structures and their
properties and origin in the inner solar corona. They led to identification of the locus
of transition from collision-dominated to a collisionless plasma around 1.25 to 1.5Rg
[cHDM10a]. They also enabled the construction of the first two-dimensional maps of
electron temperature and charge states in the corona [cHDM10b]. The temperature maps
revealed the nature of prominences as the coolest suspended structures in the corona
surrounded by the hottest coronal plasma [cHDMI10a]. These results were enabled by
the simultaneous observations of the corona in several iron lines together with white-light
observations. These were also composed into images showing the radiation of more lines
in one image, each line in different color. An example of such image is the composition
of Fe X and Fe XIV images as observed during the 2010 TSE in Figure [4.5] The image
shows active regions with intricate structures and closed field lines of the magnetic field in
green representing Fe XIV, whose ionization temperature is about 1.8 MK, whereas polar
regions and open linesﬂ of the solar magnetic field are dominated with cooler (0.8 MK)
Fe X. These detailed images of the radiation of heavy ions with strong radiative component
in the innermost corona can only be obtained during total solar eclipses. Together with
white-light observations of the corona they keep the uniqueness of total solar eclipse
observations.

5No field line of a magnetic field can be open in principle. When using the term ‘open field line’ in
connection with the solar corona, it is mean that the loop of the field line is large, it goes out of the
image, often much further, some of the loops are as large as the Solar System.
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Figure 4.5: A composition of the Fe X (red) and Fe XIV (green) images as observed during
the 2010 TSE (in negative). Images were calibrated so that both lines have the same average

intensity. The same amount of these colors is yellow, red is where Fe X dominates and green is
where Fe XIV dominates. Image taken from [aHDMTI].

4.2.2 Principle of observation in spectral lines in the visible part
of the spectrum

One of the advantages of observation in spectral lines that lie in the visible part of the
spectrum is that they can be observed from the Earth. The disadvantage is that they can
be observed in a good resolution only during a total solar eclipse, because there is a strong
radiation of the K-corona in the visible range. The K-corona is formed by the photospheric
light scattered on free electrons in the corona. Its spectrum is continuous. Therefore, if an
image is taken with a narrow-band filter selecting a narrow range containing a prominent
spectral line such as the Fe XIV 530.3 nm (which is close to the maximum of the K-corona
radiation at 500.2 nm), it contains both the radiation of Fe ions and the photospheric light
scattered on free electrons. Therefore, another image free of emission lines has to be taken
close to this wavelength. The difference in K-corona radiation between these two images
is negligible, therefore by subtracting these images the radiation of the Fe ion is isolated
(For precise calibration described below, we even do not assume the difference to be
negligible.). The former image is called the on-line image, the latter is called the off-line
image. An example of an on-line and an off-line image is shown in Figure [4.6

Due to the fact that only a narrow section of the spectrum is observed, scientific
cameras giving gray-scale images are the most suitable. If a standard DSLR camera is
used, only a part (a half or a fourth) of all pixels are used, the rest of them is completely
black, where the transmissivity of the filter and on the color filter of the Bayer matrix
in the camera has zero product. Or, the line can lie in a wavelength range where two
color filters have non-zero transmissivity, then the image is recorded in two color groups
of pixels, but at least one of the groups gives low signal. Front-illuminated chips are
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(a) On-line image. (b) Off-line image.

Figure 4.6: The on-line and off-line images of the Fe XIV 530.3nm line as observed during
the 2008 TSE by the Czech-Slovak-German expedition in Mongolia (in negative). Both filters
used had bandwidth 0.15nm, the on-line filter was centered at 530.3 nm, the off-line filter at
529.1nm. It can be seen that both images show the same structures of the K-corona with the
on-line image showing also intricate structures in the innermost corona which are formed by the

Fe XIV radiation. Taken from [dDru09].

necessary for this type of observations. Back-illuminated chips have in general higher
quantum efficiency, however etaloning causes prominent patterns in the images, which
makes this type of cameras completely unusable for narrow-band observations.

There are two approaches to the use of narrow-band filters for eclipse observations.
The tilting method requires only one camera and one filter for each spectral line, the filter
is tilted between taking images. The tilting shifts the transmissivity of the filter out of
the spectral line for taking off-line images. The other method involves two cameras with
two filters tuned at the desired wavelengths. Images are taken with the same exposure
time simultaneously with both cameras. The advantage of the first method is the lower
number of cameras, lenses and filters required. Its disadvantage compared to the two-filter
method is that only less than half the images can be taken during the eclipse. The fact
that images are not taken simultaneously can also cause severe problems if the observing
conditions are changing during the eclipse. It is not only when clouds are moving in the
sky during the totality, but also the changes in the sky brightness during the eclipse. In
both these methods, the cameras have to be controlled automatically, the control software
depends on the type of the camera.

The exposure sequences for on-line and off-line images have to be identical, they have
to be chosen based on the transmissivity of the filters, on the quantum efficiency of the
cameras at the wavelength and on the intensity of the K-corona at this wavelength.

The sequence of steps for processing on-line and off-line images including the calibra-
tion, registration, subtraction, composition and structure enhancement is described in the
following section.
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4.2.3 Processing images in spectral lines

The first step after obtaining on-line and off-line images and their calibration images is
image calibration. The algorithm is identical with the one described in Section for
gray-scale images. For the tilting method, the sets of dark-frames and bias frames are
identical for on-line and off-line images, because the camera and the lens are identical for
both image sets. Flat-field images are generally different. For the two-camera method,
the image sets are calibrated as two independent sets.

The next step is image registration. Since all images contain the radiation of the
K-corona, the continuum, they have common structures and they can be all registered
as one image set. The phase-correlation method for image registration is described in
Section [4.1.3

In the image composition step (Section , it may make sense to compute the on-
line and off-line composites (as shown in Figure , but the aim of the process is the
image of radiation of the particular ions, which is the difference of the on-line and off-line
image. This means that for each couple of images with the same exposure time, one of
them on-line, the other off-line, their weighted difference is computed [aHDMI1]

filz,y) = fri(z,y) —wfo(zy), w= % : %

o Lo
fi is an image of one particular exposure time showing the radiation of the ion at the
selected spectral line, ¢ goes from 1 to the number of acquired couples of images. Images
fi, are on-line images, fy,; are corresponding off-line images. I, I; are intensities of
the continuum at the wavelengths of the peak in transmissivity of each filter, Ly, L, are
intensities of the flat-field panel at these wavelengths. Images f; are composed in one
high-dynamic range image, which should be stored in an appropriate data file, e.g. a
64bit per pixel file (gray-scale).

The final step is structure enhancement. These images have lower signal to noise ratio
compared to white-light images of the corona observed during TSEs, which affects the
suitability of structure enhancement methods. The standard method is the Normalizing-
radial-graded filter (NRGF, Section , which is fast and does not require any user
manipulation. The Adaptive-high-pass filter (ACHF, Section is able to visualize
smaller-scale structures compared to the NRGF, but it is not able to go that far from
the Sun. A method that combines the advantages of both these methods is the Fourier
normalizing-radial-graded filter (FNRGF) proposed in this thesis in Chapter [( The
results of application of these methods to all spectral-line images acquired by the team of
prof. Habbal during the 2010 TSE can be found in [aHDMI11] (NRGF and ACHF) and
[aDMHT1] (FNRGF).

There is also a completely alternative approach of visualization of the prominent
Fe XIV line from images obtained with standard DSLR cameras without a narrow-band
filter by precise calibration of color components. The method was tested on 2008 TSE
images [aMaD11].
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4.3 Images from cosmic probes

Cosmic probes produce terabytes of data every day. They enable us to study the Sun in
various parts of the spectrum from extreme ultraviolet to visible light (radio waves are
observed with Earth-based instruments), to measure the properties of the solar wind, to
acquire dopplergrams, magnetograms etc. Majority of the data are available to the public
on Internet search machines, e.g. [dVsol3|. Images are stored in the standard astronomic
format FITS, whose header contains a complete description of the data (image properties,
properties of the instrument, position and orientation of the Sun in the image and many
others). Processing data from cosmic probes in batch to produce an animation is an
opportunity to study the dynamics of the coronal structures far beyond the possibilities
of animation of images from TSEs from different sites along the totality belt. Total solar
eclipses retain their uniqueness in white light and in spectral lines of the visible spectrum
in the innermost corona. The list of most important cosmic probes to acquire images of
the Sun are listed in the Section followed by a brief account of processing methods
applied to these images.

4.3.1 List of cosmic probes

The most important cosmic probes that study the Sun are listed in this section.

Yohkoh (Sunbeam in Japanese) [dYohOl] was a project of the Japanese Institute of
Space and Astronautical Science together with teams of the space agencies from the
Unites States and the United Kingdom (1991-2001). The instrument observed the
corona during one cycle of solar activity. The scientific objective was to observe the
energetic phenomena taking place on the Sun, specifically solar flares in X-ray and
gamma-ray emissions. The Yohkoh Spacecraft was in a slightly elliptical low-Earth
orbit, with an altitude ranging from approximately 570 km to 730 km. The orbital
period was 90 minutes. It carried two spectrometers (Bragg Crystal Spectrometer,
Wide Band Spectrometer) and two telescopes observing in X-rays.

Soft X-ray Telescope (SXT) with with a 1024 x 1024 CCD camera and a filter
wheel with various filters.

Hard X-ray Telescope (HXT) sensitive to photons with energies from 14 keV
to 93keV, this range was split into four energy bands (called L, M1, M2, H).
The angular resolution was about 5”7, image synthesis field of view is 2’x 2’. It
conducted X-ray observation in the region of more than 30keV as an imaging
telescope for the first time in the world.

Solar and Heliospheric Observatory (SOHO) [dFlelll [dWikI3a] is a project of in-
ternational cooperation between ESA and NASA to study the Sun, from its deep
core to the outer corona, and the solar wind. Launched in December 1995, it begun
normal operation in May 1996 in a plane passing through the First Lagrangian Point
L1 point (a point of gravitational balance located approximately 0.99 astronomical
unit (AU) from the Sun and 0.01 AU from the Earth). Originally planned as a two-
year mission, SOHO currently continues to operate after over seventeen years in
space. During the years, SOHO succeeded in measuring the acceleration of the slow
and fast solar wind, identifying the source regions and acceleration mechanism of the
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fast solar wind in the magnetically ‘open’ regions at the Sun’s poles and discovering
new dynamic solar phenomena such as coronal waves and solar tornadoes. It brought
a revolution in forecasting the space weather. It enabled a discovery of thousands of
comets. There are twelve instruments aboard SOHO, among them instruments for
coronal spectrometry and spectroscopy, charge, element, and isotope analysis, solar
oscillation measurement, radiation measurement etc. The instruments are (among
others) as follows:

Extreme ultraviolet Imaging Telescope (EIT) [cDAB95] provides full-disk
images of the Sun in extreme ultraviolet (Fe IX/X at 171 A, Fe XII at 195 A,
Fe XV at 284 A, He IT at 304 A [dGurl0]) thus enabling studies of the innermost
corona. An example of and EIT image is in Figure on page |88

Large Angle and Spectrometric Coronograph (LASCO) [cBHK95]
contains three coronagraphs C1, C2, C3 to capture the corona in 1.1 to 3 Rg,
1.5 to 6 R, and 3.7 to 30 Ry respectively, which is about one seventh of the
distance between the Sun and the Earth. Images from LASCO coronagraphs
enabled the discoveries of thousands of comets. C1 is equipped with a tuneable,
narrow band Fabry-Perot filter, whereas C2 and C3 are regular white-light
coronagraphs. C1 stopped working in 1998, C2 and C3 are still operating.
Images from LASCO C2 are also used in this thesis — see Figures and
on pages [§ and [89]

Michelson Doppler Imager/Solar Oscillations Investigation (MDI/SOI).

UltraViolet Coronograph Spectrometer (UVCS) makes measurements in ul-
traviolet light of the solar corona (between about 1.3 and 12 Ry) with a coro-
nagraph. It blocks the bright light from the solar disc and allows observation
of the less intense emission from the extended corona. UVCS provides valu-
able information about the microscopic and macroscopic behavior of the highly
ionized coronal plasma.

Transition Region And Coronal Explorer (TRACE) [dLMMI10, dWik13d] was a
NASA space telescope (1998-2010) designed to investigate the connections between
fine-scale magnetic fields and the associated plasma structures on the Sun. It was
providing 1024 x 1024 images from a CCD detector giving an 8.5 arc minute field
of view (a Cassegrain reflector with 30 cm diameter and focal length of 8.66 m). It
observed the solar photosphere and transition region to the corona. A main focus
of the TRACE instrument was the fine structure of coronal loops low in the so-
lar atmosphere. The telescope is designed to take correlated images in a range of
wavelengths from visible light, through the Lyman alpha line to far ultraviolet. The
different wavelength passbands (see Table correspond to plasma emission tem-
peratures from 4000 to 4000000 K. An example of an image acquired by TRACE
can be found in Figure [£.7

Solar Terrestrial Relations Observatory (STEREO) [dStel3, dWik13c|, launched
in 2006, is a NASA mission composed of two almost identical spacecrafts (STEREO
A, STEREO B) that observe the Sun from different positions in the ecliptic plane,
one ahead of Earth in its orbit (on an orbit closer to the Sun), the other trailing
behind (on an orbit further from the Sun). This gives a unique opportunity to
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Wavelength [4] Width [A] Observed Temperature [kK]
5000 broad continuum 4-64
_____ 700 200  continnum  4-10 |
1600 275 C I, Fe II, continuum 4-10
1550 20 C1IV 60 - 250
_____ 126 8  HILya 1030 |
T 73 604  TFelIX 160 - 2000 |
L 195 645 FeXll 500 - 2000 |
T 284 107 FeXV 1 1250 - 4000 |

Table 4.1: Wavelength bandpasses observed by TRACE. Taken from a subpage of [dLMM10] —
http://trace.lmsal.com/Project/Instrument/inspass.htm

Figure 4.7: An example of an image from the TRACE instrument captured with the 171 A filter
(in negative). The image shows loops in the low corona in contrast to the dark chromosphere.
Image downloaded from http://trace.lmsal.com/POD/images/T171_20050908_114211X17.

