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Abstract
This work is focused on ab initio study of magnetism in three different materials, high en-
tropy alloy CoCrNi, pure 𝛼Mn and intermetallic compound YMn2. Ab initio methods allow
for easy access to materials properties without the need for experimental measurements. All
ab initio calculations in this work were done using the Vienna Ab initio Simulation Package
(VASP) and the projector augmented waves (PAW) method while the molecular dynamics
simulations were done in the program LAMMPS in combination with the GRACE univer-
sal machine learned potential. This work employed the ab initio methods to describe the
effect of short-range order on magnetic moments, charge transfer and the phase stability in
CoCrNi alloy. Some of these results were compared to one of the universal machine learned
potential to parse its performance. The relative phase stability was further evaluated by the
molecular dynamics simulation to obtain its temperature dependence. Furthermore, differ-
ent possible magnetic arrangements in the intermetallic compound YMn2 were calculated
in order to find the ground state magnetic arrangements. After successfully obtaining the
complicated magnetic structure of pure Mn by metaGGA functional, the same functional
was used on YMn2 as well in order to obtain experimental magnetic structures

Abstrakt
Tato práce se zabývá studiem magnetismu pomocí ab initio metod. Tyto metody umožňují
jednoduchý přístup k materiálovým vlastnostem bez nutnosti experimentálních měření. Ab
initio výpočty v této práci byly provedeny programem Vienna Ab initio Simulation Pack-
age (VASP) pomocí projektovaných přidružených vln (PAW) zatímco výpočty molekulové
dynamiky byly provedeny programem LAMMPS v kombinaci s univerzálním potenciálem
GRACE. Výpočty byly provedeny na třech materiálech, slitině s vysokou entropií CoCrNi,
intermetaliku YMn2 a základnímu alotropu prvku 𝛼Mn. Pro slitinu CoCrNi byly výpočty
použity k popisu vlivů uspořádání na krátkou vzdálenost na magnetické momenty a přenos
náboje v materiálu. Dále pak byly tyto získané výsledky provázány s fázovou stabilitou
této slitiny, jejíž teplotní závislost byla dále simulována pomocí molekulové dynamiky. Také
proběhlo porovnání získaných výsledků pomocí ab initio metod s univerzálními potenciály
k zjištění jejich přesnosti. Pro intermetalikum YMn2 byly výpočty provedeny pro několik
možných uspořádání magnetických momentů s cílem získat základní stav. Tyto výpočty
byly provedeny s nekolineárními magnetickými momenty. Po úspěšném popisu kompliko-
vané magnetické struktury čistého Mn pomoci metaGGA funkcionálu byl následně použit
na intermetalikum YMn2 k zisku experimentálně měřených magnetických struktur.
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1. Introduction
Magnetism and magnetic materials play a huge role in modern industry and life. For that
it is crucial to understand how can magnetism be influenced and employed. Here we focus
on magnetism related to the electrons and their spin moments. Magnetic materials can be
divided into basic categories based on the internal ordering of magnetic moments, e. g.
paramagnetic, ferromagnetic or antiferromagnetic. There are also diamagnetic materials
which, instead of having their own specific ordering, orient their magnetic moments to turn
against external applied field [1–3].

As we focus on magnetism related to electrons it can be easily accessible by the means of
ab initio calculation methods. These methods compute the electronic structure of materials
with no need for previous experimental data. The method of ab initio calculations used in
this work employed the density functional theory (DFT) which was proposed by Hohen-
berg, Kohn and Sham in the 1960s. DFT describes a multielectron system as a system
of non-interacting electrons employing several approximations. In particular, the electron
density of the multielectron system is equal to that of the non-interacting single-electron
system [4, 5]. Calculations in this work were done through the Viena Ab initio Simulation
Package (VASP) that allows to compute ferromagnetic and antiferromagnetic states. Differ-
ent noncollinear structures can be computed as well but with the increased computational
cost. Paramagnetic materials are usually approximated by a system of disordered collinear
states or, alternatively, by non-spin polarised calculations, in other words not considering
the spin matrix at all in the calculations and not splitting the electron density into spin-up
and spin-down parts [1, 2, 6–8].

This work focuses on two different materials, one of them is a high entropy alloy (HEA)
CoCrNi. Sometimes it is reffered to as a medium entropy alloy (MEA) because it is com-
posed of only 3 elements. This group of materials was first described in 2004 by two
groups independently [9, 10]. Since then, high entropy alloys have become quite popular in
research. They are related to the following four aspects:

• high configurational entropy,

• particular lattice distortion,

• sluggish diffusion,

• and so-called ”cocktail effect“.

Additionally, they should result in a solid solution and in a single phase structure with a
crystal lattice of fcc, bcc or hcp. There can be multi-phase alloys but these have been lately
termed as compositionally complex alloys (CCAs). The high configurational entropy, which
they received their name from, is tied to the fact that these alloys are based on equiatomic
compositions. This approach is completely different in comparison to classical alloys which
usually have one main element and other alloying elements in lesser concentrations. With
the equiatomic composition the configurational entropy term can be rewritten as

𝑆𝑐𝑜𝑛𝑓 = 𝑅 ln𝑛, (1.1)

where 𝑅 is the universal gas constant and 𝑛 is the number of elements. It describes the fact
that in solid solution these elements have high amount of possibilities to occupy different
crystallographic sites with no preferred sub-lattices as would be the case, for example in
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intermetallic compounds. Further research showed some preference in short-range order
between some elements in the alloys but to a lesser extent and still far away from element-
specific sub-lattices. One of those alloys is the CoCrNi alloy which exhibits a Cr ordering
trend tied to its magnetic properties, even though the alloy has Curie temperature around
4 K [11].

Interest in HEAs raises because of their usually superior mechanical properties gained
by the lattice distortions and cocktail effect. The distorted lattice stems from the differ-
ent atomic sizes and causes variations in the dislocation energy, shape and speed as the
dislocations move through the crystal. The CoCrNi alloy has some interesting mechanical
properties as well and these are tied to low stacking fault energy and easy twinning [12].

The sluggish diffusion principle is again caused by mixing many elements as the energies
related to atoms swapping their positions can be higher for some pairs and that is making
the diffusion slower. The last principle, the cocktail effect, describes any other property
that is gained by combining many different elements, be it twinning, thermal or electric
conductivities, catalysis effect or corrosion resistance of a specific alloy [13–15].

The second material in this work is the YMn2 intermetallic compound. It is an anti-
ferromagnet with Néel temperature around 100 K. At the Néel temperature it undergoes
a phase transformation to the paramagnetic state which is accompanied by an abnormal
volume change of 5%. The origin of this volume change is thought to be tied to the in-
crease of magnetic entropy with the increase of randomness in magnetic moments after
reaching the Néel temperature but it is still yet to be explained thoroughly. There are
also some conflicting reports on the magnetic structure of the alloy and it seems that it
may have very similar energetics for multiple antiferromagnetic and helimagnetic orderings
[16–18]. In 2020 Pulkkinen et al. [19] have successfully done calculations on pure 𝛼-Mn
via metaGGA functional. The 𝛼-Mn state is notorious for being unobtainable just by DFT
due to its complicated noncollinear magnetic structure consisting of 4 sublattices [20]. It
appears that metaGGA functionals can be up to the challenge.

Recently, machine learning has made its name in the field of materials simulations. Over
the last two years the machine learning potentials have reached DFT levels of accuracy[21].
What is maybe even more important, the so-called universal machine learned potentials
were introduced and now they can reproduce these levels of accuracy without the need for
the user to train their own potential or, at worst, learn just parts of their problem to do
so-called refitting [21].
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2. Ordering in alloys
2.1 Theory of ordering in alloys
In metals there are two typical atomic orderings that can be encountered - solid solutions
and intermetallic compounds. The basic difference is that solid solutions are usually com-
posed of atoms occupying lattice sites at random or with slight energetic preferences in
one of the components while intermetallic compounds occupy very specifically determined
positions in the crystal lattice while also having crystal structures different from the com-
ponents.

Solid solutions can be of different types with the two main being substitional solid
solutions and interstitial solid solutions. The substitional solid solution can be randomly
ordered, clusterd or ordered, all depending on which configuration minimizes the Gibbs free
energy. In long range ordered structures (for example CuAu) [22] the entropy of mixing is
extremely low and with increasing temperature it will cease the long range order. There is
a possibility to have a perfect mixing between two elements and thus have a solid solution
over the whole composition range. This is determined by the Hume-Rothery rules:

• the size factor - the difference of atomic sizes of the components must be within 15%,

• components have to have the same crystal structure,

• components have to have the same valence configurations,

• the electronegativity of components must be very similar.

These conditions must be met should the solid solution have unlimited solubility but are not
sufficient to guarantee it [23]. Similarly, interstitial solid solutions have to follow modified
rules [24]:

• atomic radius of the interstitial atom should be smaller than 59% of the matrix atom,

• interstitial and matrix atoms should have similar valency,

• atoms must have similar electronegativity.

Interstitial solid solutions can also have preferences for their positions as they may prefer
one element over the other in their nearest neighbours.

Figure 2.1: Examples of solid solutions with, from left side, ordered, random clustering,
random interstitial [22].

Intermetallic compounds are formed if the configuration with the lowest Gibbs free
energy has a completely different crystal lattice from the components [23, 24]. They can be

3



found in either stoichiometric, i. e. they have some type of AmBn formula, or with some
composition range allowed. The resulting structure is dependent on three factors, relative
atomic sizes, valency and electronegativity. If the atomic size ratio is in between 1.1 to 1.6
it is possible that a most efficiently filled structure for the atoms will be formed, for example
Laves phases based on the MgCu2, MgZn2, MgNi2 archetypes. Interstitial compounds are
possible as well for the correct size ratios, the archetypes are then MX, M2X, MX2, M6X
where M can be Zr, Ti, V, Cr etc. and X can be H, B, C, N, i.e. one of the few possible small
enough atoms [22, 23]. In this archetypes the M atoms form either cubic or hcp lattice and
the X atoms fit in between them. Hume-Rothery phases are on the other hand dependent
on the valence configurations of the components and can then form 𝛼 or 𝛽 phases. Valency
compounds depend on the electronegativity of the components, if they have large enough
electronegativity difference a ionic bound can be formed as the type of Mg2Sn [24].

Figure 2.2: Difference between intermetallics and solid solution alloy [24].

2.2 Warren-Cowley parameters
Parameter 𝛼 to describe the short-range order in alloys was first proposed in 1950 by J.M.
Cowley [25]. One of the possible ways to calculate the parameter to describe ordering
between two elements 𝑖 and 𝑗 is

𝛼𝑖𝑗 = 1− 𝑁𝑖𝑗

𝑥𝑗𝑁𝑖
, (2.1)

where 𝑁𝑖𝑗 is the number of j-type atoms around a particular i-type atom (i.e. the number
of bonds between element i and j), 𝑥𝑗 is the atomic concentration of element j and 𝑁𝑖

is the coordination number of the calculated cell for the i-type atom. This description
is not limited to alloys consisting of just two elements but basically any amount. It is
also beneficial for ab initio calculations as the amount of atoms of the elements in nearest
neighbour shells is easily accessible by the means of VASP output files or by using external
tools like aflow [26] or pymatgen [27].

For perfectly random alloy the parameter will result in zero 𝛼𝑖𝑗 = 0, other results will
indicate some tendency of elements to order. Negative values indicate clustering as the
bonds between the chosen elements are more prevalent in comparison to random order.
Positive values indicate preference in lower amount of bonds between chosen elements in
comparison to a randomly ordered structure.
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3. Ab initio calculations
The ab initio calculation methods allow us to compute material properties without any
experimental data. They are based on the basic principles of quantum mechanics and the
Schrödinger equation:

ℋ𝜓 = 𝜀𝜓. (3.1)
Writing down the components of the Hamiltonian it has the shape of:(︂

𝑉 (𝑟)− ℏ2

2𝑚𝑒
∇2

)︂
𝜓(𝑟) = 𝜀𝜓(𝑟) (3.2)

where 𝑉 is the potential acting on the electron, 𝑚𝑒 is the mass of electron, ℏ is the reduced
Planck constant and 𝜓(𝑟) are the wavefunctions [4]. However, solving it exactly for more
than one electron becomes too complex and thus some approximations have to be made.

First such approximation is the Born-Oppenheimer adiabatic approximation. This takes
into account the fact that protons have a mass approximately 1836 times higher than
electrons thus electrons are going to react instantly to any motion of the nucleus. With
this we can say that the protons are fixed in space while we solve the electronic structure
for this positions of ions. After the electronic structure is solved the ions can be moved and
new electronic structure is calculated for the new positions of ions.

3.1 Density Functional Theory

3.1.1 General description

Density Functional Theory (DFT) allows calculation of large systems by replacing the
many electron wavefunctions 𝜓(𝑟) with electron density 𝜌(𝑟). The electron density 𝜌(𝑟) for
a system of 𝑁𝑒𝑙 electrons is:

𝜌(𝑟) = 𝑁𝑒𝑙

∫︁
𝜓*(𝑟, 𝑟2, ..., 𝑟𝑁𝑒𝑙

)𝜓(𝑟, 𝑟2, ..., 𝑟𝑁𝑒𝑙
)𝑑𝑟2𝑑𝑟3...𝑑𝑟

3
𝑁𝑒𝑙
. (3.3)

The density is independent on which electrons are chosen to integrate over which follows
the required antisymmetry from Pauli principle (described further in Equation (3.30)).
Normalization of the wavefunction then gives the equation:∫︁

𝜌(𝑟)𝑑𝑟3 = 𝑁𝑒𝑙. (3.4)

Now the dependence is not on 3𝑁𝑒𝑙 parameters as for the original Schrödinger equation but
only on 3 paramaters of space, the 4th one can be spin if it is chosen to be included. Another
advantage in DFT is the fact that the Hamiltonian can be taken as a Hamiltonian of a single,
non-interacting electron with effective potential that replaces the external one. This was
all proposed by Hohenberg, Kohn and Sham in 1960s. The theory and the previously
mentioned advantages are based on two theorems [4, 5].

First theorem (existentional) is that the density 𝜌(𝑟) of the system of 𝑁𝑒𝑙 electrons
determines all the ground state electronic properties because the ground state wavefunction
Ψ0 is an unique functional of electron density. Further physical properties can then be
derived from this wavefunction, importantly, the ground state energy:

𝜀0[𝜌(𝑟)] = ⟨Ψ0| 𝒯 + 𝒱 + 𝒰 |Ψ0⟩ , (3.5)
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where 𝒯 and 𝒱 represent one electron kinetic and potential energy and 𝒰 is representing
the two-electron interactions [1, 4, 5].

Second theorem (variational) states that the energy for the ground state density is lower
than for any other state. It means that the energy is inherently dependent on the electronic
density and thus can be minimized by its variations. The only problem that arises is the
fact that the correct density functional is unknown and thus it must be reached by further
approximations [1, 4, 28].

The new Hamiltonian is now a function of electron density instead [4]:

⟨𝜓|ℋ |𝜓⟩ = 𝑇𝑒𝑙 + 𝑉𝑍𝑍 + 𝑉𝑒𝑥𝑡 + 𝑉𝑒𝑒, (3.6)

where the first term represents the kinetic energy of electrons, second term represents
interactions between atomic nuclei, third term is interactions between electrons and external
potential and last term is the interaction between electrons themselves composed of the
Coulomb interactions between the electrons and the exchange correlation effects. The
Coulomb interactions can be written in forms of Hartree energy as:

𝜀𝐻(𝜌) =
1

2

∫︁
𝜌(𝑟)𝑉𝐻(𝑟)𝑑𝑟, (3.7)

where 𝑉𝐻 is the Hartree potential [4].

𝑉𝐻(𝑟) =
𝜕𝜀𝐻
𝜕𝜌

. (3.8)

Another part of the Kohn Sham theory is taking the electrons as non-interacting particles.
The exchange-correlation term now becomes:

𝜀𝑥𝑐 = ̃︁𝜀𝑥𝑐 + (𝑇𝑒𝑙 − 𝑇𝑠), (3.9)

where it now includes the kinetic energy of non-interacting electrons 𝑇𝑠 and the correction
that handles the interaction 𝑇𝑒𝑙. This can be again defined as an exchange-correlation
potential [4, 5]:

𝑉𝑥𝑐 =
𝜕𝜀𝑥𝑐
𝜕𝜌

. (3.10)

With this all the potentials influencing the electron density can be taken into one variable
- the effective potential [4, 28]:

𝑉𝑒𝑓𝑓 (𝑟, 𝜌) = 𝑉𝐻(𝑟, 𝜌) + 𝑉𝑥𝑐(𝑟, 𝜌) + 𝑉𝑒𝑥𝑡(𝑟). (3.11)

This allows to use a single-electron Hamiltonian ℋ𝑠𝑝 subjected to the same effective poten-
tial as the multielectron system.

ℋ𝑠𝑝 = 𝑉𝑒𝑓𝑓 (𝑟, 𝜌) +
𝑝2

2𝑚𝑒
, (3.12)

or in the terms of wavefunctions as:

𝐻𝑠𝑝𝜓𝑖(𝑟) = [−∇2 + 𝑉𝑒𝑓𝑓 (𝑟)]𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟), (3.13)

with the one particle density as [28]:

𝜌(𝑟) =

𝑁∑︁
𝑖=1

|𝜓𝑖(𝑟)|2. (3.14)
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3.1.2 Exchange-correlation functionals

However, there is still problem with the exact energy functional, specifically its exchange-
correlation part, which is not known. This is practically solved by approximations [5, 28].
There are multiple approaches of approximating the exchange-correlation and they can be
described via the so called Jacob’s ladder [29].

Figure 3.1: Jacob’s Ladder for Exchange-Correlation Functionals [30].

Here, from top to bottom, the approaches are ordered from the most robust and com-
putationally expensive to the simplest. First and simplest method found at the bottom of
Jacob’s ladder is the local-density approximation (LDA):

𝐸𝑥𝑐[𝜌] =

∫︁
𝜌(𝑟)𝜀𝑥𝑐[𝜌(𝑟)]𝑑

3𝑟, (3.15)

where 𝜀𝑥𝑐[𝜌(𝑟)] is the exchange-correlation energy per particle in a homogenous system of
electron density 𝜌(𝑟) [28]. It takes the solids as being close to the limit of the homogenous
electron gas (nearly-free-electron metals) and thus takes the effects of exchange and corre-
lation as local [5]. The local spin density approximation (LSDA) is received by including
spin and the integral in Equation (3.15) changes to incorporate the densities of spin-up
and spin-down electrons and the vector of magnetization density [1]. Because of its local
character this method fails for systems with strong density gradients, for example it can
not predict the correct ground state of Fe and can not be applied to systems containing
elements with f-electron shells [28].

Improvement of LDA is the generalized gradient approximation (GGA) which takes into
account not just the value of the local density but its gradient as well. The generalized
form of the functional is:

𝐸𝑥𝑐[𝑛↑, 𝑛↓] =

∫︁
𝜀𝑥𝑐(𝑛↑, 𝑛↓, |∇𝑛↑|, |∇𝑛↓|, ...)𝑑3𝑟𝑛(𝑟)

=

∫︁
𝜀ℎ𝑜𝑚𝑥 (𝑛)𝐹𝑥𝑐(𝑛↑, 𝑛↓, |∇𝑛↑|, |∇𝑛↓|, ...)𝑑3𝑟𝑛(𝑟),

(3.16)
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where 𝐹𝑥𝑐 is a dimensionless parameter and 𝜀ℎ𝑜𝑚𝑥 is the exchange energy of unpolarised
electron gas. The multiple commonly used functionals like Perdew, Burke and Ernzerhof
(PBE), Perdew and Wang (PW91) or Lee-Yang-Parr (LYP) differ in the parametrization
of the 𝐹𝑥𝑐 parameter [5].

Another step on the ladder is the meta-GGA functional. The addition here is the ki-
netic energy density or its Laplacian. Furthermore, there are other conditions - exact con-
straints, which these meta-GGAs should satisfy. Out of the available approaches Strongly
Constrained and Appropriately Normed (SCAN) functional [31] is the first that satisfies
all of them. Following its success regularized versions of SCAN were created to improve
numerical stability. These are the rSCAN, r2SCAN and r4SCAN where r2SCAN is taken as
the best performing. The semilocal approximation to the exact functional in meta-GGAs
are as follows:

𝐸𝑥𝑐[𝑛↑, 𝑛↓] =

∫︁
𝑑3 𝑟 𝑛 𝜖𝑥𝑐(𝑛↑, 𝑛↓,∇𝑛↑,∇𝑛↓, 𝜏↑, 𝜏↓), (3.17)

where the 𝜏𝜎 are the kinetic energy densities which are implicitly nonlocal functionals of
the electron spin densities. Kinetic energy density is not represented directly but instead
by a dimensionless variable 𝛼. Reason for this variable is to eliminate order-of-limits that
caused lower accuracy for the first few meta-GGA functionals like TPSS. This dimensionless
variable is defined as:

𝛼 =
(𝜏 − 𝜏𝑊 )

𝜏𝑢𝑛𝑖𝑓
> 0, (3.18)

where 𝜏𝑊 = |∇𝑛|2/8𝑛 is the single orbital limit of the kinetic energy density and 𝜏𝑢𝑛𝑖𝑓 =
(3/10)(3𝜋2)(2/3)𝑛(5/3) is the uniform density limit [31]. This 𝛼 can recognize if there is a
covalent single bond (𝛼 = 0), metallic bond (𝛼 ≈ 1) and weak bond (𝛼 >> 1). The SCAN
pseudopotential then uses these 𝛼 parameters to tune the performance in accordance with
local chemical environment as well as satisfying constraints that would be contradictory to
the GGA. On the other hand, this parameter can introduce certain numerical sensitivities
as well as introducing issues with quite high requirements for integration grids in localized
basis function based codes [32]. To eliminate the grid sensitivity there were proposed
regularizations of the functional [32, 33] which introduce modified, regularized, parameter
𝛼:

𝛼̃ =
𝜏 − 𝜏𝑊

𝜏𝑢𝑛𝑖𝑓 + 𝜏𝑟
, (3.19)

𝛼′ =
𝛼̃3

𝛼̃2 + 𝛼𝑟
. (3.20)

In the modification the 𝜏𝑟 = 10−4 and 𝛼𝑟 = 10−3 are regularization constants for rSCAN
[33]. This introduced some issues with accuracy as the 𝛼′ does not retain correct uniform
and nonuniform scaling properties of the original 𝛼 as well as the correct uniform density
limit [32]. The regularized-restored SCAN (r2SCAN) takes the same approach but at the
same time restores the uniformity of the original SCAN via the modified parameter 𝛼:

𝛼 =
𝜏 − 𝜏𝑊

𝜏𝑢𝑛𝑖𝑓 + 𝜂𝜏𝑊
, (3.21)

where 𝜂 = 10−3 is the regularization parameter. Regularization in this way leads to the
same range for 𝛼 as was for the original 𝛼. Another change is for the exchange part by,
again, adding dependence on the 𝜂 parameter to eliminate errors for 𝛼 → 1. This way
r2SCAN recovers one of the exact constraints lost by previous regularization in rSCAN.
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The so called ”deorbitalization“ of the previously mentioned metaGGA functionals turns
the exact orbital-dependent non-local Kohn-Sham kinetic energy density into a Laplacian.
This will speed up the calculations while simultaneously sacrificing some of the accuracy
except for one area - magnetism. The deorbitalized versions usually lead to improved
accuracy in magnetic moments of metals, where the non-locality of 𝜏 as the semi-local
approximations to valence-valence exchange correlation may be better to represent metallic
screening [32].

