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Abstrakt 

Tato práce je rozdělena do pěti po sobě následujících částí (nepočítaje bibliografií). První 

část se zabývá představením implementace v navržené struktuře prvku s konstantní 

fázovou odezvou (constant phase element, dále jen CPE) založeného na sério-paralelním 

zapojení rezistorů a kondenzátorů. Následují rozbory vybraných zapojení pro 

implementaci takto navrženého CPE prvku a jejich možné srovnání s jinými zapojeními 

podobného typu v kapitole State of the Art. Cíle disertační práce, které byly stanoveny, 

jsou ve čtyřech bodech popsány v kapitole Objectives of Work. Úspěšnost plnění těchto 

bodů je pak probrána v závěrečné kapitole Concluding Discussion, společně s možností 

dalšího postupu implementací CPE prvků a jejich aplikace v obvodech. Hlavním bodem 

práce je druhá část Publications and Research sestávající se s publikovaných 

konferenčních článků a impaktovaných časopiseckých článků. Za zmínku stojí dva 

impaktované časopisy, pro publikaci v CSSP (Circuits, Systems, and Signal Processing), 

o tématu praktického návrhu RC aproximantů a jejich aplikace v CMOS konvejorech. 

Druhý článek, který měl nejsignifikantnější dopad na disertační práci byl publikován 

v impaktovaném časopise IEEE Access sestávající z problematiky elektronicky 

řiditelných a nastavitelných fraktálních filtrů. Obě navrhované aplikace v těchto 

impaktovaných časopisech nabízejí elektronickou ovladatelnost časové konstanty, 

hodnoty magnitudy a rekonfigurace. Čtenář bude seznámen s novými možnostmi použití 

CPE prvků v lineárních obvodech. Za účelem ověření prezentovaných konceptů byly u 

vybraných článků provedeny simulace v programu PSpice, stejně jako experimentální 

testy s vyrobenými čipy na pracovišti a s komerčně dostupnými prvky. 

Klíčová slova 

Konstantní fázový prvek (CPE), struktury neceločíselného řádu, proporční integrační a 

diferenční regulátor (PID, stejně tak PID), napěťový diferenční proudový konvejor, 

frekvenčně závislé prvky, celočíselné a neceločíselné integrace a derivace  

 

Abstract 

This dissertation is organized into five consequential sections (excluding the 

bibliography). The initial section delves into the introduction of the implementation in 

the proposed structure of the element with a constant phase response (Constant Phase 

Element, henceforth referred to as CPE), based on a series-parallel configuration of 

resistors and capacitors. This is followed by analyses of selected configurations for the 

implementation of the proposed CPE element and a possible comparison with other 

configurations of a similar type in the State of the Art chapter. The objectives of the 

dissertation are described in four points in the Objectives of Work. The success in 

fulfilling these objectives is then discussed in the Concluding Discussion, along with 

further possibilities of the implementation of CPE elements and their applications in 

linear circuits. The second part is the core of this dissertation, consisting of published 



conference papers and articles in impact journals. Noteworthy are two impact journals for 

publication in CSSP (Circuits, Systems, and Signal Processing) on the topic of practical 

design of RC approximants and their application in CMOS conveyors. The second paper, 

which had the most significant impact on the dissertation, was published in the impactful 

journal IEEE Access and consists of issues related to electronically controllable and 

adjustable fractional filters. Both those proposed impact paper applications offer 

electronic control over the time constant, magnitude values, and reconfiguration. The 

reader will be introduced to new possibilities for the application of CPE elements. For the 

purpose of verification of the presented concepts, selected simulations were conducted in 

the PSpice program for some articles, as well as experimental tests with fabricated chips 

in the lab and with commercially available components. 

Key words 

Constant phase element (CPE), fractional-order dynamics, proportional integrational and 

differential controller (PID, also PID), voltage differencing current conveyor, 

frequency dependent elements, integer and non-integer integrations and derivations  
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1 Introduction 

Fractional calculus is a branch of mathematical analysis that extends further development of 

the concept of differentiation and integration from integer orders up to real or complex orders. 

It provides a general framework for operations like differentiation and integration. The 

mathematical conception and the unconventional natural behavior of fractional calculus makes 

it a rich field for research, with potential applications still being explored in scientific and 

engineering disciplines, which have attracted increasing attention of researchers. 

The historical background of fractional calculus is fascinating, as it goes back over 

several centuries, with early contributions from some of the most renowned mathematicians 

like Leibniz [1], Liouville [2], Riemann [3], Butzer [4] and many others [5], [6]. It was initially 

an only theoretical field, exploring the mathematical and extending knowledge of the traditional 

calculus. Despite its early establishment, the field remained largely theoretical until its potential 

was discovered in the late 20th century when there were many natural systems uncovered, 

which couldn't be accurately modeled by integer-order differential equations but could be 

described very efficiently by fractional-order differential equations. The recovery of interest in 

fractional calculus was fueled by the discovery of its applicability in modeling physical systems 

characterized by constant phase response. One of the first mention was in 1950 by Borisova 

and Ershler [7] following with more modern calculus statements [8], [9], [10], [11], [12].  

As a fractional calculus evolved from a purely theoretical concept into a robust 

analytical tool, the evolution has seen its transition from complex mathematical constructs to a 

practical instrument of innovation and the shift in how scientists and engineers employ 

fractional calculus for modeling complex behaviors in their respective fields. With the 

continuous progression of research and the enhancement of computational capabilities, the 

future of the fractional calculus appears highly promising. 
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2 State of the Art 

2.1 Fraction Calculus and Constant Phase Element 

The RC network whose immittance is characterized by almost constant phase shift over an 

extended frequency range [13] (now so-called constant phase element - CPE) is a concept used 

in electrochemistry and impedance spectroscopy to model the frequency-dependent impedance 

element. Unlike an ideal capacitor, which has a frequency-independent capacitance that 

introduces a phase shift of exactly –90° between voltage and current (phase shift of 0° for 

resistor), a CPE can stand for the non-ideal behavior observed in real systems. A significant 

challenge in the practical implementation of CPE lies in its lack of commercial availability. 

However, in recent years, various substitutes for CPEs have been developed. These alternative 

solutions can be based on electrochemical components, as referenced in [14], [15], [16], 

organic materials as well as polymer composites [8], [17], [18], [19], [20]. Additionally, there 

has been progress in creating thick film layers composed of resistive, dielectric, and insulating 

materials on silicon substrates, as documented in [8], [20], [21]. The impedance 𝑍𝐶𝑃𝐸 of the 

ideally proposed CPE is:  

 𝑍𝐶𝑃𝐸 = 𝑅𝑠 +
1

𝑗𝜔𝐶𝑠
 , (1.1) 

where 𝑅𝑠 and 𝐶𝑠 stand for finial form of non-integer impedance and capacitance respectively, 

𝑗 is the imaginary unit and 𝜔 is the angular frequency response equal to 𝜔 = 2𝜋𝑓. In our 

application this equation could be simplified for further development of CPE with custom phase 

deviation as [8], [12]:  

 𝑍𝐶𝑃𝐸 =
1

𝑌0(𝑗𝜔)𝛼
 [𝐹1/𝛼𝑠(𝛼−1)/𝛼] , (1.2) 

where 𝛼 is a proportionality of constant that represents the magnitude of the CPE. It's related 

to the capacitance in an ideal capacitor, 𝛼  characterizes the phase order of the final CPE 

element. It varies in range from 𝛼 ≤ ±1 and depends on phase shift 𝜑 (𝛼 = 1 − 𝜑/90°) [8]. 

Detailed description and discussion of the non-integer order passive two-terminal element can 

be seen in chapter Publication and Research under the Chapter A: Practical Design of RC 

Approximants of Constant Phase Elements and Their Implementation in Fractional-Order PID 

Regulators Using CMOS Voltage Differencing Current Conveyors, described in [8]. 

As previously discussed, there are several ways to create a CPE element that ensures a 

constant phase shift within a specified frequency range. For the purpose of this thesis, the most 

promising and frequently utilized structure will be the approximation of CPE through a resistor-

capacitor configuration (RC [8], [11]). Detailed approximation of the serial-parallel structure 

can be seen on Figure 1. For more practical usage the mathematical foundation offers several 

approaches for approximation of CPEs [11], [12], [22], [23], aiming to achieve the desired 

bandwidth and phase ripple. These methods result in a specific distribution of zeros and poles 

(the roots of polynomial symbolical expression of impedance/admittance) related to the 



~ 14 ~ 

previously mentioned passive RC sections [22]. The chosen approximation method and the 

calculation algorithm are detailed and further elaborated in [8]. In our case, the design of the 

CPE is based on the RC structure depicted in Figure. 1 is presented as an example. The final 

and corrected input admittance of the CPE can be expressed as [8], [22]: 

 𝑌(𝑠) = 𝑠𝐶𝑝 +
1

𝑅𝑝
+ ∑

𝑠𝐶𝑖

𝑠𝐶𝑖𝑅𝑖 + 1

𝑚

𝑖=1

 , (1.3) 

 

 

Figure 1. Scheme of an approximation of CPE by serial-parallel combination (branches) of RC 

segments [8] 

Simulation results in Figure 2, demonstrating example of phase ripple and magnitude of 

a designed CPE, were obtained for specific values (selected example) of 𝜑 = 30°. Such a 

designed element is further used in Chapter A: Practical Design of RC Approximants of 

Constant Phase Elements and Their Implementation in Fractional-Order PID Regulators 

Using CMOS Voltage Differencing Current Conveyors [8]. 

 

 

Figure 2. Simulation results of approximated CPE (exact values calculated in Chapter A: Practical 

Design of RC Approximants of Constant Phase Elements and Their Implementation in Fractional-Order 

PID Regulators Using CMOS Voltage Differencing Current Conveyors) for phase shift 𝜑 = 30° and its 

magnitude [8] 
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2.2 Electronically Reconfigurable and Tunable Fractional-Order Two-Port 

Network 

In numerous instances, the need arises for altering the transfer response (such as the type or 

bandwidth limit) in signal processing. However, just tunability or the ability to manual selection 

of the output often falls short of meeting these requirements, as pointed out in [24], [25]. The 

complexity of reconfiguring a filter's transfer response surpasses the capabilities of standard 

active devices like operational transconductance amplifiers [9]. This is because a broader 

spectrum of variables, including pass-band gain and pole frequency, are involved, as noted in 

[26]. 

2.3 Possible Application of Fractional-Order Filter  

The solution of fractional-order (FO) circuits (as they are  also stated in previous 

chapter 2.1) [12], [27], [28], [29], [30], introduces innovative features to this field. Unlike 

integer-order systems, FO circuits allow for the setting of area transition between stop-bands 

and pass-bands with a more gradual slope as referenced in [9], [27], [31], [32], [33] or as the 

example of the electronically reconfigurable fractional-order filter presented in Figure 3 and 

Figure 4. This unique feature arises from the magnitude slope's dependence on frequency, 

which is intrinsically linked to the order of the FO components employed in the circuit design, 

a concept further elaborated in [28]. More specific requirements on the slope of response of 

such a circuit can be fulfilled by applying FO approaches [34], [35], [36]. This property of FO 

circuits lays the groundwork for a more tunable and flexible approach to filter design and signal 

processing. 

 

Figure 3. Possibility of configuration of active devices used for construction of the special  

fractional-order reconfigurable filter and its application: a) analog multiplier as OTA application, b) 

voltage differencing differential buffer [9] 
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Figure 4. An example of possible frequency responses of a reconfigurable filter: a) magnitude 

responses, b) phase responses [9] 
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3 Objectives of Work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective 1: Initial research on the topic of fractional-order elements. Namely 

the design of a voltage and current controlled fractional-order PID regulator 

with reduced topology using known CPE design approach extended to more 

frequency decades. Following by the next specific part of this objective focuses 

to implementation of fractional-order behavior in the two-port design used in 

construction of complex analog systems (filters, controllers) especially for 

integer and fractional order response combination. The research question is: 

"What is the product of the sum of responses processed by integer and 

fractional-order path?". 

Recent designs of fractional-order PID regulators show significant lack of 

simple electronic variability and controllability of parameters, especially when 

standard operational amplifiers are used as active devices Chapter A. This 

subpart of this objective was partially fulfilled by a novel topology of PID using 

voltage differencing current conveyors (VDCC) and two CPE devices 

(structures and values adopted from Chapter A). The electronic adjustment 

allows simple time constant control by DC voltages and currents. There is an 

availability for implementing special CMOS active devices and circuit topology 

using only grounded passive elements (including CPEs). This fact is beneficial 

for possible integration of the complete device. The method as well as a 

complete algorithm of designing CPE element is described in Chapter A.  

The second part of this objective consists of complex analog system and their 

integer and fractional order responses which they were not tested in previous 

works in literature in this specific form. The second authorship and the issues 

addressed regarding this topic are presented in Chapter B and Chapter C. 

Beyond fractional order elements, the reader can learn about practical solutions 

for the summing response of fractional and integer order differentiators, as well 

as a detailed Mathcad analysis of various functions. Results in Chapter B uses 

a summing block and two paths using independently adjustable voltage gains 

and including two different transfer responses (integrator, differentiator, two-

port of higher order Chapter C) where each of them has an integer-order 

character and the second one has a fractional-order character. Presented results 

in 3D plots indicate very interesting and useful responses (especially for filtering 

applications, so-called inverse response filters Chapter B). Moreover, many 

practical advice and recommendations are presented (preventing issues of DC 

offsets a high-gain frequency bands, instability compensations, etc.). Also, as a 

side note a versatile type of electronically controllable bilinear transfer 

segments, i.e. two-ports allowing an independent electronic control of zero and 

pole of a transfer function. It is based on a modified current differencing unit 

(MCDU) as a part of a novel two-path system of the fractional-order 

proportional-integral or a derivative (FOPI/D) controller [35]. 

 



~ 18 ~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective 3: The last objective targets the implementation of fractional-order 

behavior in the design of special resonator with feature of magnitude response 

reconfigurability. This feature was not tested in a selective transfer response 

generation, but in several fractional-order reconfigurable two-ports (filters). 