JpPg:

study the coronal features from different positions. The angular distance between
the spacecrafts in changing (increasing). They achieved 90 degrees separation on
January 24, 2009, a condition known as quadrature. This is of interest because mass
ejections seen from the side on the limb by one spacecraft can potentially be observed
by the in situ particle experiments of the other spacecraft. STEREQO are equipped
with instruments for tracking radio disturbances (SWAVES), 3D measurements of
plasma characteristics (IMPACT, PLASTIC) and the

Sun Earth Connection Coronal and Heliospheric Investigation
(SECCHI) that has four instruments: an extreme ultraviolet imager, two
white-light coronagraphs and a heliospheric imager. These instruments study
the 3D evolution of coronal mass ejections from birth at the Sun’s surface,
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through the corona and interplanetary medium, and to their eventual impacts
at Earth. The EUV images are acquired at high resolution of 2048x2 048
pixels.

Solar Dynamics Observatory (SDO) [dGSF13| is a mission of the NASA launched
in February 2010. SDO is designed to help us understand the Sun’s influence on
Earth and near-Earth space by studying the solar atmosphere on small scales of
space and time and in many wavelengths simultaneously. The SDO is equipped
with the following instruments:

Helioseismic and Magnetic Imager (HMI) [dSSGI0] is designed to study os-
cillations and the magnetic field at the solar surface, or photosphere. HMI
provides four main types of data: dopplergrams (maps of solar surface veloc-
ity), continuum filtergrams (broad-wavelength photographs of the solar photo-
sphere), and both line-of-sight and vector magnetograms (maps of the photo-
spheric magnetic field).

Atmospheric Imaging Assembly (ATA) [dLHMI3| dWik13b] is designed to

provide an unprecedented view of the solar corona in extreme ultraviolet, tak-
ing images that span at least 1.3 solar diameters in multiple wavelengths nearly
simultaneously, at a resolution of about 1 arcsec and at a cadence of 10 sec-
onds or better. Its primary goal together with other instruments on SDO to
improve the understanding of the physics behind the activity displayed by the
Sun’s atmosphere, which drives space weather in the heliosphere and in plan-
etary environments. The wavelength bands and their description are listed in
Table 1.2l Images from SDO AIA can be found in Figure 2.1 on page [6] and
in Figures [4.8] and [4.9] The AIA provides images in high resolution of 4096 x
4096, which enables even research of local movements of the photospheric or

coronal structures [aKoD13].

Figure 4.8: A section of one of the first images taken by SDO ATA on March 30, 2010 showing
a wavelength band that is centered around 304 A. This extreme ultraviolet emission line is from
He II, and corresponds to a temperature of approx. 50 000 K. Image downloaded from [dWik10]
shown in negative.
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ATA Source Region of solar atmosphere Characteristic
Wavelength Temperature
Channel
White Light continuum Photosphere 5000 K
([ 170nm continnum Temperature minimum, 500K |
photosphere
1 30.4nm Hell Chromosphere & transition 50000K |
region
160nm civ. Transition region 10° & 5000K |
+ continuum & upper photosphere
' 17.1nm FeIX Quiet corona, 6.3-10°K |
upper transition region
119.3nm Fe XII, XXIV  Corona & hot flare plasma ~ 1.2-10°K & |
2-10"K
'21.lnm Fe XIV Active region corona 2-10°K |
335nm Fe XVI Active region corona 25-10°K |
' 9.4nm Fe XVIIIT Flaring regions 63-1°KK |
' 13.1nm Fe VIII, XX,  Flaring regions 4-10°K, 10'K & |
XXIII 1.6-10"K

Table 4.2: ATA wavelength bands. Taken from [dWik13b].

Extreme Ultraviolet Variablity Experiment (EVE) measures the solar extre-
me ultraviolet (EUV) spectral irradiance to understand variations on the time-
scales which influence Earth’s climate and near-Earth space in high spectral
resolution.

Project for Onboard Autonomy (Proba) 2 [dROBI14] is an ESA micro-satellite
launched on November 2, 2009. It carries two solar instruments:

Large Yield Radiometer, formerly Lyman alpha Radiometer (LYRA) is
an ultraviolet irradiance radiometer that observes the Sun in four passbands,
chosen for their relevance to solar physics, aecronomy and space weather. This
instrument can also detect flares and analyze the atmospheric composition of
the Earth.

Sun Watcher using Active Pixel System detector and Image Processing
(SWAP) is a small EUV telescope that images the solar corona with a band-
pass around 17.4nm (Fe X), corresponding to a temperature of about 1 MK.
SWAP continues the systematic CME watch program of EIT at an improved
cadence and monitors events in the lower solar corona that might be relevant
for space weather.
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4.3.2 Processing images from cosmic probes

Images from most instruments are available calibrated - FITS level 1 or higher. Some of
the calibrations do not follow the method described in Section therefore the images
are not only measurements of light intensity, some other processing is done to eliminate
instrumental effects or even the average intensity over a period of time. This is the case of
SOHO/LASCO, the specific information can be found in [dUSN12] and the related links.

Images from certain instruments contain a significant amount of impulse noise, which
is often a result of high-energy cosmic particles hitting the chip. This has to be filtered
out. There are various methods of filtering impulse noise, a balanced solution between
speed and quality of the result is a two-pass filter that replaces pixel values which are
detected as faulty by the mean (or median) of the values of pixels in its neighborhood
which are not detected as faulty.

The next step is structure enhancement. Images of the corona out of the visible part
of the spectrum are not that strongly dominated by the brightness gradient and there
are some structures visible without further structure enhancement. Still there is much to
be enhanced as it is illustrated in Figure 4.9, Images of the solar disk often differ in the
center and at the limb, there are also local changes in brightness. As a result, methods
that are suitable for structure enhancement on the solar disk are not that good for the
corona our of the disk due to the extreme brightness gradient in the inner corona and vice
versa. See the comparison of the NAFE and FNRGEF filters in Figure [4.9 For structure
enhancement on the solar disk, classical types of high-pass filters based on convolution
can be used. The convolution kernel only has to be modified on the limb if pixels out
of the disk should not be taken into account. The recently published Noise Adaptive
Fuzzy Equalization (NAFE) [cDrul3], which is based on adaptive histogram equalization,
reveals the structure in the innermost corona (both on the solar disk and out of it) in an
unprecedented way. Section is devoted to the NAFE method.

Since its publication in 2006, the Normalizing-radial-graded filter (NRGF) (see Sec-
tion below) has become a standard tool for processing images from LASCO coro-
nagraphs. The Fourier normalizing-radial-graded filter (FNRGF, Chapter @ is more
powerful in enhancing fine structure in coronagraph images as well as images taken in
EUV. For comparison of the NRGF and FNRGF on coronagraph data see Figure on
page These filters are designed for enhancing coronal structures out of the solar disk
to cope with the brightness gradient.

In some cases, the very final step may be composing images from more components
or in different wavelengths in one false-color image. This requires transforming the im-
ages so that the Sun has the identical center, diameter and orientation in the images.
Image registration is not necessary here, since the images already contain all necessary
information for the transformation.
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4.3 IMAGES FROM COSMIC PROBES

(e) (f)

Figure 4.9: Sections of an image from SDO/AIA on 171 A acquired at about the time of the
total solar eclipse on November 13, 2012. Original images (Figures a, b), processed with the
NAFE (Figures c, d), and FNRGF (Figures e, f). The red line in the original and NAFE images
limits that part of the image that was processed with the FNRGF. It is clearly visible that the
coronal structures are enhanced more and further from the Sun in the FNRGF images due to
the fact that the FNRGF was designed for coronal images, whereas the primary target of the
NAFE method were the structures on the solar disk. Images are in negative, after contrast
expansion. Original data downloaded from [dVsol3].
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Chapter 5

Earlier filters for solar corona
structure enhancement

In this chapter, we will discuss the previous results — previously used filters for processing
images of the solar corona. The principles of the filters are taken from the original
articles, I added analyzes of their properties and discussions about the advantages and
disadvantages of these filters. We will assume that we have an input image suitable for
structure enhancement. That is an image that resulted from the process described in
Chapter . steps are given in [aHDMT1l, bDrD09, [dEsAOQS].

Since 1980s the computers have enabled a development of computing tools for image
processing. At that time, it was not possible to use large neighborhoods for image filtration
due to long computing times. As an example, the MaD Max II method introduced by
Olga Koutchmy and her colleagues [cKIKKN8§| was using only eight neighboring pixels and
with rescaling the image and interpolating it back to the original size also partially the
next neighboring pixels. This visualized only small-scale structures, but larger structures
like coronal streamers remained hidden.

5.1 Tangential filter

In the late 1990s and 2000s the computing power of computers made it possible to propose
and implement filters that work with larger neighborhoods. The method published in 2000
by Espenak [cEsp00] is based on the Filter / Blur / Radial blur / Spin procedure in Adobe
Photoshop. The input image is blurred by a specified angular range, which means that
each pixel in the blurred image is the average of pixels that lie on the same circle with
center in the center of the Sun and differ from that pixel in the position angle by less
than the specified angle. This means that the filtered image g is a linear combination of
the original image f and the blurred mask

org) = Kaflr o) + Ko | Fno) — = S 9],

1P pe(p—apta)

where N, , is the number of pixels which have the rounded distance from the center of the
Sun equal to r and which have the angular coordinate ¢ € (¢ —«a, ¢+ ) (¢ is the angular
coordinate of the pixel to be processed, « is the specified angle by which the image is
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5.1 TANGENTIAL FILTER

blurred). This moving-average method was a big step forward in the sense that it enhanced
larger-scale structures than previous methods that use only small neighborhoods.

Figure 5.1: Image of the total solar eclipse of March 29, 2006 processed with Espenak’s tangential
filter. Courtesy of Fred Espenak. Downloaded from [dEsp07].

On the other hand, it had some drawbacks. First, since the filter averages only in
the tangential direction (around the Sun), it is direction-dependent. Structures that are
oriented radially, such as plumes, are enhanced the most, structures that are oriented
tangentially, i.e. parallel with the edge of the Sun (such as tops of loops and helmet
streamers), are not enhanced at all. The coronal features are basically visualized field
lines of the solar magnetic field. There are both closed loops and ray-like field lines that
are open to the heliosphere. The tops of the loops form tangentially oriented structures,
which are not visualized by the Espenak filter. The filter gives images that show the most
prominent features, but the physical principle how these features are formed is hidden. In
some sense, the images are physically incorrect. Figure [5.2 shows the difference between
the a tangential filter (Espenak filter) and the method proposed by the Druckmiillers
laDru05, [cDRMO06, [bDru03], the predecessor of ACHF (described in Section [5.2)). It is
clearly visible that the tops of the loops that are visible in the right image are not present in
the left one, which thus lacks physical impact. The tangential filter has been a commonly
used technique for solar corona image enhancement. The mathematical models of the solar
magnetic field predict the presence of both open and closed field lines of the magnetic
field [cRDA10Q], but the tangential filter enhances only those field lines that are radially
oriented, i.e. open to the space. This had been a problem before the ACHF (Section
was introduced. The idea was that the models were incorrect, because they did not show
the reality shown in the Espenak-filtered images. The solution to the problem was that
the eclipse images with the Espenak or similar filter applied did not show the reality, they
were physically incorrect and the models were correct.

The second drawback of the Espenak filter is its frequency characteristics in the sense
of the size of the enhanced structures. Since the filter is effective in one dimension only —
tangentially — we can model it on functions of one variable h(y). Convolution in spatial
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5 EARLIER FILTERS FOR SOLAR CORONA STRUCTURE ENHANCEMENT

Figure 5.2: Comparison of an image processed by means of a Gaussian tangential filter (left) and
by means of adaptive convolution in Corona 1 software [bDru03], a predecessor of the ACHF
(right), that correctly enhances all structures in all directions. Taken from [cDRMO6]. Images
are shown in negative.

domain means multiplication in frequency domain. If a function h(zx) is

h(z) = {1 if v € (—a,a),

0 else

for a > 0, its Fourier transform is

« sina&

H(§) = aSinca = £

where = means equals almost everywhere (in this case equals everywhere except for 0). The
graph of H(§) in Figure models the frequency characteristics of this moving-average
filter in one dimension. It shows that the frequency characteristics is not monotone with
respect to positive frequencies. Some frequencies are enhanced, some attenuated, but it is
more complicated than in a correct high-pass filter that enhances information on higher
frequencies and attenuates information on lower frequencies (with a transition of many
options). This complicated frequency characteristics may create artifacts and therefore
images filtered with this filter are not suitable for further scientific interpretation.

The properties of the Espenak filter mentioned above are clear from the Fourier spec-
trum of the blurring component of the filter (Figure . The amplitude spectrum shows
how the filter is direction-dependent and gives a clue why tops of the loops of the mag-
netic field lines remain hidden. The shape of the Sinc function is clearly visible in the
tangential direction (from top right to bottom left corner). The phase spectrum is very
complicated and contains values in the whole range of (0,27), even though a filter that
does not shift structures should have a phase spectrum with all values close to 0.
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5.2 ADAPTIVE CONVOLUTION

Figure 5.3: Graph of the Fourier transform of function f, which is equal to 1 for all z € (—a,a)
and equal to zero out of this interval.

(a) Amplitude spectrum (black — lowest (b) Phase spectrum (black — 0, middle
value, white — highest value). gray — m, white — slightly below 27).

Figure 5.4: The Fourier spectrum of the blurring component of the Espenak filter for a point
at Im (zero angle is the z-axis). The amplitude spectrum (Figure (a)) shows how the filter
is direction-dependent. Structures oriented radially, i.e. from the top left to the bottom right
corner are blurred and thus enhanced much more than those oriented tangentially. The phase
spectrum (Figure (b)) is very complicated, which implies that some of the coronal structures may
be shifted or other artifacts may be produced. As it is described in Section the spectrum
should be very close to zero for all its pixels.