The first deorbitalized functional was the Lee-Yang-Parr (LYP) correlation functional
with mixed success [34]. The strategy to deorbitalize a functional is to take the orbital
dependent parameter and approximate it via orbital independent kinetic energy density
functional with proper parametrization [34]. Four kinetic energy density functionals were
chosen by Mejia-Rodriguez [34] by how well they reproduced Pauli term obtained via accu-
rate Hartree-Fock methods, they are as follows: Perdew and Constantin metaGGA (PC),
Cancio and Redd mGGA (CRloc), Thomas-Fermi plus Laplacian mGGA (TFLreg) and
modified VT84F plus Laplacian (MVT84F+L), which was discarded because of its difficult
integration of the density overlap region indicator. The remaining three kinetic energy
density functionals had their parameters reoptimized against the first 18 neutral atoms test
set [34]. The SCAN functional has the orbital dependence in the parameter 𝛼 for both
exchange and correlation making it easier to deorbitalize than others (like TPSS) which
can have multiple [34]. The 𝛼 is included in the exchange enhancement factor 𝐹𝑆𝐶𝐴𝑁

𝑥 (𝑠, 𝛼)
as

𝑓𝑥(𝛼) = 𝑒−𝑐1𝑥𝛼/(1−𝛼)𝜃(1− 𝛼)− 𝑑𝑥𝑒
𝑐2𝑥/(1−𝛼)𝜃(𝛼− 1), (3.22)

and
ℎ1𝑥(𝑠, 𝛼) = 1 +

𝑘1𝑋
𝑘1 + 𝑥

, (3.23)

𝑥 = 𝜇𝐺𝐸𝑠
2

[︃
1 +

𝑏4𝑠
2

𝜇𝐺𝐸
𝑒−𝑏4𝑠2/𝜇𝐺𝐸

]︃
+

[︂
𝑏1𝑠

2 + 𝑏2(1− 𝛼)𝑒−𝑏3(1−𝛼)2
]︂2
, (3.24)

and in the correlation part through

𝑓𝑐(𝛼) = 𝑒−𝑐1𝑐𝛼/(1−𝛼)𝜃(1− 𝛼)− 𝑑𝑐𝑒
𝑐2𝑐/(1−𝛼)𝜃(𝑎− 1). (3.25)

The chosen kinetic energy density functional for SCAN-L was the reoptimized PC (PCopt)
reaching very similar values for mean errors as the original SCAN functional [34]. In their
publication, Mejia-Rodriguez and Trickey [34] mention the basis set dependence of both
SCAN and the new SCAN-L but since their usage of local basis set code it is an expected
behaviour of these functionals [32].

Further up along the Jacob ladder are the hybrids. These take into account the exact
Hartree exchange energy and thus their computational cost gets quite high. They combine
Hartree-Fock and Kohn-Sham theories in variable ways. The exchange correlation energy
is defined as:

𝐸ℎ𝑦𝑏𝑟𝑖𝑑
𝑥𝑐 = 𝛼𝐸𝐻𝐹

𝑥 + (1− 𝛼)𝐸𝐺𝐺𝐴
𝑥 + 𝐸𝐺𝐺𝐴

𝑐 , (3.26)

where 𝛼 determines the relative amount of Hartree-Fock and semilocal exchange [8]. The
functionals are further divided into categories in accordance to the interelectronic range at
which are the Hartree-Fock exchange is applied. Full range are so called unscreened, short
range and long range - screened or range separated hybrids.
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3.1.3 Wavefunction expansion

The basis functions into which the Kohn-Sham wavefunctions are expanded are periodic in
crystals and thus this expansion can be done by using plane waves. Further, strong Coulomb
potentials and tightly bound core electrons are replaced by an effective potential acting on
the valence electrons. These so-called pseudopotentials and related pseudo-wavefunctions
of valence electrons have the big advantage of reducing the number of computed electrons
to the electronic valence states which, in contrast to core electrons, are responsible for most
of chemical bonds. The original idea was the orthogonalized plane wave method (OPW)
that was further reformulated to projector augmented wave (PAW) method for DFT usage.
The valence wavefunctions are expressed as a sum of smooth functions plus core functions
with generalized eigenvalue equations in both OPW and PAW methods. The PAW method
then retains the entire set of all-electron core functions instead of just empirical values as
is the case in OPW method. The matrix elements involving core functions are treated as
muffin-tin spheres [5].

3.2 Magnetism in DFT

3.2.1 General definitions

Magnetism of material in DFT originates primarily from electrons and it is defined by their
magnetic moment. To describe the magnetic moments the unit of Bohr magneton (𝜇𝐵) is
used and defined as:

𝜇𝐵 =
𝑒ℏ
2𝑚𝑒

, (3.27)

and 1𝜇𝐵 = 9.274×10−24 Am2. The magnetic moment is created by two distinct sources, the
orbital motion of electron and its spin. These are coupled by the spin-orbit interaction which
is heavily dependent on the proton number and thus scales into an important contributor
for heavy elements and their inner electron shells. The interaction in terms of the single
electron Hamiltonian results in:

ℋ𝑠𝑜 = 𝜆𝑙̂ · 𝑠, (3.28)

where 𝜆 is the spin-orbit coupling energy and 𝑙̂ and 𝑠 are dimensionless operators [1]. With
magnetic systems having a small number of basis states v each denoted by a different
magnetic quantum number 𝑚𝑖 they can then be described by a hermitan matrices 𝑣 × 𝑣
which for angular momentum with quantum number ℓ becomes 𝑣 = (2ℓ+ 1). Similarly for
spin with the basis states 𝑚𝑠 = ±1

2 the spin angular momentum is then represented by
a 2 × 2 spin operator 𝑠 with three components 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧. The 𝑠𝑧 is the diagonal part
with eigenvalues 1

2ℏ and −1
2ℏ representing 𝑚𝑠 = ±1

2 . The two possible states of electron

are then defined as spin-up or spin-down eigenvalues of the matrix 𝑠𝑧 =

[︂
1 0
0 −1

]︂
1
2ℏ.

The eigenvectors of the matrices are known as spinors. By multiplying the 𝑠 by 2/ℏ a
dimensionless operator 𝜎̂ is gained with components known as the Pauli spin matrices [1]

𝜎̂ =

(︃[︂
0 1
1 0

]︂
,

[︂
0 −𝑖
𝑖 0

]︂
,

[︂
1 0
0 −1

]︂)︃
. (3.29)

To describe spin-orbit interaction in many electron system the term for total angular
momentum 𝐽 needs to be introduced. It is formed by coupling 𝐿 and 𝑆 as 𝐽 = 𝐿+𝑆, the
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𝐿 and 𝑆 are sums of the orbital angular momentum ℓ and spin angular momentum 𝑠 [1,
2]. In multielectron systems the electrons occupy the different shells according to Hund’s
rules, first to maximize 𝑆, then maximizing 𝐿 and, finally, coupling 𝐿 and 𝑆 to form 𝐽 [1].

3.2.2 Magnetic orderings

For DFT the collinear magnetic strucutres are paramagnetic, ferromagnetic and antifer-
romagnetic. Ferromagnetism describes material with all the magnetic moments oriented
in one direction raising spontaneous magnetization. Antiferromagnetism has at least two
sublattices with equal magnetic moments oriented in opossite directions thus giving no
magnetization as a whole.

Paramagnetism relates to a material in which the magnetic moments are oriented ran-
domly unless some external magnetic field is present. When external field is applied the
moments allign themselves along the axis of applied field. To calculate paramagnetic states
in DFT multiple approaches can be used. It is possible to use non-spin-polarised calcu-
lations but this approach can lead to erorrs in the resulting electronic structure or even
incorrect predictions of the ground states [35]. It is possible to use the SQS method de-
scribed in Section 3.5 to simulate paramagnetic states. This will create a pseudo-random
distribution of equal number of antiparallel magnetic moments resulting in zero magnetiza-
tion for the whole cell, similarly to antiferromagnetism but without specific sublattices for
magnetic moment orientations. It is the best to use a set of these SQS spin configurations
and then average over the results instead of using only one distribution as a model for
paramagnetic state. It is even possible to use collinear spins for these simulations and just
assign spin-up and spin-down values. Similar method is the magnetic sampling method,
where the non-collinear magnetism can be used and multiple cells with randomly oriented
moments are calculated and averaged over. Both of these approaches can be quite time and
computational resource consuming for many systems as the number of random configura-
tions can be quite high for disordered alloys (for example the HEAs) or large calculation cell
with low symmetry. They can get even more computationally expensive when one wants
to calculate the temperature dependencies and include lattice vibrations, which are quite
important for the paramagnetic ordering [35–37].

The determination whether the moments will allign ferromagnetically or antiferromag-
netically is tied to their exchange interactions with each other. The most basic interaction is
the magnetic dipolar interaction [2] where two magnetic dipoles 𝜇1 and 𝜇2 are separated by
𝑟. The dipole interaction is quite weak as for two moments of size 1𝜇𝐵 separated by 𝑟 = 1
Å, the energy is in order of 10−23 J, thus can not in itself be responsible for the ordering
but can have an effect at mK temperatures [1]. Stronger exchange interactions come from
the electrostatic interactions arising from charges of the same sign being close together or
far apart. There is thus energy difference between ↑𝑖↑𝑗 and ↑𝑖↓𝑗 configurations of the spins
of neighbouring atoms. Electrons are indistinguishable so exchange of two electrons must
give the same electron density. Because electrons are fermions the only solution to comply
with Pauli principle is for the total wave function of the two electrons to be antisymmetric

Ψ(1, 2) = −Ψ(2, 1). (3.30)

The wavefunction is a product of functions of space coordinates 𝜑(𝑟1, 𝑟2) and spin coordi-
nates 𝜒(𝑠1, 𝑠2). To satisfy Equation (3.30) the symmetric space functions must multiply the
anti-symmetric spin function and vice versa. If the two electrons have parallel spin (spin
triplet state) there is a low chance of finding them close to each other as electrons with
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parallel spins will avoid each other. If the two electrons have antiparallel spins there is a
higher probability of finding them in the same place as the spatial part of the wave function
is symmetric under exchange of electrons. Energies of the two states can be evaluated from
the Hamiltonian as [1]

ℋ = −2𝒥𝑆1 · 𝑆2, (3.31)

where 𝒥 is the exchange constant, often divided by Boltzmann constant and expressed in
Kelvins, and 𝑆1 and 𝑆2 are spin operators similar to Pauli spin matrices. If the exchange
constant 𝒥 > 0 it indicates a ferromagnetic interaction, if 𝒥 < 0 it indicates antiferromag-
netic interaction [1, 2]. This Hamiltonian needs to be generalised if there is a lattice to sum
over all pairs of atoms on lattice sites 𝑖, 𝑗 [1]

ℋ = −2
∑︁
𝑖>𝑗

𝒥𝑖𝑗𝑆𝑖 · 𝑆𝑗 . (3.32)

In this Hamiltonian this sum is simplified to only count the first nearest neighbour inter-
actions and there is only single exchange constant 𝒥 [1, 2]. There are different types of
exchange interactions. Superexchange can be found in insulators where the electrons are
localized and it is an indirect interaction between non-neighbouring magnetic ions mediated
by a non-magnetic ion between them. The origin of this interaction is the kinetic energy
advantage for antiferromagnetism [2]. Antisymmetric exchange appears in materials with
low symmetry and the weak antisymmetric coupling is called Dzyaloshinski-Moriya inter-
action. It requires the ions to be already coupled by superexchange. The coupled spins
are perpendicular to each other and it can result in antiferromagnetic ordering but with
moments pushed away by 1° from their axis resulting in a weak ferromagnetic moment.
Direct exchange occurs between electrons on two neighbouring magnetic ions. It depends
on how the bands are filled, if they are roughly half-filled the interaction will be antiferro-
magnetic, if they are nearly filled or nearly empty they will allign ferromagnetically, this
describes for example Cr and Mn as antiferromagnetic and Fe and Co as ferromagnetic [1].
On-site interactions between conduction electrons and core spins causes 𝑠−𝑑 coupling. This
introduces ferromagnetic coupling between ions [1]. Double exchange happens between 3𝑑
ions which have both localized and delocalized 𝑑 electrons. Compared to ferromagnetic
superexchange, a mixed valence configurations are required but they are restricted to two
configurations. It is ferromagnetic because the transfer is zero when the ions on adjacent
sites are antiparallel [1, 2].

Ferromagnetism manifests itself by a spontaneous magnetization 𝑀𝑠 that is present
even in the absence of applied magnetic field, i. e. all the magnetic moments are aligned
along the same direction. Ferromagnetism is due to the exchange interactions with positive
exchange constants. Heating above a certain temperature - Curie temperature - results in
collapse of the spontaneous magnetization. Spontaneous magnetization can be described
by the Stoner criterion. The narrower the bands in metal, the higher the susceptibility as
it depends on the density of states at Fermi level. If the density of states is high enough,
the metal will become ferromagnetic as it is energetically favourable for the bands to split.
The criterion for ferromagnetism, i. e. when the susceptibility diverges spontaneously, is
then defined from the density of states per atom for each spin state

ℐ𝒩 ↑,↓(𝜀𝐹 ) > 1, (3.33)

where ℐ is the Stoner exchange parameter and it is equal to 1 eV for 3𝑑 ferromagnets. Only
Fe, Co and Ni satisfy the Stoner criterion [1–3, 5]. Satisfying the Stoner criterion means
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(a) Weak ferromagnet density of states [1] (b) Strong ferromagnet density of states [1]

Figure 3.2: Difference between density of states spiltting in strong and weak ferromagnet.

that the spin-up 𝑑-subbands get pushed completely below Fermi level and the spin-down
stay above, thus creating a split for a strong ferromagnet. Otherwise the ferromagent will
be weak. This means that out of the three elements satisfying the Stoner criterion Co and
Ni are strong ferromagnet while Fe is a weak one.

Antiferromagnetism describes a situation of two equal magnetic moments but in two
opposite directions. It is caused by the negative exchange 𝒥 < 0 and, similarly to ferro-
magnetism, disappears at a specific temperature - Néel temperatrue 𝑇𝑁 . There can be a
specific case of two unequal opposite magnetic sublattices in which one has a larger mag-
netic moment than the other, this specific case is called ferrimagnetism. Thus ferrimagnets
are technically antiferromagnets with two equal sublattices with unequal magnetic moments
[1, 2]. Their net magnetization is nonzero and it falls to zero at critical temperature 𝑇𝐶
which is called ferrimagnetic Néel temperature but it is also possible that the two sublat-
tice magnetizations cancel each other exactly at a different temperature - the compensation
temperature 𝑇𝑐𝑜𝑚𝑝 [1].

In some crystal structures (tetragonal, fcc etc.) it may be impossible for magnetic mo-
ments to allign parallely perfectly [1–3]. A consequence of that is the change in exchange
energy and that the Néel temperature is much lower than the paramagnetic Curie temper-
ature 𝜃𝑝 (𝑇𝑁 << |𝜃𝑝|). It also increases the ground state degeneracy and promotes forming
of non-collinear spin structures to relieve the frustration. For simple cubic crystal lattice
there are four possible antiferromagnetic orderings and the frustrations usually depend on
the formula unit and supercell of the compound. The G ordering is unfrustrated, A and C
are frustrated and F ordering is ferromagnetic.

For bcc structure either nearest neighbour or next-nearest neighbour interactions can
be completely satisfied and there is no frustration as these are two decoupled simple cubic
antiferromagnetic structures, they are denoted as type I and type II respectively. If both
antiferromagnetic interactions are present some frustrations will arise. In fcc the nearest
neighbour exchange is always frustrated. It divides into four simple cubic sublattices each
with their own magnetizations, each atom then has 4 nearest neighbours on each of the
other three sublattices. This results in three possible modes, alternating ferromagnetic
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Figure 3.3: Possible antiferromagnetic orderings in simple cubic lattice [1].

planes [0 0 1] is type I, alternating ferromagnetic planes [1 1 1] is type II and alternating
antiferromagnetic planes [0 0 1] is type III[1].

Figure 3.4: Antiferromagnetic modes for fcc [1].

3.3 Vienna Ab initio Simulation Package (VASP)

For all calculations in this work the program Vienna Ab initio Simulation Package (VASP)
developed by the team of prof. Georg Kresse was used. The package uses the variational
theorem of the DFT described in previous section to find the ground state of the electron
density given by the input crystal structure. Solution of the Kohn-Sham equations is
iterative by a self-consistent cycle (Figure 3.5). It begins with creation of some initial
electron density given by the crystal structure, elements on the sites and pseudopotentials
used. Then it evaluates the effective potential 𝑉𝑒𝑓𝑓 affecting the electrons and solves the
Kohn-Sham equations. From the received wavefunctions it derives the total energy and
forces acting on ions. The process is then repeated to minimize the energy until a given
convergency criterion for either forces or energy is reached. To reach the energy minimum
different algorithms can be used, an example in the self-consistency diagram is denoted
as RMM-DIIS and Davidson (Figure 3.5). These differ in treatment of orbitals and their
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optimization and are not the only ones available in VASP, just two of the most commonly
used [8]. The forces are approximated by the means of Hellman-Feynman theorem as a
derivation of the total energy [6, 7].

Figure 3.5: Self consistency cycle of VASP [8].

3.3.1 Modelling magnetism in VASP

Magnetism in VASP can be treated as a collinear or non-collinear. The spin degrees of
freedom can be treated in a spin-polarised calculation by using the setting ISPIN = 2 in
the INCAR input file. As in standard DFT the electron has an effective potential applied
to it but now it has an additional spin component 𝜎:

𝑉 𝜎
𝑒𝑓𝑓 = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉 𝜎

𝑥𝑐(𝑟). (3.34)
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The exchange-correlation potential is now:

𝑉 𝜎
𝑥𝑐 =

𝜕𝐸𝑥𝑐[𝑛↑, 𝑛↓]

𝜕𝑛𝜎
, (3.35)

where 𝑛𝜎 is the spin charge density. This spin dependent effective potential then goes into
the Kohn-Sham equations and leads to a spin-dependent solutions:[︂

−∇2
𝑛 + 𝑉𝑒𝑓𝑓↑(𝑟𝑛)

]︂
𝜓↑𝑛 = 𝜀𝑛𝜓↑𝑛,[︂

−∇2
𝑛 + 𝑉𝑒𝑓𝑓↓(𝑟𝑛)

]︂
𝜓↓𝑛 = 𝜀𝑛𝜓↓𝑛.

(3.36)

Then the self-consistent cycle continues with updated spin-up and spin-down charge densi-
ties until desired convergence criterion is reached [8].

Non-collinear magnetism requires additional extension to the Hohenberg-Kohn-Sham
DFT by, again, introducing an additional spin index. The non-collinear magnetism is
turned on by the tag LNONCOLLINEAR = .TRUE. in the INCAR file and this time running
a different executable - vasp_ncl. The spin-density matrix is introduced as:

𝑛𝜎′,𝜎(𝑟) =

𝑁∑︁
𝑖=1

𝜓𝜎′𝑛(𝑟)𝜓
⋆
𝜎𝑛(𝑟), (3.37)

and the effective potential becomes a 2× 2 matrix:

𝑣𝑒𝑓𝑓𝜎′𝜎 (𝑟) = 𝑣𝑒𝑥𝑡𝜎′𝜎(𝑟) + 𝛿𝜎′𝜎𝑣
𝐻(𝑟) + 𝑣𝑥𝑐𝜎′𝜎(𝑟). (3.38)

The received Kohn-Sham equations now have KS orbitals with two-component spinors:∑︁
𝜎

[︂
−𝛿𝜎′𝜎∇2

𝑛 + 𝑉 𝜎′𝜎
𝑒𝑓𝑓 (𝑟𝑛)

]︂
𝜓𝜎𝑛 = 𝜀𝜎′𝑛𝜓𝜎′𝑛. (3.39)

Noncollinear magnetism allows for simulation of spin-orbit coupling. In VASP the setting
is LSORBIT = .TRUE. and it couples the spin degrees of freedom with the lattice degrees of
freedom by adding:

𝐻𝛼𝛽
𝑠𝑜𝑐 ∝ 𝜎 ·𝐿, (3.40)

to the Hamiltonian. This couples the Pauli-spin operator 𝜎 with the angular momentum
operator 𝐿. The spin-orbit coupling (soc) in VASP is treated predominantly in the close
vicinity of nuclei and thus is calculated only for the all-electron one-center contributions:

𝐸𝑖𝑗
𝑠𝑜𝑐 = 𝛿𝑅𝑖𝑅𝑗𝛿𝑙𝑖𝑙𝑗

∑︁
𝑛𝑘

𝑤𝑘𝑓𝑛𝑘
∑︁
𝛼𝛽

⟨𝜓𝛼
𝑛𝑘|𝑝𝑖⟩ ⟨𝜑𝑖|𝐻𝛼𝛽

𝑠𝑜𝑐 |𝜑𝑗⟩ ⟨𝑝𝑗 |𝜓
𝛽
𝑛𝑘⟩ , (3.41)

where 𝜑𝑖(𝑟) = 𝑅𝑖(|𝑟−𝑅𝑖|)𝑌𝑙𝑖𝑚𝑗
(𝜃, 𝜙) are the partial waves of an atom centered at 𝑅𝑖, and

𝜓𝛼
𝑛𝑘 is the spinor component 𝛼 =↑, ↓ of the pseudo-orbital with band index 𝑛 and Bloch

vector 𝑘, 𝑓𝑛𝑘 are the Fermi weights and 𝑤𝑘 are the 𝑘-weights [8].
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3.3.2 Implementation and performance of metaGGA functionals

Usage of metaGGA functionals in the VASP code is quite straightforward. The kinetic
energy density values are written in the pseudopotential POTCAR files, one only needs to
check if the selected pseudopotential actually contains them, as some older versions do not.
It is also recommended to use the pseudopotentials that treat more of the core states as
the valence to obtain results comparable to all electron codes [8]. Then the basic setup is
as simple as including new tags in the INCAR file - METAGGA = desired functional and
LASPH = .TRUE. which introduces aspherical contributions to the PAW one-centre terms
[8]. Furthermore, including the kinetic energy density in the density mixer helps with
convergence so it is convenient to be turned on via LMIXTAU = .TRUE. in the INCAR file.