This field of study is not so well described or published in literature. The 

proposed solution introduces distinctive transfer responses, not present in 

conventional models, that have significant potential in various applications, 

such as adaptive frequency equalizers and random distortion level control. For 

instance, the fractional-order resonator implementation may be used in the 

phase/frequency detection or in achieving synchronization between two signals 

of the same frequency and phase. These topics are thoroughly discussed in 

Chapter E.  

Objective 2: Proposal of novel active synthetic impedance (inductor) using 

current gain adjustment for simple electronic (voltage) tuning of equivalent 

inductance as well as losses of the synthetic inductor. This feature is not 

typically solved in similar state-of-the-art solutions (or standard operation 

amplifier-based solutions). 

This objective presents design and study of difference between integer and  

fractional-order impedance (synthetic inductor) allowing impedance magnitude 

adjustment (inductance value adjustment). The adjustment of equivalent 

inductance is provided by a single current gain (controlled by DC voltage) and 

an adjustment (or minimization) of serial losses by the second adjustable current 

gain parameter. Therefore, presented topology fulfills the intended target of this 

objective regarding standard solutions in literature. 

The objective was also addressed and actualized throughout the entire thesis. It 

is crucial to alter parameters (ideally DC voltage) of the final network structure 

without having to modify the internal configuration of the circuit. Chapter D 

presents paper that addresses this issue. It employs widely used and 

electronically controllable current conveyors, integrating CPE elements in the 

process for integrating more electronic controllability of the magnitude of input 

impedance via DC voltage 𝑉𝑆𝐸𝑇_𝐵 parameter Chapter D, [36]. 
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4 Concluding Discussion 

This doctoral thesis has firstly undertaken a comprehensive initial analysis for electronical 

application of fractional calculus and its theoretical foundations, tracing its developmental 

trajectory, and highlighting its expanding integration into diverse scientific and engineering 

disciplines such as novel the topology of the PID regulator, which can be seen in Chapter A: 

Practical Design of RC Approximants of Constant Phase Elements and Their Implementation 

in Fractional-Order PID Regulators Using CMOS Voltage Differencing Current Conveyors. 

This marks the author's initial impact journal publication in their doctoral studies, thus 

signifying its importance. It addresses the complexities and methodologies for the design and 

application of PID regulators, topology utilizes fabricated complementary metal–oxide–

semiconductor (CMOS) voltage differencing current conveyors (VDCC), and the detailed 

design of the CPE element. Furthermore, it provides a critical in-depth analysis of the current 

research of the state, and a comparison of selected contemporary works up to the date of this 

publication Chapter A. Work continues with deeper understanding of the analysis of specific 

types of transfer functions obtained by the summing operation of integer-order and  

fractional-order two-port responses. Various operations provided by fractional-order,  

two-terminal devices utilizing those kinds of electronically reconfigurable elements and their 

Mathcad simulation could be seen in Chapter B: Integer-and Fractional-Order Integral and 

Derivative Two-Port Summations: Practical Design Considerations. Following by the next 

group of articles with main authorship comprises of conference paper, marking contributions 

to the field of higher order differentiator synthesis. The first that could be seen in Chapter C: 

Higher Order Differentiator Block for Synthesis of Controllable Frequency Dependent 

Elements, delves into the development of a sophisticated framework for creating elements that 

exhibit frequency-dependent behaviors, structure of generally nth-order differentiator transfer 

block serving for purpose of integer order or fractional order immittance synthesis. 

The second key insight of this dissertation is realization of reconfigurable impedance 

converter in Chapter D: Reconfigurable Impedance Converter for Synthesis of Integer and 

Fractional-Order Synthetic Elements, introduces an innovative approach to designing a clear 

and practical perspective on a circuit design utilizing electronically controllable current 

conveyors (ECCII), wide-band operational transconductance amplifiers (OTA), and differential 

difference amplifiers implemented as voltage buffers, alongside four-quadrant current-mode 

multiplier Chapter D.  

Following traditional integer-order mathematical models often fall short in accurately 

describing the behavior of complex systems. The introduction of the fractional calculus into 

these models introduces a level of sophistication and accuracy previously unattainable, 

allowing for a more tunable utilization. Such a publication could be seen in Chapter E: 

Electronically Reconfigurable and Tunable Fractional-Order Filter Using Resonator Concept 

and Feedforward Path for Low-Frequency Tone Signalization. The reader is introduced to a 

comprehensive comparison of filter principles featuring transfer response reconfiguration 

capabilities within this work. Highlighting the contributions of this research, a novel solution 

for a special fractional-order filter is proposed. This includes illustrations of examples 
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demonstrating ideal system behavior alongside with results from the practical testing, allowing 

for a direct comparison. The detailed analysis not only showcases the theoretical design but 

also validates the proposed model through empirical and experimental evidence. Presented 

discussions have highlighted not only the theoretical advancements in the field but also the 

practical implementations and the potential for any future innovations Chapter E. 

4.1 Future Research Possibilities 

The exploration of fractional calculus within this thesis opens a multitude of avenues for future 

research, particularly in enhancing the design and application of advanced circuit elements. 

Building on the foundational work presented, further investigation could delve into optimizing 

the ECCII, OTA, and differential difference amplifier (DDA) configurations for even more 

possibilities of reconfigurability with simple DC control as well as broader bandwidths and 

higher efficiency. Additionally, the integration of all above mentioned structures (CPEs, 

immittances, fractional-order resonators, etc.) on CMOS integrated chip technology in novel 

fractional-order systems to unlock new capabilities in signal processing, control systems, 

minimalization of parasitic effects in real behavior and beyond. Experimental verification of 

these advanced designs remains a critical step, offering valuable insights into their practical 

applications and limitations. It would be advisable to expand the frequency spectrum usability 

of CPE elements to the widest possible band (GHz). Moreover, the development of 

comprehensive models that bridge theoretical predictions with real-world performance will be 

crucial in advancing the field. As computational resources and algorithms continue to evolve, 

so there will be the potential for simulating increasingly complex systems, enabling 

groundbreaking innovations in fractional calculus applications. 

4.2 Main Body of the Thesis 

Following the main body of the dissertation (excluding the bibliography) the subsequent section 

titled "Publications and Research" along with "A Publication Summary Related to Objectives 

of Work" compiles all publications related to the author's Objectives of Work. The following 

chapter "Timeline and Summary of Other Publications with an Author’s Contribution" consists 

of other papers that are not primarily connected to Objectives of Work (papers are mostly 

second authorship). This segment offers a clear and organized timeline of research outputs, such 

as journal articles, conference papers, and main or second authorship. Each entry is 

accompanied by symbolic representations to easily distinguish the type of publication and 

authorship status. 

Furthermore, this part methodically lists all publications directly related to Objectives 

of Work from Chapter A to Chapter E for the first part of Publication and Research. And 

Chapter F to Chapter H for the second part. Chapters F to H do not directly solve any objectives 

related to the dissertation but they are the main part of the author’s study (second authorship) 

and thus significantly adding to the author’s research growth. All papers detail instances in the 

raw format as they appeared in their respective publications. Preceding each article with a 

"Bibliographic citation", "Author's Contribution" to clarify the extent of involvement. 
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Additionally, a "Copyright Notice" is included for each publication, ensuring compliance with 

legal requirements and acknowledging copyright holders.  
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Abstract
This paper brings a practical and straightforward view on the design of circuit elements
described by fractional-order dynamics known as the constant phase element (CPE)
and their implementation in a novel structure of a PIαDβ (or PIλDμ in some literature)
regulator based on fabricated CMOS voltage differencing current conveyors. Compar-
ison of presented topology with known solutions indicates significant improvements
regarding overall simplification, simpler electronic controllability of time constants,
and having all passive elements in grounded form. Step-by-step design of the CPE as
well as the PIαDβ regulator is supported by experiments with active devices fabricated
using the C07 I2T100 0.7 μm CMOS process (ON Semiconductor). Laboratory tests
in frequency and time domain confirm the correct operation of the designed application
and the accuracy of the derived results in comparison with the theoretical expectations.

Keywords Constant phase element (CPE) · Differentiator · Fractional-order circuit ·
Integrator · Proportional branch · Proportional integrational and differential
controller (PID) · Voltage differencing current conveyor (VDCC)

1 Introduction

In recent years, fractional elements [43] have attracted increasing attention of
researchers because of their interesting behavior in both the time and frequency
domain. Fractional calculus has been well known in the mathematical domain for
decades, but its potential in electronic circuits with lumped parameters has not been
fully explored in detail. Practical implementation of these elements (such as two ter-
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minals or one port) in electronic systems delivers new applications in the field of signal
filtering and generation of signals (both harmonic and non-harmonic).

1.1 Constant Phase Element (CPE)

A fractional-order element, known also as constant phase element (CPE), is character-
ized by a constant phase shift, in the interval between 0° and ±90°, between response
(voltage or current) and excitation (voltage or current) in the entire frequency band
(ideally from zero to infinity) [43]. The main difficulty for practical application of
CPEs is their commercial unavailability. Several solutions of CPEs based on electro-
chemical [1, 2, 7, 18, 21] organic material [20, 40], polymer composites [11], and
thick film layers of resistive, dielectric and insulating materials on silicon [42] have
been introduced in recent years. Therefore, these devices are commonly approximated
by standard electronic components in passive [24, 31, 43] or active (see for example
[37, 41] and references cited therein) implementation. Various active elements [6] can
be used in active solutions if limited frequency bandwidth is sufficient.

The simplest ways of CPE imitation are based on suitably arranged infinite series of
linear resistors and capacitors in serial/parallel combinations [43]. In practice, there are
several methods leading to the design of specific approximations. These so-called lad-
der structures are very beneficial for purposes of approximation of fractional elements.
Their utilization can lead to the creation of two-terminal devices having symbolical
mathematical character of immittance function of the Laplace operator s±α, where
0< |α| <1. There are several special cases, e.g., when α �0.5, where CPE behaves as
a so-called half capacitor [26, 37]. Note that in order to allow real implementation, all
these known approximations work with limited and finite number of resistances and
capacitances in resulting ladder structures. Therefore, the bandwidth of approxima-
tion is also restricted. Also, the phase response fluctuates around a mean value with a
certain phase ripple being acceptable for particular applications.

The most important guidelines for initial studies in this area, from a mathematical
point of view, have been presented in [22, 26, 32, 33]. In the last few years,many papers
have significantly contributed to the improvement in this field [31]. Later, methods
for widening the frequency range of constant phase shift have been introduced (see
for example, [43, 44]). The work in [43] is based on the geometric series of elements,
setting initial parameters like phase change, phase ripple, and number of segments.
Note that this method is very important for designing the CPEs in this paper. However,
this approach is valid up to several MHz. Therefore, CPEs became popular and their
behavior and parameters are the main focus of recent studies; for example, influence
of roughness [2], capacitance [9] or for filtering [25, 34, 36] of signals with increasing
[27] or decreasing [26] phase shift.

1.2 State of the Art of Fractional-Order Passive Elements and PIαDβ Regulator
Designs

The contribution of this paper is the employment of already designedCPEs into propor-
tional, integrational and differential controllers (PIDs). The PIDs serve for regulating
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the input signal into desirable controlled output. Initial studies of this topic and result-
ing advantages/featureswere introduced in [4, 32]. Those papers aremainly theoretical
and use general operational amplifier (opamp) structures with presented results con-
cerning stability, gain and phase responses. Integer-order PID regulators are significant
in the field of applications in automation and regulation theory [4] and practice [5].
However, the fractional-order solutions [8, 12, 15, 16, 30, 43] can be even more bene-
ficial in these applications. In general, the main difference between integer-order and
fractional-order PID is that the fractional-order solution offers two extra degrees of
freedom, making the tuning of such controllers easier than that of the conventional
(i.e., integer order) counterparts. The first fractional PIαDβ (also known as PIλDμ)
controller was mentioned in [30] where two approaches of fractional calculus are
described (the Lenikov-Riemann–Liouville definition and the Caputo definition).

Table 1 shows a list of relevant previously reported PID solutions and provides
a simple comparison of their key features. Based on Table 1, we can see that PID
concepts suffer from several drawbacks: (a) high number of active elements [13, 14,
23, 35], (b) high number of passive elements [19, 23, 43], (c) impossible electronic
tunability [3, 13, 19, 43], (d) floating passive elements [19, 23, 28, 43], and (e) lack of
simple (electronical) change of polarity of transfer response (i.e., PID branch transfer)
[3, 13, 14, 19, 28, 29, 35, 43]. We are comparing both integer-order and fractional-
order solutions in Table 1 because our solution can be easily implemented in both
these cases as well as integer-order PID solutions in Table 1 can be easily modified to
fractional-order PID regulators when standard capacitors are replaced by fractional-
order CPEs and vice versa. Therefore, important novelty of our contribution consists
in circuit topology of PID regulator and consequent advantages.

The last noted issue (e) is very important and by fixing it, we may bring some
new feature(s) in the area of PID regulators. Direct electronic modification of polarity
of integrating or differentiating branch does not require changing PID topology. It
is actually a very interesting feature increasing the universality of the proposed PID
topology in real applications in regulating/controlling systems for instance. The pro-
posed solution presented in this paper solves each of the discussed issues of previously
reported circuits simultaneously. To the best of the author’s knowledge, these features
have not been reported yet. We can claim that the main novelty of the proposed design
consists in its simplicity of topology (as compared with current state of the art) and the
possibility of electronic control of parameters of the PID regulator due to the control
of the transconductance or the resistance of current input terminal of each VDCC
element. Those parameters serve for changing the polarities of transfer in each branch
and tuning of time constants as well as changing the gain of a proportional branch.
These features are not available simultaneously in previous designs presented in the
literature.

The paper is organized as follows: Sect. 2 deals with defining the ideal CPE element
and the necessary steps leading to selecting appropriate values of passive components
of real CPE created by a selected RC ladder structure. This part explains in detail the
calculation, design procedure, and final optimization in order to use a combination
of resistors and capacitors of the common fabrication series E24. This Section also
shows the effect of tolerances of RC elements on the Monte Carlo analysis. Section 3
continues with the designed CPE and its application into a new solution of a PIαDβ
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regulator based on voltage differencing current conveyor (VDCC) active elements.
Various experimental benchmarks are also presented. At the end of Sect. 4, the main
benefits of the experimentally tested PID are summarized as well as the overall results
of the proposed structure.