5.2 Adaptive convolution

As it was stated in [cDRMO0G], a correct high-pass filter based on convolution with kernel
C(i,7) that may be adaptive based on the position of the pixel [z, y] in the image to be
processed, the convolution kernel C, (4, j) has to have the following properties:

(a) The Fourier spectrum of the convolution kernel D {C, ,} (D stands for the discrete
Fourier transform — Section must be real or at least the phase spectrum
Arg D{C,,} must be very close to zero. This ensures that the filter does not
change phase, which might shift structures in the image and bring about artifacts.
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5 EARLIER FILTERS FOR SOLAR CORONA STRUCTURE ENHANCEMENT

(b) The high-pass filter amplifies high frequencies and attenuates low frequencies, i.e.
the amplitude spectrum of the convolution kernel |D{C,,} | has to be monotone
with respect to the distance from the origin (in spatial frequencies). This ensures
reduction of the high brightness gradient whilst preserving visibility of coronal fea-
tures. The amplification is limited by the amount of noise.

(¢) The Fourier spectrum D {C,,} must be centrally symmetric at least at high spa-
tial frequencies. This ensures that the filter will enhance the visibility of coronal
structures irrespective of direction.

(d) Cuy(i,j) = 0 for pixel [z,y] if pixels [z,y] and [z + i,y + j] lie in two significantly
different parts of the image (for example the Moon and the solar corona). This
ensures adaptivity of the filter. These parts of the image are marked in advance or
the decision is made automatically. The criteria are based on a maximal acceptable
difference between that pixel values.

These requirements do not define a filter uniquely. There are many parameters and
properties of the filter to be decided about. The filter that was implemented in the first
version of the Corona software, the predecessor of the current ACHF filter, was partially
described in [aDru05]. The kernel used is an approximation of the Gaussian function
both in the radial and the tangential direction. First we define a weight function saying
if the pixel belongs to the corona and therefore should be taken into consideration for the
filtration

(2,9) 1 if pixel f(z,y) belongs to the corona,
w :C, = . . . . .
Y 0 if pixel f(z,y) else, i.e. belongs to the Moon or is out of the image.

We define this function for every [z,y] € Z? for convenience. Then we define the convo-
lution kernel depending on the position in the image as

_ (r—p>2+<r2<w—¢>>2

Cro(p, @) =e 20 , (5.1)

where o > 0 is a parameter influencing the size of the structures that are enhanced. The
bigger is o the bigger structures are enhanced. The reasonable values of o vary from 0.5
to 64. Formula is a product of a two Gaussian functions, in the radial direction and
a Gaussian function in the tangential direction (a general formula for a non-normalized
centered Gaussian function is exp (—%)) The Gaussian functions are not normalized, as
normalization is performed later in the incomplete convolution in Equation (for the
definition of incomplete convolution see Section. Finally, the incomplete convolution
of the image f with kernel C' and weights (for the incompleteness of the convolution) is
computed

fr ) if w(i,j) =0,
( ) < QZ . < > >f(v"+p,¢>+sa)0r,so(p,¢)w(r+p,¢+so)
a\r,¢) = PEGr=20,TH29) he (=27 o+ 22 . o
F(re) = > Cr.o(p,)w(r+p,0+¢) if w(i, j) =1.
pE(r—20,7+20) ¢€<<P*2TG"P+2TU

(5.2)
The limits of the sums are chosen so that both Gaussian functions (radial and tangential)
almost vanish before they are cut. This is ensured by letting the arguments of the Gaussian
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5.3 NORMALIZING-RADIAL-GRADED FILTER

functions go from —2¢ to 20. The processed image is then a linear combination of the
original and the filtered image

h(’l“, 30) = Ky - f(T, 90) + Ky - g(?“, 90)7

where K7, Ky are non-negative numbers, to keep some information about the absolute
brightness of the coronal features.

Condition (a) is fulfilled, since the Fourier transform of a centered Gaussian function
is a centered non-normalized Gaussian function [aDrul0) lcKomO1]

f’{ 1 22 } 02¢2
e 202 =e 2 ,
oV 2T

which is decreasing for positive arguments, thus condition (b) is fulfilled too. Figure
shows the Fourier spectrum of the filter to illustrate the precision of fulfillment of condi-
tions (a) and (b). The use of condition (c) is more complicated in this case. The coronal
features are radially oriented around the Sun, therefore the shape of the convolution kernel
is modified to a part of an annulus. So that the size of the structures that are enhanced
with one value of ¢ is constant through the whole image, the distance measured along a
Sun-centered circle is used for the tangential Gaussian function. The kernel is centrally
symmetric if considered in modified polar coordinates described in Section [3.1.2] where
the angular axis is not angular — it is the distance from point [s, + r, s, + ¢| measured
along a circle with radius r centered in the center of the Sun. Last but not least, condition
(d) is fulfilled due to the use of function w in Equation (5.2).

The filter described above is still incorporated in the current ACHF filter (software
Corona 4.1). A single filter with a particular o-value enhances mostly coronal structures of
a particular size. Therefore, ACHF uses a set of filters with several different values of o to
enhance coronal features from tiny plumes to large-scale streamers. These filters are then
combined together. Other improvements are implemented too, e.g. nonlinearity in the
use of filtered images. This makes ACHF the best nowadays used structure enhancement
technique for images of the solar corona from total solar eclipses in white light, where the
noise : signal ratio is much lower than in images taken in spectral lines. The NRGF and
later FNRGF methods described in Section and Chapter [6] were proposed especially
for images in spectral lines and from coronagraphs, which contain much more noise.

Figure in an example of application of the ACHF to a white-light observation of
the solar corona during a total solar eclipse. Closed loops of the magnetic field lines are
enhanced among other structures in the inner corona.

5.3 Normalizing-radial-graded filter

The normalizing-radial-graded filter (NRGF) was introduced by Huw Morgan of the In-
stitute for Astronomy, University of Hawaii in [cMHWOG] (currently of Department of
Mathematics and Physics, Aberystwyth University, Wales). It solves the problem of the
steep radial gradient of image brightness and structure contrast by segmenting the corona
into narrow circular regions centered on the center of the Sun, and calculating an average
and standard deviation of brightness for each region. Each region is processed separately,
which removes the influence of radial brightness decrease. Each pixel is processed accord-
ing to its height (distance from the photosphere) within the image by subtracting the
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5 EARLIER FILTERS FOR SOLAR CORONA STRUCTURE ENHANCEMENT

(a) Amplitude spectrum. (b) Phase spectrum.

Figure 5.5: The Fourier spectrum in Cartesian coordinates of the adaptive convolution described
in this section, both components in negative. The amplitude spectrum shows how the filter
enhancement rate is monotone with respect to frequencies. The slight discrepancies are probably
caused by clipping at image edges and at 20. The phase spectrum has values only values between
0 and 0.277. Its bottom right quarter has values expanded to the whole dynamic range to show
the structure of the phase spectrum. The reasons why the phase spectrum is not a constant
zero are in particular rounding errors, the discreteness of pixels and cutting at 20.

average (thus removing the steep radial gradient) and dividing by the standard deviation
(thus removing the radially decreasing brightness contrast) of values of all pixels in the
region.

Let f(x,y) be an image of the solar corona where the pixel values are (with some
approximation) proportional to the brightness of the corona at that location. A real
image of course contains noise and there are many aspects that cause that the dependence
is not completely linear. These include (but are not limited to) vignetting of the lens,
diffuse light in the optical system and different brightness of the corona at different times
during the eclipse (that side where the photosphere has just been obscured by the Moon
is brighter than the side where the photosphere is ‘deeper’ behind the Moon).

Since the NRGF removes the steep radial gradient in images of the solar corona by
subtracting the average of f and then dividing by the standard deviation computed along
concentric circles around the Sun, the resulting image g is computed as (denotation in

accordance with [cLiM&3])

g(?“, <)0) _ f(’l“, SO) - f(pv Qp)|p:7“ o f(ﬁ 90) - E(T) ’ (53)

S(fpo)p=r) \/Nj_l > per(f(psp) — E(r))?

with  E(r) = NL > flpe),
r p=r
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5.3 NORMALIZING-RADIAL-GRADED FILTER

Figure 5.6: An example of an image processed with the ACHF — an image showing the inner
corona during the total solar eclipse on August 1, 2008 (in negative). The images used for
the creation of this image were taken by Constantinos Emmanoulidis. Image processing by
Hana Druckmiillerovd and Miloslav Druckmiiller [dDru0g|. The image is one of the best images
showing the inner corona of the Sun in white light.

where NV, denotes the number of pixels in the image that have the rounded distance from
the center of the Sun in the image equal to r. If we could assume that the pixel values
on each circle had normal distribution, this would mean normalizing the distribution.
Formula ([5.3)) is applied only to circles in the image that lie completely in the corona. An
example of an image processed with the NRGF is in Figure |6.11

This approach applies the same transformation to all pixels in each circle. Therefore, it
cannot compensate for a different contrast of structures at the same height. The FNRGF
filter described in Chapter [6] is more adaptive in this sense. On the other hand, there
are no parameters that need to be set in NRGF. Once the position of the Sun and the
size of the obscuring disk (in a coronagraph, or the Moon) are known, the images can be
processed completely automatically. This is one of the reasons why the NRGF has become
a standard tool for processing coronal images, see for example [aHDMT1] [cHDMT0b|, and
has aided new insights into coronal structure and evolution [cMoHO7, cKTV09] and the
connection between the coronal and chromospheric features [cHMT09].
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5 EARLIER FILTERS FOR SOLAR CORONA STRUCTURE ENHANCEMENT

5.4 Noise adaptive fuzzy equalization method

The previous filters in this chapter are designed for structure enhancement in the corona
out of the solar disk. The noise adaptive fuzzy equalization (NAFE) method proposed by
Druckmiiller in [cDrul3] and later improved in [aDrD14] is designed for the structures on
the solar disk in SDO ATA images. The method is described below. This section is based
on [cDrul3|] and [aDrD14].

The noise adaptive fuzzy equalization method is based on adaptive equalization (see
[cPra01] for details) with the modification that the pixels in the neighborhood used for
equalization are weighted — the neighborhood is replaced with a fuzzy neighborhood.
The method computes a convex combination of a gamma-corrected original image and a
filtered image (see the item Gamma on page (98| for more information about the gamma
correction).

Let us denote by C' a function

1—n n—1 1—n n—1
C { 5 B 5 }X{ 5 ,0,. .., 5 }—><0, ),n € N odd

represented usually with a matrix of size n x n (in analogy with function C in Defi-
nition on page . The fuzzy neighborhood C7 (i,j) is a fuzzy set (fuzzy sets
introduced by Zadeh in [cZad65]) with support NI . which is a subset of the domain M

x?y’

of the image f(z,y) and membership function p , : N7, — (0, 1), where the membership

grade of pixel [x + 7,y + j] to the fuzzy neighborhood is defined as
Mo y(® + iy + ) = C(i, j).

Now let us define the fuzzy histogram of 5;,y as

ne,t =Y ) Ci.j)6(t, flz+iy+ 7)) (5.4)

where 0 denotes the Kronecker delta. Then we define the cumulative fuzzy histogram

Hy,(t) =Y by, (m),

m=fo
and the normalized cumulative fuzzy histogram

o HE ()
Lx,y<t) - Hg,y(fl)

where fp and f; are the minimal and maximal pixel values in N’ . Finally, we define the
fuzzy equalizing function

9oy (t) = g0+ (91 — g0) L7, (y), (5.5)

where go and ¢g; are the minimal and maximal output pixel values. This function is
different for every pixel [z,y| and the output pixel ¢(z,y) is computed according to the
formula

q(z,y) = g, (f(z,y)).
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5.4 NOISE ADAPTIVE FUZZY EQUALIZATION METHOD

The use of fuzzy neighborhoods solves most of the problems of adaptive equalization —
the influence shape of the neighborhood that may cause artifacts. T'wo problems that still
persist are the extreme amplification of additive noise in areas with low contrast, which
results in a loss of faint low-contrast details, and loss of contrast on boundaries between
areas with significantly different brightness.

I adopted the solution for additive noise in the FNRGF filter, its reasoning can be
found in Section [6.1.3] In the case of the NAFE filter, the solution means smoothing
the fuzzy equalizing function by a convolution with a Gaussian kernel to define the noise
adaptive fuzzy equalizing function (which is used instead of the fuzzy equalizing function)

9o, () = g0+ (91 — go) Ly, (t) * G4 (2).

The convolution of the normalized cumulative fuzzy histogram with a Gaussian kernel
has a significant influence only in the neighborhoods of that pixels which are dominated
by noise in which the image has very low contrast. On the other hand, the influence is
negligible in the high-contrast parts of the image. The higher is the value of o, the lower
is the amount of noise in the low contrast parts of the filtered image.

A solution to the second problem is described in [aDrDI14]. The fuzzy histogram is
computed from all pixels in the processed pixel neighborhood regardless of its values. If
the position of the processed pixel is near the border of areas A; and A with significantly
different pixel values, the neighborhood contains pixels from both areas. The fuzzy equal-
izing function in this case is a compromise of optimal pixel value transforms for A
and As, which results in a significant decrease of local contrast. The solution is to use for
fuzzy histogram computing only pixels that belong to that of areas A; or As which the
processed pixel belongs to. Therefore, we replace with formula

n—1 n—1

hary (1) = C(i,7) 0@t flz+ i,y +J) At, flz + i,y +J)),
lgn] 1;71,

M‘
m‘

%

where
1 ifft—flx+iy+j)<e

5.6
0 else. (56)

AJtﬂx+Ly+ﬁ)={
The value of € must be found experimentally. Too small values of € cause image frag-
mentation into small areas with very high contrast features whose borders do not represent
relevant boundaries in the image. Too high values of € will result in identical or nearly
identical with images those obtained when applying Equation . Let us denote the
corresponding normalized cumulative fuzzy histogram by ngg(t) and the corresponding
fuzzy equalizing function by g;¢(¢). The use of this function solves the problem.
Figure shows the application of the NAFE method on an SDO AIA image. Faint
and subtle details are enhanced in a way that no earlier method was capable of.
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5 EARLIER FILTERS FOR SOLAR CORONA STRUCTURE ENHANCEMENT

Figure 5.7: An example of an image processed with the NAFE method compared to the orig-
inal unprocessed image. It is a section of an 171 A image acquired by the SDO AIA. Image
downloaded from [dDrul3] in negative.
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Chapter 6

Fourier normalizing-radial-graded
filter

This chapter contains the main contribution of the doctoral thesis - the newly developed
Fourier normalizing-radial-graded filter (FNRGF).