In reality moving from PBE GGA to metaGGA can get a bit complicated. Convergency
tests should be done again and usually the cutoff energy needed for metaGGAs is higher
than for PBE. The integration grid over the Brillouin zone is even more important, especially
for the r2SCAN. Even though the original numerical instability for SCAN was observed in
local basis set codes [32], in VASP - a plane wave basis set code, there is still requirement of a
slightly higher amount of k-points compared to the value expected from PBE. Interestingly,
we have found the r2SCAN to be more sensitive to the settings of k-points than the SCAN,
a complete opposite behaviour than observed in the local basis set codes [32]. If there
are convergency issues, one can also set a different electronic minimalization algorithm -
the conjugate gradient for orbitals (setting ALGO = All in the INCAR file) instead of the
default blocked-Davidson-iteration scheme.

Multiple studies evaluated the performance of the metaGGAs, mostly focusing on the
SCAN family of functionals [38–43]. Both SCAN and r2SCAN promise improvements over
GGA thanks to lower self-interaction errors by reproducing the Couloumb interaction with
higher accuracy [43]. SCAN also correctly represents the H2 molecule binding curve bet-
ter than Hartree-Fock methods [43]. Kingsbury et al. [38] examined the performance of
SCAN and r2SCAN functionals via automated workflow in which the structures were pre-
relaxed with GGA PBE and PBEsol and then subsequently run with SCAN and r2SCAN
respectively, all within the VASP code (Figure 3.6). In their calculations they have used
pseudopotentials from the dataset version 54, which is not the most recent. The recom-
mended version is 64 released in September 2024 [7]. Their results show a decrease of mean
average error (MAE) for mixing enthalpies for both metaGGAs in comparison to PBEsol as
well as for band gaps. For volumes, the MAE is mostly the same, sometimes slightly larger
than in PBEsol [38]. In terms of computational performance, even though their analysis
was skewed by their methodology of pre-relaxation with GGA and different settings for
different calculations [38], the r2SCAN had better performance, not only in computational
hours but also in completion rate. Both of the metaGGAs took 4 times more CPU hours
in comparison to PBEsol [38].

Liu et al. [39] looked at the performance of r2SCAN for 3d, 4d and 5d transition metals
employing VASP and quasiharmonic approximation in combination with Phonopy [44, 45]
(Figure 3.8). They have encountered an issue with simulation of Co hcp crystal lattice, the
phonon calculations result in imaginary modes, thus unstable, while for the fcc Co showed
no imaginary modes. For volumes, it improves the accuracy over the PBE GGA functional,
and, in some cases, the PBEsol as well, the MEA and mean percentage error (MAPE)
is then slightly better 0.42% for r2SCAN and -2.59% for PBEsol [39]. This goes slightly
against the result of previously mentioned publication by Kingsbury et al. [38], where the
volumes were very similar but their data set was much larger. Generally, in the work of
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Figure 3.6: MAEs for a) mixing enthalpy, b) volumes and c) band gap energies for r2SCAN,
SCAN and PBEsol taken from [38]

Figure 3.7: Comparison between mixing enthalpy obtained by experiment, SCAN and PBE
for binary intermetallics taken from [40], first panel on the left are intermetallics without
transition metals (TM), second is with one transition metal ion, third one (CF-CF) are
with completely filled d-shell, CF-PF is completely filled and partially filled d-shell for the
transition metal and PF-PF is partially filled for both ions in the intermetallic. Values
m and 𝜎 denote the mean and standard deviation from experimental mixing enthalpy
respectively.

Liu et al. [39], the r2SCAN mostly improves or is at least as good as PBEsol. Similarly,
Sokolovskiy et al. [40] in their review looked at the mixing enthalpy of binary intermetallics
reported in literature (Figure 3.7). For mixing enthalpies without transition metals SCAN
improves the results over PBE by a quite large margin, for strongly coupled compounds it
reaches only 1.4% compared to 13.5% by PBE. For weakly coupled compounds the situation
is very similar, the improvement here comes from the van der Waals chemical bond that
SCAN can distinguish and include [40]. In addition, SCAN also predicts some intermetallics
correctly stable while PBE does not [40]. For compounds containing one transition metal
ion there is improvement over PBE as well, especially for strongly bound cases (similar
results were reported in [39]), where the error is smaller by 94% [40]. Weakly coupled
systems show some improvement, which Liu et al. [39] did not observe. For the last three
panels, SCAN improves the results for both completely filled d-shells but the case is much
more complicated for partially filled d-shell by one or both ions [40].

One of the very important areas that metaGGAs propose improvements are the band
gap energies. These are severely underestimated in GGAs due to the self-interaction errors
and derivative discontinuity raising from the difference of Kohn-Sham band gap 𝐸𝐾𝑆

𝐺 and
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Figure 3.8: Percentage errors of equillibrium volume obtained via r2SCAN and other func-
tionals [39].

the fundamental gap 𝐸𝐺 of system with N electrons. Kohn-Sham band gap is a difference
between the eigenvalues of conduction band minimum (CBM) and valence band maximum
(VBM) while the fundamental band gap is difference between ionization potential 𝐼 and
electron affinity 𝐴.

𝐸𝐺 = 𝐼 −𝐴, (3.42)

𝐸𝐾𝑆
𝐺 = 𝜖𝐶𝐵𝑀 − 𝜖𝑉 𝐵𝑀 (3.43)

𝐸𝐺 = 𝐸𝐾𝑆
𝐺 +∆𝑥𝑐. (3.44)

Functionals LDA and GGA have the derivative discontinuity ∆𝑥𝑐 equal to zero. The metaG-
GAs depend on orbitals via generalized Kohn-Sham formalism, as described in previous
section Section 3.1.2, which is a direct approximation to the fundamental gap 𝐸𝐺. Borlido
et al. [46] performed a thorough investigation of many different functionals via VASP to
obtain the band gap accuracies. In their results they have shown most metaGGAs out-
perform GGAs in band gap accuracy. The SCAN functional has approximately halved
the errors that PBEsol and PBE have and thus eliminating some of the underestimations.
Most importantly, SCAN and r2SCAN have fixed the errors of PBE in Ge, where PBE
predicts negative band gap, a semimetal with inverted band ordering. Using the metaG-
GAs the band gap is now correctly ordered but still with underestimated values (0.385eV
in comparison to experimental 0.74eV) [43]. Looking at the band gap values specifically in
Figure 3.11, SCAN potential shows general increase of the band gap energy and opens some
band gaps without the need of + U correction [43] but it is still not enough to exactly repro-
duce the experimental gap, although the potential for further improvements of metaGGAs
is shown by the TASK functional, which was constructed specifically to represent the band
gaps correctly and achieves very good fit [47] Figure 3.11.

Description of magnetism via metaGGAs is of a complicated nature [40], for some
materials they provide improved results over PBE but for others PBE results are closer to
the experiments. For Fe SCAN overestimates the magnetic moment by 17% while PBE
underestimates it only by 2%. For Co the overestimation is 8%, which is closer to the
experimental value than PBE [40]. On the other hand, SCAN successfully predicts the
correct non-collinear magnetic configuration of 𝛼-Mn where GGA fails completely [19].
Despite that, the magnetic moments are overestimated and it was shown that SCAN prefers
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Figure 3.9: MAPE of r2SCAN taken from [39].

structures with large magnetic moments so there may be some exaggerated corrections in
SCAN [40]. For Heusler alloys, SCAN overestimates the magnetic moment heavily for alloys
with full metallic band structures, see Figure 3.12, while for the half-metallic Heusler alloys
it mostly underestimates the magnetic moment [40].

Mejia-Rodriguez and Trickey examined the performance of deorbitalized functional
SCAN-L in VASP [42] and found that the deorbitalized version reproduces the values ob-
tained by the orbital-dependent version (SCAN) with basically no difference. Cohesive
energies are reproduced similarly well [42], as well as the ground state configuration for all
elements except Hf where one has to pre-relax with PBE and then continue with SCAN-L,
probably because of the occupancies near the Fermi level of f elements [34]. Even for band
gaps, the representation of the values from SCAN works well with only a few cases be-
ing slightly more underestimated [42]. Computational performance wise, Mejia-Rodriguez
and Trickey [42] did calculations on diamond carbon in VASP with the same settings and
SCAN-L is approximately 20% faster than the original SCAN. Tran et al. [41] did a similar
study but in an all-electron code Wien2k. For strongly bound solids they have not found
any difference to the results by Mejia-Rodriguez and Trickey [42] but for weakly bound rare
gasses, the cohesive energy changes quite a lot [41]. Sokolovskiy et al. [40] reported on a
machine-learned deorbitalized SCAN but it results in slightly worse performance than the
analytical deorbitalization done by Mejia-Rodrigez and Trickey [34].
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Figure 3.10: MAPE and MAE in determination of band gaps taken from [46]

Figure 3.11: Comparison between TASK, SCAN metaGGAs and PBE functional for band
gap accuracy taken from [47]
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Figure 3.12: Comparison between SCAN and PBE in accuracy of magnetic moment pre-
diction, taken from [40]
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3.4 Thermodynamics for modelling

3.4.1 General definitions

Even though the DFT works in principle at T = 0 K, thermodynamics is still important to
use. The first law of thermodynamics describes the change in internal energy based on the
heat 𝑄 absorbed or released as well as work 𝑊 done as:

𝑑𝑈 = 𝛿𝑄− 𝛿𝑊, (3.45)

where 𝑈 refers to the internal energy of the system [1, 22]. The heat can be related to the
entropy 𝑆. For reversible transformation the heat is 𝑑𝑄 = 𝑇𝑑𝑆, where 𝑇 is the temperature.
Systems are usually defined by fixing one of the variables out of the (𝑇, 𝑆) and (𝑝, 𝑉 ) pairs
thus getting four different thermodynamic properties - internal energy 𝑈(𝑉, 𝑆), enthalpy
𝐻(𝑝, 𝑆), Helmholtz free energy 𝐹 (𝑉, 𝑇 ) and Gibbs free energy 𝐺(𝑝, 𝑇 ) all in units of J/m3.
Entropy is given by second law of thermodynamics and for every reversible transformation
it is:

𝑑𝑆 =
1

𝑇
𝜕𝑄. (3.46)

For irreversible transformations the entropy will always increase [22]. Entropy has many
contributions like configurational, excess, magnetic and others. One definition for entropy
can be tied to a probability 𝑝𝑖 of a system occupying a state 𝑖 with energy 𝐸𝑖 at temperature
𝑇 [2]:

𝑆 = −𝑘𝐵
∑︁
𝑖

𝑝𝑖 ln 𝑝𝑖, (3.47)

where 𝑘𝐵 is the Boltzmann constant. The variation of entropy with temperature can be
taken from the specific heat 𝐶𝑝 from classical thermodynamics:

𝑆 =

∫︁ 𝑇

0

𝐶𝑝

𝑇
𝑑𝑇. (3.48)

For the other two properties for fixed temperature 𝐹 = 𝑈 − 𝑇𝑆 and 𝐺 = 𝐹 − 𝑇𝑆 thus:

𝑑𝐹 = −𝑝𝑑𝑉 − 𝑆𝑑𝑇, (3.49)

𝑑𝐺 = 𝑉 𝑑𝑝− 𝑆𝑑𝑇. (3.50)

The value of total energy received from a DFT calculation has little physical meaning
and it is thus needed to get either the formation energy 𝐸𝐹 or the mixing enthalpy 𝐻𝑚𝑖𝑥.
The formation energy of compound is obtained from the total energy of the compound AB
and then the total energy of the elements A and B in their ground state. The formation
energy is obtained in eV per atom as:

𝐸𝐹,𝐴𝐵 =
𝐸𝑡𝑜𝑡,𝐴𝐵 − (𝑛𝐴𝐸𝑡𝑜𝑡,𝐴 + 𝑛𝐵𝐸𝑡𝑜𝑡,𝐵)

𝑛𝐴𝐵
, (3.51)

where the 𝑛𝐴 and 𝑛𝐵 is the amount of atoms of their respective elements in the computa-
tional cell of the studied material, 𝑛𝐴𝐵 is the total amount of atoms of all elements in the
computational cell of the studied material and 𝐸𝑡𝑜𝑡,𝐴𝐵, 𝐸𝑡𝑜𝑡𝐴 , 𝐸𝑡𝑜𝑡𝐵 are the total energies
of the compound, ground states of elements A and B respectively. For more elements the
approach is the same with additional terms corresponding to the remaining elements. Even
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though formation energy and mixing enthalpy can have different physical and chemical
meaning, the approach to gain the mixing enthalpy from the DFT results is completely the
same (at T = 0 K) with the difference of units as the enthalpy is in kJ/mol:

𝐻𝐴𝐵
𝑚𝑖𝑥 = 𝐸𝐹,𝐴𝐵 ×𝑁𝐴 × 1.602176565× 10−22, (3.52)

where 𝑁𝐴 is the Avogadro number (6.023 · 1023) and the last term is the conversion from
eV to kJ.

3.5 Modelling different levels of ordering
One of the most popular methods to simulate disordered alloys for ab initio calculations is
the Special Quasirandom Structures (SQS) method. It imitates the random distributions
of atoms on crystallographic sites, while it is also possible to choose selective occupation
of the lattice sites. As the interactions between the distant neighbours generally influence
the total energy less than between the close neighbours, the SQS principle works on close
reproduction of random network for the first few neighbour shells only [48].

Figure 3.13: Different values of Warren Cowley parameters and what they represent in the
structure [49].

To efficiently generate structures that are compositionally complex, like high entropy
alloys, a tool sqsgenerator made by D. Gehringer et al. [49] was used. It uses the
Warren-Cowley parameter (Equation (2.1)) to describe the nearest neighbour for a selected
lattice sites, although the formula is used in generalized form taking into account multiple
coordination shells [49]

𝛼𝑖
𝜉𝜂(𝜎) = 1−

𝑁 𝑖
𝜉𝜂(𝜎)

𝑁𝑀 𝑖𝑥𝜉𝑥𝜂
. (3.53)

Here 𝑁𝜉𝜂 is the number of 𝜉− 𝜂 pairs, 𝑁 is the number of lattice sites, 𝑀 is the number of
neighbours for the given site, the value of the index 𝑖 indicates the nearest neighbour shell
(i. e. 1 - first, 2 - second etc.) and the 𝑥𝜉, 𝑥𝜂 are the mole fractions of their specific element
in index. The parameters are then mapped to a function which is used for minimization
either by employing the Monte Carlo approach or a systematic approach, which generates
permutation of small cells.
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3.6 Molecular Dynamics

3.6.1 General definition

Molecular dynamics (MD) is a method to simulate materials at finite temperatures with all
atoms in motion. The simulation boxes now usually include many more atoms than what
DFT can simulate. It treats the atomic nuclei as classical Newtonian particles [4] instead
of quantum particles which is the case in DFT. They follow the equation of motion:

𝑚𝛼𝑟𝛼 = 𝑓𝛼, 𝛼 = 1, ..., 𝑁, (3.54)

where 𝑁 is the number of atoms, 𝑚𝛼 is the mass of atom 𝛼, 𝑟𝛼 is the position of atom 𝛼
and 𝑓𝛼 is the time-dependent force acting on atom 𝛼 due to external effects and neighbours
[4]. This time dependence enforces a limit of maximal simulation time, usually in units of
nanoseconds [4, 50, 51]. The forces are given by [4]:

𝑓𝛼 = − 𝜕𝒱
𝜕𝑟𝛼

, (3.55)

where 𝒱 is the potential energy of the system that consists of internal part reflecting the
interactions between atoms making up the system and external part reflecting external
fields and constraints. With descibed forces acting on atoms, their motion can be obtained
by integrating the equation of motion. The temperature in the simulation box can be
monitored as an output as the time-averaged vibrational kinetic energy of the system [4]:

𝑇 =
2

3𝑁𝑘𝐵
𝒯vib =

2

3𝑁𝑘𝐵

𝑁∑︁
𝛼=1

1

2
𝑚𝛼||𝑣𝑟𝑒𝑙||2, (3.56)

where 𝑣𝛼
𝑟𝑒𝑙 is the velocity of atom 𝛼 relative to the center of mass velocity. Instantaneous

temperature can also be obtained based on the instantaneous vibrational energy of the
system, which is not the true temperature, as that can only be obtained as the average,
but will fluctuate around the true temperature [4]:

𝑇𝑖𝑛𝑠𝑡(𝑣𝑟𝑒𝑙) =
2

3𝑁𝑘𝐵

(︂ 𝑁∑︁
𝛼=1

1

2
𝑚𝛼||𝑣𝛼

𝑟𝑒𝑙||2
)︂
. (3.57)

The approach is always tied to an interatomic potential representing the forces acting on
ions - a force field - however, sometimes the accuracy can be unsatisfactory, for example
lacking the polarization effects [50]. A solution to this can be a combined approach - ab
initio molecular dynamics (AIMD) which combines the electronic structure calculations with
finite temperature MD [50]. These calculations are however very computationally expensive
and lately could be pushed away by machine learning approaches described further in
Section 3.7.

The flow chart of a typical MD run can be seen in Figure 3.14. Initial step 0 requires
the given structure, periodic boundary conditions and velocities of atoms - the temperature
of simulation box. Then the main integration loop of equations of motions goes through
until the set simulation time (𝑡𝑚𝑎𝑥) passes. Depending on the desired results the simula-
tion may require a period of time to equilibrate the system before collecting the data so
the ”equilibrated?“ decision has to be implemented (see Figure 3.14). Throughout the inte-
gration there are three main steps of the simulation, first the potential and kinetic energies
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Figure 3.14: General flow chart of a Molecular Dynamics run taken from [4].

are evaluated and the forces acting on ions are calculated based on the initial positions
and velocities, this is dependent on the force model used. Second step is the update of
coordinates and velocities of atoms according to the integration algorithm. If allowed, the
shape and size of the simulation box can change as well. Finally, the third step provides
the output of the simulation, i. e. collection of statistical data of the MD run like temper-
atures, stresses, trajectories for visualization etc. How these steps are undertaken depends
on the used ensemble [4].

3.6.2 Ensembles

Different ensembles are commonly denoted via the state variables that are set to constant.
The easiest ensemble to employ is the NVE ensemble with constant number of atoms N,
volume V and energy E [4]. This is basically an isolated system in statistical mechanics
called a microcanonical ensemble. The total energy given by the Hamiltonian, that is
dependent on the kinetic and potential energy, is kept constant for the whole MD run.
Though this ensemble is a bit further away from real experiments and the applicability is
then limited [4, 51].

Another commonly used ensemble is the canonical NVT ensemble with constant tem-
perature T instead of energy E. Here another dependency arises, the so-called thermostat
to keep the simulation box temperature at the desired value [4]. Langevin thermostat is
one of the more commonly used ones. It incorporates random forces into the equation of
motion to represent a heat bath, i. e. heat transfer between free electron gas in a solid
metal crystal [4]. The random numbers for the forces are chosen from Gaussian distribu-
tion [8]. Similar approach is the Andersen thermostat, which imposes the random forces
as well, but only for small number of time steps and at random intervals [4]. Another
common thermostat is the Nosé-Hoover thermostat [4]. It is a different approach than the
previously described thermostats called extended system method [4]. The basic principle of
this method is an introduction of fictious particles with their own positions and momentum
and determine the equation of motion for a system containing them. This requires a reality
check of the system after the run to see if it behaves in accordance to physical reality [4].
Both Langevin and Nosé-Hoover have one free parameter, the damping coefficient and the
mass of the fictious atoms, respectively. Careful selection of these is needed to obtain good
results [4]. Nosé-Hoover can also suffer from incomplete sampling of phase space which can
be mitigated by using a so-called chain of thermostats where a single thermostat particle
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is replaced by a chain of particles [4, 8]. This ensemble is closer to experimental conditions
and one can simulate ion diffusion in solids, reactions on slabs and clusters [50].

The last commonly used ensemble is the isothermal-isobaric NPT ensemble - constant
pressure at constant temperature. Similarly to thermostats in previous ensembles, here
arises the need for a barostat. Usually user sets up only one and it tries to control both the
pressure and the temperature [52]. These methods usually include the Parinello-Rahman
[8] or Berendsen barostats [52]. The Parinello-Rahman barostat is similar to Nosé-Hoover
thermostat in principle, there is now a related system with its own pressure and temperature
that then modifies the equations of motion [51]. The phenomena that can be simulated via
this ensemble include for example thermal expansion, melting point predictions and phase
transitions in solids [51].

3.6.3 LAMMPS

The code used in this work to perform MD runs was LAMMPS (Large-scale Atomic/Molec-
ular Massively Parallel Simulator). It uses spacial decomposition techniques to parallelize
simulations and cut the computational time quite significantly [52]. Especially, over the last
few years with hardware development (mostly GPUs) the MD simulations received huge
speedups and thus increase in popularity [52]. It is possible to simulate with manybody
potentials, longer length and time scales via coarse grained models, but most importantly
for this work, it is possible to use machine learning interatomic potentials (Section 3.7).
Furthemore, LAMMPS contains a variety of Monte Carlo techniques that allow exploration
of different configurations via randomly generated moves that then get either accepted or
rejected in dependence on the potential energy change [52]. Multiple ensembles are in-
cluded in the package, all the previously described ones plus NPT, NPH as well as grand
canonical, which keeps constant chemical potential instead of number of atoms. They are
set up together with a thermostat or barostat with a command fix [52]. For simulation of
magnetic materials LAMMPS contains a SPIN package that allows either spin dynamics or
coupled spin and lattice dynamics [52]. It allows variety of spin-lattice Hamiltonians to be
constructed and the user input is then a unit vector of classical spin 𝑠𝑖. The coupled spin
and lattice dynamics is approximately only 4 times slower than classical MD run with an
embedded atom method potential (EAM) [52]. There is also an option to apply external
magnetic fields and to apply a spin thermostat, which transforms the equations of motion
into a classical Landau-Lifshchitz equation [52]. To visualize results the package offers its
own GUI or one can use third party applications like Ovito [52, 53].

3.7 Machine Learning Interatomic Potentials
In recent years there has been a boom in the field of machine learning potentials that
learn the potential energy surface from available DFT data. This has been allowed by the
works of Behler and Parinello in 2007 on artificial neural networks [54] as well as Bartók et
al. in 2010 on Kernel-based approaches [55] and combined with hardware advancements,
especially GPUs [21]. Typically, the machine learned potentials (MLPs) are composed of
two components, an encoding of the molecular structure, i. e. the descriptors, and a
regression technique that maps the atomic configurations onto the potential energy surface
[21]. These potentials are trained on some database of electronic structure calculations,
of which there are now many different ones, and then they can be used to extrapolate or
interpolate new results. The difference between extrapolation and interpolation lies within

27



the examined problem. If the examined configurations are similar to the data the model
was trained on, it is interpolation. On the other hand, the more interesting application
is extrapolation, where the examined configurations are significantly different than the
training data [21]. Generally, extrapolation can lead to some untrue or even unphysical
results, so one needs to be careful [21].

The descriptors can exploit some intrinsic properties of the PES dependence on struc-
ture, like translational and rotational symmetries as well as invariance to permutations,
as the order of the atoms does not matter as long as it is the same atoms. To describe
the chemical structure multiple methods can be employed, simply using atomic Cartesian
coordinates or a 𝑁 × 𝑁 matrix of atomic distances in the system or their inverse - the
Coulomb matrices [21].