2 Practical Design of Passive CPE

Dynamics of the non-integer order passive two-terminal element can be characterized
with its impedance and admittance. Such an element can be described by the Laplace
transformation as admittance:

Yα(s) � Iin(s)

Vin(s)
� Yo · sα, (1)

where the order of CPE (α) can be within the range of −1<α<1. The substitution
s � jω results in complex frequency response of CPE:

Ŷα( jω) � Yo · ( jω)α � Yo · ωαe jϕ � Yo · ωα(cosϕ + j · sin ϕ), (2)

where ϕ represents the phase shift given by the formula: ϕ � α π
2 [rad] or ϕ � 90α

[degree or °]. The exponent α characterizes the final admittance, and it corresponds
to a fractional capacitor (0 < α < 1) or to a fractional inductor (−1 < α < 0). In
the case that α � 0, a real resistance is obtained. The Laplace transform can be used
in order to convert this function into a rational function with the following pole-zero
form:

Y (s) �
∑m−1

i�1 Ai si
∑m

k�1 Bksk
� Yo

∏m−1
i�1 (s − ωzm)

∏m
k�1

(
s − ωpm

) . (3)

The roots and coefficients of (3) determine the phase change ϕ and the ripple� ϕ as
will be explained in the following section. Symbols ωzm and ωpm represent the zeros
and poles. When the number of sections (i.e., the number of serial RC, RL branches
in parallel—between two nodes or serial chain of parallel RC, RL sections) is infinite,
phase ripple should be almost equal to zero in the working bandwidth and magnitude
response of admittance plot should be linearly increasing/decreasing with 20 · α dB
per decade.

2.1 Available Passive Structures Suitable for CPE Synthesis

As already mentioned above, there are several ways on how to create a CPE ele-
ment (which guarantees constant phase shift in a predetermined frequency band). The
most promising and useful structure approximating CPE seems to be resistor–capac-
itor topology (RC [43]). The second possibility is resistor–inductor topology [25]).
Because of its complexity and requirement of high accuracy of inductor values, this
structure is not used as frequently as the RC combination. If RL topologies are not
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Fig. 1 First possible
approximation of CPE by
parallel combination (branches)
of serial RC segments

C1

R1

CPE IN

C2

R2

Cm

Rm

CPE

CPE IN

R1

C1

R2

C2

Rm

Cm
CPE

Fig. 2 Second possible approximation of CPE by serial combination (serial chain) of parallel RC segments

used, many practical problems appearing in systems using metal coils (weight, size,
mechanical fixation, electromagnetic field radiation, etc.) are avoided.

The following solutions of CPE can be recognized as more beneficial than the
previously mentioned RL because no inductors are required. A particular solution can
be created by serial RC segments in parallel branches as shown in Fig. 1. This topology
has the following symbolical form of admittance:

Y (s) �
m∑

i�1

sCi

sCi Ri + 1
, (4)

where m is the number of branches.
The second possible RC topology (Fig. 2) has the following overall impedance

expression:

Z(s) �
m∑

i�1

Ri

sCi Ri + 1
. (5)

Moreover, frequency features (especially bandwidth of approximation) of above-
noted simple circuits can be significantly improvedwhen so-called correction elements
[43] are added (Fig. 3). Figure 4 shows exemplary phase response of CPE designed by
parallel combination (Fig. 1) compared with phase response of the sameCPE designed
also with so-called correction elements (Fig. 3). Additional correction elements help
to significantly improve response in low- and high-frequency corners. Therefore, the
frequency range of CPE is significantly extended (Fig. 4, red trace). These additional
elements create additional zeros in the overall admittance function that intentionally
gets shifted to low frequencies for resistance Rp and to higher frequencies for Cp.
Correction elements are represented by single capacitance Cp and single resistance
Rp in CPE topology shown in Fig. 3. Corrected input admittance of the CPE can be
expressed as:
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Fig. 3 First possible
approximation of CPE structure
with correction elements (Cp
and Rp)

C1

R1

C2

R2
RpCp

Cm

Rm
CPE INCPE

Fig. 4 Ideal phase responses of CPE with (red curve) and without (black dashed trace) correction elements
(Color figure online)

Y (s) � sCp +
1

Rp
+

m∑

i�1

sCi

sCi Ri + 1
. (6)

Note that simulation results were yielded for particular values of CPE30 from
Table 3 (presented later).

2.2 Design Example of Passive CPE

Mathematical backgroundprovides severalways [12, 16, 24, 25, 31, 36, 43] for approx-
imating CPEs with desired bandwidth and phase ripple. These approximations lead
to a specific distribution of zeros and poles (roots of polynomial expressions) of pre-
viously noted passive RL and RC sections [43] or also other passive [26] or active
solutions [14]. The selected type of approximation and calculation algorithm is defined
and further explained in [43]. Our example shows the design of CPE based on RC
topology from Fig. 3.

The first step of our design consists in specifying the performance of the
required immittance function. The papers [26, 31, 43] show some generally
defined and commonly used values of recommended and achievable phase ripples:
� ϕ � 0.05; 0.1; 0.2; 0.5; 1; 2; 5 degrees. The price that comes with the phase ripple
is that if the lower values of phase ripple are needed the more accurate values (lowest
tolerances possible) of passive elements are required (for example with � ϕ � 0.05
tolerances of passive RC elements should not be more than 1% otherwise the phase
ripple tolerance will not be fulfilled). CPEs with phase ripple � ϕ > 5 degrees are
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Fig. 5 Nomogram for selection (red cross) of parameters a and b [43] for particular CPE realization (Color
figure online)

not suitable for design due to very large phase fluctuation in the operational band
of CPE. So, the main reason still consists in selecting components from fabrication
series, in fabrication tolerances and also in parasitic effects of real passive components.
Presented values of phase ripple represent theoretical values, and therefore, the real
ripple will always be higher than ideal expectations. Therefore, the best design option
in practice seems to be selecting � ϕ � 0.5 or 1 degrees in order to keep real phase
ripple below 5 degrees. It is also important to note that phase shift ϕ can be selected
in the ideal range from 0° to 90°.

Another parameter influencing the achieved frequency range is the number of
branches m (the number of parallel RC segments), where m →∞ theoretically; how-
ever, in practicem ≤15. This parameter affects the operating frequency range. Higher
m means wider bandwidth of validity of approximation. Unfortunately, higherm leads
to significantly increased complexity of the CPE and also to non-practical values of
passive elements (resistances and capacitances). The next design step supposes appro-
priate selection of input resistance (Rinitial), capacitance (Cinitial) (which are the initial
parameters, along with � ϕ and m, designed to be able to manipulate the final set of
values of Rk and Ck and they are further described in the text) and parameter D (mod-
ulus). Modulus D is equal to the magnitude value at frequency ω � 1 (normalized).
The following parameters define lower (ωl ) and upper (ωu) limits of frequency range
of the final CPE:

ωl ∼� 1

τ
, ωu ∼� 1

τ · (ab)m
, (7)

where a and b are non-dimensional empirical values at the axis of nomogram
(Fig. 5) [43].
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The product of parameters ab determinates theoretically expected values of phase
ripple. There are two ways on how to determine values of a and b. The first method
is based on nomogram [43] where these parameters can be obtained from the knowl-
edge of expected phase shift ϕ within the range from 20° to 70° [43] in depending
on the desired phase ripple (� ϕ). For example, if phase change/shift ϕ � 45◦ with
� ϕ � 0.5◦ being required, then the resulting values are: a � 0.4; b � 0.4 ⇒ ab �
0.16 (Fig. 5).

The second method consists of enumeration of a and b from the following formulas
[43]:

ab ∼� 0.24

1+ � ϕ
, (8)

α � ϕ

90
, (9)

a � 10α·log(ab), b � ab

a
, (10)

It must be worth mentioned that in the last Eq. (10) the final result isn’t b � b but
only a and themultiplication of ab is known, and therefore, b is needed to be separated.

Knowledge of values of previously discussed parameters allows the calculation of
correction elements Cp and Rp:

Rp � Rinitial(1 − a)

a
, (11)

Cp � Cinitialbm

1 − b
, (12)

which are followed by the calculation of subsequent elements in the segments of the
serial RC combination:

Rk � Rinitiala
k−1 · Dp

D
, Ck � Cinitialb

k−1 · D

Dp
, (13)

where k is the index number of each segment and Dp (normalized to impedanceω � 0)
is the modulus that is set by the designer. Now, we have available values of all parts
of the overall circuit. Possible admittance of the whole CPE circuit is:

Y(s) � 1

RP
+ sCp +

m∑

k�1

sCk

1 + sRkCk
. (14)

If s � jω then ωτ (angular frequency calculated from Rinitial and Cinitial) equals:

ωτ �
(a

b

) 1
4 · 1

RinitialCinitial(ab)2
(15)
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Now, modulus D and D/Dp should be calculated. Calculated values of all resis-
tances in the circuit from Fig. 3 are multiplied by the ratio D/Dp, and all capacitances
in the circuit will be divided by the ratio D/Dp:

D � ωα
τ

Y(ωτ )

→ Dp/D. (16)

An example of the calculation is provided for the particular parameters. The number
of branches was selected as a compromise between complexity of the design and
desired frequency range of the final CPE:

m � 14, Rinitial � 10 k�, Cinitial � 1 μF, � ϕ � 0.5◦, ϕ � 30◦,
Dp � 10k(normalized),

ab ∼� 0.24

1+ � ϕ
� 0.24

1 + 0.5
� 0.16, (17)

τ � RinitialCinitial � 10 · 103 · 1 · 10−6 � 0.01 s; ωl � 1

τ
� 1

0.01
� 100 Hz, (18)

a � 10α·log(ab) � 10
30
90 ·log(0.16) � 0.5429, (19)

b � ab

a
� 0.16

0.5429
� 0.2947, (20)

Rp � Rinitial(1 − a)

a
� 10 · 103(1 − 0.5429)

0.5429
� 8.42 · 103 � 8420 �, (21)

Cp � Cinitialbm

1 − b
� 1 · 10−6 · 0.294714

1 − 0.2947
� 5.3 · 10−13 � 0.53 pF, (22)

ωτ �
(a

b

) 1
4 · 1

RinitialCinitial(ab)2
�

(
0.5429

0.2947

) 1
4 · 1

0.01 · 0.16 � 4551
[
rad s−1]. (23)

The resulting parameters of admittance are given by:

Y (s � jωτ ) � 1

RP
+ sCp +

m∑

k�1

sCk

1 + sRkCk
� 0.70 mS, (24)

D � ωα
τ

Y(ωτ )

� 4551
30
90

7.0312 · 10−4 � 2.3569 · 104
[
rad s−1S−1

]

→ Dp

D
� 10 · 103

2.3569 · 104 � 0.4243, (25)

R1 � Rinitiala
k−1 · Dp

D
� 10 · 103 · 0.54291−1 · 0.4243 � 4242 �, (26)

R2 � Rinitiala
k−1 · Dp

D
� 10 · 103 · 0.54292−1 · 0.4243 � 2303 �, (27)
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Table 2 Calculated values of CPE for phase change ϕ � 30◦ (CPE30) without any corrections

ϕ � 30◦

mk m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

RP(�) 3570 Rk (�) 4242 2303 1250 679 368 200 108 58 32 17 9 5 2 1

CP(F) 0.5p Ck (F) 2.35μ 0.69μ 0.21μ 60n 17n 5.2n 1.5n 0.45n 0.13n 39p 11p 3.4p 0.1p 0.02p

Fig. 6 Simulation results of approximated CPE [for values calculated in (17)–(29)] for phase shift and
magnitude

the calculation proceeds similarly for all values of Rk

C1 � Cinitialb
k−1 · D

Dp
� 1 · 10−6 · 0.29471−1 · 2.3569 � 2.35 μF, (28)

the calculation proceeds similarly for all values of Ck .

C2 � Cinitialb
k−1 · D

Dp
� 1 · 10−6 · 0.29472−1 · 2.3569 � 0.69 μF. (29)

Calculated values of passive elements of all members of the chain can be seen
in Table 2. Realization of such a CPE could be really difficult because values of
capacitors and resistors are not in the fabrication series (E24). Small value adjustments,
in branches represented by higher value of m, are allowed by changing parameter
Dp. For example, an absurd discrete capacitor value C14 � 0.02 pF is required for
Dp � 10k but only for Dp � 1k it is C14 � 2.9 pF (the location of the root is still
sustained).

Simulation results (Fig. 6) confirmed the theoretical design of a CPE for a wide
frequency range from 10 Hz up to 200 MHz. Phase ripple is � ϕ < 0.75 which is a
little bit higher than given by theory but still sufficient. The magnitude decreases by
6.5 dB per decade.

However, the designed parameters of this CPE (in this phase of design) need to
be optimized. The best compromise between required design accuracy and values of
commercially available components selected from a fabrication series must be found.
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Table 3 Corrected values of real designed CPE30 for phase change ϕ � 30◦

ϕ � 30◦

mk m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

RP(�) 3578 Rk (�) 4230 2300 1251 680 370 200 110 58 33 18 10 5.1 2.7 1.5

CP(F) 0.82p Ck (F) 2.35μ 0.69μ 202n 59.9n 16.8n 5.1n 1.5n 446p 130p 39p 11p 3.3p 0.82p 0.42p

Fig. 7 Histogram and Monte Carlo analysis of CPE with phase change ϕ � 30◦ for 1000 runs (with
tolerances of 20% for capacitors and 5% for resistors)

The CPE and its real design values will be described in the following paragraphs.
Difference between approximated and real design can be seen in Tables 2, 3.

The behavior of designed CPE was analyzed by Monte Carlo simulation as well as
its histogram (yield for frequency 30 kHz). The analysis was carried out for 1000 runs
with 5% tolerance for resistors and 20% tolerance for capacitors.

Figure 7 shows that CPE works well even with expected inaccuracies of the circuit.
The main source of deviations, in this synthesis, is capacitor Cp (inaccuracy in Cp

yields higher deviations Fig. 7). This capacitor should have as low inaccuracy as
possible, especially because of its effect at higher frequencies (more than 10 MHz)
where even very small inaccuracy of a value causes a significant change in the circuit
bandwidth.