As it was mentioned in Section[5.3] the disadvantage of the NRGF is that it applies the
same transformation to all pixels on each circle. However, there might be both sections
with relatively low contrast and fine structures and relatively high contrast and prominent
structures on one circle. This is typical for the solar corona in the minimum of the solar
cycle, where the polar regions are quiet (darker and with lower contrast) and the active
regions with higher brightness and contrast are in a belt of latitudes around the equator
(most images of the corona here are from the minimum of the solar activity in years 2006
to 2011). The NRGF does not visualize these fine structures, because their contrast is
too low compared to the rest of the circle. The aim of the FNRGF, which was proposed
as a part of my Ph.D. study, is to eliminate this drawback — to propose a filter which
is inspired by the NRGF (normalizing by subtracting the average and dividing by the
standard deviation) offering higher adaptivity. The proposed filter with its principle,
with all parameters involved and the results is described in this chapter. The FNRGF
was software-implemented in the FNRGF software, whose description can be found in
Section [6.3] The section also contains a simple user guide for the FNRGF software. The
software can be found on the enclosed CD.

In this chapter, we will assume that we have an image showing the solar corona out of
the solar disk with linear dependence of pixel value on corona brightness which is a result
of the sequence of steps described in Chapter 4| starting from image acquisition including
image calibration, registration and composition in one high-dynamic-range image. This
image will be called the original image f and will be indexed both in Cartesian and
heliocentric polar coordinates in accordance with Section [3.1.2]

6.1 The principle of the filter

The first version of the FNRGF was proposed and implemented during my study stay
at Institute for Astronomy, University of Hawaii in fall 2010 and was first published in
[aDMHTI]. This chapter is partially based on that article and contains many improve-
ments made since the article was published.
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6 FOURIER NORMALIZING-RADIAL-GRADED FILTER

The idea of the filter is, instead of subtracting one number from all values of pixels on
one circle and then dividing all of them by the same number, these numbers are computed
adaptively, different for different position angles on one circle. The basic principle of filter
is described in Section [6.1.1] The filter uses trigonometric polynomials to estimate the
local averages and local standard deviations of pixel values. However, after the first
implementation, it turned out that the trigonometric polynomials have to modified —
attenuated with increasing order of the Fourier coefficients. The attenuation coefficients
used for this purpose, their function and their setting are treated in Section [6.1.2l The
noise contained in the processed images has an impact on the filter. The impact and how
it can be compensated is discussed in Section [6.1.3]

6.1.1 The basic idea of the filter

The steps of the computation of the filter are be enumerated, the same numbering are

kept for expressing the process in formulae (below in this section), for explaining how the
filter is implemented in Section and for the user guide in Section [6.3.5]

(1) Which pixels are processed? Only pixels on Sun-centered circles that lie com-
pletely in the corona are processed (not partially obscured by the Moon, not partially
out of the image). This is a section of M, as defined in Section [3.1.2] let us denote
it by M.

(2) Angular and radial segments. The content of M is split into one-pixel thick
Sun-centered circles and those in tens of non-overlapping angular segments (ng is
the number of segments). Different segments contain generally different number of
pixels, because the number of pixels in each segment increases with height r and also
the circles are discrete, which means that pixels are not spread evenly in segments
on one circle. Figure is an illustration of an image being split in segments.

(3) Averages, standard deviations, their Fourier approximations. Two quan-
tities are calculated in each segment — the average pixel value and the standard
deviation of pixel values. Thus we obtain two functions of two discrete variables,
each of them a function of height r and segment index s. These functions are then
approximated with a trigonometric polynomial of order w. Approximation by the
trigonometric polynomial was selected due to its 27-periodicity. Figure gives
an idea of this approximation (the attenuation coefficients mentioned there to be
described below).

(4) Normalization. Now, the idea of the NRGF is used. The NRGF normalizes the
pixel values on each circle in the sense that it subtracts the average of pixel values on
whole circles and divides by the standard deviation of pixel values on whole circles.
The FNRGF is more adaptive and instead of using averages and standard deviations
of whole circles it uses the Fourier approximations described above. Each pixel in
the image is processed by subtracting the Fourier approximation of the average and
dividing by the Fourier approximation of the standard deviation, at the particular
height r and position angle ¢ of that pixel.

(5) Combination with the original image. Finally, the image filtered with the algo-
rithm described above is combined with the original image to keep some information
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Figure 6.1: Illustration of the computation of the FNRGF. Figure (a) shows an image being
split in circles and angular segments. The figure is simplified in the sense that in practice the
annuli are only one pixel wide and there are more angular segments. Figure (b) documents the
computation. The black line represents original image values, the red bars represent the averages
in each of the 50 segments, and the blue line is a Fourier approximation of these averages with a
trigonometric polynomial of order w = 10 with attenuation coefficients set to Ag =1, A; = 0.9,
Ay = 0.8, ..., Ajg = 0. The attenuation coefficients are discussed in Section [6.1.2] Figure
prepared for [aDMHII].

(feeling) about the absolute brightness of the corona in the image (same as in the
ACHF — Section [5.2). Pixels that lie out of M are not processed, they are left
black in the resulting image.

The steps above are described more precisely and in the formulae in the steps that
follow.

(1) The set M, is defined in Section [3.1.2] For the computation, we take use a subset
of My, Mg = {[r,¢] C Mo,7 <1,}, where r, is the radius in pixels of the smallest
circle that lies completely in the corona.

(2) The content of M, is split in segments. s = 0,1,...,n,— 1 are indexes of segments,

which are evenly spread on each circle, therefore pixels with ¢ € <i—7:s, i—”(s + 1)>
belong to the sth segment. The number of segments n, much be at least as high
as the number of Fourier coefficients involved in the filter, which is 2w + 1. And
still the number of segments must be several times lower (it is advised ten times)
than the circumference of the smallest circle in the image that lies completely in the
corona (27r,) so that the standard deviations of pixel values in the segments are
trustworthy numbers. In the radial direction, the segments are indexed with their

height r in pixels.
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(3) In this step, the average values and the standard deviations of pixel values in each
segment are computed. Let us denote the average of values in segment s at height
r by Es(r). With the denotation inspired by [cLiM83] it can be written as

1
ES(T) = f(p7 @)|p:r’@€<i—:57i—:(s+l)) = N Z f(p’ ()0)7
T,8 p=r
pe(2a (o)

where N, , is the number of pixels in the image whose rounded distance from the
center of the Sun is equal to r and which belong to the sth segment, the initial
version of the filter could be described by the following formulae:

ns—1

Gy = n3 S E.(r) (6.1)

ns—1 1
2 2mk(s + =
Qr k= n—s SEO ES(T) COS%’ Ek=1,2,...,w (6.2)
ns—1 1
2 2rk(s + 3)
by = — E, in ——2%, k=1,2,..., 6.3
b= o B ’ 63)
Coefficients a, o, @y 1, ..., 0w, br1, ..., by are coefficients of the trigonometric poly-

nomial of the function given by values of the average pixel value in each segment
at each height r. Integrals which would be necessary for the analytical computa-

27rk(s+ %)

Ns ’

tion of these coefficients (as the scalar product of the base functions cos

. 2mk(s+3 . . .
smﬂ and the function itself) are computed numerically by means of the

rectangillar rule. Coefficients ¢, o,¢r1,...,¢r0,dr1, ..., dr, are computed for the
standard deviation analogically [cLiM83].

Si(r) =87 <f (p, @)Ipzr,¢e<ggs,gg<s+1>)) =
S S () —En) =

p=r
pe (25,2 (s41))

= ——— | Ns (flp, ) — f(p, )
Nr,s(Nr,s - 1) ; ;
re(2E 0 ) se(zz 0z )

(6.4)
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ns—1
2 S
cro="— D V/Sir) (6.5)
5 s=0
ns—1 1
2 2rk(s + )
= =N /52 gy k=12, 6.6
Cr.k N, Z 5(7’) Cos N, ) 4 y W ( )

8

ns—1
° 27k(
drjp=— E v/ S2(r) sin ————== mh(s + ) k=1,2... w. (6.7)
Ms s=0

The Fourier approximations of the mean and the standard deviation in each pixel
are computed as

Fy(r,p) = %O + Z(ar,k cos kg + b, i, sin ko) (6.8)
k=1
Cro | O .
Fyip(rip) = 7’0 + Z(Cr,k cos ko + d, . sinkp). (6.9)
k=1

Note that the sines and cosines in the formulae for a, g, a,x, bk, ¢r0, ¢rk, dri (Equa-
tions — and —) and the sines and cosines in the Fourier approxima-
tions (Equations and (6.9)) have different arguments. This is correct, because
the former refer to values in n, segments, the values are known only in tens of evenly
spread points, whereas the latter refer to angles in the interval (0, 27).

The filtered image g is computed as

g(?”, QO) = FS(f)(T7@) if [T’, (;0] S MQ
0 else.

The formula involves division, but there is no need to treat division by zero. Stan-
dard deviations of pixel values in a real image (with noise) are always strictly positive
and their Fourier approximations as well (the Fourier approximation cannot be lower
than the lowest value in the sequence). Note that setting the number of angular
segments ng = 1 (which means that w = 0) converts the FNRGF into NRGF.

To preserve some information about the absolute brightness of image f, the filtered
image ¢ is then linearly combined with the original image to create image

h(z,y) = {h(m,y) = K- f(z,y)+ Ky - g(z,y) if [z,y] € Mg

6.10
0 else, ( )

where K, Ky > 0.

6.1.2 Attenuation coefficients

It turned out when the above described filter was implemented that a trigonometric
polynomial approximates the pixel values and the local contrast of the original image
too well. The filtered image contained only structures of a particular size (not the most
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prominent, but also not the finest as e.g. from the ACHF — depending on the order of the
trigonometric polynomial w) and then some deviant pixel values caused by stars or impulse
noise, therefore the contrast of the visualized structures was very low. The necessity to
treat information on different spatial frequencies in a different manner was inevitable.

This is the reason why I introduced the attenuation coefficients—Equations and
(6.9) were changed to

a

Ff(ra ©) = Ao 20 + Z Ag(ary coskp + by sin k)
k=1

¢ - :
Fspy(r, @) = C’()?O + Z Ci(cpp cos ko + d,.p sinky),
k=1

with attenuation coefficients Ay, ..., A,,Co,...,C, € (0,1). The series of A; and the
series of Cj should be non-increasing so that the filter treats information on different
spatial frequencies in a monotonous way in a sense similar to condition (b) in Section
about the ACHF. There are 2w attenuation coefficients in total involved in the filter.
Figure [6.2 gives an idea of the influence of the order of the trigonometric polynomial
by showing images with extreme settings of attenuation coefficients. Figure (a) shows
that using a high order of the trigonometric polynomial for standard deviations which is
not in accordance with the order of the trigonometric polynomial for the averages gives
completely wrong results. Using a high order of the trigonometric polynomial for averages
not followed by the standard deviations, on the other hand, is not such a big mistake.
It is a good illustration of the properties of the original image and of what the NRGF
lacks compared to the FNRGF. There is not only lower brightness in the polar regions
of the Sun (in the minimum of the solar cycle when the difference between the polar
and equatorial regions is the biggest), but also the contrast of the structures is much
lower. Therefore, to enhance structures all around the solar disk, it is necessary to use
a trigonometric polynomial (not a constant) to compensate for the different contrast in
different parts of the corona. This is very well illustrated in the difference between Figures

(b) and (c).

Correct values of attenuation coefficients

The proper setting of the attenuation coefficients depends on the size of the image, on its
quality (signal : noise ratio) and the distribution of structures in the image. As for now,
these parameters have to be set manually, the FNRGF software only contains a tools for
setting more coefficient values together. Examples of suitable settings of the attenuation
coefficients can be found in Section [6.2.1]

An illustration of an incorrect (too high) setting of the coefficients can be found in
Figure [6.3] If the Ays are set too high (Figure (a)), it causes artificial brightenings in
low-contrast parts of the image. They are false glimmers of the higher-order sine and
cosine functions. These may not appear in every image — it depends on the distribution
of the structures in the image. Another indicator that the Axs are set too high is that we
are losing contrast in the image, especially on lower spatial frequencies. We are enhancing
only the finest details that can be visualized with the FNRGF with one setting of w, not
the full range of structure sizes. Setting Cis too high (Figure (c)) may have destructive
effects on the image. Some structures become strongly enhanced and if the coefficients
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(a) Correct setting of Cys, (b) Correct setting. (c) Correct setting of Aygs,
Apgs set to (1,0,0,...). Cys set to (1,0,0,...).

Figure 6.2: A set of images showing the effect of attenuation coefficients on their extreme settings
(thus changing the order of the trigonometric polynomial). The middle image has about optimal
setting of attenuation coefficients (Axs set to (1,0.97,0.94,...), Cgs set to (1,0.96,0.92,...),
w = 50), whereas the fist image has the order of the polynomial for averages set to 0 by the
setting attenuation coefficients and the last image has the order for the standard deviations set
to 0. The image used is an image of the radiation of the Fe XIV line as observed during the

2010 TSE [aHDMI1], in negative.

are enhanced even more, these artifacts will dominate the whole dynamic range of the
image (like in Figure or even worse depending on the image).