The originally popular descriptors (Smooth Overlap of Atomic Positions and Atom-
Centered Symmetry Functions, SOAP and ACSFs respectively) suffer from some shortcom-
ings. They both have unfavourable scaling with the number of species in the system with
limits of 5 to 6 different chemical species [21]. A solution to this is introducing element-
dependent weighing functions into the descriptors instead of using separate functions to
describe the combinations of elements [21]. Additional issues arise from the basic definition
of the descriptors. They are limited by the set cutoff and thus result in a short range
description. This can pose a big problem for systems where the long range interactions,
such as Coulomb interactions, are important as these models by definition cannot include
them [21]. Some models make the descriptors part of the machine learning process as in
message-passing neural networks (MPNNs) [21].

After the descriptors are set, the actual learning of their relation to PES starts via
regression [21]. This means that an actual physical property, e. g. atomic energy, is now
being put onto these descriptors, which up until now just describe the lattice. The two most
common approaches are neural networks and kernel-based methods [21] (Figure 3.15). The
artificial neural networks are based on layers of connected nodes and associated weights.
Input layers hold the provided mathematical description of the input (descriptors) and are
connected to the output layers via so-called hidden layers. Behler and Parinello [54] solved
the computational inefficiency of direct input of descriptors by representing every element
type of the system by a separate neural network [21, 54]. The output layers contain the
potential energy associated with the input [21]. Additional bias nodes can be included
to all nodes except the input nodes which serve as an adjustable shift via bias weights 𝑏
[21]. The evaluation of a node value is in principle a linear dependence on all node values
of the previous layer that is activated by an activation function 𝑓 𝑗𝑖 [21]. This function is
usually a sigmoid function in the hidden layers and introduces the flexibility of the network
by fitting arbitrary functional forms to previously linear information [21]. The predictions
then happen via forward-passing of the input information through the different layers of
the network. In the Behler and Parinello neural network, the total potential energy of a
particular configuration gets separated into sums of the contribution of individual atoms to
construct a relation to the output and atomic configurations [54]:

𝐸𝑡𝑜𝑡 =

𝑁𝑎𝑡𝑜𝑚∑︁
𝑖=1

𝐸𝑖 =

𝑁𝑒𝑙𝑒∑︁
𝑠=1

𝑁𝑎𝑡𝑜𝑚𝑠∑︁
𝑖𝑠=1

𝐸𝑁𝑁𝑠(𝐺𝑖𝑠). (3.58)

In this each atomic configuration for element 𝑠 out of the total number of elements 𝑁𝑒𝑙𝑒 is
represented by a single neural network 𝐸𝑁𝑁 shared for all atoms of that element 𝑁𝑎𝑡𝑜𝑚𝑠 .
This enables systems of different sizes to be represented by the same model as well as
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applying the trained model to a larger system [21, 54]. This model is again inherently
local as the total potential energy is tied only to the atoms in the cutoff radius [21]. This
approach is called high-dimensional neural network [21, 54].

Obtaining forces from trained energies is not as straightforward as from DFT. Since
the coordinates have been transformed into symmetry functions, the Cartesian coordinates
need to be regained from Equation (3.58) [21]. In modern machine learning libraries the
partial derivation of energy by the Cartesian coordinate 𝛼 can be obtained just by calling
a ”backdrop“ function that goes through backpropagation in the neural network [21]. Cal-
culating the derivation takes a few more steps but after it the forces are recovered. Similar
approach can be used to obtain the stress tensor via another suitable partial differentiation
[21].

The training on this model is then done by minimizing the loss function 𝐿 comparing
the reference and the model’s predicted energies [21]:

𝐿 =
1

2𝑁

𝑁∑︁
𝑖=1

(𝐸𝑟𝑒𝑓
𝑖 − 𝐸𝑚𝑜𝑑𝑒𝑙

𝑖 )2. (3.59)

This loss function can also be enhanced by including forces which usually leads to improved
fits as they provide additional information about the shape of the PES as well as simply
increasing the information content of a single configuration quite heavily [21]. The loss
function is minimized by changing the weights in the neural network via some optimization
technique, e. g. steepest descent [21]:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑
, (3.60)

where 𝑤𝑜𝑙𝑑 and 𝑤𝑛𝑒𝑤 are the old and new weights respectively and 𝜂 is an adjustable
learning rate. The quality of the fit is then evaluated by comparison to a testing set which
can provide an estimate for the transferability as it can include structures not contained in
the training set [21].

Kernel based methods have some similarities to the neural networks. The total energy
is again decomposed into a sum of the atomic energies like in Equation (3.58) but here the
atomic energies are calculated via linear combination of 𝑑-dimensional terms [21, 55]:

𝐸𝑡𝑜𝑡 = 𝛿(2𝐵)
∑︁
𝑖𝑗

𝐸(2𝐵)
(︀
𝑞
(2𝐵)
𝑖𝑗

)︀
+ 𝛿(𝑀𝐵)

∑︁
𝑖

𝐸(𝑀𝐵)
(︀
𝑞
(𝑀𝐵)
𝑖

)︀
. (3.61)

This involves two-body terms (2B) and many-body terms (MB) which are represented as
separate Gaussian process regression [21] with their suitable descriptors 𝑞𝑑. Each term is
also weighted by a scaling factor 𝛿(𝑑) which then acts as an additional hyperparameter.
Usually, the two-body term has the largest contribution to the energy and is set up five
to fifty times larger than the many-body terms [21]. The two-body term uses descriptor
of a distance between two atoms while the many-body terms uses the SOAP kernel [21].
Inputing a set of the SOAP configurations leads to this expression for energy [21]:

𝐸𝑡𝑜𝑡 = 𝛿(2𝐵)
∑︁
𝑖𝑗

𝑀(2𝐵)∑︁
𝑚=1

𝑐(2𝐵)
𝑚 exp

[︂
− |𝑅𝑖𝑗 −𝑅𝑚|2

2𝜃2

]︂
+ 𝛿(𝑀𝐵)

∑︁
𝑖

𝑀(𝑀𝐵)∑︁
𝑚=1

𝑐(𝑀𝐵)
𝑚 (𝜉𝑖 · 𝜉𝑚)𝜁 ,

(3.62)
where 𝜃 is a hyperparameter related to the two-body descriptor, 𝜉 is the normalized power
spectrum vector from SOAP, 𝑐(𝑑)𝑚 are the coefficients of the individual Gaussian regression
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models that are obtained during the fitting process. The Gaussian regression then again
minimizes a loss function [21]:

ℒ = [𝑦 −𝐾𝑁𝑀𝑐]𝑇Σ[𝑦 −𝐾𝑁𝑀𝑐] + 𝑐𝑇𝐾𝑀𝑀𝑐, (3.63)

where 𝐾𝑁𝑀 is the kernel matrix which represents the similarity between each pair of
input locations and Σ is a diagonal matrix composed of regularisers 𝜎𝑛. The regulariser
choice depends on multiple factors, e. g. the property that is being modelled, location
in the phase space. Since VASP is used in this work it has to be mentioned that VASP
employs a kernel based on-the-fly machine learning method built upon modified SOAP
descriptors [56, 57]. These allow the user to train their own force fields for the specific
problems and are thus not universal. On the other hand, they have an advantage of using
whatever settings the user wishes to, like different functionals that may not be contained in
the databases. Unfortunately, it does not learn and thus cannot predict magnetic moments
similarly to other universal machine learning potentials (UMLIPs). The interface with other
MD simulation codes is also very recent and still in beta version, so the transferability is
also slightly worse.

Figure 3.15: Schematic of the two described methods for the description of slab of water -
High-Dimensional Neural Network and Gaussian approximation potential [21].
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Another approach is the Atomic Cluster Expansion (ACE) [58]. This approach takes
the atomic energy in a many-body expansion expression [58]:

𝐸 = 𝑉0 +
∑︁
𝑖

𝑉 (1)(𝑟𝑖) +
1

2

∑︁
𝑖𝑗

𝑉 (2)(𝑟𝑖, 𝑟𝑗) +
1

3!

∑︁
𝑖𝑗𝑘

𝑉 (3)(𝑟𝑖, 𝑟𝑗 , 𝑟𝑘) . . . , (3.64)

where 𝑉 (𝑖) are the chemical potentials and 𝑉0 is a constant offset. Generally, this expansion
has unfavourable scaling and performance [21, 58]. The difference begins at the local
descriptors based on the spin cluster expansion [58] by introducing basis functions 𝜑𝑣𝑟 for
the expansion of energy that depend only on a single bond 𝑟. Combining these bond basis
functions into a cluster 𝛼 with a basis function Φ𝛼𝑣 that contains 𝐾 elements. From this a
kernel may be obtained and the expansion can be modified by it [58]. After including the
invariance to permutation the atomic energy from Equation (3.64) can be rewritten as [58]:

𝐸𝑖(𝜎) =
∑︁
𝑣

𝑐(1)𝑣 𝐴𝑖𝑣 +

𝑣1≥𝑣2∑︁
𝑣1𝑣2

𝑐(2)𝑣1𝑣2𝐴𝑖𝑣1𝐴𝑖𝑣2 +

𝑣1≥𝑣2≥𝑣3∑︁
𝑣1𝑣2𝑣3

𝑐(3)𝑣1𝑣2𝑣3𝐴𝑖𝑣1𝐴𝑖𝑣2𝐴𝑖𝑣3 + . . . , (3.65)

where 𝐴𝑖𝑣 are the atomic bases, i. e. the projections of basis functions on the atomic
density, and 𝑐

(𝐾)
𝑣 are the expansion coefficients. The computational cost to construct the

atomic base scales linearly with the number of neighbours, while the evaluation of the
energy is independent of them. This results in independence on the order of expansion that
overcomes the poor scaling of the original expression [58]. To satisfy the radial and angular
symmetry functions, an appropriate single-bond basis function has to be set that result in
the final equation for the energy as [58]:

𝐸𝑖(𝜎) =
∑︁
𝐾𝑛𝑙

𝑐𝑛𝑙
(𝐾)𝐵

(𝐾)
𝑖𝑛𝑙 , (3.66)

where 𝐵 is the product of atomic base reduction that takes into the account the invariance.
Forces may be obtained with similar efficiency as the energy by derivation of the energy [58].
It should be noted that the basis functions are quite similar in principle to the symmetry
functions described above and some can even be expanded into the basis functions [58].
Simiarly, SOAP descriptors can be expressed in the atomic cluster expansion terms kernel
but they neglect self-interaction corrections [58].

Figure 3.16: Example of the ACE methodology, taken from [58].

Another option for machine learning potentials is to use the molecular graphs and fit
them upon the graph neural networks (GNN). The graphs are constructed from nodes=atoms
and edges connecting them to other atoms [21]. Each atom is associated with a latent state
ℎ𝑖 that gets updated with each message-passing iteration 𝑡 [21]. Message 𝑚𝑡+1

𝑖 is con-
structed on a node 𝑖 by ”pulling“ the information about the states from all neighbouring
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atoms 𝑁(𝑖) connected via edges 𝑒𝑖𝑗 using the message function [21]:

𝑚𝑡+1
𝑖 =

∑︁
𝑗∈𝑁(𝑖)

𝑀𝑡

(︀
ℎ
(𝑡)
𝑖 , ℎ

(𝑡)
𝑗 , 𝑒𝑖𝑗

)︀
. (3.67)

The updated state can be expressed via equation [21]:

ℎ𝑡+1
𝑖 = 𝑈𝑡

(︀
ℎ𝑡𝑖,𝑚

(𝑡+1)
𝑖

)︀
, (3.68)

where 𝑈𝑡 is a learnable node update function. Unlike the previous models the GNNs
can contain semi-local information via the message passing although it will increase the
computational cost significantly, especially if not implemented well [21].

Recent progress leads to advances in the more promising part - universal machine learn-
ing potentials (UMLIPs). These potentials employ the descriptors and training methods
described in previous section. They take huge datasets from different published databases
of quantum mechanical calculations, train on them and promise accurate extrapolation to
systems it may have not encountered in the training [21]. The most used datasets are the
MPtrj dataset [59], Alexandria database [60, 61] and recently completed OMaT24 database
by META [62] which contains more than a 100 million calculated structures [62]. The limi-
tations of these models are usually brought on by those databases, i. e. if the database has
calculations done only with PBE, then the model will run into the same issues described
in Section 3.1.2. For most cases of these problems, e. g. underestimated band gaps, that
is not a problem, as the models are mostly not trained on more than energies and forces,
but in the future a need for a more accurate exchange-interaction functional database may
raise. This also gives a goal for the future - to train a model that will be able to predict
the charge distribution as well as its derivatives [21].

In case the universal model fails to predict the correct structures, the big advantage
of some of the UMLIPs is the option to refit/retrain the model. This means that the
pretrained universal model can be further trained on the specific problem that the user is
interested in. The required number of calculations that need to be included in refit can be
quite low. Žguns et al. [63] found out that lower tens of additional calculations to retrain
the CHGnet and MACE [59, 64] are more than enough to get the model accuracy to the
level of DFT accuracy. As the number of these models keeps increasing, there arises a need
to benchmark/compare them, and for that a Materials Project benchmark was set-up called
the Matbench Discovery [65]. It compares the models performance (speed and accuracy) in
multiple scenarios, where the accuracy is evaluated primarily with phonon predictions, as
that requires very accurate forces prediction. At the moment of writing, there is only one
model in the leaderboard that can predict magnetic moments - CHGNet (see Figure 3.17).
One important thing to notice is the ”Date Added“ column, where one can see how dynamic
this field is. New models or new databases appear quite frequently and if one wants to use
the best state-of-the-art model, it may change in a month. On the other hand some models,
like GRACE, already achieve the error levels of DFT and thus a better model will not cause
a huge difference in accuracy, but may be better in performance. One more thing about
magnetism has to be mentioned, its influence is inherently obtained in the models as they
are usually trained on calculations with spin-polarization enabled. Thus the prediction
of nonmagnetic/magnetic phase stability should be correct purely based on the expected
volumes. And of course, none of the databases are done with anything else than GGA
PBE or PBEsol functionals, so if one wants to use metaGGAs they have to train their own
models, for example via VASP [56, 57].
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Figure 3.17: Current status of the Matbench Discovery leaderboard (May 2025) [65].

3.7.1 CHGNet

CHGNet is a universal machine learning potential that employs the Graph Neural Networks
described in previous section. It is trained on the Materials Project Trajectory Database
(MPtrj) [59]. The atomic structures are taken in as graph descriptors, where there is a search
from node in a set up cutoff radius of 3 Å for neighbouring atoms. Here, an additional step
is performed, a ”charge decorated“ structure is created which estimates the charges on
the atoms [59]. After neighbouring atoms are found, the edges are drawn and then the
basis expansion is done as described in ACE section previously. It takes crystal structure
with unknown charges as an input and provides prediction of energies, forces and magnetic
moments. The neural network regularizes the node feature 𝑣𝑡−1

𝑖 at the convolution layer
to preserve the magnetic moment information. This convolution layer then contains not
only information about magnetic moments, but about charge distribution as well, which
results in the predicted values of energy, forces and stresses to be charge constrained. The
prediction is again done by minimizing the loss function, which contains energy, forces,
stresses as well as magnetic moments in a weighted sum. The magnetic moments are the
culprits for charge prediction as well. As was described in Section 3.2 it is the difference
between spin-up and spin-down localized electrons [59]. So in a sense, this model ”cheats“
around the learning of charge distribution and instead approximates it from the other way,
the known magnetic moments. This of course leads to some concern about accuracy for
non-magnetic materials as where there is no magnetic moment, the model basically has
no information about the charge distribution [59]. On the other hand, it is still the only
model on the Matbench discovery that can predict at least magnetic moments with quite
good accuracy (0.032 𝜇𝐵) [59]. One important caveat of this approach is the fact that it
cannot predict the orientation of the magnetic moment, but only its size. This requires
either previous knowledge or educated guess about the antiferromagnetic sublattices if one
wants to employ this model on any other than ferromagnetic materials.

The database the model was trained on is from September 2022 [59]. It contains DFT
calculations of 146 000 inorganic materials and 89 elements [59]. The calculations obtained
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were done with GGA functionals with just GGA or GGA + U setup. There was attention
to keep the same settings between calculations in a task, so that the energy difference
of the final frame cannot be larger than 20 meV, and in the case of +U usage that the
setting has to be the same as the primary task. No structures without energy and forces
convergence steps were taken into training. Most importantly, structures that had energy
higher than 1 eV/atom or lower than 10 meV/atom than in Materials Project ThermoDoc
were not considered to eliminate differences that were caused by different settings for the
calculations [59]. To minimize bias and keep data distribution, duplicate structures were
removed as well [59]. Final number of considered structures was 1.5 million with 42 million
of force data, 14 million of stresses and slightly below 8 million of magnetic moments.

The model can be obtained via pip and then used as any other python package. It relies
on external packages as pymatgen [27] and ASE [66] to handle the input of user structures.
Molecular dynamics simulation can be run either through ASE or LAMMPS but at the
time of writing the LAMMPS interface was not working and the github page is no longer
available. Model allows fine-tuning via pytorch but it requires to apply the same conditions
that were mentioned in previous paragraph. The static prediction from the pretrained data
will give the energy per atom of the given structure, which can be in VASP format, forces
acting on each atom in eV/Å, the stress matrix and magnetic moment sizes on each atom.
Getting forces in this format allows a construction of force constants and applying Phonopy
afterwards without the need of any DFT calculation. The model also allows a structure
optimization that will provide a prediction of relaxed crystal structure and atomic magnetic
moments which can be used as a ”pre-step“ and input for before DFT calculations.

3.7.2 GRACE

A model that is in principle a continuation of ACE described in Section 3.7, the name is
abbreviation of Graph Atomic Cluster Expansion. The difference arrives in the setup of
graphs, where the original descriptors are tied to the node atom but here, they are not. This
allows for a description of semi-local interactions [67]. The basis functions are constructed
in similar way as in ACE but this time not localized on single atom only. Remaining steps
are again very similar, the algebra is identical to ACE, but the cluster basis functions are
again not centered on a single atom as the expansion coefficient is independent of atomic
positions [67]. This allows the graph construction to be quite different now (see Figure 3.18).
The nodes are then defined as trees and each of the node in a tree can be a root node. These
can then be divided into subtrees that are attached into a root node and the distances are
ordered to describe the paths to reach each node. For example, a subtree can branch at
node 2 into 234 and 25 subtrees. The evaluated atomic properties - the energy - is now
slightly more complicated than in ACE case (Equation (3.65) as it now has to describe not
just the simple clusters but all the trees possible so the expansion gets quite long [67]:

𝐸𝑖 = 𝐸0 +
∑︁
𝑘𝑣

𝑐
(1)
𝑘𝑣 𝐴

(1)
𝑖𝑘𝑣 +

∑︁
𝑘𝑣1𝑣2

𝑐
(11)
𝑘𝑣1𝑣2

𝐴
(11)
𝑖𝑘𝑣1𝑣2

+
∑︁
𝑘𝑣1𝑣2

𝑐
(12)
𝑘𝑣1𝑣2

𝐴
(12)
𝑘𝑣1𝑣2

. . . . (3.69)

This expansion continues with all the possible trees. This provides a complete property 𝐸 as
it is now dependent on multiple graph basis function [67]. This also means that local ACE is
a subset of global ACE described here and that is by limiting it to only star descriptions [67].
Graph ACE provides a overcomplete set of cluster basis functions to describe the system
which in turn leads to some self-interaction, but it can lead to some beneficial increase in
accuracy [67]. There is one more simplification available by the fact that local ACE is a
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subset of global ACE. Drautz called it Floret picking and Dandelion approximation and
it involves evaluation of global ACE via layered evaluation of ACE. Basically taking the
outermost stars into local ACE and then continuing further and further into the center via
tensor decomposition and message passing [67].

Figure 3.18: Example of the two cluster basis functions on the same nodes but with different
topology allowed by GRACE [67].

At the time of writing, the GRACE UMLIPs offer three options of databases that were
used in their training. First option are the ones trained on the OMat24 database [62, 67]
with either two-layer semi-local graphs or one-layer local graphs. This database contains
101 million structures for 3.23 million of materials calculated by DFT via VASP code.
The most accurate options are the ”OAM“ ones which are initially trained on the OMat24
database [62] but then were refitted on the MPTraj and Alexandria databases [59–61]. This
models are again divided into two-layer and one-layer with two-layer version being the most
accurate one. Alexandria database that the model was trained on contained at the time
10.4 million structures for 3.23 million materials. Even though they are the most accurate,
they can be quite performance heavy as they are trained on an extreme amounts of data
and thus using just the OMat24 models can be fine. Then there is also a just MPtraj model
that is trained on the previously described database [59].

In contrast to the CHGnet model, GRACE does not allow any static predictions and
is completely dependent on MD simulation codes (ASE, LAMMPS [52, 66]). Usage in
LAMMPS requires a special compilation that is available on the Gracemaker github [67].
The model allows not only fine tuning, where again user has to be careful to be as close
as possible to the settings of the databases, as well user trained models from scratch, i.
e. users data. This allows to employ the GRACE approach on DFT calculations with
different functionals than GGA although the number of calculation needed for a proper
trained model can reach quite high values. The training also should not be done on just
equilibrium structures but on a whole range of volumes, crystal lattice deformations and,
at best, as well structures with defects so the computational cost can easily get quite high.
It has to be noted that access to gpu is basically necessary as cpus do struggle heavily
with fine-tuning or learning. From experience, 20 seconds for iteration on two 64 core cpus
will turn into 50 iterations per second on one nVidia A100 gpu. This model also allows
complicated models and simulations in LAMMPS, e. g. Monte Carlo MD run.

Interesting development of the method could be the extension to magnetism/charge.
There were already attempts to train non-collinear magnetic vectors to ACE on Fe [68] alas
they were not implemented into the main model yet.

35



4. CoCrNi alloy calculations
4.1 CoCrNi literature review
Previous publications show that this alloy has two possible phases with two different crystal
structures - low temperature hcp and high temperature fcc. Previous DFT results show as
the more stable the hcp crystal lattice at 0 K and experimental results at room temperatures
observe fcc structure [69–71]. Results of previous calculations indicate that the fcc structure
could be stabilised over the hcp by phonon interactions with rising temperature as well as
at 0 K by tuning short-range order [72–75]. Oh et al. [75] has linked mechanical properties
of high-entropy alloys to the electronegativities of the components. If the atoms have large
electronegativity difference they have a tendency to short-range order which can lead to
strengthening as the dislocation motion is hindered. These short-range orderings have even
been observed experimentally even in CoCrNi alloy [76–81] by different methods. Zhang et
al. [76] used energy filtered TEM to find short-range ordered domains through diffraction
patterns. In the work [78] they have used x-ray, neutron total scattering and extended
x-ray absorption fine structure techniques (EXAFS) to describe the tendencies of Cr to
create short-range order as it wants to bond with Co and Ni more than with itself. Zhou et
al. [77] used electron diffraction and atomic-resolution chemical mapping to determine the
atomic columns. They have described a proposed lattice model out of their 3D atomic scans
showing two sites, Co and Ni enriched and Cr enriched, showing the separation tendencies
between Cr. Bacurau et al. [82] have done combined experimental and theoretical study.
Theoretical part was done via machine learned potentials of moment tensor potential type
specifically created from DFT to predict SRO. Experimental parts included DSC, TEM and
mechanical testing. They have described a temperature of the Cr - Cr ordering somewhere
between 800 - 900 K [82]. Tang et al. [79] have described a chemical variation around
the intrinsic stacking-faults. These variations increased Cr concentration around stacking-
faults while Ni and Co had lower concentrations, hinting at the fact that Cr ordering may
influence the stacking-fault energy. Hsiao et al. [80] have observed diffraction patterns in
their samples fitting an L12 ordered structure. It was hinted that the cause for the orderings
could be caused by magnetism and Cr - Cr bonds in the alloy [72–74]. Furthermore, Tan
et al. [83] have measured the XANES spectra and the local electron structure flexibility
describing Cr as quite a flexible element in this alloy.