In order to verify the features of approximated CPE by real laboratory experiment, it
was necessary to select very accurate values of passive components. Almost all values
of the CPE were transformed (assigned) into possible commercially available values
of resistors with 1% tolerance and capacitors with 5% tolerance (series E24). Some
desired values are a combination of two resistors in series or two capacitors in parallel
(for example, R1 � 330 � + 3900 � � 4230 �). The following Table 3 shows their
modified values. A universal two-sided board was developed for implementing 14
segments (m �14). Each segment offers the possibility to connect two serial and four
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Table 4 Corrected values of real designed CPE22.5 for phase change ϕ � 22.5◦

ϕ � 22.5◦

mk m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

RP(�) 15k Rk (�) 30.2k 20.2k 13.5k 9k 6k 4k 2.7k 1.8k 1.2k 807 540 361 242 162

CP(F) 2p Ck (F) 33μ 1.96μ 870n 389n 174n 78n 35n 16n 7n 3.1n 1.4n 623p 280p 125p

Fig. 8 Photograph of one side of two-sided PCB developed to carry up to 86 (14 branches each consist of 6
passive slots plus 2 slots for correction elements) passive components approximating our CPE (CPE30)

Fig. 9 Comparison of measured and theoretical (simulated) phase response of approximated CPE30

parallel elements simultaneously (occupied with empty footprints ready for additional
elements). The same procedure was followedwhen designing the CPEwith phase shift
equal to ϕ � 22.5◦, which is needed for further design steps as described later. Values
of passive components of this CPE are described in Table 4. A photograph of the
two-sided developed PCB (for ϕ � 30◦) is shown in Fig. 8.

Exemplary results of real measurements of CPE30 in comparison with theoretical
expectations are shown in Fig. 9. Practical usability ends at lower frequency than
theory due to real features of the PCB (parasitic capacitances) together with high error
of the capacitors at their lowest values.
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Fig. 10 Block diagram of a
general PID controller in variant
with SISO topology

KD (s)

KI (s)

KP

in out∑ 

3 Special Solution of PIαDβs Based on VDCC Elements

The standard concept of integer-order PID controllers comprises three separate
branches, namely the proportional (P), integrational (I), and differential (D) branch.
The proportional branch only has a simple task here, and it is the amplification of the
input signal without changing its phase. The integrational branch provides decreasing
magnitude of transfer response with slope −20 · α dB per decade. Theoretically, the
phase shift between the output and input signal should be −α · 90°. The differen-
tial branch performs an ideal derivative of the input signal with ascending magnitude
(+20 · β dB per decade) and constant phase shift between the output and input signal
equal to+β · 90°. The symbolical transfer function K(s) of such a circuit is:

K (s) � Vout(s)

Vin(s)
� KP + KI

1

sα
+ KDs

β. (30)

Possible concepts of PIDs are single-input multiple-output (SIMO) topology (all
responses are separated) or to single-input and single-output (SISO) topology, where
all responses are combined as is shown in Fig. 10.

3.1 Description of VDCC Element

The proposed solution is based on a structure with four voltage differencing cur-
rent conveyors (VDCC) as active elements [38, 39]. The VDCC schematic symbol is
described in Fig. 11. This device was developed and manufactured as a real CMOS-
based device in 0.7 μm I2T100 technology and has been introduced by a behavioral
model [17] and developed in [38]. The VDCC device has controllable transconduc-
tance (±gm), moreover, with a special feature of electronically selectable polarity that
is dependent on change of polarity of DC voltage at pin Vset_gm . The transfer function
between current ±Iz_T A and input voltages of differential input terminals (p and n)
has the form ±Iz_T A � (

Vp − Vn
) · gm. Two outputs (zp and zn) produce positive and

negative current copies of IX (Izp � IX , Izn �− IX ). Input resistance of terminal X is
adjustable (RX ∼� 5/

√
Iset_Rx [38]) by the DC control current (Fig. 12). The transfer

operation between terminals z_T A and X can be expressed by the following relation:
VX � Vz_T A + RX IX . The relation between transconductance and DC control voltage
is gm � 2 · 10−3 · Vset_gm (graphical representation is shown in Fig. 13). Note that
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p

±z_TA

VDCC
±Iz_TA=(Vp – Vn)·gm 

n 1

X
(Ix, ±Vx = ±Vz_TA + Rx·Ix)

zpRX

zn

±gm

(±Vset_gm)
Rx

(Iset_Rx)

(Ip = 0, Vp)

(±Iz_TA, ±Vz_TA)

(Izp, Vzp)

CCCII
OTA

(In = 0, Vn)

(Izn, Vzn)

Fig. 11 Internal concept of the VDCC element

Fig. 12 Measured dependence of internal resistance RX (ZX ) on bias current Iset_Rx of VDCC

other details about VDCC are presented in [17, 38, 39]. Nominal supply voltage of
VDCCs in all tests was set to ±2.5 V.

Complete internalCMOS topology of theVDCCelement can be seen in Fig. 14. The
CMOS topology of VDCC includes four-quadrat voltage mode multiplier followed
by the boosting cascoded transconductance section (V→ I converter). Implementation
of the multiplier allows simple achievement of both polarities of the output current
from this OTA stage (resulting in±gm). The current conveyor part of VDCC has
topology modified by special biasing part for cascoded mirrors and two outputs of
opposite polarity. The design specifications predetermine OTA part of the VDCC for
low-frequency applications (3 dB bandwidth of the relation I±z_T A � (

Vp − Vn
) ·gm)

limited up to 2MHz. TheDC performances of the OTA stage are±200mV for voltage
input and±500 μA for current output. The conveyor stage AC limits can be found
around 20 MHz, whereas DC linear range of voltage transfers reaches±200 mV
and±1000 μA for current transfers. The transconductance gm can be tuned from 0
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Fig. 13 Measured dependence of transconductance gm on voltage Vset_gm of VDCC

to±2.81 mS (V set_gm �0→±1.4 V) and resistance RX adjustable from 2.1 k� to
310 � (Iset_Rx �6.3 μA→300 μA). For further details, see [38].

3.2 Designed PIαDβ Controller

The final interconnection serving as the PIαDβ regulator is shown in Fig. 15. There
are three branches representing the P, Iα and Dβ function. Note that the ICs packages
(Fig. 27) are implemented in the development board for five ICs (Fig. 27) together
with the connected discrete solutions of CPEs (CPE30, CPE22.5) from Fig. 8.

The first of them is based on VDCC1 (I function), the second utilizes VDCC2
and VDCC3 (D function), and the third one requires VDCC4 (P function). Bias
current Iset_Rx1 was set to 100 μA in order to obtain RXsum1 � RXext1 + RX �
100 � + 400 � � 0.5 k�. The second branch needs two VDCCs for emulating the
differentiation operation. The second VDCC2 has feedback loop from pin zn to pin
p with X connected to the input node. The CPE2 is connected to the ± z_TA pin of
VDCC2. VDCC3 serves as a voltage to current converter. All output responses are
summarized in the form of current in the output node and transformed to voltage
by VDCC4. The terminal X of VDCC4 is used as output of the PID topology (Vout)
because of its low impedance character in comparison with the high-impedance node
where current terminals of all branches are connected together. Parameters of PID
can be electronically driven by transconductances gmx

(
Vset_gm

)
of VDCC elements.

CPEs designed in the previous section form a significant part of the proposed PID
and actually cause the PID to be of fractional order. CPE1 �22.5° (α �1/4) was used
in the integrational part, and CPE2 �30° (β �1/3) in the differentiation part of the
PID (Fig. 15). For all measurements and simulations, CPE’s from Tables 3 and 4 were
used.

The overall voltage transfer function (Fig. 16) of this circuit solution (Fig. 15)where
sα and sβ are orders of the CPEs elements leads to the following:
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Fig. 14 Complete internal
structure of the CMOS VDCC
element (Fig. 11)
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Fig. 15 Designed PID structure employing four VDCC elements fabricated using the 0.7μm I2T100 CMOS
process and two CPE elements

(31)

Vout
Vinp

� ± gm1

sα · CCPE1
·
[
RXext2 + RX3

RXext1 + RX1

]

± sβ · CCPE2

gm2

· [gm3 · (RX3 + RXext2)] ± gm4 · [RX3 + RXext2] .

When
[
RXext2+RX3
RXext1+RX1

]
� 1 and gm3 · (RX3 + RXext2) � 1, (31) simplifies to:

Vout
Vinp

� ± gm1

sα · CCPE1
± sβ · CCPE2

gm2
± gm4 · [RX3 + RXext2]. (32)
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1/(sαCCPE1)±gm1
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1/RX2

1/RX2

1/(sβCCPE2)
-gm2

RP→∞ ±gm3

1/(RXext 1+RX1)

RXext 2+RX3

1Vinp

Vout

Fig. 16 Signal flow graph of PID structure in Fig. 15

Fig. 17 Transient response of the proportional branch of the designed PID controller: a for positive values
of Vset_gm4, b for negative values of Vset_gm4

The signal flowgraph inFig. 16 clearly indicates all signal operations in the structure
and all three branches of the PID circuit. Note that “parasitic element” Rp →∞
in high-impedance node of the differentiator path serves for better regularity of the
used method of analysis and precise description of signal operations (transformations
between currents and voltages in the loop).

3.3 Measurement Results

Time and frequency measurements of the circuit from Fig. 15 (the test bench and
layout of VDCC shown in Figs. 26 and 27) are discussed in the following part. The
time domain measurements of the proportional branch for four different settings of
Vset_gm4(Vset_gm4 � ±250 mV → gm4 ∼� ± 0.5 mS, Vset_gm4 � ± 500 mV →
gm4 ∼� ± 1 mS, Vset_gm4 � ± 800 mV → gm4 ∼� ± 1.5 mS and Vset_gm4 �
±1000 mV → gm4 ∼� ± 2 mS) are shown in Fig. 17.

Features of the integrational branch were also tested, and results are shown in
Fig. 18. Three values have been set from positive (Fig. 18a) and negative (Fig. 18b)
polarity (Vset_gm1 � ± 250 mV → gm1 ∼� ± 0.5 mS, Vset_gm1 � ± 500 mV →
gm1 ∼� ± 1 mS, Vset_gm1 � ± 1000 mV → gm1 ∼� ± 2 mS).

In the case of the differential branch, the same set of values for Vset was tested, only
Vset_gm1 was replaced by Vset_gm2. Results for positive and for negative polarities are
shown in Fig. 19a and b, respectively.
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Fig. 18 Transient response of the integrational branch of the designed PID controller: a for positive polarity
of Vset_gm1, b for negative polarity of Vset_gm1

Fig. 19 Transient response of the differential branch of the designed PID controller: a for positive values of
Vset_gm2, b for negative values of Vset_gm2

Fig. 20 Transient responses for triangular excitation of the PID controller (both polarities of gm1,2) a
integrational branch, b differential branch

The last measurement in time domain was made for a triangular input signal with
two sets of control voltages (Vset_gm1,2 � 500 mV → gm1,2 ∼� 1 mS, Vset_gm1,2 �
−500 mV → gm1,2 ∼� −1 mS). All of the following measurements are yielded for a
frequency of 1 kHz and input voltage of 100 mV. Figure 20a shows results for testing
the integrational branch, and Fig. 20b for measuring the differential branch (both with
the same setting of Vset as in the measurements with rectangular input signal).

Features of the designed PID were also tested in AC domain. Magnitude and phase
responses of particular blocks of the PID are shown in Figs. 21, 22, 23, 24 and 25
for several scenarios and both polarities. It can be seen, from the phase response, that
particular settings of control voltage have no significant impact on the output phase,
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Fig. 21 Frequency responses of the proportional branch of the designed PID controller for both available
polarities of Vset_gm4: a magnitude response, b phase response

Fig. 22 Frequency responses of the integrational branch of the designed PID controller for positive polarity
of Vset_gm1: a magnitude response, b phase response

Fig. 23 Frequency responses of the integrational branch of the designed PID controller for negative polarity
of Vset_gm1: a magnitude response, b phase response

Fig. 24 Frequency responses of the differential branch of the designed PID controller for positive polarity
of Vset_gm2: a magnitude response, b phase response
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Fig. 25 Frequency responses of the differential branch of the designed PID controller for negative polarity
of Vset_gm2: a magnitude response, b phase response

Fig. 26 The development board for five fabricated VDCC devices and tests of their applications

and therefore, curves are merged into one. The application of the CPEs and its impact
on behavior of the final structure can be seen when the phase response fluctuates
around a mean value with a certain phase ripple � ϕ. BW(� ϕ) indicates the highest
frequency band where phase ripple is � ϕ > 0.75◦.

4 Conclusion

The proposed structure of the constant phase element (CPE) was designed in the form
of a ladder structure (Fig. 8) providing phase change of ϕ � 30◦ and ϕ � 22.5◦
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Fig. 27 The layout of the fabricated VDCC IC prototype (top layout frame 2×2 mm; cell area 0.79 mm2):
a Cadence IC5 software, b microphotograph

with very low phase ripple (about � ϕ � 0.75◦ in 4 decades) and it is described in
Sect. 2. In particular, practical point of view of this design is discussed and the design
guideline is given. Both designed CPEs were used in novel topology of the PIαDβ

regulator and can be seen in Fig. 26. This topology utilizes fabricated CMOS volt-
age differencing current conveyors (VDCC) as active elements (Fig. 27). The main
benefits of VDCC consist in the independent electronic controllable transconductance
gm(Vset_gm) and the resistance value Rx (Iset_Rx ) of the current input terminal X . Sev-
eral of these parameters serve mainly for electronic control of the time constants and
also polarities of transfers of the PID controller as well as the gain of the proportional
branch. These interesting features of the newly proposed PID topology result from
the special character of the developed VDCC device and its transconductance sub-
part (OTA) based on a voltage multiplier with a current output terminal [17, 38, 39].
No exception is that all passive elements are grounded. Regarding the designed PID
topology, the improvement in the proposed structure is its low number of passive and
active elements (only 4 passive elements and 4 active elements) in comparisonwith the
already published solutions summarized in Table 1. The proposed PID operates up to
several hundreds of kHz (with dc power consumption of 120 mW for 4×VDCC) that
is given by technological bandwidth limitations of the fabricated VDCC. All results
confirmed theoretical expectations of our design.
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Abstract: This paper targets on the design and analysis of specific types of transfer functions
obtained by the summing operation of integer-order and fractional-order two-port responses. Various
operations provided by fractional-order, two-terminal devices have been studied recently. However,
this topic needs to be further studied, and the topologies need to be analyzed in order to extend the
state of the art. The studied topology utilizes the passive solution of a constant-phase element (with
order equal to 0.5) implemented by parallel resistor–capacitor circuit (RC) sections operating as a
fractional-order two-port. The integer-order part is implemented by operational amplifier-based
lossless integrators and differentiators in branches with electronically adjustable gain, useful for time
constant tuning. Four possible cases of the fractional-order and integer-order two-port interconnections
are analyzed analytically, by PSpice simulations and also experimentally in the frequency range
between 10 Hz and 1 MHz. Standard discrete active components are used in this design for laboratory
verification. Practical recommendations for construction and also particular solutions overcoming
possible issues with instability and DC offsets are also given. Experimental and simulated results are
in good agreement with theory.