(a) (b) () (d)

Figure 6.3: Illustration of proper and improper setting of attenuation coefficients, using the 2010
total solar eclipse observations of Fe XIV emission ((a), (b)) and Fe X emission ((c), (d)). The
attenuation coefficients for the average are too high in Figure (a), but are close to optimal in
(¢). Similarly, the parameters for the standard deviation are too high in Figure (b) and are close

to optimal in (d). Figure prepared for [aDMHII]

On the other hand, too low values of the coefficients are not as fatal as too high values
provided they are low for both A, C). They only do not make use of the full advantage of
the FNRGF, i.e. the structures are not visualized as much as they could. If the coefficients
are around the optimum, slight increase of A, decreases the local contrast, whereas slight
increase of Cj, increases the local contrast (including noise). The optimal setting of the
coefficients seems to have Ay slightly slower decreasing than Cj,.
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One of the aims of the doctoral thesis as listed in the treatise was enabling the user to
let the FNRGF software set the attenuation parameters automatically. However, I must
admit that I have not succeeded finding a way how to quantify the quality of the result
due to the reasons stated above. I have not found any function of the pixel values that
would have a minimum or maximum in the optimal setting. Changing the attenuation
coefficients for the average and for the standard deviation have completely different effect
on the filtered image. And there are many ways how the coefficients can be set, there
are in fact 2w coefficients that are independent with the only condition that each of the
sequences has to be non-increasing. [ have experimented with sequences of coefficients
that are linearly decreasing from 1 to 0 (if the linear function gives negative values, the
coefficients are set to 0). The (sub-)optimal setting of the coefficients depends on the
user, who has to set them according to the his / her knowledge so that the structures are
enhanced as much as possible (and noise does not dominate over the coronal structures).
Finally, the FNRGF software lets the user to set the coefficients arbitrarily with a tool
to set them linearly decreasing and a tool to cut the coefficients at one order and set the
rest of them to zero.

On the other hand, there is a setting that works for all images and the user obtains
better results than using the NRGF without any knowledge about the principles of the
FNRGF. Setting w = 30 and the attenuation coefficients Ay linearly decreasing with
step 0.05 and C} by 0.1 is a setting that always works without producing any artifacts.
A human user who has some experience with the FNRGF can surely find a better setting,
which leads to images with more detailed structures.

Fourier-analysis explanation for attenuation coefficients

The sense of attenuation coefficients can also be described in the terms of the Fourier
analysis. The Fourier coefficients a, , by, ¢k, d,; contain information on different spa-
tial frequencies. The setting of attenuation coefficients attenuates information on the
corresponding frequencies — they form a low-pass filter for the unsharp mask, which is
used in the high-pass filter (for unsharp mask filtering see the paragraph Unsharp masking
in Section on page 28). In fact, the FNRGF cannot be simply expressed as sub-
tracting an unsharp mask, but we can intuitively use the idea. This can be, in principle,
always done in two ways — by multiplication in the frequency domain and by convolution
in the spatial domain. Here I chose the first option due to the use of the trigonometric
polynomials. Expressing the attenuation by means of convolution can be a tricky task
once it is done in the frequency domain. Computing the Fourier transform analytically is
in general non-trivial. However, what is necessary, the filtration must be monotone with
respect to frequencies, i.e. the sequence of attenuation coefficients must be non-increasing.

First results

Figure [6.4] illustrates the result of application of the FNRGF on an Fe X image taken
during the 2010 total solar eclipse as published in [aDMHII] (for more information on
these observations see [aHDMI1]). Since that time, the FNRGF software was improved,
therefore the images in the following sections have higher quality than Figure [6.4] Figure
shows how the observation is dominated by the steep decrease of brightness - only
the very innermost corona can be seen, and there is no appreciable structural detail. The
FNRGF-processed image is shown in Figure [6.4p. The latitudinal profiles of the original
observation and the filtered image (Figures and [6.44) demonstrate the effect of the
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FNRGF on the images. After the processing, all circles have identical mean pixel value
and identical standard deviation of pixel values. Thus structures further from the Sun
are enhanced much more than those close to the disk.
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Figure 6.4:

(a) The original image (Fe X emission during the 2010 total solar eclipse) in the logarithmic
brightness scale. Details on the equipment can be found in [aHDMI1].

(b) Image (a) after the application of the FNRGF.

(c), (d) Latitudinal profiles of Figures (a) and (b) at heights of 1.3 (black), 1.6 (red) and 2.2 Rg
(blue). The z-axis is the position angle in degrees, the y-axis is the pixel value (unit irrelevant).

Figure prepared for [aDMHII].

Some images processed with the FNRGF contain visible rings (like on a gramophone
disk). These are visible for example in Figure and partially also in Figure . They
are caused by the fact that there is no connection between the processing of one Sun-
centered ring and the neighboring one. Each circle is processed separately. If there is
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significant impulse noise in the image (especially more faulty pixels next to each other) or
if there is a very high-contrast structure such as a prominence, it affects the trigonometric
polynomial for the whole circle. In some cases, the effect can be eliminated by treating the
impulse noise or by changing the attenuation coefficients. I tried to eliminate the effect
by replacing the value of each trigonometric polynomial in each point by the median of
the value in this point and two neighboring points towards the Sun and two points from
the Sun. The procedure was computationally slow, because the trigonometric polynomial
had to be evaluated five times instead of once (I could not use existing points in general,
because the pixels are discrete and I needed information in points with the same position
angle and height differing by two or less from the central pixel). However, there was
absolutely no difference between an image computed with the standard FNRGF and with
medians. The reason is that the radial decrease of brightness and contrast is so steep that
the values of the trigonometric polynomials in every point are lower than in the point
closer to the Sun by one pixel in height. Finally, I have not found any solution to the
problem. I only have an idea that a globally defined function instead of separate functions
in separate circles will help. This would be a completely different approach and I do not
know what the functions should look like and how they would be fitted to the data (not
only due to the enormous and unknown decrease of ).

The profiles in Figure show that with increasing height the image is more dom-
inated with noise. This is a general problem of solar corona images, the signal : noise
ratio decreases steeply with height. The next section brings a solution to this problem
integrated in the FNRGF.

6.1.3 Influence of additive noise

Every image produced from frames acquired wit a camera (i.e. not computer graphics)
contains additive noise, its amount depends on the temperature, lighting of the scene,
on the camera sensor and in the case of images composed from more images also on the
number of images used. If the image is composed from images with different exposure
settings, the amount of noise in different parts of the image is different. In TSE images
of the solar corona, most of the noise comes from the noise in the eclipse images, much
less from calibration images, because it is possible to take many calibration images after
the totality to reduce the noise in the calibration data.

The noise in the image increases the standard deviation of pixel values that is computed
as a part of the FNRGF computation. Each image f can be written as a sum of an ideal
noiseless image @ and the noise n, f(x,y) = i(z,y) +n(z,y). If we consider i and n as two
random variables, the mean of f is Ef = Ei+ En (both for the whole image and locally).
If the noise has normal distribution with zero mean (a standard assumption), the mean
of f equals to the mean of i and we can conclude that the mean of f is not affected by
the noise (in the ideal, asymptotic case).

If we further assume that ¢ and n are independent, the variance of f is the sum of
variances of ¢ and n, Df = i + Dn. The presence of additive noise with a constant
variance throughout the image causes a constant increase of the local variance used in
the FNRGF. Since the FNRGF divides by the local standard deviation, the division by
a higher number causes lower enhancement in the whole image. However, removing the
effect of additive noise by subtracting its variance before using the local standard deviation

in the FNRGF (as published in [aDMHI1]) is a misleading idea. If there is a part in the
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image that contains only noise, this idea of dividing by the local v/Di instead of v/Df
leads to infinite amplification in this part of the image (infinite amplification of noise).

The solution that is implemented in the FNRGF software is inspired by the method
used in the NAFE ([cDrul3|, Section [5.4). The problem is that extreme amplification in
low-contrast areas leads to loss of details in these parts of the image (because they will
be dominated by noise), in extreme cases the amplified noise has higher contrast than
the prominent structures in the inner corona causing the additive noise to set the range
of the image pixel values and decrease the contrast of these prominent structures in the
filtered image.

The solution is exactly the opposite — adding noise instead of subtracting. Artificial
noise that is independent from the image and the image noise, added to the original
image adds a constant to the local variances throughout the image and decreases the
relative contrast of the original noise. In parts of the image which are dominated by
noise, this decreases the amplification, i.e. decreases the influence of the noise. The noise
that is added has negligible effect in parts of the image with prominent structures since
the structures lead to high local variances. If the noise is added in the image, we need
a random generator and a new image matrix in the computer memory to keep both the
original image and the image with artificially added noise. A more efficient solution is

adding the variance of the artificial noise to the local variances only in the computation
of the FNRGF, i.e. Equations (6.5 - (6.7)) are changed to

2
Cro= Z S2(r) +V, (6.11)
S s=0
ns—1
2 g 21k(s + 1)
Cr,k: n—s SEZO Sg(?ﬂ)—f-VnCOSn—s, k= 1,2,...,w (612)
ns—1 1
2 2mk(s + =
) \/SE(T)+VnSin¥, k=1,2,...,w, (6.13)
S s=0 s

where V,, is the variance of the artificial noise. Decreasing the relative contrast of the
original noise and its amplification allows a bigger part of the dynamic range of the
filtered image for the contrast of the coronal details thus allowing higher attenuation
coefficients and higher enhancement of coronal structures.

The FNRGF software allows the user to set /V, — the standard deviation of the
artificial noise. Experiments with images taken in spectral lines of Fe ions during the 2010
TSE show that optimal values of 1/V,, are about 10 to 15 percent of the standard deviation
of the noise originally contained in the image. This standard deviation is estimated as
the median of standard deviations in all radial and angular segments that are close to
the outer edge of the processed corona. Pixels in the 10 outermost rings are taken into
account. Figure [6.5 shows an example of a histogram of the standard deviation of pixel
values in angular and radial segments used for the noise estimation. The number of 10
to 15 percent is in accordance with test made with the NAFE [cDrul3] on SDO AIA
data. Figure illustrates the effect of V,, on the filtered image. The decreasing amount
of noise in the filtered image with increasing V,, is clearly visible. Other parameters are
identical for all three images.
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Figure 6.5: An example of a histogram of standard deviations of pixel values in angular and
radial segments used for estimation of the standard deviation of noise in the original image.
The image used was an image of the Fe XI radiation as observed during the 2010 TSE by

the expedition of the Institute for Astronomy, University of Hawaii [aHDMT11]. There were 50
angular segments, 10 outermost circles at heights 4.362 to 4.425 Rowere used.

Figure 6.6: Illustration of the effect of artificially added noise in the FNRGF on a section of
the Fe XIV image taken during the 2010 TSE. /V,, was set to 0 (a), 7.5% of the noise in the
original image estimated from 2.618 to 2.68 R (b), and 15 % of the noise in the original image
(¢). The attenuation coefficients Ay were linearly decreasing with a step of 0.03, C with a step
of 0.04. The filtered image was mixed with the original image in the ratio of 7 : 1 after being
both of them normalized to (0, 1).

6.2 Results

6.2.1 Application to total solar eclipse observations

The FNRGF was originally designed for images of radiation of spectral lines taken during
total solar eclipses, which were also its first training data. Figure is a complete
collection of images of radiation of heavy ions as observed by the team of prof. Habbal
during the 2010 TSE. The images were processed with the latest version of the FNRGF
software with the highest possible number of segments ng and the highest possible order
of the trigonometric polynomial w, for most of the images, ny was set to 100 (101 was the
highest possible if we estimate the number of pixels in each of the segments in the smallest
circle in the corona to 10 by setting ng equal to one tenth of the circumference of this
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(e) (f)

Figure 6.7: A complete set of images of radiation of heavy ions as observed during the 2010 TSE
[aHDMTI]. (a) Fe IX 435.9nm, (b) Fe X 637.4nm, (c) Fe XI 789.2nm, (d) Fe XIII 1074.7 nm,
(e) Fe XIV 530.3nm, (f) Ni XV 670.2nm. All images in negative. To compare the results with
processing with the NRGF and ACHF see [aHDMT1].
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circle). For these images, the attenuation coefficients Ay were set to (1,0.97,0.94,...),
the coefficients Cy were (1,0.96,0.92,...). The images were processed up to the height
of 2.5 Rs. The only two images that were processed up to the height of only 2R are Fe
IX and Ni XV (Figures (a) and (f)), which also had lower number of segments (50) and
their trigonometric polynomials were attenuated more (Ags set to (1,0.95,0.90,...), Cis
to (1,0.94,0.88,...)). These images have lower signal to noise ratio, the Ni XV line is
relatively weak, in the case of Fe XIII it is caused by the low quantum efficiency of the
camera at this wavelength, only approximately 1.5 percent. That is why the structures
in these images cannot be enhanced as strongly as in the rest of the images.

The images are nowadays the best images showing the fine structure of the corona in
the spectral lines of heavy ions with radiative component. It is thanks to the high quality
of the data and the high adaptivity of the FNRGF and due to higher order terms and the
separate processing of each circle, which enables the filter to compensate for the enormous
brightness gradient and visualize structures further from the Sun.

For application of the FNRGF to a white-light image from a total solar eclipse see the
page [02| — Comparison with the ACHF in Section [6.2.3]

6.2.2 Application to space-based observations

The FNRGF is of course not limited to eclipse images. I show here how the application
of this tool significantly improves the depiction of coronal structures in coronagraph and
EUV images.

Figure[6.8shows the application of the FNRGF to an EUV observation from the SOHO
EIT. The EUV Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory
(SOHO) (see page [57| for more information) observes the chromosphere and low corona in
collisional emission lines of highly ionized iron. The 195 A bandpass is dominated by Fe
XIT at a formation temperature of around 1.5 MK, and in Figure [6.8] I present an image
taken in this bandpass about five minutes after the eclipse observations of the team of
prof. Habbal during the 2010 TSE. The outer part of the image was processed by means
of FNRGF to enhance details in the solar corona. Before applying the filter, impulse noise
(for example, faulty pixels, or hits of the sensor by high-energy particles) was filtered out
from the original image by means of a one-pass median filter. The image reveals fine-scale
structures in the innermost corona, as well as their connections to structures on the solar
disk, which were completely invisible in the original image.

Figure shows the application of the FNRGF to an observation by the Large Angle
and Spectrometric Coronagraph (LASCO) C2 coronagraph (see page [57] for more infor-
mation) near to the time of the eclipse observations of the team of prof. Habbal during the
2010 TSE. A significant amount of impulse noise was filtered from the image by means
of a one-pass median filter before application of the FNRGF and still some impulse noise
is visible in the images. Since the FNRGF subtracts the local average of brightness, it
enhances structures in darker polar regions, thus revealing polar plumes at all heights
within the field of view. These would otherwise remain invisible - even with NRGF pro-
cessing, which basically enhances the structures with the highest contrast at the given
height. Other interesting structural details are revealed in the equatorial streamer region.