4.2 Methods and models

4.2.1 Computational cells

To determine the effect of short-range ordering multiple 216 atom calculation cells were
constructed (Figure 4.1). Each cell had equiatomic concentrations, i. e. 72 Co atoms, 72
Cr atoms and 72 Ni atoms. Three fcc structures were constructed by the sqsgenerator
[49] and one ordered structure by hand. Ordered structure was created in such a way
that the ordered element had always exactly two other atoms of the same element in its 1st
nearest neighbour (NN) shell. These fcc cells were created in a way that the crystallographic
direction [1 1 1] was parallel to the z axis, i. e. [0 0 1] direction. This allows to create hcp
structures from the fcc structures by just moving the planes and thus keep as much of the
short-range ordering parameters same between the fcc and hcp. The short-range ordering
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parameters were calculated according to the Equation (2.1). The structures were created
with the target maximizing the randomness in both 1st and 2nd NN shell.

(a) (b)

Figure 4.1: The 216 atom simulation cells - a) fcc b) hcp.

In total there were 12 calculation cells, randomly ordered cells were given the number
1, 2 and 3 for the fcc and hcp pair (fcc 1 and hcp 1 etc.) and the ordered cells were given
their designation by the ordered element - Cr-o for Cr ordered and so on again with the
pairs being fcc Cr-o and hcp Cr-o. The ordered sublattice was occupied by all the possible
elements creating another 3 structures, Co ordered, Cr ordered and Ni ordered. The other
sublattice (Randomly ordered element in Figure 4.2) was randomly occupied by the other
two remaining elements (e. g. by Cr and Ni for Co ordered and so on), this was done by
using the sqsgenerator only on these specific positions.

Figure 4.2: Primitive cells for the a) fcc ordered structure and b) hcp ordered structure.

Structure with the biggest interest was the Cr ordered one as it should be prefferable
for Cr magnetic ordering. As an antiferromagnetic element, Cr wants to be antiferromag-
netically ordered but in the randomly ordered structures it is hardly possible with many
Cr - Cr bonds. In the Cr ordered structure there were always just two Cr atoms in another
ones 1st NN shell and thus allowing to reach antiferromagnetic ordering. In the ordered
structures, there was no optimization of 2nd NN shells and all the values received are very
close to zero except structure hcp 3 where Cr - Cr and Co - Co had slightly higher W-C
parameters. The resulting W-C parameters for the first two NN shells can be found in
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Table 4.1 and Table 4.2. For the structures 1 and 3 created by sqsgenerator, the result-
ing W-C parameters are very close to zero indicating a random short-range ordering. The
structure 2 had slightly higher values of Co - Ni and Ni - Ni W-C parameters indicating
less bonds of Co - Ni and more abundant Ni - Ni bonds which hints at small form of Ni
clustering. For the ordered structures the Warren Cowley (W-C) parameters between the
ordered elements was always 0.50 and -0.25 for the ordered element - other element in both
fcc and hcp cells. For the unordered - unordered element W-C parameters, there was a
small difference between fcc and hcp as the parameters were 0.16 and 0.10 respectively.

Structure
𝛼𝑖𝑗 in 1st NN shell

Co - Co Co - Cr Co - Ni Cr - Cr Cr - Ni Ni - Ni
fcc hcp fcc hcp fcc hcp fcc hcp fcc hcp fcc hcp

1 0.05 0.04 -0.02 -0.04 -0.02 0.00 -0.01 0.01 0.04 0.03 -0.01 -0.03
2 -0.02 -0.06 -0.08 -0.09 0.10 0.15 0.01 0.01 0.08 0.08 -0.18 -0.23
3 0.05 0.01 -0.05 0.01 0.00 -0.02 0.04 -0.02 0.00 0.01 0.00 0.01

Cr-o 0.16 0.10 -0.25 -0.25 0.09 0.15 0.50 0.50 -0.25 -0.25 0.16 0.10
Co-o 0.50 0.50 -0.25 -0.25 -0.25 -0.25 0.16 0.10 0.09 0.15 0.16 0.10
Ni-o 0.16 0.15 0.09 0.10 -0.25 -0.25 0.16 0.10 -0.25 -0.25 0.50 0.50

Table 4.1: Warren-Cowley parameters of 1st NN shell.

Structure
𝛼𝑖𝑗 in 2nd NN shell

Co - Co Co - Cr Co - Ni Cr - Cr Cr - Ni Ni - Ni
fcc hcp fcc hcp fcc hcp fcc hcp fcc hcp fcc hcp

1 -0.01 0.06 -0.01 0.02 0.00 -0.08 0.08 0.10 -0.10 -0.12 0.10 0.19
2 0.01 -0.01 0.03 0.02 -0.05 -0.01 -0.08 -0.01 0.05 -0.01 0.00 0.00
3 0.03 0.14 -0.06 -0.13 0.03 -0.01 0.07 0.18 -0.01 -0.05 -0.01 0.06

Cr-o 0.04 0.04 0.00 0.00 -0.04 -0.04 0.00 0.00 0.00 0.00 0.04 0.04
Co-o 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 -0.04 -0.04 0.04 0.04
Ni-o 0.04 0.04 -0.04 -0.04 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00

Table 4.2: Warren-Cowley parameters of 2nd NN shell.

4.2.2 Calculation settings

For the calculations, the projector augmented waves potentials (PAW) [84] were used with
a generalized gradient approximation (GGA) of exchange and correlation energy as de-
scribed by Perdew, Burke and Ernzerhof (PBE) [85]. The k-space was integrated over by
Methfessel-Paxton smearing method with a width of 0.1 eV [86]. The Brillouin zone was
set to a Monkhhorst-Pack mesh in a size of 4x4x4. Plane wave cutoff energy was set to
450 eV. The calculations were done in both non-spin-polarised states and in spin-polarised
state. For the spin-polarised the initial magnetic moments were set as follows, for Co 1 𝜇𝐵,
for Cr 1 and -1 𝜇𝐵 distributed to get as high antiferromagnetic ordering as was possible for
the structure and for Ni 0.5 𝜇𝐵. Relaxations were carried out with the external tool Gadget
[87] that utilizes internal coordinates to preserve fcc and hcp parameters of the cells and
improving performance as described in Section 4.2.4.

The pure elements were calculated in their ground states with relaxations done by the
internal VASP optimizer and not with Gadget. Ferromagnetic Co was calculated in hcp
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lattice with parameters of a = 2.507 Å and c = 4.069 Å, antiferromagnetic Cr in bcc lattice
with a = 2.883 Å and Ni in diamond structure 𝐹𝑑3̄𝑚 with a = 2.515 Å.

4.2.3 Bader method for charge analysis

Local charges and magnetic moments on ions were determined by employing the method
developed by R. Bader [88] which gives more accurate results compared to the VASP
outputs. This method partitions the electrons to specific ions on basis of gradient of charge
density at a particular point to the maximum that is usually at the center of an ion, the
division of these spaces is placed at the zero of the gradient [89]. These spaces are called
either Bader volumes or Bader spaces. Furthermore, integrating over these Bader volumes
gives atomic charges and kinetic energies. These Bader volumes all contain a single electron
density maximum and are separated from each other by a zero flux surface of the gradients
of the electron density ∇𝜌(𝑟) · 𝑛̂ = 0 where the electron density is 𝜌(𝑟) and 𝑛̂ is the unit
vector perpendicular to the dividing surface at any surface point. Each volume is then
defined by a set of points that for the trajectory of maximizing electron density reach the
same unique fixed point maximum. This gives much more precise approximation to which
electrons belong to which ion in comparison to VASP, where PAW potential calculations
define the occupancies into a PAW spheres which can also overlap, thus giving some errors
for the values [84, 85, 90]. VASP also employes the frozen core approximation, which is
not an inherent feature of PAW potentials, this makes all the electrons in the core kept
frozen in the configuration for which the PAW dataset was generated. This means that
only the valence charge density is written out into the CHGCAR output file and because
Bader requires the charge density maximum it needs the core electrons output as well. Thus
requiring another run after relaxation with the LAECHG setting in the INCAR file and also
quite fine fast-Fourier transformation grid to accurately represent these core charges.

The used method to get Bader charges was implemented by Henkelman et al. and Yu
et al. [89, 91] and it uses the steepest ascent trajectories over a fine enough grid that are
confined to the grid points to identify Bader regions. The total electronic charge within
a Bader region is then approximated by summing over the grid points belonging to the
specific Bader region. Bader regions without a nucleus are not a problem in this method
as it does not use nucleus coordinates. The algorithm limits the paths as it can go from
one grid point only to one of the neighbouring other points to improve performance. The
step from a grid point (𝑖, 𝑗, 𝑘) is made along the direction that will maximize the charge
density gradient ∇𝜌 which is calculated for all the possible neighbouring directions 𝑟 using
the formula:

∇𝜌(𝑖, 𝑗, 𝑘) · 𝑟(𝑑𝑖, 𝑑𝑗, 𝑑𝑘) = ∆𝜌⃒⃒
∆−→𝑟

⃒⃒ , (4.1)

where 𝑑𝑖, 𝑑𝑗, 𝑑𝑘 are each assigned values -1, 0, 1 but excluding 𝑑𝑖 = 𝑑𝑗 = 𝑑𝑘 = 0. The changes
in density and in the distance are then calculated and evaluated between neighbours as:

∆𝜌 = 𝜌(𝑖+ 𝑑𝑖, 𝑗 + 𝑑𝑗, 𝑘 + 𝑑𝑘)− 𝜌(𝑖, 𝑗, 𝑘), (4.2)⃒⃒
∆−→𝑟

⃒⃒
=
⃒⃒−→𝑟 (𝑖+ 𝑑𝑖, 𝑗 + 𝑑𝑗, 𝑘 + 𝑑𝑘)−−→𝑟 (𝑖+ 𝑗 + 𝑘)

⃒⃒
, (4.3)

where −→𝑟 (𝑖, 𝑗, 𝑘) is the Cartesian vector to the grid point (𝑖, 𝑗, 𝑘). The steepest ascent step
selected is the one that maximises the positive values of ∇𝜌(𝑖, 𝑗, 𝑘), in case of no positive
values, the point is considered to be the charge density maximum.

The function of the algorithm is illustrated in Figure 4.3, starting point (𝑖1, 𝑗1, 𝑘1) (Fig-
ure 4.3 A) from which the steepest ascent path is followed until a charge density maximum
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𝑚1 is reached. The number 1 assigned to the maximum describes the Bader volume 1 and
all the points along the path are then assigned to the Bader volume 1, as well as all the
paths from each of these points that terminate at this point. Then another point (𝑖2, 𝑗2, 𝑘2)
is selected from the grid that has not been used for the paths to get the 𝑚1 point and the
steepest path search begins anew. Now the only difference is that the path is extended until
it reaches either maximum or a point that has already been assigned, i. e. a border with
another volume. In the example in Figure 4.3 B the second path is terminated after just 2
ascent steps as it reaches a point already assigned to a Bader region 1. Each point is then
assigned again to the Bader region 1 with the maximum 𝑚1 as that would be the maximum
for the origin point as well. Then this is done again for all the remaining points (𝑖𝑛, 𝑗𝑛, 𝑘𝑛)
(Figure 4.3 C) until it reaches a new maximum 𝑚2, new charge density maximum is added
and all the points along the path are assigned to it. This is repeated until all the grid points
are analyzed over (Figure 4.3 D).

Figure 4.3: Illustration of the steepest ascent paths on the charge density grid [91].

The disadvantage of the original Henkelman method is its lattice bias as it is constrained
to these grid points. Yu et al. [89] improved the method by introducing a weight to the
grid points representing how much they belong to which Bader volume. The local maxima
now has a basin of attraction 𝐴𝑛 that describes how many of the points flow to the maxima
along the charge density gradient. This means that for any point −→𝑟 trajectory is given as
−→𝑥 (𝑡) = ∇𝜌(−→𝑥 ) which then can be integrated over with the initial condition −→𝑥 (0) = −→𝑟
to find lim𝑥→∞

−→𝑥 (𝑡). The basin of attraction 𝐴𝑛 are then all the points whose trajectory
lim𝑥→∞

−→𝑥 (𝑡) ends at −→𝑥 𝑛.
The weight method then uses the Voronoi polyhedra (Figure 4.4) created by the grid

points X with volume 𝑉𝑋 into which a point in Cartesian space −→𝑟 belongs to, if X is the
closest point. Each polyhedra is defined by

• the nearest neighbouring points X’ with distance 𝑙𝑋→𝑋′ ,

• facets at the midpoint between X and X’ 𝛿𝑉𝑋→𝑋′ that have a normal 𝑛̂𝑋→𝑋′ pointing
from X to X’,
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Figure 4.4: Schematic of the weight method with Voronoi polyhedra [89].

• an area 𝑎𝑋→𝑋′ .

With this the weight 𝑤𝐴(𝑋) can be defined between 0 and 1 in a way that
∑︀

𝐴𝑤
𝐴(𝑋) = 1

for all X and then the discrete approximation to the integral over the basin A will converge
quadratically in the grid for smooth functions 𝑓(−→𝑟 ):∫︁

𝐴
𝑑3𝑟𝑓(−→𝑟 ) ≈

∑︁
𝑋

𝑉𝑋𝑤
𝐴(𝑋)𝑓(𝑋). (4.4)

The transition to Voronoi partitioned definition requires continuum probability density for
the trajectories 𝑃 (−→𝑟 , 𝑡) and the probability flux at any point an time

−→
𝑗 (−→𝑟 , 𝑡) = 𝑃 (−→𝑟 , 𝑡)∇𝜌(−→𝑟 ). (4.5)

With these two defined and combined, the probability distribution evolution in time can
be gained from a continuity equation

𝛿𝑃 (−→𝑟 , 𝑡)
𝛿𝑡

+∇ · (𝑃 (−→𝑟 , 𝑡)∇𝜌(−→𝑟 )). (4.6)

With this equation it is possible to determine how the points in 𝑉𝑋 distribute to the neigh-
bouring volumes 𝑉 ′

𝑋 . Solution of this equation gives the time-integrated flux of probability
from 𝑉𝑋 to 𝑉 ′

𝑋 through the facet 𝛿𝑉𝑋→𝑋′ as

𝐽𝑋→𝑋′ =

∫︁ ∞

0
𝑑𝑡

∫︁
𝛿𝑉𝑋→𝑋′

𝑃 (−→𝑟 , 𝑡)∇𝜌 · 𝑛̂𝑋→𝑋′𝑑2𝑟 = ...

... =
𝑎𝑋→𝑋′ 𝑙−𝑋→𝑋′1𝑅(𝜌′𝑋 − 𝜌𝑋)∑︀′
𝑋 𝑎𝑋→𝑋′ 𝑙−𝑋→𝑋′1𝑅(𝜌′𝑋 − 𝜌𝑋)

,

(4.7)

where R is the ramp function. From this we can get the weight representing the volume
fraction of points in volume 𝑉𝑋 whose trajectory also end in the basin A

𝑤𝐴(𝑋) =
′∑︁
𝑋

𝐽𝑋→𝑋′𝑤𝐴(𝑋 ′). (4.8)

From this equation we get that each point X is one of three possibilites:

1. A local maxima - density 𝜌 at X is higher than at X’ for all possible neighbours, thus
the point corresponds to a new basin A with a weight 𝑤𝐴(𝑋) = 1.
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2. An interior point - density 𝜌 at X is lower than at X’ for all possible neighbours X’,
the weights have been assigned and 𝑤𝐴(𝑋 ′) = 1 for the same basin A → point A
belongs to basin A as well.

3. A boundary point - weights of point between 0 and 1 for multiple basins A.
This way the algorithm improves the Henkelman method with lesser amount of error cause
by finite grid (Figure 4.5) and computational scaling as well.

Figure 4.5: Schematic illustration of the a) zero flux surface as originally proposed by Bader,
b) near grid algorithm used by Henkelman, c) weighted integration [89].

4.2.4 Optimization using internal coordinates - Gadget tool

Internal coordinates, for example bond lengths, bond angles etc. provide some advantages
for structure optimization over the generally used Cartesian or fractional coordinates. A
good initial guess of Hessian matrix is quite easily achievable, coupling of different modes is
reduced compared to Cartesian coordinates and the handling of constraints is much simpler
[87].

The structure of a periodic system is characterized by three lattice vectors in matrix h
and by 3N fractional coordinates s. The position of atom a in the L = (𝑙1, 𝑙2, 𝑙3) unit cell
of the solid in Cartesian coordinates is then given by linear transformation [87]:

𝑟𝑎,L𝑎
𝛼 =

3∑︁
𝛽=1

ℎ𝛼𝛽(𝑠
𝛼
𝛽 + 𝑙𝛼𝛽 ). (4.9)

The deformations of the structure in periodic system can arise from the change of atomic
positions at the constant lattice vectors and from the deformation of lattice vectors and
constant fractional coordinates. The fractional coordinates can be obtained from Cartesian
by doing the inverse transformation. Variation of lattice vectors can be described by strain
tensor [87]: 𝜖𝛼𝛾

ℎ′𝛼𝛽 =
∑︁
𝛾

(𝛿𝛼𝛾 + 𝜖𝛼𝛾)ℎ𝛾𝛽. (4.10)

Any change that happens to lattice vectors ℎ𝛼𝛽 is inherently tied to a variation of the atomic
Cartesian coordinates as described in Equation (4.9) thus we can describe their variation
similarly by using the stress tensor again [87]

𝑟′𝛼 =
∑︁
𝛽

(𝛿𝛼𝛽 + 𝜖𝛼𝛽)𝑟𝛽. (4.11)
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The energy of the structure is invariant to six degrees of freedom out of the total 3N + 9
deformation variables - the position of the origin and the orientation of the lattice vectors.
Origin position of the lattice is completely arbitrary but it is generally chosen at the basis
of symmetry [87]. Rotations of the lattice can be avoided by taking the symmetric part of
strain tensor as independent lattice variables. The simplest coordinate system for a periodic
system will consist of 3N fractional atomic positions and nine lattice vector variations which
will give this expansion [87]:

𝐸(x+ 𝛿x)− 𝐸(x) = −f t𝛿x+
1

2
𝛿xtF𝛿x+ .... (4.12)

The vector f consists of either forces or lattice vector derivatives of total energy related
to the stress tensor elements depending on the relaxation scheme. There is also a contri-
bution by the atomic forces to this stress tensor. The extended Hessian matrix F built in
(Equation (4.12)) contains several blocks with second derivatives of energy with respect to
atomic positions, stress-strain derivatives as well as cross terms [87].

Defining internal coordinates that contain only integral degrees of freedom is done by
transformation of fractional coordinates. These are generally just nonlinear functions of
Cartesian coordinates. Similarly to external coordinates, internal coordinates are also de-
termined by the three lattice vectors 𝑞𝑖 = 𝑓({ℎ𝛼𝛽}). The deformations in internal coordi-
nates are related to the external by a nonlinear transformation usually approximated by
Taylor expansion. By applying it to the energy expansion Equation (4.12), a relationship
between external and internal force/stress components is obtained [87]:

Bt𝜙 = f , (4.13)

and between external deformations and internal distortions:

𝐵𝛿x = 𝛿𝜉, (4.14)

where 𝐵 is a generalization of Wilsons’s B matrix [92] for periodic systems. To avoid prob-
lems with high amount of generated integral coordinates a linear combination of primitive
internal coordinates is used [93] by taking singular value decomposition of the B matrix
as 𝐵 = UtB𝐷V, where 𝑈 and 𝑉 are unitary matrices and 𝐵𝐷 is a diagonal matrix
formed from eigenvectors from nonzero eigenvalues of [87, 92](BBt). Multiplicating the B
matrix equation by U gives the defining relationship for the delocalized internal coordinate
transformation for molecules [87]: ̃︀Bx = ̃︀q. (4.15)

In the case of periodic systems the atoms are explicitly dependent on lattice vectors
leading to augmented 𝐵 matrix equation [87]:(︂

𝛿q

𝛿q̂

)︂
=

(︂
𝐵𝑞𝑠𝐵𝑞ℎ

𝐵𝑞𝑠𝐵𝑞ℎ

)︂(︂
𝛿s

𝛿h

)︂
, (4.16)

where the individual blocks 𝐵𝑞𝑠,𝐵𝑞𝑠 describe the linear transformation of the atomic posi-
tions 𝑠𝑎𝛼 while the blocks 𝐵𝑞ℎ,𝐵𝑞ℎ describe the transformations of lattice vector components
ℎ𝛼𝛽 to atomic and lattice internal coordinates. In periodic system, an internal coordinate
may depend on the Cartesian coordinates of an atom in a different unit cell, thus the 𝐵
matrix between fractional atomic distortions and unique internal coordinates has to be
calculated as [87]:

𝐵𝑞𝑠
𝑖,𝑎𝛼

=
∑︁
L

∑︁
𝛽

𝜕𝑞𝑖

𝜕𝑟𝑎,L𝑎

𝛽

ℎ𝛽𝛼. (4.17)

43



For the coordinates that remain in the unit cell, the 𝐵 matrix elements are the same as for
non-periodic system. For several periodic copies of the same atom participating in a given
internal coordinate the contributions are summed up. Proportionality between internal
coordinate deformation [87] 𝛿𝑞𝑖 and a lattice vector distortion 𝛿ℎ𝛼𝛽 can be described by
these 𝐵 matrix elements [87, 92]

𝐵𝑞ℎ
𝑖,𝛼𝛽 =

𝜕𝑞𝑖(𝑟
𝑎,L𝑎
𝛼 , 𝑟𝑏,L𝑏

𝛽 , ...)

𝜕ℎ𝛼𝛽
= ... =

∑︁
𝑎,L𝑎

𝜕𝑞𝑖

𝜕𝑟𝑎,L𝑎
𝛼

(𝑠𝑎𝛽 + 𝑙𝑎𝛽) (4.18)

Cell edge lengths, volume, cell angles and other lattice internal coordinates 𝑞 have no explicit
dependencies on the fractional atomic positions thus the block of the extended 𝐵 matrix is
zero [87] 𝐵𝑞𝑠 = 0 [87].