Keywords: constant phase element; differentiator; electronic adjusting; fractional-order element;
integrator; summing of responses; two-port transfer; variable gain amplifier

1. Introduction

Circuit designs using fractional-order devices require a special type of analysis and evaluation
because the resulting behavior of these systems is quite different and more complex than in cases of
standard integer-order designs. Frequency responses influenced by the fractional-order behavior of
used components are studied more frequently in recent years [1]. Many works in this field focus on
novel solutions of integral and derivative two-ports (for example [2–9]), proportional integral and
derivative controllers (for example [10–18] and so-called bilinear two ports [8,9,19–21] serving for
various purposes. Two ports, known as integrators and differentiators, have started to be interesting
for designers of fractional-order systems, and especially for proportional, integral and derivative
controllers (PIDs). However, these systems are analyzed as complete solutions, and their transfer
functions are considered in overall form (sum of all three responses).

The overview of typical examples dealing with the design of fractional-order integrators and
differentiators (from the above discussed groups) is given in Table 1.
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Table 1. Comparison of standalone fractional-order integrator/differentiator solutions and solutions included in designs of controllers and other relevant
design approaches.

Reference
Design Target

(Both = Integrator
and Differentiator)

Simple Single
Parameter Electronic

Time Constant
Tuning

Active
Devices

Solution of
Fractional-Order

Part

Topological
Circuit

Complexity

SW Support
not Required

Tested
Operational
Bandwidth

Application,
if Any

Response Based on
Combination of

Integer and
Fractional-Order

Integrators/Differentiators Only

[2] integrator No OAs passive Low Yes <1 MHz N/A -
[3] both Yes DVCCTA passive Low Yes <100 kHz N/A -

[4] both No CMOS current
mirrors active Low Yes <100 Hz

Sum of
reconfigurable

filtering
responses

No

[5] integrator No CMOS OTAs active Medium Yes <1 kHz N/A -
[6] both No CFOAs active Medium Yes <100 kHz N/A -

[7] both No Single
EX-CCII passive Low Yes <1 kHz PID No

[8] both No CMOS block active Low Yes <100 Hz high-pass/low-pass
filter No

[9] integrator Yes CCII+, VGA active High Yes <10 MHz N/A -

Integrators/Differentiators in Controllers

[10] integrator No OAs passive Low Yes <10 kHz I controller -
[11] both No OAs passive Low Yes <100 Hz PID No
[12] both N/A FPAA (OAs) active High No <100 Hz PID No
[13] both No CMOS OTAs active Medium Yes <1 kHz PID No

[14] both No CMOS
VDCCs passive Low Yes <1 MHz PID No

[15] both No MCDUs active Medium Yes <10 MHz PI/D No
[16] both N/A FPGA/DSP * active High No <tens of MHz PID No
[17] both N/A FPGA/DSP * active High No <tens of MHz N/A -

Bilinear Synthesis of Integrators/Differentiators

[8] both No CMOS block active Low Yes <1 MHz Active CPE -
[18] both No CMOS OAs active High Yes <1 kHz PI controller No
[19] integrator No CMOS OTAs active High Yes <10 MHz N/A -
[20] both No CFOAs active Medium Yes <100 kHz N/A -
[21] integrator No OTAs active Medium Yes <100 kHz N/A -
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Table 1. Cont.

Reference
Design Target

(Both = Integrator
and Differentiator)

Simple Single
Parameter Electronic

Time Constant
Tuning

Active
Devices

Solution of
Fractional-Order

Part

Topological
Circuit

Complexity

SW Support
not Required

Tested
Operational
Bandwidth

Application,
if Any

Response Based on
Combination of

Integer and
Fractional-Order

Proposed

[3,5,7,9] both Yes OAs, VGAs passive Low Yes <1 MHz

Sum of
integer- and

fractional-order
responses

Yes

* general functional blocks; N/A—information not shown, not available; CCII+—current conveyor of second generation; CFOA—current feedback operational amplifier;
DVCCTA—differential voltage current controlled current conveyor transconductance amplifier; EX-CCII—extra inputs current conveyor of second generation; FPAA—field programmable
analog array; FPGA/DSP—field programmable gate array/digital signal processing; MCDU—modified current differencing unit; OA—operational amplifier; OTA—operational
transconductance amplifier; VDCC—voltage differencing current conveyor; VGA—variable gain amplifier; low—less than 6 active devices (less than 6 passive devices, solution of CPE
excluded), medium—between 6 and 10 active devices, high—more than 10 active devices.



Appl. Sci. 2020, 10, 54 4 of 25

D. Mondal et al. [2] brought a solution of the lossless integrator using a fractional-order passive
element (FOE), known also as constant phase element (CPE) as a part of feedback loop of operational
amplifier (OA) followed by inverter. However, adjustability and other features (two different slopes
in magnitude frequency responses, various starting and final phase shifts in observed bandwidth,
etc.) are not studied. D. Goyal et al. [3] presents integrators/differentiators implemented by complex
active CMOS circuitry with the benefit of simple electronic reconfiguration. A similar approach was
used by G. Tsirimokou et al. [4] where resulting integrators/differentiators are used for the design of
a special type of filter performing also the sum/subtraction of current outputs. The synthesis of an
active emulator of FOE based on operational transconductance amplifiers and its implementation in an
OA-based lossless integrator is shown by G. Tsirimokou et al. [5]. Special active building blocks used
in works [3–5,8] utilize approximation of the fractional-order behavior by higher-integer-order filtering
responses allowing the electronic configuration of transfer coefficients (numerator/denominator).
Similarly, G. Tsirimokou et al. [6], there is a discrete solution of this topology using passive parameters
for appropriate configuration of the transfer. Topology presented by S. Kapoulea [7] represents one from
the simplest examples of device using passive form of FOE-based on serial/parallel interconnections of
RC segments. R. Sotner et al. [9] introduces method for the electronic rescalability of the operational
bandwidth of the fractional-order integrator, by single DC voltage controlling several capacitance
multipliers. Similarly to G. Tsirimokou et al. [6], this topology uses passive parameters for the setting
of the response approximating required fractional-order behavior. Note that except R. Sotner et al. [9],
there was no attempt to obtain single a parameter electronic adjustability of time constant in the area
of fractional-order two-ports (integrators/differentiators).

Many interesting solutions of two-port interconnections have been presented as parts of various
fractional-order controllers [10–18]. Many of them are using standard topologies based on OA [10,11]
because of their simplicity. Some approaches target on extensive and complex design, based on field
programmable analog arrays (FPAAs) [12] and field programmable gate arrays (FPGAs) [16], [17]
because of their programmability. Moreover, FPGA represents a digital-only solution of the design.
It allows the integration of highly complex topologies [12,16,17], but certain latency and delay of
processing may occur in some cases. However, a significant drawback of these concepts is the
necessity of software development and also quite high costs in comparison to a simple analog
solution. Special analog active devices (with controllable internal parameters) used in the synthesis of
controllers bring certain advantages in the simplification of the design and possibility of electronic
adjustability/reconfigurability at the same time [13–15].

So-called bilinear synthesis brought significant contributions to the adjustability of the features of
fractional-order devices [8,18–21]. Electronic tuning of zero and pole frequencies allows one to form an
almost arbitrary frequency response with very simple and immediate reconfiguration [8,19–21].

Analysis of known solutions leads to the following conclusions:

(a) Many proposed circuitries (except FPAA, FPGA-based) have quite complex topology, with many
active and/or passive elements [9,12,16–19], especially circuits with fractional-order behavior and
approximations by higher-order filters [3,5,6,13] or chain of bilinear segments [8,9,14,15,18–21],

(b) some concepts require software programming [12,16,17],
(c) tested operational bandwidth is quite narrow in many cases [3–5,7,8,11–13,18],
(d) summing of fractional-order as well as integer-order two ports was not analyzed deeply in

the past,
(e) single-parameter electronic adjustment of the time constant of the resulting response of two-port

summing was not studied in the past, except R. Sotner et al. [9], but the overall circuit topology is
based upon a chain of bilinear sections, and therefore, it is not one of the simplest solutions

Despite the presence of various solutions of the above-mentioned two-ports, the effects of their
mutual interconnections are studied rarely [4,8]. The most known cases of integral and derivative
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responses used simultaneously can be found in the field of controllers [7,10–16,18]. However, a detailed
study of resulting responses is often omitted.

The first work (Tsirimokou et al. [22]), where various simple interconnections of fractional-order
devices has been studied, targets on combinations of two-ports. This work gives the evaluation of
the resulting impedance functions of serial/parallel interconnections of fractional-order capacitors
(RC approximants), where each two-terminal is actually represented by an active solution allowing
simple electronic configurability and also floating implementation. Experimental tests were performed
for very low frequencies (<1 kHz). Kartci et al. [23] introduced work dealing with more complex
interconnections of real solid-state, fractional-order two-terminals. However, despite further attempts
in the synthesis of passive [24,25] or active [26] two-terminals, there are no attempts studying both
simple and complex interconnections of fractional-order and integer-order two-ports. Moreover, the
area of theoretical knowledge of fractional-order systems significantly extends into practical industrial
applications [27].

To the best of the authors’ knowledge, a similar study targeting on interconnections of fractional and
integer order two-ports has not been presented in literature. However, there are many particular cases
that should be studied. This work focuses deeply on the behavior of the sum of two branches, including
fractional-order, two-port (differentiator or integrator) and integer-order two port (differentiator or
integrator). Features of resulting responses are studied theoretically, by PSpice simulation, and also
experimentally. The practical notes for the construction of these interconnections of two-ports are also
given. The initial work in this field was presented as conference paper [28]. However, very limited
example of test cases was presented. In the case of this paper, the setting is totally different and also
the types of active devices are not the same.

This work targets on:

(a) the derivation of analytical expressions for mixed transfers, including sum of integer and
fractional-order two-ports,

(b) a single parameter electronic adjustment of the respective time constants,
(c) the practical verification and also precautions of real implementation,
(d) an extension of the state of the art in the field of serial/parallel interconnections of fractional-order

two-terminal passive elements [22,23] to the two-port area.

The rest of this paper has the following organization: Section 2 describes the general block concept
of the tested two-port interconnections. Section 3 shows features of the CPE element (RC approximant)
used in analyzed cases. Section 4 presents four possible combinations of integrator and differentiator
(fractional- and integer-order transfer branch) when summing their output responses, and it shows their
analytical analysis. Practical issues in tested topologies, as well as possible solutions/compensations
of these effects are discussed in Section 5. Section 6 introduces experimental results, and Section 7
concludes this work.

2. General Concept of Two-Port Interconnection

This work introduces the way of analyzing behavior of the resulting response of a sum of
lossless integrator and differentiator where each of them has integer as well as fractional-order
character (Figure 1). We will also observe the impact of the gain variation (designated as A1 and A2 in
Figure 1) on the features of each path. We decided to study four particular cases: (a) integer-order
integrator + fractional-order integrator, (b) integer-order differentiator + fractional-order differentiator,
(c) integer-order integrator + fractional-order differentiator, (d) integer-order differentiator +

fractional-order integrator.



Appl. Sci. 2020, 10, 54 6 of 25
Appl. Sci. 2019, 12, x FOR PEER REVIEW 6 of 25 

+
H (s)

G (s)

IN OUT

A1

A2

 

Figure 1. General concept of all four analyzed systems (responses). 

The transfer of the generalized system has form: 

   
1 2

( ) ( ) ( )
C

K s A H s A G s  (1) 

where partial transfers H(s) and G(s) are as follows: 




int_

1

1
( )

C
H s

s
 (2) 




int_

2

1
( )

CPE
G s

s
 (3) 


_ 1

( )
diff C

H s s  (4) 


_ 2

( )
diff CPE

G s s  (5) 


_ 1

( )
diff C

H s s  (6) 




int_

2

1
( )

CPE
G s

s
 (7) 




int_

1

1
( )

C
H s

s
 (8) 


_ 2

( )
diff CPE

G s s  (9) 

where the particular index of H(s) and G(s) indicates the character of the accumulating device used 

in a particular two-port, and 1,2 are initial values of the time constants. 

Commercially-available, active devices can be used for purposes of practical verification of the 

concept from Figure 1 [29]. Variable gain amplifiers (VGAs) providing control of A1 and A2 gains will 

be based on VCA810 devices [30], the standard concept of the integrator and differentiator topology 

will utilize the LT1364 operational amplifier [31], and the sum operation is easily achievable by an 

AD8130 element [32]. In order to obtain fractional-order integrator or differentiator topology, a 

fractional-order element is required. The Constant Phase Element (CPE) is one of the possibilities 

described in the next section. The following subsections describe each of the four considered 

topologies, together with the most significant simulation and experimental results.  

3. Passive Solution of Constant Phase Element 

We selected CPE having order α = 0.5 with Cα = 56 F/s1/2 for all experimentally studied cases 

(presented in Section 6). Its practical implementation by RC passive topology is shown in Figure 2, 

as well as its ideal and simulated magnitude and phase impedance characteristics. The phase 

accuracy of this CPE reaches ∆α = ±2° in the theoretical operational bandwidth between 1 Hz and 3 

MHz. The design was performed by the algorithm explained in several works in detail [14,33,34]. 