Among successful applications of the FNRGF counts also visualization of the comet
C/2011 W3 (Lovejoy) in 171 A images acquired by the Atmospheric Imaging Assembly
aboard the Solar Dynamic Observatory (SDO AIA) (see page |59 for more information)
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Figure 6.8: (a) A SOHO EIT 195 A observation taken near to the time of the total solar eclipse
observation by the IfA UH team on July 11, 2010. The off-limb field of view is cropped to 1.3 Rg.
(b) The same image with off-limb regions processed by the FNRGF to enhance structural details.
The solar disk is taken from the original image. Figure prepared for [aDMHII], in negative.

shortly after the comet reached perihelion (Figure . Unfortunately, images of the
comet, approaching the Sun cannot be processed with the FNRGF, because the field of
view of the instrument was shifted so that it was centered to the comet, not to the Sun.
The FNRGF can only process pictures, where whole Sun-centered circles in the corona out
of the solar disk are in the inside the image, when the field of view was shifted, there was
no such circle. Images of the comet leaving the Sun have the standard centering, therefore
they can be processed. None of the filters in Chapter [5| was able to visualize the comet
and the surrounding corona in a similar way to show the tail of the comet enhancing the
field lines of the solar magnetic field. The high adaptivity of a high-order FNRGF allowed
the fine details to be visualized. The images are studied by astrophysicists and the results
are being prepared for publication.

6.2.3 Comparison with other methods
Comparison with the NRGF

The predecessor of the FNRGF, the Normalizing-radial-graded filter (NRGF) is described
in Section [5.3] Compared to the FNRGF, it has only one angular segment — the NRGF
processing subtracts the average and applies a constant contrast enhancement along Sun-
centered circles. Whilst this is effective in removing the average radial gradient in bright-
ness, it does not offer a way to enhance finer structural details in the tangential (i.e.
azimuthal) direction. For example, faint plumes in the coronal holes still appear faint
since they are contrast-enhanced alongside the very bright streamers. This deficiency is
overcome using the FNRGF, which is adaptive in the tangential direction as well as in
the radial direction. For example, plumes appear far more clearly in the FNRGF image
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(a) (b)

Figure 6.9: a) A LASCO/C2 white light brightness observation taken near to the time of the
total solar eclipse on July 11, 2010. The inner limit of the field of view is ~2.2 R, as dictated
by the occulting disk. The outer field of view extends to ~6 Rg at the center of the image edges.
(b) The same image processed by the FNRGF to enhance structural details. Regions outside the
annulus which was processed are set to white (black in the processed image). Figure prepared

for [aDMHII], in negative.

(a) 00:43:36 UTC (b) 00:45:12 UTC (c) 00:47:48 UTC

Figure 6.10: A series of images of the comet C/2011 W3 (Lovejoy) shortly after it reached
perihelion on 2011-12-16 in 171 A images as observed by the SDO AIA. Whole images were
processed with the FNRGF, only small sections are shown. Original images downloaded from

[dVso13], in negative.

compared to the NRGF. Compared to the NRGF, the FNRGF gives much more detailed
images, visualizes finer structures, but on the other hand, it is computationally slower
and requires user setting of parameters. The NRGF is automatic and fast.

The FNRGF software enables the user to process images with the NRGF, even though
it is an overkill. It requires setting ny, = l,w = 1,49 = Cy = 1,41 = C; = 0. The
mathematically logical solution would be w = 0, but the FNRGF software is built in a
way that it needs the trigonometric polynomial at least of order 1 (there is a for cycle for
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k from 1 to w).

Figure |6.11] compares the application of the NRGF and the FNRGF to the Fe XIV
530.3 nm observation of the team of prof. Habbal of the Institute for Astronomy, University
of Hawaii during the 2010 TSE. Figure (a) shows the application of the NRGF, Figure
(b) the FNRGF.

(a) (b)

Figure 6.11: The same original image processed by NRGF (a) and FNRGF (b). The original
image is an image of Fe XIV emission as observed by the team of prof. Habbal during the 2010
TSE. Figure (a) prepared for [aDMH11], Figure (b) is identical with Figure , in negative.

A complete set of observations in lines of heavy ions of the team of prof. Habbal from
the 2010 TSE processed with the NRGF can be found in [aHDMII] — compare with

Figure [6.7

Comparison with the ACHF

The Adaptive circular high-pass filter (ACHF) is described in Section It has a com-
pletely different principle from the FNRGF — it is based on adaptive convolution with
several kernels. What can be compared on the principles of the filters is the size of the
enhanced structures. Both filters have a method to control the size of the enhanced struc-
tures. In the ACHF, it is the parameters of the Gaussian functions used for the kernels,
in the FNRGF, it is the order of the trigonometric polynomial and the attenuation coef-
ficients. An important advantage of the ACHF compared to the FNRGF is that it can
process the whole image, the FNRGF' can only process pixels in M.

A comparison of an image processed with the ACHF and the FNRGF is in Figure[6.12]
Even with the highest possible setting of the order of the trigonometric polynomial, the
FNRGF cannot enhance as fine details as the ACHF does. The advantage of the FNRGF
compared to the ACHF is visualization of details in the corona at higher heights. As
the FNRGF processes each circle separately, it is more successful in compensating for the
high brightness gradient in the image.
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(a) (b)

Figure 6.12: The same original image processed by ACHF (a) and FNRGF (b). The original
image is an image of Fe XIV emission as observed by the team of prof. Habbal during the 2010
TSE. Figure (a) prepared for [aHDMT11], Figure (b) is identical with Figure , in negative.

A complete set of observations in lines of heavy ions of the team of prof. Habbal from
the 2010 TSE processed with the ACHF can be found in [aHDMI1I] — compare with
Figure [6.7]

Even though the FNRGF was designed for images with relatively low signal to noise
ratio, it can also be used for white-light images. The computation of Figure takes
only several seconds on current computers with the latest implementation of the FNRGF
even though the radius of the largest processed circle was about 900 pixels. This is at
least by an order of magnitude faster that enhancement of large-scale structures with the
ACHF. However, the FNRGF can never enhance as fine details as the ACHF. It is an
option to use the FNRGF for enhancement of the large-scale structures and the ACHF
for fine details and then compose the results. Same as in the line images, the advantage
of the FNRGF is higher contrast of the enhanced structures further from the Sun.

Comparison with the NAFE

The Noise adaptive fuzzy equalization method (NAFE) is described in Section . Its
target is visualization of the coronal structures on the solar disk, whereas the FNRGF
visualizes structures out of the solar disk. The NAFE processes the whole image, even
structures out of the solar disk. As the filters have completely different targets, they
cannot compete in the visualization of structures our of the solar disk as it is illustrated

in Figure 1.9 on page

6.2.4 Other results — graphs of local brightness and contrast

The computation process of the FNRGF gives us an opportunity to study the local bright-
ness and contrast of the image, either using the Fourier coefficients or directly the values
of averages and standard deviations of pixel values in angular and radial segments.
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(b)

Figure 6.13: A white-light image of the inner corona as observed during the 2010 TSE by the
team of prof. Habbal processed with the FNRGF (a) with 150 angular segments and attenuation
coefficients Ay set to (1,0.99,0.98,...), Ck to (1,0.98,0.96,...) and with the ACHF (b), both
images in negative. Image (b) downloaded from [dDrul0].
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Figure shows the dependence of coefficients ag and ¢y on height in an image of ra-
diation of the Fe XI (the processed Fe XI image is in Figure ) The coefficient ag is the
average brightness along a circle at one height. It should be similar to the Baumbach-Allen
formula (see Section and other measurements of the coronal brightness. However, it
is very complicated to compare two graphs, taking into account that there is no possibility
to use photometric units on the y-axis of the graph, there is no possibility to calibrate
it. It also has to be taken into account that the image is an observation of radiation of
one spectral line, it does not show the electron density as the Baumbach-Allen formula
does. The steep brightness gradient especially in the innermost corona is clearly visible
from the graph. The coefficient ¢ is the average standard deviation in each circle, which
means ‘average’ local contrast. I have not encountered a graph of the dependence of local
contrast on height in the solar corona earlier. As the graph shows, the local contrast de-
creases with height and the decrease is measurable even at the height of four solar radii.
The limit of this function is the standard deviation of noise in the image.

1000000 100000
—Average
—St. dev.
100000 \ - 10000
10000
1000
1000
100
100
10 10
1 1
1 2 3 4
Solar radii

Figure 6.14: Graphs of the Fourier coefficients ag (blue) and ¢o (red) as a function of height in
the corona in the Fe XI image (Figure ). The units on the y-axis do not have a physical
meaning.

The average pixel values and the standard deviations of pixel values in angular and
radial segments give us a tool to study the very local brightness and contrast. Figure[6.15
is a scatter plot of an average pixel value in an angular radial segment vs. the standard
deviation of pixel values in that segment as measured in the Fe XI image (Figure ) As
it can be seen, the polar areas have very low brightness and also contrast. The brightest
among the studied sections of the corona is the ‘hook’ in the south-east part of the corona,
which is a structure that remained in the corona after a passage of a coronal mass ejection
[aHDMT11]. The center of the hook is the only section in the studied corona where the
brightness continues its decrease while the local contrast increases at certain heights.

The FNRGF software allows the user to export the zeroth coefficients of the trigono-
metric polynomials (ag,cp) and average values and standard deviations in segments in
simple text files as a function of height. These can be studied with data analysis software
and various graphs can be drawn. It is a unique tool to study the photometric properties
of the corona in various types of images.
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Figure 6.15: Scatter plot of average pixel value in an angular radial segment vs. the standard
deviation of pixel values in that segment as measured in the Fe XI image (Figure ) These
values are measured for different position angles (different segment indexes), each position angle
marked with a different color.

6.3 Software implementation — FNRGF software

The FNRGF was first implemented in fall 2010 in the FNRGF software in Borland Delphi
and later also by Huw Morgan in IDL (a standard scientific programing language used in
astronomy, see http://www.exelisvis.com/ProductsServices/IDL.aspx for details)
as a part of the Solar Software CORIMP package. This has been completely recoded
since spring 2013. The new version is much faster, which allowed testing with various
parameter setting, which led to further improvements to the software and to the filter,
more detailed images showing fainter and smaller structures can be enhanced.

The application can be run in Microsoft Windows operating systems and in Windows
emulators (such as Wine for Linux).

This section describes the current implementation. There are many parameters in-
volved in the computation. This section gives an overview of all these parameters and to
each of them, it gives the denotation they have in the thesis, in the GUI and in the source
code of the software, their minimal and maximal values and any descriptions or comments
that might be related to the parameter. Section [6.3.1| contains the parameters of the in-
put file, Section contains the parameters of the filter itself and finally Section
contains the parameters of image display. Next, the principles of the implementation are
discussed in Section and a brief user guide is provided in Section [6.3.5]
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6.3.1 Parameters of the input file

File format: The FNRGF software supports BIPﬂ and FITS files. The format is recog-
nized by the file extension and checked by the structure of the file.

Data type of the image matrix in the file: Only word (16 bits per pixel/color com-
ponent, integer values 0,1, ..., 65 535) or double (64 bits per pixel/color component,
float) data types are supported. All computations with pixel values are performed
in double precision. Color images are converted to gray as follows: In the case of
BIF files, only the red component is used. For images of ions taken with on-line and
off-line filters, the red component contains the calibrated difference of the on-line
and off-line component. In the case of FITS files, the red, green, and blue color
components are averaged.

Position of the Sun, its radius are given in pixels as floats. The origin of the coor-
dinate system is in the top left corner of the image with the first pixel [0,0] in
accordance with Definition (FITS files are indexed from pixel [1, 1], which is
in the bottom left corner of the image, the FNRGF software transforms it to the
coordinate system of Definition [3.1).

Denotation in the thesis: O = [0,, 0,], no denotation for solar radius in pixels;
Name in GUI: SunX, SunY, SunR;

Keywords in BIF files: SUN X, SUN_Y, SUN_R;

Keywords in FITS files: CRPIX1, CRPIX2, R_SUN;

Name in source code: SunX, SunY, SunR.

Position of the obscuring disc, its radius are given in pixels as floats. The obscur-
ing disc is either the Moon (in the case of a total solar eclipse) or the obscuring disk
in a coronagraph. If any of these numbers are undefined (e.g. in images in the EUV
wavelength range), the corresponding parameter of the Sun is used instead.

Denotation in the thesis: none, the radius of the smallest circle lying completely
in the corona is r,;

Name in GUI: none, user does not have access to these values;

Keywords in BIF files: MOON_X, MOON_Y, MOON_R;

Keywords in FITS files: not specified, depend on the instrument and telescope.
These are specified under TELESCOP, INSTRUME, DETECTOR keywords.
For details see e.g.
http://lasco-www.nrl.navy.mil/index.php?p=content/keywords

Name in source code: MoonX, MoonY, MoonR.

Image width, height:

Denotation in the thesis: w,h;

!The BIF file is a very simple non-compressed file format used by the Adaptive Contrast Control
(ACC) software and many softwares used in our group for storing eclipse images. It contains a simple
case-insensitive header with basic information about the file (width, height, pixel format etc.) followed
by the image matrix. The header may also contain any additional information required by any software
that uses the files such as the position of the Sun and Moon in the image, coordinates of the observing
location and is human-readable like a text file. For more information about the format see the ACC user
guide [bDSDOS|. The attached CD contains a simple viewer of BIF files that T made.
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Name in GUI: Width, Height;

Keywords in BIF files: WIDTH, HEIGHT;
Keywords in FITS files: NAXIS1, NAXIS2;
Name in source code: ImgWidth, ImgHeight.

6.3.2 Parameters of the FNRGF

At the start of the application, some of the parameters are loaded from the application’s
ini file (if it exists — if it does not, application default values are used). The names of the
parameters in this section in the ini file are listed with the parameters. The ini file is the
file Settings.ini in the home directory of the application. Each parameter is saved after
one or more spaces after its identifier.