Geometry constraints are achieved by modifying the 𝐵 matrix in a way that the first
derivatives of the relaxed coordinates are orthogonalized with respect to each of the con-
strained coordinate 𝑞𝑐. The rows of the 𝐵 matrix 𝐵𝑗 are thus modified accordingly to the
constrained coordinates 𝐵𝑐 [87]:

𝐵̄𝑗 = 𝐵𝐽 −
∑︁
𝑐

(𝐵𝑗 ·𝐵𝑐)

|𝐵𝑐|
𝐵𝑐

|𝐵𝑐|
. (4.19)

The delocalized internal coordinates are generated from this modified matrix and are now
linear combinations of either constrained or relaxed coordinates but never combination of
constrained and relaxed coordinate [87]. With this, the optimization is able to proceed
as if it was not constrained for the relaxed parameters. By this method, the available
constraints are ratios and sums of primitive internal coordinates, norms of vectors that
have components in primitive internal coordinates, lattice parameters, volume of the cell
and others [87].

The relaxation algorithm employed by Gadget [87] is based on the geometrical direct
inversion in the iterative subspace (DIIS) method [94]. This method uses the previously col-
lected information from previous 𝑀 relaxation steps on the potential energy surface (PES)
to minimize the norm of the error vector. The vector is defined as a linear combination of
gradients correspoding to delocalized internal coordinates:

r𝑘 =

𝑘∑︁
𝑖=𝑘−𝑀

𝑐𝑖 ̃︀𝜙𝑖. (4.20)

The coefficients 𝑐𝑖 are obtained by minimizing the lattice vector matrix under the constraint
[87, 94]

∑︀𝑘
𝑖=𝑘−𝑀 𝑐𝑖 = 1. A new set of internal coordinates is then calculated [87, 94]:

̃︀q𝑘+1 =

𝑀∑︁
𝑖=𝑘−𝑀

𝑐𝑖̃︀q𝑖 + ̃︀H−1
𝑀∑︁

𝑖=𝑘−𝑀

𝑐𝑖 ̃︀𝜙𝑖. (4.21)

The parameter M depends heavily on the location of the structure on the PES. If the
structure is close to the minimum, M should be 10 or higher. When the initial guess is
poor and the landscape of the PES is not well described, then better performance is achieved
by using low number of previous steps. The relaxation in itself works by comparing the ionic
step produced by the DIIS method to a simple quasi-Newton step [87, 94] ∆̃︀q𝑄𝑁 = ̃︀H−1 ̃︀𝜙
and the ionic step needs to meet these criteria [87, 94].
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1. The direction of the DIIS step ∆̃︀q deviates from the quasi-Newton step by an angle
𝜑 and its cos𝜑 is larger than 0.97, 0.84, 0.71, 0.67, 0.56, 0.49, 0.41 for two of the nine
recent relaxation steps done by DIIS. For 10 or more relaxation steps this criterion is
ignored:

2. The norm of DIIS step can only be ten times larger than the reference step.

3. Sum of all positive coefficients 𝑐𝑖 can not exceed the value of 15.

4. The magnitude of c
|r2| < 108.

If any of these criteria is not fulfilled the step is not accepted. The most remote vector is
then removed from the iterative subspace and the whole procedure is repeated until all the
criteria are fulfilled.

The main performance advantage of internal coordinates is the guess of Hessian matrix.
Gadget uses a model Hessian guess constructed from force constants which are simple
functions of nuclear positions from [95]:

𝑘𝑖𝑗 = 𝑘𝑟𝜌𝑖𝑗 , (4.22)

𝑘𝑖𝑗𝑘 = 𝑘𝜑𝜌𝑖𝑗𝑘𝜌𝑗𝑘𝑚, (4.23)

𝑘𝑖𝑗𝑘𝑙 = 𝑘𝜋𝜌𝑖𝑗𝜌𝑗𝑘𝜌𝑘𝑙, (4.24)

𝜌𝑖𝑗 = exp [𝛼𝑖𝑗(𝑟
2
0,𝑖𝑗 − 𝑟2𝑖𝑗)]. (4.25)

These equations need 15 independent parameters for elements from the first three rows of
the periodic table. From this the model Hessian is transformed into delocalized internal
coordinates by the formula [87] ̃︀H = UtHU. (4.26)

As the relaxation begins the initial guess of the Hessian matrix is replaced by employing
the Broyden-Fletcher-Goldfarb-Shanno algorithm to [87]

̃︀H𝑘 = ̃︀H𝑘−1

(︂
∆𝜙𝑘∆𝜙

𝑡
𝑘

∆𝜙𝑡
𝑘−1∆̃︀qk

+
̃︀H𝑘−1∆̃︀q𝑘−1∆̃︀q𝑡

𝑘−1
̃︀H𝑘−1

∆̃︀q𝑡
𝑘−1

̃︀H𝑘−1∆̃︀q𝑘−1

)︂
, (4.27)

where ∆̃︀𝜙𝑘 = ̃︀𝜙𝑘 − ̃︀𝜙𝑘−1 is the change of gradients tied to the relaxation step [87] ∆̃︀q𝑘 =̃︀q𝑘 − ̃︀q𝑘−1. For the selected examples the Gadget with this relaxation method outperforms
the optimizer included in VASP by a factor of 2 - 10 [87].

The Gadget tool, as used for VASP, is an external tool written in Python. It reads the
geometry, energy and gradients from the VASP output and sets up internal coordinates.
From these it estimates optimal moves for atoms and calculates new set of lattice parameters
and their respective Cartesian coordinates. After this, it starts a new VASP calculation
and repeats until convergency is reached. In calculations the Gadget was used to put
constraints on all the angles in the unit cells to keep them constant. Then specifically, for
the hcp structure to keep the c/a ratio and the fcc structure all lattice parameters stay
within the given ratios.
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4.2.5 Application of UMLIPs

The application of UMLIPs for CoCrNi is a static prediction via the CHGNet [59] model
to obtain energetics, forces and magnetic moments and compare them to the already done
DFT calculations. Afterwards, if the prediction describes the DFT results well, a com-
bination of CHGNet and Phonopy could be used to obtain harmonic approximations for
otherwise computationally very costly calculations - approximately 1290 displacements for a
classical Phonopy displacement workflow. This workflow would then contain only CHGNet
predictions into Phonopy Force Sets. The idea is the same as the normal Phonopy workflow
except instead of DFT calculations the CHGNet static prediction is run on the displaced
structures. To do this one only needs the relaxed structures from DFT, i. e. the CONTCAR
file.

The second application is the GRACE [67] UMLIP combined with MD simulations to
study the temperature evolution of the fcc and hcp stability. The MD simulations were
run via LAMMPS within the NPT ensemble with Nose-Hoover thermostat and barostat
[52]. The time step was set to 0.001 ps and the heating was done within 20000 steps
resulting in 20ps long simulation. The GRACE universal model used was the OMAT-2L
to properly represent the semi-locality present in HEAs [67]. The crystal lattice is checked
in Ovito by its common neighbour analysis [53] on the exported trajectories of atoms from
the MD runs. Additionally, the radial distribution function RDF was computed from the
resulting trajectories. Since multiple temperatures were explored, the thermal expansion
was obtained. To evaluate the fcc - hcp relative stability enthalpies were calculated within
the temperature runs and the value of enthalpy was taken as time averaged. This enthalpy
contains the simulation box volume, pressure and total energy [52]:

𝐻 = 𝐸𝑀𝐷
𝑡𝑜𝑡 + 𝑝𝑉. (4.28)

To check for annihilation of chemical SRO, a script was written to check if any of the atomic
switched positions.

4.3 Results

4.3.1 Phase stability

The phase stability of the calculated structures was evaluated by calculating their mixing
enthalpy 𝐻𝑚𝑖𝑥 from the pure elements according to Equation (3.52). The results can be
found in Table 4.3 and in Figure 4.6. The spin-polarised calculations always result in lower
mixing enthalpy than the non-spin-polarised calculations which was an expected result as
the alloy has a Curie temperature of 4 K [11, 96] and was also in agreement with previously
published calculations [71, 73, 74, 97]. Also, according to the previous DFT calculations,
the hcp structures proved to be more stable than fcc except for the case of Ni ordered cells
that will be described later. The fcc structure was less influenced by the small differences
in orderings between the different randomly ordered cells and did not react to Co nor
Ni ordering as their mixing enthalpies were in line with the randomly ordered cells. The
biggest change in 𝐻𝑚𝑖𝑥 was for the Cr ordered where the value lowered by 3.55 kJ/mol in
comparison to the average of all the other spin-polarised fcc structures. In some previous
publications [73, 74] similar trends for Cr ordering were also perceived.

Short-range ordering had much higher influence on the hcp structures. The variance
between the resulting values (without the Cr ordered cells as they were a specific outlier)
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Structure 𝐻𝑚𝑖𝑥 in kJ/mol
Spin-polarised Non-spin-polarised

fcc hcp ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐 fcc hcp ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐

1 8.75 8.05 -0.70 9.64 8.99 -0.65
2 8.50 7.50 -1.00 9.13 8.11 -1.02
3 8.56 8.00 -0.56 9.10 8.95 -0.15

Cr-o 5.02 4.46 -0.56 5.19 4.47 -0.72
Co-o 8.65 7.82 -0.83 9.06 8.44 -0.62
Ni-o 8.41 8.78 0.37 9.08 9.75 0.67

Table 4.3: Mixing enthalpy of calculated structures.

Figure 4.6: Mixing enthalpies of the CoCrNi calculated structures.

of 𝐻𝑚𝑖𝑥 was about 0.178 kJ/mol compared to the 0.014 kJ/mol for fcc. The Cr ordering
caused a similar drop of 𝐻𝑚𝑖𝑥 as in fcc with size of 3.57 kJ/mol and still resulting in hcp
being the more favourable structure. However, the ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐 = −0.56 kJ/mol for this case
was one of the two lowest of all received for spin-polarised calculations. This ordering was
experimentally observed by Inoue et al. via atom probe tomography [98] as well as a very
similar model proposed by Hsiao et al. [80]. The highest stability disregarding the Cr-o
structure was received for the hcp 2 structure as there was a slight deviation of some W-C
short range order parameters from complete randomness, specifically for Ni. The hexagonal
structure dependence on Ni becomes even more clear with the Ni-o result. In this case, the
hcp ends up being so destabilised by the Ni ordering that it becomes the less favourable
structure compared to the fcc structure with ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐 = 0.37 kJ/mol. Looking at the
SRO values in Table 4.1 the Ni ordered structure has less Ni bonds while the structure 2
has a negative value of W-C parameter indicating some form of clustering. This means that
clustering of Ni stabilises the hcp structure for CoCrNi alloy while minimizing the bonds
between Ni atoms destabilises hcp structure quite significantly. The Co ordering did not
seem to cause any specific effects and both fcc and hcp structures seem indifferent to it.
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By not including the spin-polarization the values of mixing enthalpy increased for all cells
with hcp again being more influenced structure with average difference of 0.68 compared
to 0.55 for fcc. The trends were the same for the non-spin-polarised calculations with
only one exception in cells with number 3. Compared to the spin-polarised calculation, the
difference between hcp and fcc is only ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐 = −0.15 kJ/mol compared to ∆𝐻ℎ𝑐𝑝−𝑓𝑐𝑐 =
−0.56 kJ/mol in spin-polarised. This higher difference could be caused by the differences
between the SRO parameters for hcp and fcc as well as some higher SRO in the 2nd
NN shells, especially for Cr - Cr and Co - Co. As the hcp 3 follows the same trends of
other hcp structures with their increase of 𝐻𝑚𝑖𝑥 the culprit is probably fcc 3 with the
lowest increase of 𝐻𝑚𝑖𝑥 between spin-polarised and non-spin-polarised. This hints at some
magnetic interaction reducing the stabilisation by introducing the spin-polarization. Other
two notable differences were for the Ni-o and Cr-o structures. For the Cr ordered structure,
the inclusion of spin-polarization did not do much in case of phase stability, as the difference
is only 0.01 kJ/mol which was very interesting considering that for all the other structures
hcp was the more impacted one. For the Ni-o there seems to be an effect on fcc structure as
it lies more in line with the other randomly ordered ones. It is possible that the Cr ordering
in the Ni-o structure, as there will always be some because of the limited possibilities to
occupy lattice sites thanks to the Ni ordering, is causing higher stabilisation when spin-
polarization is included as the 𝛼Cr−Cr = 0.16 for this structure. This was in the direction
of the stabilisation effect of Cr ordering. Taking into account the hcp Cr-o results this
shows higher influence of Ni than Cr on the hexagonal structures by including the spin-
polarization.

4.3.2 Magnetic moments

The local magnetic moments were studied to reveal the effect of including spin-polarization
beyond just phase stability and to explain some of the differences found in Section 4.3.1.
Magnetic moments were extracted by using the Bader method described in Section 4.2.3
but there was not a big difference between these values and those from VASP OUTCAR
file. First analysis was done similarly as in [11], in other words looking for dependencies
between local magnetic moments of atoms on average magnetic moments in the 1st NN.
The values of magnetic moments were not considered as absolute so the spin up and spin
down properties were preserved. The randomly ordered structures had very similar trends.

In all three structures, Ni seemed to increase its magnetic moment up to 0.5𝜇𝐵 together
with increasing average magnetic moment in its 1st NN, that was for both fcc and hcp.
There was just a slightly higher distribution for Ni in hcp 2 around 0.18𝜇𝐵 average magnetic
moment in 1st NN compared to the other structures and the local magnetic moment values
were thus present with much narrower distribution (red curves in Figure 4.7a). Cobalt had
similar trend with some difference in reaching higher values of local magnetic moments.
Although, there was some difference in distributuon of magnetic moments in fcc 3. Both fcc
and hcp in cells 1 and 2 had quite compact distribution visible as overlapping distribution
functions in Figure 4.7b but there was difference in the fcc and hcp 3. The magnetic
moments for hcp 3 reached higher values as the peak of the distribution (brown curve
in Figure 4.7b) for local magnetic moments is around 1.10𝜇𝐵. To the contrary, the fcc
3 had lower values of magnetic moments with the peak around 0.70𝜇𝐵 with a higher
spread of values compared to the hcp 3 and all the other structures as well. This was
probably tied to the difference in their mixing enthalpy as the fcc 3 structure seems to have
suppressed magnetic moments while the hcp 3 seems to be affected the other way with

48



(a) Ni magnetic moment distribution. (b) Co magnetic moment distribution.

Figure 4.7: Ni and Co local to average in 1st NN magnetic moments in randomly ordered
structures.

higher distribution in higher values. There were also a few atoms with very low but still
spin down magnetic moments for the fcc structures.

Figure 4.8: Cr magnetic moment distribution in randomly ordered structures.

The Cr magnetic moments result in a similar way. There was a slight difference between
the cells 2 compared to others, hcp 2 and fcc 2 magnetic moment distributions were more
centered closer to 0 compared to all the other structures. Other fcc and hcp cells had
very similar distributions of local magnetic moments with fcc 1 and fcc 3 resulting in quite
uniform distribution over all the received magnetic moments. Hexagonal structures had
their distribution more centered in lower magnetic moment values with the peaks around
−0.20𝜇𝐵. Looking at the structures 3, it was hard to see any notable difference like for
Co atoms, there was slightly broader distribution of the magnetic moments in fcc with
few moments reaching slightly higher values but nothing extremely different from the fcc 1
structure and that the values were more concentrated around the average magnetic moment
of 0.25𝜇𝐵.
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(a) Ni magnetic moment distribution. (b) Co magnetic moment distribution.

Figure 4.9: Co and Ni Local to average in 1st NN magnetic moments in ordered structures.

The ordered structures result in quite different distributions with the biggest difference
in Cr-o indicating that Cr has highest effect on magnetism of this alloy. Nickel magnetic
moments in Cr-o structures were suppressed to values near zero in fcc and basically zero in
hcp, as the peaks of local magnetic moments (orange in Figure 4.9a) for fcc were at 0.02𝜇𝐵.
For the fcc structure, some Ni magnetic moments even turned to spin down but considering
the average magnetic moment distribution (blue distribution function in Figure 4.9a) for
them, they probably just aligned ferromagnetically with their 1st NN. The other two ordered
structures had similar distributions to the randomly ordered structures, although that may
also be just an effect of generally small magnetic moment of Ni. Co magnetic moments
for Cr-o were again suppressed comapred to the randomly ordered structures, especially
in hcp. The distribution of Co magnetic moments in Cr-o was again concentrated around
zero with peak around 0.10𝜇𝐵 but the average magnetic moment distribution is peaking
barely above zero. In contrast, Co magnetic moments in Cr-o fcc were very spread out
in comparison to hcp and the randomly ordered structures. There were many atoms with
spin-down magnetic moment and basically two maxima of distributions (blue distribution
function in Figure 4.9b) around ±0.50𝜇𝐵 and minimum around zero. The other two ordered
structures result in similar distribution to the randomly ordered structures.

For the Cr in Cr-o structures, there was again similar trends as previously for Co and Ni.
Magnetic moments in hcp Cr-o were again located closer to zero and had lower values (in
between −0.55𝜇𝐵 and 0.55𝜇𝐵) compared to fcc Cr-o. All the magnetic moments hcp Cr-o
being so suppressed would explain such a small difference in mixing enthalpy for the non-
spin-polarised calculation of this structure. Similarly to Co again, Cr magnetic moments
distribution (blue in Figure 4.10) in Cr-o structure had minimum around zero and two
maxima around −0.50𝜇𝐵 and 0.80𝜇𝐵 with slightly higher occupancy around the upper
maximum. Interestingly, in Co-o the hcp magnetic moments were also quite low while the
fcc magnetic moments were similar to randomly ordered structures. For the Ni-o structures
the distribution in fcc was similar to Cr-o with even more distinctive minimum around zero
while hcp had mostly uniform distribution.

Other trends were visible when looking at the dependencies of local magnetic moment on
the composition of 1st NN shell. For the purpose of analysis and readability, the magnetic
moment values were used in absolute values. All the randomly ordered structures resulted
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Figure 4.10: Cr magnetic moment distribution in ordered structures.

Figure 4.11: Magnetic moment dependence on Co in 1st NN shell.

in very similar trends. There was no dependence of magnetic moment on Co concentration
in 1st NN shell (Figure 4.11) except slight dependence in fcc for Ni magnetic moment with
𝑅2 = 0.20 while in hcp this dependence is not present, likely because of higher spread of
values.

More interesting results were found for the concentration of Cr in 1st NN shell (Fig-
ure 4.12). Magnetic moments of all elements shown dependence on the Cr concentration in
1st NN. Most pronounced dependence was for Co magnetic moments in hcp with 𝑅2 = 0.83
and in fcc with 𝑅2 = 0.73 meaning with increased amount of Cr in 1st NN the magnetic
moment of Co decreased. Same trend was found for Ni only with higher spread of values
𝑅2 = 0.59 and 𝑅2 = 0.63 for hcp and fcc, respectively. The least pronounced dependence
was for Cr on itself in 1st NN with quite low values of 𝑅2 compared to the other two ele-
ments. The dependence was still there and it was still visible that with higher amount of
Cr in 1st NN the magnetic moment lowers as well. This is probably tied to the fact that
it is not possible to arrange into antiferromagnetic orderings and thus magnetic frustration
lowering the magnetic moments.

Lastly, the dependencies on Ni concentration in 1st NN shell were quite small (Fig-
ure 4.13). The most profound one was for Cr magnetic moment in fcc with the value of
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Figure 4.12: Magnetic moment dependence on Cr in 1st NN shell.

Figure 4.13: Magnetic moment dependence on Ni in 1st NN shell.

𝑅2 = 0.29 followed by hcp with 𝑅2 = 0.24. In these cases, magnetic moment was increasing
with higher amounts of Ni in 1st NN. Even lesser dependence was found for Co magnetic
moments but the same trend of increasing magnetic moments with increased concentration
was present. The ordered structures were not analysed as the values were not spread to
create any kind of dependence tied to the ordering.

4.3.3 Charge transfer

The results of Bader analysis [89, 91] show charge transfer ongoing between the elements.
There were similar dependencies of the charge transfer on the 1st NN as the magnetic
moments. There was also a difference between the cells 1 and 3. For all the values of charge
transfer in cells 1 the charge transfer was always lower in spin-polarised (FM) calculations
than in non-spin-polarised (NM). On the contrary, the cells 3 had about the same amount
of charge transfer in both spin-polarised and non-spin-polarised calculations with the spin-
polarised calculation resulting in higher amounts of charge transfer compared to the cells
1.

No high dependence of charge transfer was present on Co concentration for both cells
(Figure 4.14), only a small dependence for fcc 1 in non-spin-polarised state for Cr with
𝑅2 = 0.31. In fcc 3 the 𝑅2 value was smaller but still the highest of all received. The
trend seems to be that the charge transfer on Cr was increasing with increasing amout of
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Co in 1st NN. For the other two elements the trend is decreasing meaning less charge was
transfered, in their case accepted, the more Co was in the 1st NN shell.

(a) Co charge transfer dependence on 1st NN composition in cells 1.

(b) Co charge transfer dependence on 1st NN composition in cells 3.

Figure 4.14: Co charge transfer dependence on 1st NN composition.

The most interesting were again the dependencies on Cr in 1st NN shell. The de-
pendencies for both sets of cells 1 and 3 are basically linear for all elements. All of the
dependencies had the 𝑅2 value above 0.90 with the lowest value received for spin-polarised
hcp 1 𝑅2 = 0.91, which was still quite a high value. The charge transfer minimises with
increase of Cr concentration in 1st NN for Cr atoms, as the more Cr atoms there were, the
less charge was released. For Co and Ni it was the other way around meaning they had
accepted more charge with more Cr in their 1st NN. This agrees with XANES measure-
ments done by Tan et al. [83] in which Cr is shown as the element with the most flexible
electronic structure. The differences between the cells 1 and 3 were also more pronounced
as the fcc 3 and hcp 3 Cr charge transfer basically overlap.

There was some dependence of charge transfer on the amount of Ni in the 1st NN shell
mostly for Co and Ni (Figure 4.16). Following the previous trends, with higher Ni concen-
tration in 1st NN shell Co and Ni charge transfer lowered while Cr increased its amount of
released electrons. The dependence was more pronounced than for Co concentration, but
not as pronounced as Cr highlighting Cr as the most important actor in charge transfer in
this alloy.
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(a) Cr charge transfer dependence on 1st NN composition in cells 1.

(b) Cr charge transfer dependence on 1st NN composition in cells 3.

Figure 4.15: Cr charge transfer dependence on 1st NN composition.

The increase of charge transfer in cells 3 could provide some explanation as to why the
magnetic moments in the fcc were suppressed. Another difference between cells 3 and 1
was the fact that Co has released some electrons in both spin-polarised calculations for cells
1 but for the cells 3 it only did so for a few cases in hcp,. Otherwise it always acted as
an acceptor, this could also influence the magnetism in a way. Higher amount of charge
transferred from Cr could cause the lower values of magnetic moments but it is interesting
that this effect was not present in the hexagonal structure, it could be explained by different
plane stacking and thus a higher influence of 2nd NN shell for which there was a difference
in Cr - Cr and Co - Co ordering between fcc 3 and hcp 3 with the lesser amount of bonds
of both in hcp 3. For the ordered structures the charge transfer was following the same
trends as cells 1 for the specific values of composition in 1st NN. As again the spread of
values was limited by the ordering, the dependencies were not really visible.