Figure 1. General concept of all four analyzed systems (responses).

The transfer of the generalized system has form:

KC(s) = A1·H(s) + A2·G(s) (1)

where partial transfers H(s) and G(s) are as follows:

Hint_C(s) =
1
τ1s

(2)

Gint_CPE(s) =
1
τ2sα

(3)

Hdi f f _C(s) = τ1s (4)

Gdi f f _CPE(s) = τ2sα (5)

Hdi f f _C(s) = τ1s (6)

Gint_CPE(s) =
1
τ2sα

(7)

Hint_C(s) =
1
τ1s

(8)

Gdi f f _CPE(s) = τ2sα (9)

where the particular index of H(s) and G(s) indicates the character of the accumulating device used in a
particular two-port, and τ1,2 are initial values of the time constants.

Commercially-available, active devices can be used for purposes of practical verification of the
concept from Figure 1 [29]. Variable gain amplifiers (VGAs) providing control of A1 and A2 gains will
be based on VCA810 devices [30], the standard concept of the integrator and differentiator topology will
utilize the LT1364 operational amplifier [31], and the sum operation is easily achievable by an AD8130
element [32]. In order to obtain fractional-order integrator or differentiator topology, a fractional-order
element is required. The Constant Phase Element (CPE) is one of the possibilities described in the next
section. The following subsections describe each of the four considered topologies, together with the
most significant simulation and experimental results.

3. Passive Solution of Constant Phase Element

We selected CPE having order α = 0.5 with Cα = 56 µF/s1/2 for all experimentally studied cases
(presented in Section 6). Its practical implementation by RC passive topology is shown in Figure 2, as
well as its ideal and simulated magnitude and phase impedance characteristics. The phase accuracy
of this CPE reaches ∆ϕα = ±2◦ in the theoretical operational bandwidth between 1 Hz and 3 MHz.
The design was performed by the algorithm explained in several works in detail [14,33,34].
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4. Analytical Analysis of Two-Port Interconnections

We divided ideal analysis to four sections in accordance to discussion in Section 2.
Each interconnection is represented by real circuit topology, including all used active devices and values
of used passive elements, as well as compensating elements improving stability as will be explained
later. Note that compensating passive elements, drawn in the figures by dashed lines, are excluded
from analytical analysis because of simplicity. The following ideal analyses use τ1(integer) = 100 µs,
τ2(fractional/CPE) = 5.6 ms and fixed A1 = A2 = 1.

4.1. Sum of Integer and Fractional-Order Integrator Responses

Practical circuitry implementing the fractional-order integrator and integer-order integrator
derived from the general concept in Figure 1 is shown in Figure 3. Its transfer function is given by:

KI_I(s) =
A1

τ1s
+

A2

τ2sα
(10)
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Its representation in complex form is quite extensive:

KI_I(ω) =
1

τ1τ2ω1+α

{
A2τ1ω sin

(
(1 + α)

π
2

)
+ j

[
A2τ1ω cos

(
(1 + α)

π
2

)
−A1τ2ω

α
]}

(11)

Magnitude and phase part can be expressed as, respectively:

∣∣∣KI_I(ω)
∣∣∣ =

1
τ1τ2ω1+α

√[
A2τ1ω sin

(
(1 + α)

π
2

)]2
+

[
A2τ1ω cos

(
(1 + α)

π
2

)
−A1τ2ωα

]2
(12)

ϕI_I(ω) = tan−1

A2τ1ω cos
(
(1 + α)π2

)
−A1τ2ωα

A2τ1ω sin
(
(1 + α)π2

)  (13)

The Mathcad analysis of ideal transfer function (10) is shown in Figure 4 as three dimensional (3D)
plots. Variation of order α between 0 and 1 indicates a clear point of break where the slope divides
into two parts (integer-order low-frequency zone and fractional-order high-frequency zone), and the
movement of position of this intentional zero from high frequencies to low frequencies, as well as
increasing the character of the corner phase shift at the end of the operational band (from −90◦ up to 0◦).
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4.2. Sum of Integer and Fractional-Order Differentiator Responses

Figure 5 shows interconnection resulting from the summing operation of integer and
fractional-order differentiator responses. The transfer function can be expressed as:

KD_D(s) = A1τ1s + A2τ2sα (14)

The rearrangement into complex form leads to:

KD_D(ω) = A2τ2ω
α cos

(
απ
2

)
+ j

[
A1τ1ω+ A2τ2ω

α sin
(
απ
2

)]
(15)

and after separation to magnitude and phase response we obtain:

∣∣∣KD_D(ω)
∣∣∣ =

√[
A2τ2ωα cos

(
απ
2

)]2
+

[
A1τ1ω+ A2τ2ωα sin

(
απ
2

)]2
(16)

ϕD_D(ω) = tan−1

A1τ1ω+ A2τ2ωα sin
(
απ
2

)
A2τ2ωα cos

(
απ
2

)  (17)

The Mathcad analysis of the transfer function (14) is shown in Figure 6. It shows that order
variation (the same as in the previous case) causes a very similar point of break on the magnitude
slope and occurrence of zero at low frequencies (especially for orders near to 1), and the cut of the
plane projection of the phase response confirms that this starting phase value (low frequencies) clearly
depends upon the value of the α order.
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4.3. Sum of Integer-Order Integrator and Fractional-Order Differentiator Responses

This topology has behavior indicating a significant global minimum of the ideal transfer magnitude
because the decreasing and increasing magnitude in frequency response is given by the interconnection
of the integrator and differentiator (Figure 7). The response has this form:

KI_D1(s) =
A1

τ1s
+ A2τ2sα (18)

that can be easily modified to the complex expression:

KI_D1(ω) =
1
ωτ1

{
ω1+ατ1τ2A2 sin

(
(1 + α)

π
2

)
− j

[
ω1+ατ1τ2A2 cos

(
(1 + α)

π
2

)
+ A1

]}
(19)

and the resulting magnitude and phase responses of the two-port are:

∣∣∣KI_D1(ω)
∣∣∣ =

1
ωτ1

√[
ω1+ατ1τ2A2 sin

(
(1 + α)

π
2

)]2
+

[
ω1+ατ1τ2A2 cos

(
(1 + α)

π
2

)
+ A1

]2
(20)

ϕI_D1(ω) = tan−1

ω1+ατ1τ2A2 cos
(
(1 + α)π2

)
+ A1

ω1+ατ1τ2A2 sin
(
(1 + α)π2

)  (21)
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The ideal analysis of (18) shown in Figure 8 indicates two-sides of the magnitude response with
different slopes and significant local minimum. The phase plot confirms the impact of the order on the
phase value in high-frequency corner (between 0◦ and 90◦).
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Figure 8. The 3D plot of studied ideal transfer response (18) in dependence on value of the α variable:
(a) magnitude vs order vs frequency dependence, (b) phase vs order vs frequency dependence.

4.4. Sum of Fractional-Order Integrator and Integer-Order Differentiator Responses

The last considered combination of integer-order and fractional-order response is shown in
Figure 9. The resulting frequency response is quite similar to the previous case:

KI_D2(s) = A1τ1s +
A2

τ2sα
(22)

again, we can modify it to the complex form:

KI_D2(ω) =
1

ωατ2

{
A2 cos

(
απ
2

)
+ j

[
ω1+ατ1τ2A1 −A2 cos

(
απ
2

)]}
(23)

and we can express the corresponding magnitude and phase responses:

∣∣∣KI_D2(ω)
∣∣∣ =

1
ωατ2

√[
A2 cos

(
απ
2

)]2
+

[
ω1+ατ1τ2A1 −A2 cos

(
απ
2

)]2
(24)

ϕI_D2(ω) = tan−1

ω1+ατ1τ2A1 −A2 cos
(
απ
2

)
A2 cos

(
απ
2

)  (25)

The 3D plot in Figure 10 also reports the significant global minimum of transfer (as expected).
However, the sides of both slopes are opposite with respect to the previous case. The cut in phase
projection shows the initial phase value (low-frequency corner) dependence on the order (start between
−90◦ and 0◦).
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5. Solving Non-Ideal Issues during the Tests

Note that the bridging resistor Rc1, being part of each of the presented summing solutions,
intentionally limits the direct current (DC) gain of OA1 to a finite value (�200) in order to minimize
the impacts of the saturation of the output because of nonzero DC offset caused by real asymmetry
of the active elements. Moreover, effects of high-gain blocks, as well as remaining DC offsets,
require manual compensations by DC voltage applied against real DC offset, as shown in Figure 11.
These compensations are required in both paths of the studied topology. In our case, the input
DC offsets reach values of tens of mV, approximately. However, it was sufficiently high to cause
saturation (Vout = VDD or VSS) of the OA output. Therefore, the compensation was provided really
carefully. Note that the output DC shift above ±50 mV causes a significant effect on the frequency
response accuracy.
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Figure 11. Principle of intentional DC gain limitation and compensation of DC offset and asymmetry
of inputs in the case of integer-order branch given as an example.

Moreover, also damping of unintentional oscillations should be done by a parallel connection of
the capacitor to the feedback resistor in the OA network, as shown in Figure 12. Note that gain caused
by the derivative character of the branch increases with frequency (more than 40 dB above 100 kHz).
The compensation of instability by additional CC1 and CC2 elements was prepared to suppress the
resonant peak approximately between 200 and 300 kHz, as shown in Figures 5, 7 and 9. Despite
quite high values of CC-s, the value of this intentional frequency zero is quite high because of parallel
resistors having low value (100 Ω and 1 kΩ). The approximate value of compensating zero frequency
can be calculated as f zC = 1/(2·π·R1CC1). For values included in Figure 12 it is 63 kHz. It indicates that
influences causing possible instability and oscillations above 100 kHz are sufficiently suppressed.
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an example.

6. Experimental Analysis

Two-ports discussed above were analyzed in PSpice software and also experimentally with real
devices. We used oscilloscope Keysight DSOX3022T with the Frequency Response Analysis (FRA)
option [35] for time domain as well the as frequency domain testing. The input signal level used in
tests was approximately 30 mVP-P because of the significant change of gain, and it was constant in
the whole observed band (20 Hz–1 MHz). The simultaneous time-domain and frequency-domain
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measurements, enabled by this oscilloscope during the point-to-point FRA analysis, were necessary
due to clear visibility of the correct setting of DC offset error compensation.

We can calculate initial time constants of the OA-based integrator/differentiator directly from
values shown in Figures 3, 5, 7 and 9: τ1(integer) = 100 s (R1 × C1 = 1 kΩ × 100 nF), τ2(fractional/CPE) = 5.6
ms (R2 × Cα = 100 Ω × 56 µF/s1/2). The driving voltages Vset_A1 and Vset_A2 for the time constant
adjustment by gains A1 and A2 are considered between 0.85 and 1.35 V (A1,2 between 0.5 and 5 because
A1,2 = 10(2·(Vset_A1,2 − 1)) [30]) in order to observe a one-decade change of gain. However, increased gain
requires compensation of instability as well as DC offset (VGA output offset depends on actual gain),
as discussed above. Particular values of gains A1,2 are noted directly in presented graphs. Note that
our design targets are on the low-frequency band of operation (application field between 100 Hz and
100 kHz) because of expected limits (DC offset impacts for high gain scale, instability) of active devices
as well as simpler design for our exemplary purposes.

6.1. Analysis of Integer-and Fractional-Order Integrators and Differentiators

The frequency responses of key parts of the system (integrators/differentiators using integer- or
fractional-order capacitor) are studied before analysis of the response of the whole system (Figure 1).
Results are shown in Figure 13 for the integral branch and in Figure 14 for the derivative branch. Above
discussed parameters of time constants are valid also for this case. The operational bandwidth of the
integrators (considering phase changes) is limited into the range approximately between 50 Hz and
200 kHz. The operational band of differentiators is significantly lower (only 50 Hz–10 kHz) due to
high-frequency limitations and parasitic poles (and their intentional compensation) in case of a real
transfer function.
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6.2. Analysis of Sum of Integer and Fractional-Order Integrator Responses

The experimental setup for this system shown in Figure 3 (both branches are integrators) is
analyzed in this subsection. We separated results for the variation of individual scaling gains A1 and
A2 (0.5→5) to Figures 15 and 16. While one gain was changed, the other one was set to a constant value
of 1.
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responses) when A2 (fractional-order branch) is varying between 0.5 and 5: (a) magnitude responses;
(b) phase responses.

The measured time domain responses were studied in more detail at frequency in the middle of
the considered band (10 kHz). Output responses on square-wave as well as triangular input voltage
are shown in Figure 17 for A1 = A2 = 1.

The change of gains A1, A2 allows one to set time constants of both paths independently
(theoretically: τ1 ∈ (200 µs, 20 µs) and τ2 ∈ (11 ms, 1.1 ms) for A1,2 ∈ (0.5, 5.0)) and therefore also the
frequency position of the point of break can be electronically controlled. It can be useful for controllers
requiring immediate change on their response.
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6.3. Analysis of Sum of Integer and Fractional-Order Differentiator Responses

This system shown in Figure 5 consists of differentiators in both branches. The achieved behavior
is indicated in Figures 18 and 19 (again for the same values of A1,2 gains). Example of time domain
analysis of the output response is shown in Figure 20.
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6.4. Analysis of Sum of Integer-Order Integrator and Fractional-Order Differentiator Responses

This specific case shown in Figure 7 implements the sum of integer-order integrator and
fractional-order differentiator. Figures 21 and 22 indicate expected minimum of transfer (magnitude)
given by intentional zero frequencies. Figures 23–25 show particular time-domain wave forms at
frequencies in area with dominance of integration (800 Hz), differentiation (100 kHz), as well as a
frequency of 7 kHz being close to the gain minimum (selected example for A1 = 5, A2 = 1).
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6.5. Analysis of Sum of Fractional-Order Integrator and Integer-Order Differentiator Responses

The last combination of interconnection shown in Figure 9 (sum of fractional-order integrator and
integer-order differentiator) was also analyzed, and frequency responses are provided in Figures 26
and 27. Time domain analysis focuses on results obtained at three different frequencies similarly to
the previous case (at 600 Hz in the range influenced by fractional-order behavior, at 2.15 kHz at the
minimal gain visible for the selected gain setting A1 = A2 = 1, and for 50 kHz in the derivative area).
Results are shown in Figures 28–30.
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Results presented in this section (Section 6) indicate quite good correspondence of theoretical
expectations and experiments. However, high-frequency limitations of active devices as well as other
small-signal parasitics influence the high-frequency band significantly. The substantial resonant peak
occurs at a frequency around 200–300 kHz. Generally, the frequency limits also depend upon the
accuracy of CPE, and therefore, also on used approximation. However, in our case, active devices
and real circuitry has significantly higher impact. The resulting operational bandwidth of discussed
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systems can be determined between 50 Hz and 100 kHz for both branches, using integrators (fractional
and integer-order), between 50 Hz and 10 kHz for both branches, including differentiators, between 50
Hz and 10 kHz for the sum of integer-order integrator and fractional-order differentiator, and finally
between 50 Hz and 10 kHz for the sum of fractional-order integrator and integer-order differentiator.
The signal dynamics overcomes 40 dB in all presented tests. Therefore, large gain variation occurs,
and signals reach very low (tens of mV), as well as very high values (hundreds of mV). It should be
considered carefully in the design.