Number of angular segments:

Denotation in the thesis: ng;

Name in GUI: Seg.count;

Name in source code: SegmentCount;

Name in ini file: SegmentCount;

Minimal value: 1;

Maximal value: Round(277,/10);

Default value: 130, when image is loaded, the value may be lowered automatically
so that the ny < Round(27r,/10);

Maximal order of the trigonometric polynomial

Denotation in the thesis: w;

Name in GUI: none, displayed in the dialog for attenuation coefficient setting as
the maximal index of the attenuation coefficients that can be set;

Name in source code: FourOrder;

Name in ini file: not applicable, is a function of n, (see below), therefore storing
ng is sufficient;

Value: (n;—1)div2 - higher order is unacceptable, more Fourier coefficients would
be involved than the number of segments, lower order is achieved by setting
the attenuation coefficients;

Attenuation coefficients
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Denotation in the thesis: A;,Cy, £k =0,1,... w;

Name in GUI: Attenuation coefficients;

Name in source code: Atte;

Name in ini file: iAttek, where : = 0 for Ay and i = 1 for Cy;

Minimal value: 0;

Maximal value: 1;

Default values: (1,0,0,0,...) both for Ay and Cy;

Comment: The FNRGF software allows the user to set any values in (0,1). Ay =
Cp = 1 is advised. There are automatic tools to set the coefficients linearly
decreasing and to set them to zero starting with a specified k.
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Standard deviation of artificially added noise

Denotation in the thesis: /V,;

Name in GUI: Add. noise st. dev.;

Name in source code: Noise_AddVar as its variance;

Name in ini file: not saved in the ini file, completely different for different images;

Minimal value: 0;

Maximal value: not limited;

Default value: 0;

Comment: optimal values seem to be 10 — 15% of the standard deviation of the
noise in the original image, see Section for details;

Ratio which the filtered and original image are combined in (Equation (6.10])):

Denotation in the thesis: K, Ks;

Name in GUI: 1, Ratio (first normalized, see below);

Name in source code: 1, MixRatio;

Name in ini file: none, Ratio;

Minimal value: 1, must be a positive number;

Maximal value: 1, none;

Default value: 1, 1;

Comment: The FNRGF software first normalizes both the original and the filtered
image into the interval (0, 1) and then computes a linear combination f(z,y)+
Ksyg(x,y). In those parts of the image where the FNRGF cannot be / is not
computed (are not on a circle that lies completely in the corona), the resulting
values are set to zero. Lower values of Ky give a more realistic view of the
corona (interior is brighter), but they bring about lower contrast of visualized
structures. Common values are 10 or lower;

Lowest height in the corona that is processed can be set by the user in solar radii
with 0 in the center of the Sun.

Denotation in the thesis: none;

Name in GUI: InitR;

Name in source code: InitR;

Name in ini file: none, is specific for each image, therefore not save in the ini file;

Minimal value: Round(p(O,Oyr) + rar), where Oy, is the center of the occulter
(the Moon) and r); is the radius of the occulter, which is the radius in pixels
of the smallest circle in M, divided by SunR.

Maximal value: FinR;

Default value: equal to the minimal value;

Highest height in the corona that is processed can be set by the user in solar radii
with 0 in the center of the Sun.

Denotation in the thesis: none;

Name in GUI: FinR;

Name in source code: FinR;

Name in ini file: none, is specific for each image, therefore not save in the ini file;
Minimal value: InitR;
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Maximal value: The distance (in solar radii in the image) of the center of the Sun
in the image from the closest edge of the image, which is the radius in pixels
of the largest circle in My divided by SunR. If invalid pixels in the original
image have the pixel value equal to 0, the FNRGF software enables to set FinR
automatically to the smallest distance of an invalid pixel from the center of the
Sun in the image.

Default value: equal to the maximal value.

6.3.3 Parameters of image display

The parameters listed in this section are not a part of the FNRGF. They are necessary
for displaying the processed image. The images are also saved with the current settings
of these parameters.

Number of pixels to be underflown is the number of valid pixels whose values are
among the lowest and for better image viewing their value is set to zero. For more
information about the pixel value transformation for image viewing see the item
Gamma.

Denotation in the thesis: none;

Name in GUI: Under;

Name in source code: UnderFlow;

Name in ini file: UnderFlow;

Minimal value: 0;

Maximal value: Half of the number of pixels of the image;
Default value: 0;

Number of pixels to be overflown is the number of pixels whose values are among
the highest and for better image viewing their value is set to 255. For more informa-
tion about the pixel value transformation for image viewing see the item Gamma.

Denotation in the thesis: none;

Name in GUI: Over;

Name in source code: OverFlow;

Name in ini file: OverFlow;

Minimal value: 0;

Maximal value: Half of the number of pixels of the image;
Default value: 0;

Gamma transformation is a standard pixel value transformation that preserves the max-
imal and minimal pixel value while brightening or darkening the image. For details

see page 20 in Section [3.3]

Denotation in the thesis: none;

Name in GUI: Gamma;

Name in source code: Gamma;

Name in ini file: Gamma;

Allowed values: The definition formula allows any positive s, but only the fol-
lowing values are available to the user in a combobox: 0.35, 0.4, 0.45,...,0.95,
1, 2.2, 3.1, 4. Typical values used for filtered images are about 0.5-0.8, for the
original image it is 2.2.
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Default value: 1;
Comment: The pixel values of the displayed image are computed as follows:

e Max:=maximal value of the image to be displayed, Min:=minimal value
of the image to be displayed (numbers in double precision);

e Compute a histogram of 65 535 classes for the image to be displayed;

e If UnderFlow=0, then MinLevel:=0, else MinLevel is the pixel value (lower
bound) corresponding to the lowest histogram class that together with all
lower classes contains UnderFlow or more pixels.

e If OverFlow=0, then MaxLevel:=0, else MaxLevel is the pixel value (upper
bound) corresponding to the highest histogram class that together with all
higher classes contains OverFlow or more pixels.

e GammaTable is a look-up table that contains a conversion from {0, 1,...,
65 535} to {0,1,...,255} using a gamma transformation.

e Displayed pixel values (as numbers in {0, 1,...,255}) are computed as

t :=GammaTable”
[Round ((Value-MinLevel)/(MaxLevel-MinLevel)*65535)] ;

where Value is the pixel value of the image that is displayed and the t is
the value of the pixel on the screen.

6.3.4 Principles of the software implementation

Most of the user possibilities to affect the computation and display were listed in the
previous sections. In this section, I describe the principles how the computation is im-
plemented. I am not going to go in details, in how the code is organized in procedures,
functions and units. I will rather show how the computation is organized and how the
data are stored. The key idea is how the computation on circles is effectively done, how
the data are organized for the computation. The steps (1) to (5) in this section are
identical with steps in Section — The basic idea of the filter.

Some of the source codes below are not complete or contain different identifiers than in
the source code of the FNRGF software to keep this code here as simple and comprehensive
as possible. The purpose of the source codes in the thesis is to explain the principle of
the implementation.

(1) Only pixels in M can be processed. All image matrices in the software are rect-
angular double-precision arrays. I am using one-dimensional dynamic arrays of size
ImgWidth * ImgHeight, their pixels are addressed with indexes y*ImgWidth+j.
When the image is re-indexed to polar coordinates, all pixels out of M, have
R_cart=0 (see step (2)).

The user can further limit this set by the setting of InitR and FinR. The com-
putation of the FNRGF (the averages and standard deviations and their Fourier
approximations) is performed in a for cycle for r from Round(InitR*SunR) to

Round (FinR*Sun) (SunR is defined in Section|6.3.1} InitR and FinR in Section|6.3.2)).
This limitation appears in the source code as:

if (R_cart”[i]>Round(FinR*SunR)) or (R_cart”[i]<Round(InitR*SunR))
then Data”.Img"[i]:=0 // used in step (4) and (5)

where Data refers either to the filtered image or the final image.
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(2) Even for the computation of the FNRGF, the data are not transformed to the
heliocentric polar coordinate system, only a system of re-indexing is introduced. It
saves memory compared to transforming all image matrices to the polar coordinate
system. The auxiliary arrays used for re-indexing are identical for all image arrays
and require smaller data formats (single, word or integer). The arrays that are used
area

PixelsOnRadius — array of word, for each height it contains the number of pixels
on that circle.

Polar2Cart — array of integer, this is the core of re-indexing. It is an array starting
with all elements lying on the innermost circle of My, followed by all circles
on the next circle etc. ending with elements on the largest circle that lies
completely in the image. For each element, the value in the array is the index of
that element in the one-dimensional image array (implementing the Cartesian
image matrix). Array PixelsOnRadius is necessary for orientation in the array.

HeightToIndex — array of integer, for each height (i.e. circle) it says at which ele-
ment of Polar2Cart this height starts.

R_cart, Phi_cart — arrays of word, of single, Cartesian arrays, for each pixel [z, y],
which is y*ImgWidth+x in one-dimensional indexing of arrays, the arrays con-
tain the rounded distance from the center of the Sun in pixels (R_cart) or the
angle of that position angle in degrees (Phi_cart) respectively.

The image is never in fact split in angular segments in the sense that the segment
index would be stored somewhere. The segment number is computed from the
position angle of each pixel by the line

seg:=Trunc(Phi_Cart” [Polar2Cart” [HeightToIndex [r]+i]]/360*SegmentCount) ;

(3) In this step, the average values and standard deviations in each segment are com-
puted and then the Fourier coefficients for both trigonometric polynomials are com-
puted. The Fourier coefficients are stored in one dynamic array FourCoefArray con-
sisting of elements of type TFourCoef = array[TWhatSeries,TAB,TWhatOrder]
of double. Each element of FourCoefArray describes both trigonometric polyno-
mials at one height. TWhatSeries is an enumerated type saying if the trigonometric
polynomial is for averages (Ave) or standard deviations (Dev). TAB is an enumerated
type saying if the coeflicients are for a, , ¢, x (&) or by, d, (B)E] as shown in the
following table:

Ave | Dev

A Qrk | Crk
B br,kz dr,k

The value of type TWhatOrder is the order k of the Fourier coefficient.

Circles is processed circle-by-circle. The averages and standard deviations in each
segment are only used for the evaluation of the Fourier coefficients ]

2This means that elements br0,dro (which make no sense, are not defined) are stored too, but this is
a negligible loss of memory.

31t means that the values of the averages and standard deviations is stored just for the given circle
and then replaced in the memory by the values for the next circle.

100



(5)

6 FOURIER NORMALIZING-RADIAL-GRADED FILTER

The effective method of computation of the average and variance (or standard de-
viation) of a set of values uses the sum of the values and the sum of squares of the

values. The used formula can be found on the last line of formula (6.4)) on page [77]
This is implemented as:

for i:=0 to PixelsOnRadius[r]-1 do
begin
seg:=Trunc (Phi_Cart” [Polar2Cart” [HeightToIndex [r]+i]]/360*SegmentCount) ;
//the previous line implements a part of step (2)
SumX12[Ave,seg] :=SumX12[Ave,seg]+ Image” [Polar2Cart” [HeightToIndex[r]+il];
SumX12 [Dev, seg] :=SumX12[Dev,seg] +sqr (Image” [Polar2Cart” [HeightToIndex [r]+i]]);
Inc(N[segl);
end;

Then the sum of values and the sum of squares of values are converted to the
averages and standard deviations, the variance of the artificial noise is added:

for j:=0 to SegmentCount-1 do
begin
SumX12[Dev, j] :=sqrt (SumX12[Dev, j1/(SegmentN[j]-1)-(sqr(SumX12[Ave,jl)/
(SegmentN[j]-1)/SegmentN[j])+Noise_AddVar) ;
SumX12[Ave, j] :=SumX12[Ave, j]/SegmentN[j];
end;

The Fourier coefficients for the averages and standard deviations for the current

circle are computed according to formulae (6.1)-(6.3) and (6.11)-(6.13]) and the result

is stored in the suitable elements of the array FourCoefArray.

The fourth step, normalization, consists of evaluating the attenuated trigonometric
polynomial and subtracting the value of the polynomial for the average and then
dividing by the value of the polynomial for the standard deviation. In this step,
the for cycle over the array is two-dimensional, over the vertical and horizontal
coordinate. This is possible by use of the auxiliary arrays R_cart and Phi_cart,
which contain the rounded height and position angle in pixels.

for i:=0 to ImgWidth*ImgHeight-1 do
if (R_cart”[i]>Round(FinR*SunR)) or (R_cart”[i]<Round(InitR*SunR))
then MaskData”.Img~[i]:=0 // from step (1)
else
MaskData“.Img" [i] :=(ImgData”.Img" [i]
-PointAttenFourier (R_cart” [i]-RoundSunR,Phi_cart~ [i]*Pi/180,Ave))/
PointAttenFourier (R_cart”[i] -RoundSunR,Phi_cart~ [i]*Pi/180,Dev) ;

PointAttenFourier is a function which evaluates the attenuated trigonometric
polynomial at a specified height and position angle.

The final step is computing a linear combination of the original image and the
filtered image. This is done in a for cycle similar to the cycle in step (4).

6.3.5 FNRGF software user guide

The main window of the FNRGF software is shown in Figure [6.16f The basic steps
(image loading, FNRGF parameter setting, processing with the FNRGF, and saving) fol-
lowed with description of parameter setting, batch processing, and the tools for exporting

additional information are described in this section.
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6.3 SOFTWARE IMPLEMENTATION — FNRGF SOFTWARE

area 1

area 2

Idth= , Helght= leviation itrve noise estimate: m radil 2. 1ol
Sunx=7433, Sun'Y=7715, SunR=1615 %=593 Y=629 R=137SunR Phi=219.92"

area 3

Figure 6.16: A screenshot of the main window of the FNRGF software. The areas 1-3 are
referenced in the text for easier orientation.

Basic steps

Image loading. Menu item File / Open or button in area 2. Only BIF and FITS
files are supported.

Parameter setting. Optional step. Parameters of the FNRGF and of image display
are taken from the previously set values. If the application was just started, then
from the ini file. If such file does not exist, then default values are used. For more
information about setting these parameters see the paragraph FNRGF parameter
setting below.