Linking the charge transfer to magnetic moment other clear dependencies appear. Here,
the magnetic moment values were taken as absolute, so that the analysis would be possible.
Co magnetic moment was nearly linearly dependent on the amount of charge transferred,
with the lesser amount of charge Co released the higher magnetic moment it had. Second in
dependencies was Ni with same trends of higher charge transfer resulting in lower magnetic
moment. For Ni, the dependencies were not as clear and linear as Co with higher spread
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(a) Ni charge transfer dependence on 1st NN composition in cells 1.

(b) Ni charge transfer dependence on 1st NN composition in cells 3.

Figure 4.16: Ni charge transfer dependence on 1st NN composition.

𝑅2 = 0.67 in fcc and 𝑅2 = 0.67 in hcp for cells 1 and 𝑅2 = 0.58 in fcc and 𝑅2 = 0.69 in
hcp.

The cubic fcc 3 had higher spread of values compared to the fcc 1. The magnetic moment
values were also quite different between fcc 3 and hcp 3, as mentioned in Section 4.3.2. Cr
did not really have a clear dependence as the spread of values is quite high in all cells.
However, there were similar trends of higher magnetic moment with higher amount of
magnetic moment released. Together with the dependence of charge transfer on the amount
of Cr in 1st NN shell this could provide an explanation into how phase stability is influenced
by Cr. For the Cr-o structure the charge transfer was very similar to cells 1 and as well
for both fcc and hcp structures and for both FM and NM calculations. Co has accepted
0.12 to 0.18 electrons, Ni accepted slightly more, between 0.24 and 0.18. Lastly, Cr had
released 0.30 to 0.38 electrons. These values are approximately equal to the values of FM
calculations of cells 1 for those specific concentration values. The magnetic moment values
not exceeding 1.30𝜇𝐵 for fcc is again in line with what is shown for Cr magnetic moment
in Figure 4.17a. Same goes for Co and its magnetic moment values for fcc being under
0.75𝜇𝐵. The suppresion of magnetic moments in hcp can not be explained purely by these
as for hcp 1 this effect did not appear.
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(a) Magnetic moment dependence on charge transfer in cells 1.

(b) Magnetic moment dependence on charge transfer in cells 3.

Figure 4.17: Magnetic moment dependence on charge transfer.

4.3.4 UMLIP comparison to DFT

Firstly, the energies from DFT and CHGNet prediction are compared. As can be seen in
Figure 4.18 there is quite an error. CHGNet overestimates the stability of all structures
by nearly 0.2 eV/atom. It is interesting to see that there really is not much of a difference
between the error in hcp and fcc structures (Figure 4.19). The better agreement for Cr-o
structures is simply caused by their lower energies from DFT. CHGNet puts them with
similar energies to all the other structures, thus the lower energy from DFT puts them
closer to these values. Applying the CHGNet to the pure elements it was possible to obtain
a mixing enthalpy from just ML prediction (although in reality these are easy calculations
and would not need this approach). It is expected that since the energies of the HEA
structures are so much different, the accuracy of mixing enthalpy is also not going to be
very accurate. Looking at both approaches (Section 4.3.4), e. g. mixing enthalpy only
from CHGNet or from CHGnet energies for HEA and DFT from elements, it is visible that
this model is not doing great for this material. Reaching root mean square error (RMSE)
values of 18 kJ/mol for the apporach of including DFT energies for elements means that
this approach is unusable and it is safer to use the CHGNet energies for elements as well.
Even then, the error reaches values of 8 kJ/mol and is proposing stability where DFT shows
positive values of mixing enthalpy. Sadly, as a lot of the necessary data for retraining was
on a hard drive that failed, it cannot be refitted to improve accuracy.

Trained forces depend on the energies so with that big errors of the UMLIP for the
energy one would expect quite big errors for forces as well. This turned out to be true as
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Figure 4.18: Comparison between energies obtained via DFT and via CHGNet UMLIP.

Element DFT Energy (eV/atom) CHGNet Energy (eV/atom)
Co -7.0368 -7.0279
Cr -9.4971 -9.5370
Ni -5.4670 -5.7445

Table 4.4: Energy values for elements obtained via DFT and CHGNet.

the forces result in RMSE of 0.2 eV/Å. Looking at the validation reported in the MPTraj
[59] of 0.008 eV/Å from CoCrNi the obtained error is of orders of magnitude higher. Looking
at the MPTraj dataset [59] the settings used for obtaining the data in the dataset give the
reason for this high error. The force convergence criterion was set to 0.02 eV/Å [59]. This
value is few orders higher than what was used for DFT calculations for CoCrNi. For the
energies, the situation is slightly different as there the convergence criterion was 10−6 eV [59]
which is the same as was used in the DFT calculations. It may be that the CHGNet can not
really deal with the HEA as the dataset may not include many of them and thus the model
struggles with extrapolation and thus sufficient refitting would improve performance. On
the other hand, with errors in forces like these, it makes little sense to try and use Phonopy
to obtain phonons as those depend quite heavily on well converged forces [44, 45].

Last part that the model is trained on are the magnetic moments. As was described in
Section 3.7.1 the magnetic moments training is independent of the energies and forces so
that could mean improvement of predictions. Especially if one considers that the magnetic
moments in this alloy depend on charge on ions quite reasonably as was described in previous
results. As was mentioned in the description, the model cannot predict the orientation so
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Figure 4.19: Errors obtained for all the calculated structures.

the values from DFT calculation have to be included in absolute values. Reported errors
from the CHGNet publication [59] are 0.032 𝜇𝐵 but from the DFT on CoCrNi it was, again,
by an order of magnitude higher. Looking at the Figure 4.24 it can be seen that the majority
of errors arise from the Ni ordered structures as well as the hcp Cr ordered structure. This
hints at a possibility of the model to somehow correctly predict the disordered structure out
of the box. The ordered structure, which will probably not be included that often in the
training dataset, represents quite a struggle. Especially, the hcp Cr ordered, which as was
described in Section 4.3.2, has magnetic moments frustrated to values very close to zero.
What is surprising is the very high error in the Ni ordered structures. There is probably
a significant part in the training dataset where in some alloys containing some Cr or Co
together with Ni have quite low magnetic moment. Otherwise, for the random solutions,
this model could be used even without pre-training to get at least an idea of the sizes of
magnetic moments. With the accuracy levels even without any refit, it probably would not
need many structures to correct this model. These structures would have to be mainly the
ordered ones.
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(a) CHGNet elements energy prediction. (b) CHGnet with DFT elements energy.

Figure 4.20: CHGnet energy predictions.

Figure 4.21: Comparison between forces obtained via DFT and via CHGNet UMLIP.

59



Figure 4.22: Errors obtained for forces for all the calculated structures.

Figure 4.23: Comparison between magnetic moments obtained via DFT and via CHGNet
UMLIP.
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Figure 4.24: Errors obtained for magnetic moments for all the calculated structures.
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4.3.5 MD runs with GRACE

The relative stability between fcc and hcp can be seen in Figure 4.25. The fcc always results
in slightly lower enthalpy, but both structures have very similar values. This confirms the
experimentally observed fcc structure as the more stable one already at 200 K. On the
other hand, the enthalpy differences are quite small which is partially in agreement with
experimentally observed and previously calculated low stacking fault energy [12, 69, 71].
Considering the model was not refitted at all, these are quite good results. The MD
runs at 900 K for fcc have very similar radial distribution function to the results obtained
by Foley et al. by EAM potential [99]. More importantly, even at higher temperatures
the radial distribution function does not change too much, hinting at chemical SRO not
disappearing, as can be seen in Figure 4.26. At 1100 K the common neighbour analysis
finds some changes to the fcc structure. Around 11% of atoms switch to the ”Other“ count,
meaning some displacement is happening from the original fcc cell. The analysis script did
not observe any atomic type switches on positions, so this is purely a local deformation
of nearest neighbours, not necessarily a change in SRO. This is also confirmed by a visual
check, where the structure does not really change over all the trajectories. It may be possible
that at longer simulation times or maybe using multiple fixes, i. e. starting the simulation
from higher temperature to give the system more energy for faster transformation would
reveal more.

Figure 4.25: Enthalpy obtained from MD runs.

For the hexagonal phase the situation was mostly the same. The RDF peaks were
slightly different at higher temperatures. The third and 4th peak at 600 K merge into one
at 1100 K. This could be explained by looking at the common neighbour analysis, specifically
at its render. The approximately 11% change from hcp to ”Other“ count was observed in
hcp in the same way as fcc. Same situation was for the atomic swaps, no atoms have
changed their positions completely so again it is just local distortion. Only when looking at
the structure visually some differences were clearly visible. In fcc (green atoms) the change
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to other (white atoms), visible in Figure 4.30a), was mostly small clusters or single atoms
that were displaced. Meanwhile for hcp, visible in Figure 4.30b), the displacement (white
atoms) was more tied together into larger clusters. Additionally, very small fractions of bcc
local neighbourhoods (blue atoms) were observed. Here it would be even more interesting
to observe longer simulation runs to observe what would happen.
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(a) Radial distribution function for fcc at 600 K.

(b) Radial distribution function for fcc at 1100 K.

Figure 4.26: Radial distribution function for fcc.
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Figure 4.27: Common neighbour analysis obtained from MD run at 1100 K for fcc.
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(a) Radial distribution function for hcp at 600 K.

(b) Radial distribution function for hcp at 1100 K.

Figure 4.28: Radial distribution functions for hcp.
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Figure 4.29: Common neighbour analysis obtained from MD run at 1100 K for hcp.

(a) CNA visualisation for fcc at 1100 K.
(b) CNA visualisation for hcp at 1100
K.

Figure 4.30: CNA visualisations, fcc structure is green, hcp is red, white are the displaced
atoms, blue is some displacements into bcc structure.
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5. YMn2 calculations
5.1 Motivation and literature review
This intermetallic is an interesting compound to study because of its abnormal lattice ex-
pansion at Néel temperature of 100 K. The compound crystallizes in a cubic C15 Laves
phase with two Y atoms at 8a (4̄3𝑚) positions and four Mn atoms at 16d (3̄𝑚) positions.
It is also possible to find it in C14 Laves phase which is less stable than C15 [100]. Its
magnetic ordering is still unclear as there are conflicting reports. The reported states range
from simple antiferromagnet [17] to helimagnetic structure [18, 101] with quite high 𝑞 vector
of 430 Å[18, 102] and also double-axial spin structure [102]. The abnormal lattice expansion
is tied to the antiferromagnetic to paramagnetic phase transition at Néel temperature and
results in about 5% volume increase when cooling down from the paramagnetic state [16,
103, 104]. There is also a small tetragonal distortion present at the transformation at 100
K according to Nakamura and Shiga [102] and Cywinski [18] of 5% as well. The hexag-
onal C14 Laves phase type does not exhibit this behaviour [100]. The magnetic moment
is concentrated only on the Mn atoms with the value of 2.7𝜇𝐵 reported by both previous
experimental measurements and theoretical calculations [16, 105–108]. The magnetic state
itself is very sensitive to any chemical changes as just 3% substitution of Y by Sc changes
the magnetic moments [109]. Other elemental substitutions have similar drastic effects
on the magnetism of this compound. Interestingly, another Y and Mn binary compound
Y6Mn23 has anomalous thermal expansion above Curie temperature as well except in opos-
site direction. For the Y6Mn23 the abnormal expansion occurs above Curie temperature in
the paramagnetic state from 500 K [110].

There were attempts to use the volume expansion as a means for hydrogen storage [106,
107, 111] and there were some interesting findings about the magnetism. DFT calculations
by Pajda et al. [112] were done using full-potential linear muffin-tin orbitals without spin-
orbit coupling for a calculation cell of 6 atoms with further hydrogen added into it to
calculate the hydrides. The hydrogen compensates the growth of magnetic moments on
Mn atoms and keeps them around 2.6𝜇𝐵 through hybridization of H with Mn atoms. If
placed into a different spot the hydrogenated alloy can even become slightly ferrimagnetic.
In deuterized YMn2D6, the phase transition at Néel temperature is surpressed completely
[100]. For concentrations of hydrogen higher than 0.75 the magnetic ordering changes to
ferromagnetic [113, 114].

Chen et al. [108] did DFT + U calculations through VASP for YMn2 as well as other
rare-earth RMn2 compounds and received the mixing enthalpy 𝐻𝑚𝑖𝑥 = −11.3 kJ/mol for
C15 antiferromagnetic configuration. Their selected 𝑈 and 𝐽 parameters were 1.7 and
0.95 eV respectively [108]. They have received a slightly higher value of magnetic mo-
ment (3.3 𝜇𝐵) compared to previously reported 2.7 𝜇𝐵. Iwasaki et al. [115] employed
the Korringa-Kohn-Rostoker Green’s function method to caculate the different antiferro-
magnetic structures with both LDA and GGA potentials. Their results predict a [0 0 0]
antiferromagntic ordering to be more stable than one of the experimentally observed [0 0
1] antiferromangetic structures.

Pulkkinen et al. in 2020 did meta-GGA calculations with SCAN functional on pure
Mn [19]. In their results SCAN has successfully managed to describe complicated magnetic
ordering of 𝛼-Mn (4 different antiferromagnetic sublattices). They have also shown SCAN’s
ability to predict basically similar density of states to GGA + U method in collinear mag-
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netism setting allowing the bypass of empirical U and J parameters and showing that the
SCAN functional can describe the Coulomb interactions well.

Figure 5.1: Comparison between densities of states via GGA, GGA+U and SCAN for pure
Mn, taken from [19].

5.2 Methods and models

5.2.1 Models

To simulate the compound, a conventional C15 Laves unit cell was used with 24 atoms,
16 Mn and 8 Y atoms. The various magnetic structures that were generated contained
a ferromagnetic ordering (FM) and 7 different antiferromagnetic orderings. The initial
magnetic moments were all set up along the [0 0 1] direction. One was generated to have as
much of antiferromagnetic ordering as possible (AFM1), two were generated from previously
experimentally measured and proposed orderings (AFM2, AFM3) [17] and then three with
randomised magnetic moments generated by sqsgenerator [49] to obtain different ordering
than pure antiferromagnetic with various levels of ferrimagnetism (AFM4, AFM, AFM6).
Another experimentally observed ordering was added as the AFM7 structure from [101]
but it was only considered for the metaGGA calculations. The two orderings AFM2 and
AFM3 were basically the same structure in case of spin-up and spin-down setup but with a
different axis of magnetization. This means that AFM2 direction of magnetization was [0 0
1] and AFM3 would have to be magnetized along [1 0 0] direction to be completely equal.
For AFM6 the magnetic moments were basically randomly distributed between Mn atoms
with spin-up and spin-down. This was achieved by using the sqsgenerator on just the Mn
sublattice without Y atoms. For the sake of simplicity, half of the Mn atoms were replaced
with some other element, so that the values of W-C parameters received from sqsgenerator
were immediately correct. With Mn atoms representing the spin-up state and element X
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representing the spin-down states, i.e. 𝛼𝑀𝑛𝑀𝑛 = 𝛼𝑀𝑛↑↑ and 𝛼𝑀𝑛𝑋 = 𝛼𝑀𝑛↑↓. The received
W-C parameters can be found in Table 5.1 and their visualisation can be seen in Figure 5.2
with spin-up being the red arrows and spin-down yellow, the crystallographic direction [0
0 1] is shown as the black arrow. There were no constraints implemented on magnetic
moments. Lastly, the non-spin-polarised calculations were done as well for full reference.

(a) AFM1 (b) AFM2 (c) AFM3

(d) AFM4 (e) AFM5 (f) AFM6

Figure 5.2: Different antiferromagnetic orderings used for YMn2 calculations, purple atoms
are Mn, turquoise atoms are Y, black vector highlights the [0 0 1] crystallographic direction.

Magnetic ordering 1st NN 2nd NN 3rd NN
𝛼𝑀𝑛↑↓ 𝛼𝑀𝑛↑↑ 𝛼𝑀𝑛↑↓ 𝛼𝑀𝑛↑↑ 𝛼𝑀𝑛↑↓ 𝛼𝑀𝑛↑↑

AFM1 -0.333 0.667 -0.333 0.667 1.000 0.000
AFM2 -0.333 0.667 0.333 0.333 -0.333 0.667
AFM3 -0.333 0.667 0.333 0.333 -0.333 0.667
AFM4 0.333 0.333 -0.333 0.667 -0.333 0.667
AFM5 0.167 0.417 -0.333 0.667 0.000 0.500
AFM6 0.000 0.500 0.000 0.500 -0.333 0.667

Table 5.1: Warren-Cowley parameters for different magnetic orderings.

For metaGGA calculations, the pure 𝛼-Mn was calculated as well to validate the results
of [19]. For this, the conventional unit cell containing 58 Mn atoms was used. The 𝛼-Mn
crystallizes in 𝐼43𝑚 space group. Furthermore, there are 4 different magnetic sublattices
making the mangetic structure quite complicated, magnetic structure I is nearly antiferro-
magnetic in the [0 0 1] direction on the corners of the cell and on the middle atom, II which
is mostly antiferromagnetic in [0 0 1] direction but the spins are canted, III is divided into
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IIIa and IIIb and is mostly oriented in the (0 0 1) plane and IV, which is also divided into
IVa and IVb. All of these can be seen on a Figure 5.3.

Figure 5.3: The 𝛼 -Mn crystal lattice with the magnetic sublattices differentiated by colours,
dark blue is the I, orange is the II, light blue and purple are the IIIa and IIIb respectively
and finally, dark green and dark blue are the IVa and IVb sublattices.

5.2.2 GGA calculations

The PAW PBE [84, 85] functionals were used as they gave same accuracy as the PAW
PBEsol [30] but the calculations were faster. Other considered functionals were the LDA
and GGA PW91. The cutoff energy was set to 500 eV. The integration over Brillouin zone
was done on a k-point mesh of 7x7x7 [86]. The magnetic moments were computed firstly as
collinear and then as non-collinear with spin-orbit coupling enabled. Switch to non-collinear
calculations was done after the collinear calculations failed in recognizing the AFM2 and
AFM3 as the same, more on this further in the results. The spin-orbit coupling was then
enabled because of the information in [102] which describes spin-orbit coupling as strong in
this material because of high received susceptibility from nuclear magnetic resonance and
neutron scattering.

To compare the stabilities of the different magnetic orderings, the energy-volume curves
were calculated with range of volume 300Å3 − 520Å3

. Afterwards, the results were fitted
with Birch-Murnaghan equation of states (EOS) of 4th order by the means of the Gibbs2
code [116, 117]. Magnetic moments were analysed from the VASP output files (OUTCAR).
To get the equillibrium values of magnetic moments a static calculation was then run again
for the minimum received from energy-volume curves.

5.2.3 Meta-GGA calculations

Multiple functionals were chosen as possibilities for the calculations, starting from SCAN
functional because of its ability to correctly describe magnetism in 𝛼-Mn [19], it was of
interest to use its deorbitalized version SCAN-L as well [34]. Then the family of R2SCAN
and its two different deorbitalized versions, R2SCAN-L and OFR2 [32, 118]. The Tao-Mo
functionals were also considered with their deorbitalized versions [119].
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Firstly, pure 𝛼-Mn was calculated via SCAN functional to validate the successful descrip-
tion on our hardware/software combination and to observe behaviour of different settings.
Afterwards, the other functionals were run as well. The initial magnetic moments were set
just ferromagnetic in the [0 0 1] direction to observe the functionals ability to find the cor-
rect magnetic state. If it failed an approximate antiferromagnetic ordering was set to help
the functional find the correct state. This was done because sometimes the optimization
algorithm can miss antiferromagnetic solutions if initial ferromagnetism is set [8]. Full re-
laxation was allowed (ISIF = 3) with the convergence criterion for forces being 10−4 eV/Å.
The Methfessel-Paxton [6, 7] smearing method was used with the parameter SIGMA = 0.2.
Planewave cutoff was set to 550 eV as in the works of Pulkkinen et al. [19]. Non-collinear
magnetic description is a necessity as well as the spin-orbit coupling. It is preferable to turn
off symmetry (ISYM = 0) for the first few steps as it helps with performance of these cal-
culations. It has to be mentioned these calculations were very computationally costly and
after consulting the HPC support (at the IT4I supercomputing centre) the SCALAPACK
package usage was turned off for calculations on supercomputer Karolína (LSCALAPACK =
.FALSE.). Even then, the calculations on supercomputer Karolína had to be run on 32
nodes with quite low cpus per node (32) as the memory usage was enormous. Setting up
the kpoints was also quite a struggle as the settings used by Pulkkinen et al. [19] were over
our computational possibilities. We first started with the kpoint mesh of 8x8x8 (the first
run still with symmetry enabled) which worked fine until the magnetic symmetry break-
ing multiplied the number of irreducible kpoints. This resulted in a memory bottleneck
and the mesh had to be reduced to 6x6x6 which still results in 216 irreducible kpoints.
Later calculations were run on LUMI supercomputer, which has higher memory per node,
which allowed much more efficient calculations but the settings were kept the same to keep
comparability, except the usage of SCALAPACK, which was enabled again. All the nec-
essary settings mentioned in section Section 3.1.2 were also enabled (LASPH = .TRUE. and
LMIXTAU = .TRUE.). Additionally, the pure Yttrium in hcp lattice was calculated with the
successful functionals to obtain mixing enthalpy.

The YMn2 calculations were run with the same functionals as the 𝛼-Mn to see if there
is any difference between ability to correctly describe Mn and this Mn rich compound.
They were again run on both IT4I Karolína HPC and LUMI HPC. Same settings as for
pure Mn were used except for few. The energy cutoff was set to 600 eV and the kpoints
were this time controlled via the KSPACING setting, which was set to 0.12 Å−1. The use of
symmetry was turned on again, as there should not be any huge break of symmetry that the
calculation would benefit from, if we consider just antiferromagnetism as possible solution.
The computational cost was again higher than for GGA but it was nowhere near the pure
Mn calculations. The results were just structural optimizations, not energy - volume curves,
as that would still be too computationally expensive. At this point we were interested if any
of the metaGGA functionals would change the energy balance obtained by GGA or result
in any of the experimentally observed orderings as the most stable. As the computational
resources were running out, the workflow changed into doing just structure optimizations
of AFM1, AFM2 and AFM7 structure.
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5.3 Results

5.3.1 GGA results

Collinear calculations

The results from collinear calculations can be seen in Figure 5.4. It can be seen that
AFM1 and AFM3 have very similar energies. Most importantly, the AFM2 and the non-
spin-polarised NM calculations are basically equal for all GGA calculations. The magnetic
moments for AFM2 were also reduced to zero thus the whole calculation was acting as
non-magnetic. As was mentioned in the methods (Section 5.2.1) the AFM2 and AFM3
are equal structures and since VASP does not input any axis into collinear calculation, just
takes the difference between spin-up and spin-down electron densities [8], this shows a failure
in description of this system. It is probably caused by the spin-orbit coupling not being
included and thus the switch to non-collinear calculations has to be made. Surprisingly,
the lattice parameters and magnetic moments for AFM1 and AFM3 were very similar to
the experimental ones.