We evaluated selected results of magnitude and phase frequency response (Figure 22) for
interconnection in Figure 7 (Section 4.3). The evaluation of simulated and measured frequency
responses in the selected case (integer-order integrator and fractional-order differentiator) yields a
maximal difference of magnitude of 7 dB in the tested band (10 Hz–1 MHz) and 1.1 dB in the expected
(precise) operational range (50 Hz–10 kHz). The deviation 7 dB means the largest magnitude error is
about 40% (at high frequencies above 500 kHz) between measured and simulated traces. However, the
error is below 12% in the operational band (up to 10 kHz). Note that the relative error (%) seems to
be large (tens of %) for small values of gain in units of dB, but the absolute error is acceptable. The
phase difference reaches 11◦ maximally (10 Hz–1 MHz) and 4◦ (around 10% error) in the suggested
operational band (50 Hz–10 kHz). The very similar behavior of all responses indicates that very similar
differences are valid also for other cases (magnitude differences between 1–2 dB and phase differences
up to 10–15◦ in the range between 50 Hz and 10 kHz, and higher phase differences especially for
integer-order differentiator, as shown in Figure 14).

The results indicate that the specific position of the fractional-order device, as well as the
particular combination of two-ports influences slope (point of break in the case of two integrators or
two differentiators in resulting topology), or creates a global minimum (combination of integrator
and differentiator in resulting topology) and an initial or final phase value in the operational band.
Electronic adjustment of transfer responses (gains A1, A2) in both paths may be useful for special
control applications where the position of global minimum (or point of break) should be impacted
immediately in order to optimize effectiveness of regulation during the operation.

Table 2 summarizes the results of maximally achievable magnitude slopes and phase shifts for a
theoretical variation of the α parameter and typical experimental results for our case α = 0.5 tested
in detail. Presented solutions divide the frequency characteristic to two sub-bands (low-frequency
and high-frequency—below and above the point of break or global minimum). The fractional-order
two-port has a capability to set the initial or final phase shift as well as the slope of magnitude in
a specified sub-band arbitrarily in dependence on the α value. The best accuracy with theory was
obtained for solutions in Figures 7 and 9. Solutions in Figures 3 and 5 reflect the imperfections and
effects of real active devices at high frequencies and the initial behavior of RC approximant at low
frequencies, all due to very high processed dynamics in the observed bandwidth.
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Table 2. Summarization of theoretical features and experimentally obtained results for studied case (α = 0.5).

Theoretically Achievable Behavior for
Variation of α Tested for α = 0.5 (A1 = A2 = 1)

Solution

Magnitude
Slope/Phase Shift

(low Frequency
Sub-Band)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

ExperimentallyEstimated
Operational Range

(Frequency
Bandwidth)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

Magnitude
Slope/Phase Shift
(High Frequency

Sub-Band)

Experimentally
Estimated Dynamics
Dependent on A1,2

Setting

Instability
Compensation

Figure 3 −20 dB/dec
−90◦

−20·α dB/dec
−α·90◦ 50 Hz–100 kHz −17 dB/dec

−78◦
−10 dB/dec

-49◦ >50 dB No

Figure 5 20·α dB/dec
α·90◦

20 dB/dec
90◦ 50 Hz–10 kHz 16 dB/dec

45◦
19 dB/dec

80◦ >60 dB Integer-order
integrator

Figure 7 −20 dB/dec
−90◦

20·α dB/dec
α·90◦ 50 Hz–10 kHz −20 dB/dec

−88◦
10 dB/dec

+42◦ >45 dB Fractional-order
differentiator

Figure 9 −20·α dB/dec
−α·90◦

20 dB/dec
90◦ 50 Hz – 10 kHz −10 dB/dec

−45◦
21 dB/dec

85◦ >45 dB Integer-order
differentiator
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7. Conclusions

Four experimentally tested cases of interconnections summing the fractional- and integer-order
differentiators and integrators brought interesting results. General operationability of the concepts
is limited by the real features of active devices used. The most significant impact has DC accuracy
and variable DC offset dependent on the actual setting of gain in the frame of the VGA as well as
high-frequency parasitic poles occurring for high gains (differentiator operation). We can state that the
proposed concept is approximately operable from 50 Hz up to 10 kHz in all cases.

The gain changes reached more than 45 dB in the observed frequency band
(amplification/attenuation of more than 170 times). Therefore, very careful selection of testing
input voltage levels is required. The input excitation should be selected in dependence on a particular
type of interconnection, but still in range of low tens of mV (30 mVP-P used in tests). However, in
specific cases, the input level can reach higher values (hundreds of mV) when operation with low
dynamics in limited bandwidths of specific transfer responses (and configurations) is supposed. The
expected slopes of experimentally obtained magnitude responses have differences between 1–4 dB/dec
from an ideal case in the observed operational bandwidth (50 Hz–10 kHz). The phase responses
achieves good results for lower corner phase shifts (45◦), where differences from this ideal case are
about 3–4◦ maximally. However, larger phase values at a high-frequency corner for integer-order
differentiator are significantly influenced (differences of 10–12◦ from ideal value) by the frequency
limitations of real circuitry (parasitic poles and zeros). The expected maximal differences of measured
and simulated traces of frequency responses (in suggested operational bandwidth: 50 Hz–10 kHz)
reaches 1–2 dB in magnitude and up to 10–15◦ (especially at high frequencies due to parasitic behavior
of real circuitry). Adjustability of gains in both paths allows influence on the shape of the resulting
response in dependence on the specific character of each path (integrator/differentiator) because of
their impact on a local minimum or breakpoint. The initial and final phase response can be influenced
by the selected α order. Experimental verifications confirmed the expected behavior of the systems
quite precisely and obtained results have good correspondence with both simulations and theory.
Presented analyses are useful for further applications of studied systems, for example in the design of
proportional, integral and derivative controllers or special cases of signal processing requiring these
types of transfers (decreasing and increasing gains with different slopes).
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Abstract— This paper presents structure of generally nth-

order differentiator transfer block serving for purpose of integer 

order or fractional order immittance (impedance) synthesis. 

Presented structure of the differentiator is based on electronically 

controllable current conveyors (ECCIIs), current conveyor of 

second generation (CCII) and electronically controllable gain 

amplifier (VGA). This structure was applied as example of 3rd 

order differentiator and frequency dependent negative resistors 

(FDNRs) of integer (as well as fractional) order. Proposed 

applications offer electronic controllability of time constant, 

magnitude value and reconfigurability of impedance character 

(between positive and negative). PSpice simulations were 

performed in order to verify presented concepts. 

Keywords—differentiator; constant phase element; current 

conveyors; electronic control; FDNR; fractional order FDNR; 

reconfigurability 

I.  INTRODUCTION 

Transfer blocks of integer order higher than 2 are well 
known in circuit theory of common analog systems. They are 
called frequency filters of passive or active construction. Their 
transfer functions are polynomial rational expressions of 
frequency dependent complex variable s. Denominator always 
consists of all integer powers of s (s0…sn) till the highest power 
given by order of the function. However, also transfer 
structures having only the highest power of s in transfer 
function are very important. They are known as integrators or 
differentiators (KI(s) = k/s, KD = ks). So-called lossy types of 
these integrators (KI(s) = k/(s+k), KD(s) = s/(s+k)) are also 
known as simple first-order low-pass and high-pass filters [1], 
[2]. These subparts are very important for many analog 
systems. The functions having character of polynomial 
description but expressed as impedance or admittance are 
known as lossless or lossy inductances or capacitances. 
Transformation from transfer function to immittance function 
is quite simple task (additional voltage to current conversion of 
the output response fed back to the input high-impedance node 
[3]). First-(integer)order immittances are very useful and 
known from the field of so-called synthetic elements [1], 
replacing inductances by capacitors and proper active circuitry, 
operating in real systems when required. Second-order 
immittances in form ZC(s) = ks2 are known under designation 
frequency dependent negative resistor (FDNR) [4] and their 

application field focuses on design of RLC ladder filtering 
structures. They serve as key subpart in so-called Brutton 
transformation [4]-[7] in the most cases. The second-order 
frequency dependent elements are generally called as super-
immittances [8]. 

A cascade of first-order integrators [1] only creates nth-
order integrator. However, construction of differentiator is not 
so easy task. The same idea (cascade of lossless differentiators 
utilizing grounded capacitors) is not suitable method because 
of larger complexity of differentiator than integrator [3] (except 
opamp based concept, however, using floating capacitor and no 
possibility to immediate electronic control). Multiplication of 
transfer segments in the feedback loop is a key feature in 
synthesis of higher order blocks and elements. Discussion of 
this method should start from circuits known under designation 
impedance (or immittance) converters and inverters [3], [6] or 
synthetic elements. The simplest solutions are based on 
operational transconductance amplifiers (OTAs) [1]-[3]. 
However, only impedance conversion (from capacity to 
inductance in most cases) is their main intention. Therefore, 
further features extending overall immittance function are not 
explored very often. Paper [9] indicates feasibility of extension 
of circuitry in order to obtain more complex overall immittance 
functions. Note that classical well-known Antoniou impedance 
converter [10] is not so suitable for intended purposes due to 
limited feasibility of multiplication, quite complex circuity and 
lack of electronic controllability. Two opamps and five passive 
elements (four of them are floating) are required for result in 
form of multiplication of three impedances divided by two 
impedances. This is not effective for intended purposes (see for 
example [11]). Therefore better concepts should be studied. 

Methods for multiplications and conversions/inversions of 
immittances of higher order can be beneficially used also in 
synthesis of fractional order elements also known as constant 
phase elements (CPEs). Works [12]-[15] introduces solution of 
CPE based on specific filtering responses created by multiple 
feedback structure and subsequent voltage to current 
conversion of output response to high-impedance input of the 
system. On the other hand, the same result can be achieved by 
simple voltage to current conversion of the transfer response of 
bilinear blocks in simple cascade [16] into the input with less 
complexity in some cases. 

Research described in this paper was financed by Czech Ministry of 
Education in frame of National Sustainability Program under grant LO1401. 

For research, infrastructure of the SIX Center was used. Research described in 
the paper was supported by Czech Science Foundation project under No. 15-

22712S. 



Our paper brings interesting structure serving for generally 
nth-order differentiator design as well as its simple modification 
of frequency dependent higher order immittances of inductive 
character. This structure offers theoretically arbitrary selection 
of the order by simple modification in the feedback loop 
(adding or removal of segments). Commercially available 
elements are selected in order to perform initial verifications of 
our intentions by PSpice simulations. 

II. GENERAL ELECTRONICALLY CONTROLLABLE HIGHER 

ORDER DIFFERENTIATOR BLOCK 

Active devices used in following circuits should be 
described and explained briefly. Electronically controllable 
current conveyor of second generation (ECCII) [17] is very 
useful device for synthesis and design of controllable 
applications. It’s ideal definition supposes terminal relations: 
VY = VX, IY = 0, IZ = B∙IX and availability of simple control of 
parameter B (current gain) by DC voltage. Note that B can be 
positive or negative in dependence of particular type of ECCII 
(ECCII+/-).  Version of current conveyor of second generation 

having fixed gain B =  1 is abbreviated as CCII+/-. These 
devices will be used in our designs. Specifications of current 
mode multiplier EL2082 [18] and current feedback operational 
amplifier (CFOA) AD844 [19] offer implementations of these 
commercial devices for our purposes. 

Generalized structure of the nth-order voltage mode 
differentiator block is shown in Fig. 1. The structure in Fig. 1 
has transfer function in form: 
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that can be simplified (considering R1 = R2 = … = Rn = R, 
C1 = C2 = … = Cn = C and B1 = B2 = … = Bn = B) into: 
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Note that full implementation of the block (Fig. 1) in voltage 
mode requires additional voltage buffer at input terminal 
(connected to RX) to increase input impedance given directly 
by RX in Fig. 1. However, additional utilization of unity gain 
buffers depends on specific implementation where discussed 
blocks will be applied. 
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Fig. 1. Generalized structure for synthesis of nth-order differentiator. 

III. EXAMPLES OF APPLICATION 

Proposed structure can be useful in transfer blocks as well 
as in immittance (impedance or admittance) emulators after 

certain modification. Values of active and passive parameters 
were selected as follows: RX = 1 kΩ (950 + 50 Ω internal 
resistance of X terminal of AD844 [19]), R1 = R2 = R = 560 Ω 
(470 + 95 Ω internal resistance of X terminal of EL2082 [18]), 
C1 = C2 = C3 (where applicable) =  C = 10 nF, initial  
B1 = B2 = B = 1 (all VSETB = 1 V). All result were performed by 

PSpice simulations with VDD =  5 V. 

A. 3rd-order differentiator 

Design of the circuit from Fig. 1 was provided for n = 3 in 
accordance to all above stated parameters. The particular 
transfer function has form: 
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Results of simulation are given in Fig. 2 where trace slope 
+60 dB/dec was obtained as expected. 

 

 

Fig. 2. Magnitude transfer response of 3rd-order differentiator from Fig. 1. 