Processing the image. The image is processed with the FNRGF with all currently set
parameters after a click on button #| in area 2 or menu item Tools / Compute
FNRGF.

File saving. The original image, the filtered image or the processed image can be dis-
played at any time (if these images exist) using the View menu. The displayed
image (with all display parameters applied) is saved using button Hl in area 2 or
the menu item File / Save current image. The available formats are BMP, PNG,
and BIF (gray-scale word). If the BIF format is chosen, the header of the file will
contain all information about the parameters of the processing and display.

FNRGF parameter setting

The parameters are described in Section [6.3.2l When a parameter is changed, its infor-
mation panel turns red and its color is changed to the default color when the processed
image is recomputed.

InitR (step 1). Set in a dialog that is opened after a click on the InitR information
panel in area 1 or on menu item Parameters / Initial Sun R. When the image file
is loaded, the value is automatically set to r,.
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FinR (step 1). Set in a dialog that is opened after a click on the FinR information
panel in area 1 or on menu item Parameters / Final Sun R. When the image file is
loaded, the value is automatically set to the radius of the largest circle in the image
(in solar radii). There is an option (menu item FNRGF / Ignore 0 pizel value) to
let the value set automatically to the radius of the largest circle in the corona that
does not contain zero values (used as invalid pixels in BIF files).

Segment count (step 2). Set in a dialog that is opened after a click on the Seg.count
information panel in area 1 or on menu item FNRGF / Segment count.

Standard deviation of artificially added noise (step 3). Set in a dialog that is
opened after a click on the Add. noise st. dev. information panel in area 1 or
on Menu item FNRGF / Add noise — st. deviation. The standard deviation of the
noise in the image can be measured by clicking on button @l in area 2 or menu item
Tools / Estimate noise / From outer ring. The estimation method is described in
Section [6.1.3] The estimated value is displayed in area 2.

Attenuation parameters (step 4). Set in a dialog that is opened after a click on but-
ton A4 in area 2 or on menu item FNRGF / Parameters / Attenuation coefficients.
The table in the dialog has columns numbers 0 to w. There is an option to set the
coefficients linearly decreasing from 1 by a set value for each step and an option to
set all coefficients to zero starting from a set order. The setting is done separately
for the averages and for the standard deviations.

Ratio original : filtered image (step 5). Set in a dialog that is opened after a click
on the Ratio information panel in area 1 or on menu item Ratio orig. : filtered.

Display parameter setting

The display parameters are the number of pixels that are underflown, i.e. set to black
(does not include those set to 0 due to their position closer to the Sun center than InitR
or further from the Sun center than FinR), the number of pixels that are overflown, i.e.
set to white, and Gamma. Their description can be found in Section [6.3.3] The number
of undeflown (overflown) pixels is set in a dialog that is opened after a click on the under
(over) information panel in area 1 or menu item View / Settings / Pizels underflown
(overflown). Gamma is set in a combobox in area 1.

Information panels

The set parameters are displayed in area 1. There are also information panels in areas
1 and 3 displaying information that the user cannot change. Some of them are static
(image Width and Height in area 3 and SunX, SunY, and SunR in area 3), some of them
are dynamic and change with the position of the mouse cursor in the image. These are
the pixel values of the original image (input) and the filtered image (mask) in area 1 and
Cartesian and heliocentric polar coordinates in area 3. The standard deviation of additive
noise estimated from the outer ring of 10 circles is also displayed in area 3 if this number
is available.
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Batch processing

The FNRGF software has a tool to process images in batch provided that all the images
have the same size, same file format and are located in the same directory. Moreover, all
parameters of the FNRGF and of display have to be identical. The processed files are
saved in the original directory with a suffix specified by the user. The dialog for batch
processing can be found in Figure It can be activated by clicking on button #lin

[} FNRGF batch processing = X
= -l Output file type
= 2 Fortable network graphics [*.png
(E= media
[ data Suffix of processed images
(7= Eclipse

= Lovejou-500-1714 -FHRGF

S _Al4_2011-12-15T. a The application wil use the parameters far

20 Aetivation Data image processing that are set for the image

=3 Proc that is currently loaded. Make sure uou have
tested the pracessing on a representative
image from the set of images.

Fink2

aialew]. 1714_2011-1216T2326231 %

aialev] 1714_2011-12-15T232535.1 [25
aialewl 171A_2011-12-15T232547. 13

aialevl 1714_2011-12-15T232559.1 % IFimage does not allow the above set value
alalew] 1714 2011-12-15T 2326111 of FinR, the highest possible value will be
alalewl] 1714_2011-12-15T 23262312
alalew] 1714_2011-12-15T 23263518
alalewl 1714 _2011-12-15T 23264712
alalewl 1714_2011-12-16T 23265915
aialewl. 1714_2011-1216T232711.1Z%
aialewl 171A4_2011-1216T2327231%
aialewl 1714_2011-1216T2327361 4
aialewl 171A4_2011-1216T232747 1%

used,

aialevl 1714 20111 2-15T232759 1% » % Chack befors unning |
PRt S gt [
FITS file [ fits] il
J @ Fun

Al files in the selected directary with the
zelected extenzion will be processed.

Figure 6.17: A screenshot of the dialog for FNRGF batch processing.

area 2 or the menu item FNRGF' / Batch processing. All parameters that are not set in
the dialog are taken from the application main window. Before running the batch, the
user has to press the Check before running button to let the application check that all
images have the same size. The batch is run after pressing the Run button.

Additional tools

The FNRGF application has the following tools for exporting the data for graphical and
statistical analysis.

Ring profile. A tool to export the pixel values along one circle at a user-selected height
(in solar radii) in a text file. The profile is computed from the currently displayed
image (original, filtered, processed) from its double-precision array. The option can
be found in menu 7ools and is active after the FNRGF is computed.

Zeroth Fourier coefficients. A tool to export the coefficients ag, cg for all circles in a
text file. It can be found in menu FNRGF.

Ave, Dev in segments. A tool to export the values of averages and standard deviations
in all segments at all heights in a text file. It can be found in menu FNRGF.
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Chapter 7

Conclusion

The doctoral thesis Application of Adaptive Filters in Processing of Solar Corona Images
gives a systematic overview of the solar corona imaging, about processing of acquired
images and image structure enhancement. The whole procedure of solar corona imaging
in visible and near infrared part of the spectrum during total solar eclipses is described
— starting from acquiring a suitable sequence of digital images and calibrating them over
registration and composing in one high-dynamic-range image to structure enhancement.
The necessary mathematical background is given, all steps of the processing sequence are
accompanied with mathematic reasoning. The aim of the thesis was proposing, imple-
menting and testing new filters suitable for images which contain more noise than regular
white-light compositions of total solar eclipse images, i.e. images from coronagraphs, from
cosmic probes in both visible and shorter-wavelength part of the spectrum and images
taken during total solar eclipses in specific spectral lines.

The filter described above was proposed, implemented, and tested on various types of
data. Many processed images can be found in the thesis. It is the Fourier-normalizing-
radial-graded filter (FNRGF'), which is based on the nowadays commonly used Norma-
lizing-radial-graded filter and has much higher adaptivity than this filter. The filter was
published in [aDMHI1] and after being fully recoded, the implementation was much faster
and enabled testing various parameters and improving the filter to enhance even finer
details than the original filter. The filter is a numerical method for enhancing coronal
structures in images both from total solar eclipses and space-born observations that is
based on approximating the local brightness and contrast with attenuated trigonometric
polynomials. The filter enables visualization of faint coronal structures in images with
relatively low signal to noise ratio while compensation both for the steep decrease of
brightness and of contrast in the corona in the radial direction and also for the local
changes of these quantities in the azimuthal direction. The processed images of the
radiation of heavy ions during the 2010 total solar eclipse are nowadays the most detailed
images showing inner corona in spectral lines with a radiative component in the visible
wavelength ranges.

The doctoral thesis fulfills most of the goals set in the treatise:

e The current version of the FNRGF compensates for adaptive noise contained in the
images, the compensation rate can be set by the user.

e The filter allows higher scalability, the order of the trigonometric polynomial can be
set indirectly by the user by setting the number of angular segments on each circle.
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The filter was newly implemented, the efficiency is by orders faster and enables the
user to try different settings of parameters in a short time.

I did not succeed finding a method to set the attenuation coefficients automatically.
The images are too complicated for that. There is no good way to quantify the
quality of the enhancement. However, there are tools that allow the user to set
the values of the coefficients easily and the computation is optimized so that the
re-computation after a change of attenuation coefficients is quick and the user can
optimize the settings visually. Furthermore, there is a possibility for unexperienced
users to choose a setting that gives results better than the NRGF and works for all
images, even though an experienced human user can find a better setting that gives
more detailed images.

In some cases, I was not successful in fulfilling the goals set in the treatise. These cases
are also documented in the thesis together with comments on how I tried to solve the
problems and why the solution did not work. Among them is improving the continuity
of the filter in radial direction and full automation of setting the attenuation coefficients.

Even though the filter was improved very much since its first publication, there are
still things that are worth experimenting. They will be a subject of further research.
Namely:
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The segments can be eliminated from the procedure. The values of all pixels on
one Sun-centered circle can be used instead of pixel value averages. The standard
deviations can be computed in segments that will be shifting along the circles.
Since there would be no segments, the order of the trigonometric polynomial could
be much higher, enabling higher adaptivity of the filter — even finer details could
be enhanced. On one hand, this would slow the procedure very much, on the other
hand, it would only slow the part that is computed once. Changing the attenuation
coeflicients would not require this part to be recomputed.

The standard deviation can be also computed after subtracting the Fourier ap-
proximation of pixel values (possibly of a lower order) from the pixel values. This
solution would reflect better the sense of the standard deviation, in the current
solution the averages and standard deviations remove partially the same feature,
the local changes of brightness. This would also slow the computation, since the
current version computes the averages in segments as by-products of the standard
deviation.

Smoothing the radial profile of the filter. One option is changing completely the
principle of the filter — to use one global function of two variables instead of separate
functions for each height. This would remove the artifacts similar to rings on a
gramophone disk that are visible in some of the processed images. A disadvantage of
the solution would probably be loosing the extreme adaptivity in the radial direction.

Further optimization of the computation — parallelization of processes.
Extending the computation to circles that do not lie completely in the image.

Applying a non-linear pixel value transformation on the original image before com-
puting its linear combination with the filtered image (gamma transformation, loga-
rithm, ...). The processed images would be more realistic in the sense that there



7 CONCLUSION

would be stronger feeling of the brightness decrease in the radial direction while
preserving the adaptivity for enhancing faint structures in the corona.

e Use suitable quantiles (their estimates) in stead of the estimate of mean to subtract
from the pixel values. This would subtract the background, e.g. the influence of the
sky and possibly the K-corona.
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Used symbols and abbreviations

The following tables contain the list of symbols and abbreviations throughout the thesis,
both ordered alphabetically (with a few exceptions). If any symbol or abbreviation used
in the text is missing, it is because it is used only locally in a short part of the thesis.

Abbreviations

ACHF Adaptive circular high-pass filter, see Section

ATA Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory,
see page @

C2, C3 second contact, third contact — the beginning and the end of the total solar
eclipse

DLSR digital single-lens reflex (camera)

EIT Extreme ultraviolet Imaging Telescope aboard the Solar and Heliospheric
Observatory, see page

EUV extreme ultra-violet (wavelength ranges)

FNRGF  Fourier normalizing-radial-graded filter, Chapter [6| and [aDMHTT]

GUI graphical user interface

LASCO Large Angle and Spectrometric Coronograph aboard the Solar and Helio-
spheric Observatory, see page

NAFE Noise adaptive fuzzy equalization, see Section and [cDrul3]

NRGF Normalizing-radial-graded filter, Sectio and [cMHWOG]

SDO Solar Dynamics Observatory, see page

SOHO Solar and Heliospheric Observatory, see page

TSE total solar eclipse
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USED SYMBOLS AND ABBREVIATIONS

Symbols

z* complex conjugate of number z

fx*xg convolution of functions f and g, see page 20 or the discrete periodic
convolution, see page

kb g coefficients of the Fourier series the average values in segments at radius
r are approximated with, see Section

A, Cy attenuation coefficients for the trigonometric polynomials for the aver-
ages and for the standard deviations, see Section m

C the set of complex numbers

Crkos Ay ke coefficients of the Fourier series the standard deviations in segments at
radius r are approximated with, see Section

D, D! discrete Fourier transform, inverse discrete Fourier transform, see page

f(z,y) a gray-scale image (if not stated otherwise), see page

F,F! Fourier transform, inverse Fourier transform, see page

h image height, see page

Jmz imaginary part of a complex number z

M domain of a gray-scale image as a function of two variables, see page

M, part of the domain of a gray-scale image that lies inside or on that largest
circle

M, part of M, that lies completely in the corona, i.e. from inside it starts with
the smallest circle that lies completely in the corona — My = {[r,¢] C
Mo, r <r,}

N number of angular segments, indexed by s, see Section m

N the set of numbers 1,2, 3, ...

Ny the set of numbers 0,1,2, ...

O = [0;,0,] coordinates of the center of the Sun in the image, O = [0,,0,] € (0, w) X
(0,h)

(r, ) polar coordinates of point (z,y) with origin in the center of the Sun in
the image, see Section

T radius in pixels of the smallest circle that lies completely in the corona

R image of a gray-scale image as a function of two variables, see page

Re solar radius (numbers of solar radii measured from the center of the Sun
if not stated otherwise)

Rez real part of a complex number z

Round rounding to the nearest integer

w image width, see page

7 the set of integers, i.e. numbers ..., —2,—-1,0,1,2,...

p(A, B) distance between points A and B, i.e. p is the Euclidean metric unless
stated otherwise

w order of the trigonometric polynomial in FNRGF, see Section m
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Appendix A
Enclosed CD

The CD enclosed to the thesis contains:
e The doctoral thesis in a pdf file with active cross-references.

e The FNRGF software with source codes and auxiliary files, FNRGF . exe is the appli-
cation, input data can be downloaded from [dVsol3].

e BlFview — a simple viewer of BIF files and some types of FITS files.
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