Figure 5.4: Results from collinear calculations.

Non-collinear calculations

The resulting energy-volume curves show the AFM1 ordering as the most stable. Slightly
less stable were AFM2 and AFM3 which resulted in basically equal energetics and volumes
between each other and were also just 0.014 eV higher than AFM1 with their equillibrium
volume lower by just 0.309 Å3

, i. e. lattice parameter difference of 0.002 Å. All of these
results in about 3 % difference from experimental measured lattice parameter of 7.73Å
[16, 120] showing PBE potential slightly overestimating the lattice parameter for this com-
pound. The other generated AFM structures had quite different results. Even though their
equillibrium energy is quite similar to AFM2 and AFM3, their equillibrium volumes result
in much smaller values. Biggest difference was for AFM4 where the equillibrium volume
was smaller by 15.458 Å3. The non-spin-polarised calculation results in a smaller volume
by 39.0375Å3

, which equals to around 9.35 % volume difference. That value is too high
compared to the experimentally observed difference of 5 %.

The ferromagnetic ordering had an interesting effect in its energy volume curve around
450Å3 (7.663 Å) which corresponds to around 2.710 Å in Mn - Mn interatomic distance.
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Figure 5.5: YMn2 energy-volume curves with Birch-Murnaghan equation of states fit.

According to Voiron and Wada et al. [121, 122] there is a critical value of Mn - Mn
interatomic distance in rare-earth RMn2 compounds of around 2.7 Å above which the Mn
retains its large magnetic moment while below it collapses. This would be in agreement
with our results. This instability has caused the Birch-Murnaghan fit to be quite unreliable
as it could not deal with such a change in curvature. All results from the fit can be
found in Table 5.2. Comparing the equillibrium volumes and energies from gained results
shows a hint of a trend of decreased equillibrium volume with increased randomness of
magnetic moments for the AFM calculation Figure 5.6. The smallest obtained volume
was for ordering AFM4 which had the highest W-C parameters for both same spin and
opposite spin Mn atoms in 1st NN. This structure had the magnetic moments in one way
in one half of the cell and the other half had them in the other way as can be seen in
Figure 5.2d. The ordering AFM6 with the most random distribution of opposite spin Mn
atoms had a slightly higher volume as well as lower stability compared to other AFM
orderings. Percentage difference of volume between this structure and AFM1 would be
2.28 % which still does not equal to the experimentally measured difference between the
AFM and NM state but it is much closer than taking the non-spin-polarised state as the
paramagnetic state. This could hint at the possible necessity of using a completely random
order of magnetic moments to model the paramagnetic state.

Magnetic

Equilibrium
energy per

atom

Equilibrium
volume

Lattice
parameter

Bulk
Modulus

Average magnetic
moment in [0 0 1]

ordering eV/atom Å3 Å GPa 𝜇𝐵

AFM1 -8.22 417.41 7.47 60.22 2.57
AFM2 -8.20 417.10 7.47 51.05 2.54
AFM3 -8.20 417.70 7.48 52.12 2.55
AFM4 -8.20 401.95 7.38 75.16 2.07
AFM5 -8.20 404.58 7.40 70.62 2.15
AFM6 -8.19 407.88 7.42 62.42 2.25

FM -8.13 379.58 7.24v 92.99 0.49
NM -8.10 378.37 7.23 140.06

Table 5.2: Values from Birch-Murnaghan equation of states fit.
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Figure 5.6: YMn2 equillibrium energies and volumes.

The average magnetic moment values in Table 5.2 were taken in absolute values. There
were 4 different sites in the unit cells with same size of magnetic moment but for some
structures with different spin orientation. The received values were again in quite good
agreement with previously published values of 2.7𝜇𝐵, [17, 108, 115], especially considering
the simulation of antiferromagnetic ordering and not the helimagnetic from which those
values were reported. Absolute majority of the magnetic moment was oriented along the [0
0 1] direction even after the relaxation with only very small parts in other two perpendicular
crystallographic directions. Interestingly, there was quite a difference between AFM2 and
AFM3 which were otherwise nearly the same. The AFM2 ordering results in some magnetic
moment in [1 0 0] direction (0.045𝜇𝐵) and no magnetic moment in [0 1 0], while the AFM3
has similar values but in both [1 0 0] and [0 1 0]. The values were quite small but it was
still interesting to see a difference in what are otherwise completely the same structures.
Examining the whole volume range, the magnetic moment in [0 0 1] direction was, as
expected, steadily increasing with increase of volume. It appears to be saturating and
the differences between structures minimise with larger volumes. Other two directions are
mostly stable throughout the whole volume range except for AFM6, where, surprisingly,
the moments decrease with increase of volume. There was also the interesting effect in
AFM1, where some moments between 320− 360Å3 had values around 0.145𝜇𝐵 in the [0 1
0] direction, with increase of volume this effect disappeared and for the equillibrium volume
the values were around 0.020𝜇𝐵.

It has to be noted though that none of the approaches currently describe the ground
state observed by experiments. It may be caused by the complications of GGA functionals
to describe Mn magnetic structures without the empirical U correction as the compound
is still quite Mn rich. The inclusion of Y which can act as an f-electron element may even
worsen this problem. Considering the results of Pulkkinen et al. [19] this sparked hope
that maybe the metaGGAs could be the answer that gives the experimentally observed
orderings as the ground state.
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Figure 5.7: Magnetic moments dependence on volume.

5.3.2 Meta-GGA results - 𝛼-Mn

The successful 𝛼-Mn calculation were done with the SCAN and r2SCAN functional. SCAN
functional even managed to correctly change the initial ferromagnetic ordering into the
complicated antiferromagnetic structure. The r2SCAN was started from already an anti-
ferromagnetic set up representing the proper sublattice positions.

Surprisingly, the deorbitalized versions of both SCAN and r2SCAN, the SCAN-L, OFR2
and r2SCAN-L, completely failed. Neither setting the initial moments as antiferromagnetic
nor as the results from previous SCAN calculations helped and the calculations did not
converge. Changing the algorithm to ALGO = All, the simultaneous update of all orbitals,
which VASP wiki [8] mentions as possible solution to convergency problems and was used
by Mejia-Rodriguéz in their work [42], did not help either. It also has to be mentioned that
using this algorithm consumes further memory, so its usage for already heavily memory
consuming calculation like this one is quite limited. It may be possible that with increased
cutoff energy and ALGO = All the calculations would converge but the computational cost
was too high. Although, one testing calculation was run with the SCAN-L and cutoff of
700 eV with the recommended algorithm but with reduced kpoints and yet the convergence
was still not achieved.

5.3.3 Meta-GGA results - YMn2

The functional performance was similar to the 𝛼-Mn. The Tao-Mo functional failed com-
pletely and the deorbitalized functionals have convergency issues for YMn2 as well. SCAN
and r2SCAN both converged for AFM1 but r2SCAN had worse computational performance
as it took way longer to converge. The issues may again arise from not enough kpoints
as it was found while working with these functionals on other project. r2SCAN is much
more sensitive to the number of kpoints. Having 𝛼-Mn calculated via SCAN allows us to
calculate the mixing enthalpy in relation to Mn ground state. With the experimentally
proposed structure by [101] AFM7 exhibits the lowest mixing enthalpy of -12.28 kJ/mol.

It has to be mentioned that SCAN calculations for AFM structures result with a slight
tetragonality as reported by Nakamura and Shiga [18, 104, 120] but no tetragonality is
found in the non-spin-polarised calculation. The tetragonality differs between the AFM
orderings and for the AFM1, it is not in the [0 0 1] direction, but in [0 1 0] direction
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even though the moments are mostly oriented along the [0 0 1] direction. There are some
magnetic moment in [0 1 0] direction as well, 0.022 or 0.016 𝜇𝐵 in both negative and
positive values. Interestingly, the AFM2 results in tetragonality in [1 0 0] direction, this
time with no moments in other directions except the [0 0 1]. The AFM2 results in higher
stability than AFM1 but is still not as stable as AFM7. On the other hand, the AFM7
results in tetragonality in the [0 0 1] direction as was observed in experiments. The value
of tetragonality also agrees with experimental results of 0.5% [18, 104, 120] but it is in
the opposite direction. Here the [0 0 1], or c lattice parameter, was reduced instead of
extended. This could just be caused by the relaxation algorithm as the lattice parameter
values are in near perfect agreement with experimental data. Thus the additional AFM7
exp. V calculation was performed, This calculation does nothing else than ”switching“
around the lattice parameters, so that the tetragonal distortion is in the correct way, i. e.
extension in the [0 0 1] direction. Only internal coordinates were allowed to relax for this
calculation (ISIF = 2 ). The resulting mixing enthalpy is slightly lower, -12.31 kJ/mol
and the tetragonality is slightly extended. The magnetic moments are very similar, for the
experimental volume the moments are slightly larger, which makes sense as the volume
is also slightly larger, but the orientation is just in [0 0 1] direction with only extremely
small parts in other two directions (in orders of 0.001 𝜇𝐵). The resulting moments for all
structures are overestimated over experiment, which is worse than GGA PBE. On the other
hand, it is a known behaviour of the SCAN functional [31, 40].

Magnetic
Mixing

enthalpy Volume a c a/c

Avg.
magnetic

moment in
[0 0 1]

ordering
kJ/mol Å3 Å Å Å 𝜇𝐵

AFM1 -10.47 445.75 7.71 7.50 1.029 3.356
AFM2 -10.97 460.16 7.70 7.73 0.997 3.538
AFM7 -12.28 459.04 7.70 7.74 0.994 3.300

AFM7 exp. V -12.31 460.68 7.74 7.69 1.007 3.510
NM 41.78 366.64 7.16 7.16 1.00 –

Table 5.3: Results from SCAN.
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6. Goals
6.1 CoCrNi calculations

The CoCrNi calculations are finished and published in the paper [2] from Section 8.1.
Further phonon calculations on selected HEA systems are planned to address their ther-
modynamic stability. Similar short-range ordering analysis for those systems is planned as
well.

6.2 YMn2 calculation
The plan is to try and find a dependence of the energy on the ordering of magnetic moments.
Before that, the calculation of pure elements to evaluate the 𝐻𝑚𝑖𝑥 and compare it with
available literature to evaluate the accuracy of the PAW PBE approach is planned. If
the accuracy is insufficient then it will be necessary to use DFT + U or hybrid potentials
for future calculations. The helimagnetic structure as a whole is not planned to calculate
as it would require a computational cell 57 times larger than used now to represent the
whole spiral, which would mean thousands of atoms. On the other hand, the double-axial
spin structure can be calculated. If the PAW PBE approach will show correct mixing
enthalpies, multiple calculations need to be done in ranges of 𝛼𝑀𝑛↑↑ and 𝛼𝑀𝑛↑↓ either
generated through the sqsgenerator [49] to better represent the paramagnetic phase or
hand-made to model all possible antiferromagnetic orderings. To try and explain the volume
expansion non-spin-polarised phonon calculations of similar compounds will be done (for
example YAl2) to see if similar effects appear.
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7. Conclusions
The main goals of this thesis were to describe the magnetism at ab initio level in the systems
CoCrNi, YMn2 and additionally, pure 𝛼-Mn. The first part of this thesis is focused on the
CoCrNi system and contains not only ab initio calculations but molecular dynamics runs
employing universal machine learning potential GRACE. The other part is focused on the
pure 𝛼-Mn as well as the YMn2 systems calculated via multiple different functionals. The
main conclusions of the first part of the thesis are as follows:

• Ab initio calculations of the CoCrNi alloy provide unique insights into its phase sta-
bility and magnetic structure as well as the short-range ordering. It was correctly
described as more stable in the spin-polarised state rather than in the non-spin-
polarised state. The dependence on the short-range ordering was evaluated through
calculations on multiple structures with different levels of Warren Cowley short-range
order parameters. A specific ordered structures were created by hand that minimized
the amount of the ordered element in 1st NN to 2, which was inspired by trying to get
antiferromagnetic ordering for Cr. These Cr ordered structures result in the highest
stability for both fcc and hcp structures but also minimizes the effect of including
spin-polarization on phase stability. Interestingly, it was found that Ni ordering in-
fluences the phase stability of the hcp structure while having no effect on the fcc.
This effect was so strong that it actually destabilized the hcp Ni ordered structure
relatively to the fcc Ni structures.

• Magnetic moment analysis revealed trends that depend on 1st NN elements. Firstly,
it was revealed in the Cr ordered structures that the distribution of moments is
significantly different for all elements compared to the randomly ordered structures.
Antiferromagnetic ordering was much more present in the fcc Cr ordered structure,
caused by the Co moments flipping their spin to accomodate the Cr. Meanwhile, in
the hcp Cr ordered structure the magnetic moments were reduced heavily. Further
analysis of the concentration of elements in 1st NN revealed quite strong dependence
on the amount of Cr for all elements. Mostly pronounced for Co, but present for
all the others, the moments reduced with increased content of Cr in their 1st NN,
probably caused by the inability to satisfy the antiferromagnetic magnetic structure
that Cr prefers.

• Furthermore, the same analysis of 1st NN was employed on the Bader charges where
even more pronounced dependencies were found. Nearly linear dependence was found
charge transfer of all elements on the amount of Cr in their 1st NN. Here, the more
Cr was found in 1st NN, the more charge was transferred. In case of Cr it meant
more charge was given while for Ni and Co the more charge was accepted. It has to
be mentioned that Co sometimes released some of its charge, which could be tied to
Ni in its 1st NN. More importantly, these charge transfer values were in agreement
with elements Pauling electronegativities.

• Relating the charge transfer to magnetic moment revealed quite strong dependencies
as well. Thus revealing that the magnetic moment is just a result of the ongoing
charge transfers dependence. The data revealed that with higher amounts of charge
transfer for Co and Ni the magnetic moment decreased while for Cr it increased.
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• Comparison between CHGNet universal machine learning potential to the DFT re-
sults revealed unsatisfactory results for the machine learned potential. The errors
in energies, and thus mixing enthalpies, were so high that any prediction was highly
unreliable. The original idea to use the CHGNet predicted forces for further phonon
calculations, which require accurate forces, had to be discarded after observing the
root mean squared error of 0.2 eV/Å. In regards of magnetic moment prediction the
model fared better. Here it was mostly the ordered structures that proved difficult for
the model to predict, otherwise the agreement was not so bad and it could be usable
in initial predictions of magnetic moment sizes.

• The molecular dynamics were run with the GRACE (Graph Atomic Cluster Expan-
sion) universal machine learning model. Its performance was quite solid in comparison
to specifically trained Embedded Atom Method potential. It also predicts fcc stable
above room temperatures rather than hcp. The relative difference between the two
phases reveals very small differences, which is in agreement with very low stacking
fault energies for this material. It was not possible to observe the annihilation of
chemical short-range ordering but there was observed local distortion of the lattice
at 1100 K runs so it may have been just because too short simulation time. The
distortion was also different between the two structures, where in fcc it was mostly
single atoms or doublets/triplets while in hcp it was bigger clusters.

• Another system that was planned to be investigated was the FeCoNi alloy but through-
out PhD studies a lot of publications were already published with similar analysis that
was planned. Combined with the failure of CHGNet for predicting correct forces for
further phonon calculations, it was decided to not pursue this problem further.

The main conclusions of the second part, the system YMn2 together with 𝛼-Mn:

• Total number of 7 different antiferromagnetic structures were explored. Collinear
magnetic calculations failed in description of magnetic moments, so a switch to non-
collinear magnetic calculations had to be made. From these energy volume curves were
obtained and revealed an error of GGA PBE functional. All of the experimentally
observed magnetic structures resulted in higher energies than a generated one, this
structure had as much antiferromagnetic ordering as was possible. Even though, the
agreements in sizes of magnetic moments to experiments was very good. But the fact
that experimental structures were not the stable ones meant finding other solutions.

• One of the possible solutions would be to use a step up on the Jacobs ladder of ex-
change correlation functionals, the metaGGA functionals. This was prompted by a
publication, in which the SCAN metaGGA functional has correctly calculated the
complicated magnetic structure of 𝛼-Mn, which was previously impossible to obtain
just by DFT. They have also shown that SCAN mostly reproduces the otherwise used
Hubbard +U correction as well. Since the time of that publication a new version of
metaGGAs was developed, the deorbitalized metaGGAs, which shown further increase
in magnetic moment accuracies. This combined into this list of used metaGGA func-
tionals: SCAN, r2SCAN, the deorbitalized versions SCAN-L, r2SCAN-L, OFR2 as
well as the Tao-Mo functional.

• The chosen functionals were used for calculation of pure 𝛼-Mn as well as the YMn2.
Out of all chosen functionals, only the SCAN and r2SCAN and Tao-Mo did not
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encounter convergency issues. The Tao-Mo functional resulted in unphysical zero
magnetic moments, as well as extremely small volumes, so it was discarded from
further calculations. The failure of deorbitalized functionals may have been caused
by not enough kpoints or too low cutoff energy set, but with the computational cost of
these calculations, it was not really possible to increase them, especially the number of
kpoints. On the other hand, SCAN and r2SCAN functionals did not only coverge, but
converged into the correct complicated antiferromagnetic structures of 𝛼-Mn. With
these results, it was possible to calculate the mixing enthalpy of YMn2 in relation to
the Mn ground state as well.

• The metaGGAs functionals were further reduced to just SCAN for all of the YMN2
calculations. Reason being that r2SCAN while accurate it had worse performance
and with limited computational time it was critical to not use too much of it. This
also meant that instead of energy volume curves just structure optimization was done
on 3 magnetic structures, two experimentally observed and the AMF1 that was the
most stable in GGA PBE calculations. This time though, the AFM1 was the least
stable antiferromagnetic structure. The experimentally observed AFM7 resulted in
lowest mixing enthalpy, as well as nearly perfect agreement of calculated volume to the
experimental one. There is one caveat, the overestimation of magnetic moments by
nearly 1 𝜇𝐵 but it is also an expected behaviour of the functionals. Most importantly,
the experimentally observed ground state was now obtained from DFT without the
need for Hubbard corrections or hybrid functionals.

• The metaGGA functionals have also managed to reproduce the tetragonality observed
in experiments. There was a caveat to this as well, the tetragonality value of AFM7
was nearly exact as experimental, except in the other direction, i. e. the [0 0 1]
was compressed instead of extended. Doing a calculation on the exact experimental
tetragonality while allowing only atomic coordinates relaxation results in even slightly
lower mixing enthalpy. It has to be noted that the energies are very similar and the
optimization that was used could struggle to find the global minimum.

The results obtained in this thesis offer some further research into their respective topics.
For the CoCrNi alloy, the most interesting would be refitting the GRACE potential to
improve its accuracy or running longer molecular dynamics runs to try and find the fcc -
hcp phase transition, or at least the annihilation of the chemical short-range ordering. It
also shows how even the out of the box version of GRACE potentials is usable for HEAs,
in comparison to CHGNet for example, so one can safely use it for other HEA systems.

For the YMn2, the anomalous thermal expansion still remains unexplained but if it is
tied to the antiferromagnetic phase, this work produced the experimentally observed ground
state usable for further thermal dependence calculations. One of the options could be either
quasi-harmonic approximation to obtain phonon contributions, here one has to be careful
to correctly represent the magnetic symmetry, which may end up in quite high amounts
of displacements. Another option could be to obtain the interaction parameters from the
ground state antiferromagnetic structure by constructing Wannier orbitals. These could
then be fed into a spin dynamics code that employs the Landau-Lifshits-Gilbert equation
like Spirit or VAMPIRE to run their simulations on multiple lattice constants to observe
the behaviour.
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8. Publications and other activities
8.1 Publications

1. I. Moravčík, M. Zelený, A. Dlouhý, H. Hadraba, A. G. Moravčíková, P. Papež, O.
Fikar, I. Dlouhý, D. Raabe, Z. Li. “Impact of interstitial elements on the stacking
fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experi-
ments”. Science and Technology of Advanced Materials 23.1 (2022), pp. 376–392.
DOI: 10.1080/14686996.2022.2080512.

2. P. Papež, M. Zelený, M. Friák, I. Dlouhý. “The effect of spin-polarization, atomic
ordering and charge transfer on the stability of CoCrNi medium entropy alloy”. Ma-
terials Chemistry and Physics 304.127783 (2023).
DOI: 10.1016/j.matchemphys.2023.127783.

3. M. Friák, O. Zobač, Z. Chlup, O. Fikar, P. Papež, M. Zelený, A. Kroupa. Materials
properties of defect-stabilized off-stoichiometric 𝜏 -phase Al2Ge2Mg, Intermetallics,
169, 108294 (2024) DOI: 10.1016/j.intermet.2024.108294.

8.2 Other activities

8.2.1 Conferences

• DPG, Spring Meeting of the Condensed Matter Section, Regensburg, Germany, 16. -
21. 3. 2025 - Poster: Ab initio calculations of defects in the Mg2Ge intermetallic., P.
Papež, M. Friák, M. Zelený.

• Multiscale Materials Modeling conference, Prague, Czech Republic, 22. - 27. 9. 2024
- Talk: The impact of spin-polarization, atomic ordering and charge transfer on the
stability of medium-entropy CoCrNi alloy., P. Papež, M. Zelený, M. Friák, I. Dlouhý.”

• DPG Spring Meeting, Berlin, Germany, 17. - 22. 3. 2024 - Talk: The impact of spin-
polarization, atomic ordering and charge transfer on the stability of CoCrNi alloy,
P. Papež, M. Zelený, M. Friák and I. Dlouhý, and poster: Ab initio study of phase
stability of YMn2 with different magnetic orderings, P. Papež, M. Friák and I. Turek

• Intermetallics, Bad Staffelstein, Germany, 1. - 6. 10. 2023 - Poster: Competing
magnetic structures in YMn2, P. Papež, M. Friák and I. Turek

• DPG Spring Meeting, Regensburg, Germany, 4. - 9. 9. 2022 - poster Ab initio study
of point defects in disordered systems, P. Papež, M. Friák, M. Zelený“

8.2.2 Workshops and schools

• Machine Learning for Materials Discovery workshop at Aalto University, Espoo, Fin-
land, 5. - 8. 5. 2025

• Graph Atomic Cluster Expansion (GRACE) Hands-on workshop on development,
validation and application of GRACE models at Ruhr-Universität Bochum, Germany,
12. - 14. 3. 2025
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• Annual MSIT Workshop International Seminar on the Evaluation of Heterogeneous
Multicomponent Equilibria at Castle Ebernburg, Bad Münster, Germany 16. - 21. 1.
2025

• MSIT Winter School on Materials Chemistry aat Schloss Ringberg, Tegernsee, Ger-
many, 21. - 26. 1. 2024

8.2.3 Research stays

3. 5. 2024 - 31. 7. 2024 - Montanuniversität Leoben, Leoben, Austria
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