B. Integer order eletronically tunable negative/positive 

frequency dependent resistor 

Simple modification of the structure from Fig. 1 offers 
construction of electronically tunable frequency dependent 
negative resistor of the second-order as shown in Fig. 3. This 
circuit may operate also as positive frequency dependent 
element due to availability of reconfiguration of polarity by 
amplitude gain A of the voltage mode variable gain amplifier 
(VGA). This modification supposes external RX polarity 

change by VGA (where A = 102(│VSETA│1) for VCA610 type 
[20]). Note that VSETA is physically connected with negative 
polarity. Overall impedance is defined as: 
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where A = 0 (VSETA = 0 V) performs positive frequency 
dependent resistor and A = 2 (VSETA = 1.15 V) reconfigure 
structure in Fig. 3 to FDNR. Ideal value for B1 = B2 = B = 1 

(VSETB = 1 V) is given as D = ZC(f)/(2f)2 = 31.4∙10-9 Ω3F2. 
Results confirming intended behavior are shown in Fig. 4 
(figures include important parameters and notes). Simulations 
yield D = 32.2 ∙10-9 Ω3F2 for A = 0 and 29.6∙10-9 Ω3F2 for 
A = 2. 
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Fig. 3. Electronically tunable frequency dependent positive/negative resistor 

created from structure in Fig. 1. 

 
a) 

 
b) 

Fig. 4. Impedance characteristic of circuit in Fig. 3 for both configurations 

(positive and negative): a) magnitude responses, b) phase responses. 

Real input resistance in input node (Rp) causes high-
frequency limitation in simulated responses (parasitic pair of 
complex conjugated poles) at frequency: 
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as it can be clearly visible in Fig. 4 and Fig. 6. This pole 
frequency is dependent on tuning process (adjusting of B), 
therefore, it cannot be avoided in real case. Significantly high 
real part of input resistance can only suppress this effect and 
move this pole to higher frequencies. 

C. Fractional order FDNR 

Synthesis of passive versions of constant phase element 
(CPE) with inductive character is not easy task because such a 
design requires presence of real inductances (coils) in the 
structure (RL segments) [21], [22]. Therefore, design of 
fractional order active FDNR with CPEs (ZCPE(s) = 1/(sαCα)) of 
capacitive character (fractional order capacitances) and 
subsequent impedance conversion seems to be better approach. 
Structure presented in Fig. 3 offers interesting performance 
also for fractional order circuits. Such modification requires 
only simple replacement of integer order capacitors by 
fractional order capacitors (CPEs with capacitive character) in 
Fig. 3. Then the overall impedance has form: 
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that could be simplified when R1 = R2 = R and C = C, 
B1 = B2 = B into: 
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where C = 1/ XCPE and identical order (α = β) of both CPEs is 
supposed. Design method and calculations explained in [21], 
[22] were used for design of fractional order CPEs with 
capacitive character (containing RC segments only). 

Parameters of CPE structure are shown in Fig. 5 for  = 1/3, 

XCPE = 10 kΩ (phase shift of ZC(s) of FDNR  = 90·2 = 60 
degree). Results of simulation as well as tuning process 
(available also in all previous cases) are shown in Fig. 6. We 
are supposing A = 2 (VSETA = 1.15 V) and B1 = B2 = B 
(VSETB1 = VSET2B = VSETB) set to 0.1, 0.5, 1.0, 2.0 V for adjusting 
of Dα.  

C1

2.35 µF 

R1

4230 Ω 

ZCPE(s)

C2

0.69 µF 

R2

2300 Ω 

C3

202 nF 

R3

1251 Ω 

C4

59.9 nF 

R4

680 Ω 

C5

16.8 nF 

R5

370 Ω 

C6

5.1 nF 

R6

200 Ω 

C7

1.5 nF 

R7

110 Ω 

C8

446 pF 

R8

58 Ω 

C9

130 pF 

R9

33 Ω 

C10

39 pF 

R10

18 Ω 

C11

11 pF 

R11

10 Ω 

C12

3.3 pF 

R12

5.1 Ω 

C13

0.82 pF 

R13

2.7 Ω 

C14

0.42 pF 

R14

1.5 Ω 
Rp

3578 Ω 
Cp

0.82 pF 

 

Fig. 5. Constant phase element (and its values) for implementation in Fig. 3 instead of integer order capacitors. 



IV. CONCLUSION 

Proposed structure of the nth-order differentiator in Fig. 1 
was tested in three different applications (3rd-order 
 
 differentiator, frequency dependent negative/positive resistor 
of the second order, and fractional order FDNR with inductive 
character utilizing fractional order capacitors (CPEs) of 

identical order  = 1/3). Electronic control of the time constant 
as well as impedance magnitude or polarity (positive/negative) 
is possible through adjustable parameters of the structure 
(current and voltage gains). The main benefits of this concept 
are: a) simple extension of any order of the transfer response 
(differentiator) or immittance (frequency dependent 
negative/positive resistor), b) electronic controllability, 
c) always grounded capacitors, d) suitability for integer as well 
as fractional order synthesis. These features were verified by 
PSpice simulations and obtained results are in good agreement 
with theoretical intentions. 

 
a) 

 
b) 

Fig. 6. Impedance characteristic of circuit in Fig. 3 for fractional order 

capacitors with  = 1/3 at positions C1 and C2: a) magnitude responses, 

b) phase responses. 
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Abstract— This paper introduces a practical and 
straightforward view on the design of circuit based on 
electronically controllable current conveyors (ECCIIs), wide-band 
operational transconductance amplifier (OTA), differential 
difference amplifier (DDA) implemented as voltage buffer (BUF) 
and four quadrant current-mode multiplier. All these elements are 
implemented for the possibility of multiple electronical tunability 
(via DC voltage parameter VSET) of the resulting specific 
reconfigurable impedance converter of the integer-order as well as 
the fractional-order. This solution leads to circuit with 
electronically controllable input impedance (lossy/lossless 
character with additional fractional-order element).  In addition, 
a constant phase element (CPE) is tested in order to maintain a 
constant phase response (depending on which phase change is 
realized) and phase ripple in a specific frequency band. All 
theoretical assumptions are supported by PSpice simulations.  

Keywords—current conveyors, electronically tunability, constant 
phase element, synthetic element, input impedance 

I. INTRODUCTION 

In recent years, the active elements attract increasing 
attention due to the possibility of an electronic tunability. It 
seems to be very important to change some parameters of the 
final network structure without the needs to change the internal 
layout of the circuit itself. Commonly used active devices are 
electronically controllable current conveyors of the second-
generation [1]. Nowadays, the current conveyors are widely used 
for their beneficial behavior in current (CM) [2], voltage (VM) 
[3] or mixed mode (MM) circuits [1]. Those parts could be 
widely used in various analog signal processing.  

The so-called synthetic elements [4] offer the most common 
usage in the filtering design. The final immittance function of 
the described elements could be expressed as an 
impedance/admittance having lossy or lossless [5] capacitive 
character (decreasing magnitude response with frequency) or an 
inductive character (increasing magnitude response). However, 
a circuit design consisting of inductors on chip, could be 
challenging task and in most of the times it could cause 
problems. Many solutions are simulated and created using 
various types of active (operational amplifiers (OA), current 
conveyors etc. [6]-[7]) and passive elements (resistors and 
capacitors).  

TABLE I.  COMPARISON OF SYNTHETIC ELEMENTS SOLUTION USING 
DIFFERENT TYPES OF ACTIVE ELEMENTS 
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[8] 5 (8) 2 OPAMPa No 
passive 

only  
N/A No 

[9] 6 1 ICCIIa No 
passive 

only  
2 No 

[11] 2 (4) 1 VDCCa Yes gm 2.5 No 

[12] 4 4 ECCII Yes 
DC 

voltage 
3 No 

[13] 4 1 CFOAa Yes 
passive 

only 
3.5 No 

[15] 2 1 VDCCa Yes 
control 
current 

2.5 No 

[17] 4 2 CFOAa Yes 
passive 

only 
2 Yes 

proposed structure 

 3 4 (5) ECCII Yes 
DC 

voltage 
4 Yes 

a. OPAMP – operational amplifier, ICCII - inverting current conveyor of the second generation, 
VDCC - voltage differential current conveyor, CFOA - current feedback operational amplifier 

 

 The so-called Antoniou [8] and Riordan [5] impedance 
converter are the best-known synthetic structures representing 
advanced immittances (inductances, frequency dependent 
negative resistors, for example). Unfortunately, both of the 
mentioned network solutions ([5], [8]) are unsuitable for all 
application purposes because of lack of electronic tunability and 
a large amount of components (two OAs and five passive 
impedances where four of them are not grounded). Therefore, 
the designers are looking for the alternative ways how to produce 
synthetic elements. 

 In the past decade, many workers contributed to this field of 
research. Most of them aim to minimize the resulting solution 
(amount of the elements) needed for synthesis [9] 
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Fig. 1. Synthetic inductor using four active and three passive elements. 

(four active and two passive elements for single gyrator) and 
construction of topologies where all the capacitors are grounded 
[10] (four current conveyors and seven passive elements). Usage 
of such circuits can be described as a lossless floating inductance 
designed with voltage differencing current conveyor [11], a 
pseudo-differential floating inductance simulator [12] or as an 
inductance simulators [13] using single controlled gain voltage 
differencing current conveyor [14]-[15]. A comparison of 
different solutions based on various active elements can be seen 
in Table. 1. 

 Our work brings novelty in term of simplification of the 
synthetic element (namely the synthetic inductance) and 
introduces the electronic way of controllability (DC voltage). 
This paper is divided into several parts particularly Section II 
deals with a new circuitry of synthetic inductance (Fig. 1). This 
circuit targets on the minimal amount of elements needed for 
implementation having required features (four active elements 
and three passive elements). Section III brings tunability into the 
circuit by adding one more active element driven by voltage 
(Fig. 5). And finally, Section IV focuses on the magnitude and 
the phase changes of the resulting structure by a substitution of 
the integer-order capacitor by the constant phase element [16]-
[20] with  ൌ 30 ° angle (CPE30) [20]. 

II. NEWLY PROPOSED STRUCTURE OF A SYTHETIC INDUCTOR 

WITH FOUR ACTIVE ELEMENTS 

 The interconnection of the components of the proposed 
structure (Fig. 1) is quite simple and will be described briefly. 
The electronically controllable current conveyors of the second 
generation (ECCIIs) [1] create the key parts of this design. 
Current gain between terminal X and Z can be electronically 
controlled via current gain ܤ parameter that is allowed by DC 
voltage (VSET_B). Several types of these devices (ECCIIs) such as 
ECCII- with negative polarity of terminal Z, ECCII+ with 
positive polarity of terminal Z and ECCII+/- maintaining both 
polarities (Z+ and Z-) has been defined in literature [1]. The ideal 
definition of current conveyor can be expressed by its inter-
terminal features (voltages and currents): ܫ௒ ൌ 0; ௫ܸ ൌ ௒ܸ  and ܫ௓ ൌ ܤ ∙  represents the current gain proportional to ܤ ௫ whereܫ
DC control voltage (Vgain) [21].  

EL2082 (a specification can be found in [21]) there have 
been four intended purposes selected with feedback loop from 
port Z to Y (to node of R1, C). Differential difference  
 

EL4083
(+VDD  5 V)

VSET_Y

CA/I

Z(CA)

Y(CA)

X(CA)

RZ(CA) = 10 kΩ 

RY(CA ) = 5 kΩ 

XY(CA)

/XY(CA )

 

Fig. 2. Block scheme of CA/I mentioned in Fig. 1. 

 

Fig. 3. Lossy/lossless magnitude input impedance characteristic of the 
scheme in Fig. 1 in dependence of setting parameter BB+CA = 1 and 

BB+CA = -1. 

amplifier (DDA) AD830 [22] connected as the voltage buffer 
( ைܸ௎் ൌ ூܸே௉) (having gain of A = 1) is required in the loop (also 
every other operational amplifier connected as the buffer would 
be sufficient). Port X is connected through R2 to OPA615 [23] in 
configuration of the common base current amplifier (with the 
low input impedance). The ECCII- with VSET_B is subsequently 
complemented by the current amplifier (CA) based on four-
quadrant current-mode multiplier EL4083 [24]. 

Output current of CA/I can be expressed as: equals ܫ௑௒ ൌ  ௓ሻିଵ. Terminal Y(CA) of the EL4083 is driven byܫ௒ሺ2ܫ௑ܫ 
DC voltage VSET_Y. It offers the possibility of polarity inversion 
of the parameter B. In this particular case a new current gain 
parameter is needed (BB+CA) in order to maintain usable 
amplification of the output signal. BB+CA is the final product of 
ECCII- (VSET_B) and CA/I (VSET_Y). Fig. 2 shows a block scheme 
part mentioned above. There could also be two ICs in the 
cascade in order to get both polarities of the gain (it is not 
possible to do it with just one of the EL4083). 

The overall impedance has the form: 

1

)(
)( 2112

−
−+−== + CRRsRBR

I
VsZ CAB

INP

INP
INP ,  (1) 

where gain (A) of BUF is set to 1 as well as gain (G) of OPA615. 
Regarding previous setting, the overall impedance could be 
modified to the form of: 

)()( 2112 CRRsRBR
I
VsZ CAB

INP

INP
INP +−== + .  (2) 

 In order to readjust between the lossy or the lossless 
impedance character, two parameters are suitable to deliver it. 
  



 

Fig. 4. Phase response characteristic for setting of parameter BB+CA = 1 and 
BB+CA = 1. 

The first one is VSET_B that sets the parameter B of the ECCII-. 
Note that when BB+CA = -1, the possibility of simplification of 
the equation (1) for the positive lossy character (BB+CA is set to -
1 exists under condition of 2,12121 ; RRRRR =+= ): 

)()()1()( 212,12112 CRRsRCRRsRRsZINP +=+⋅−−= .  (3) 

 The lossless impedance character is obtained for BB+CA equal 
to 1, then impedance equation modifies into: 

)()(1)( 212112 CRRsCRRsRRsZINP =+⋅−= .  (4) 

 The simulations in Fig. 3 and Fig. 4 are performed in Pspice 
to support of the theoretical expectations. The settings of the 
parameters are as follows: lossless inductive impedance 
character, BB+CA = 1 (VSET_B = 2 V [21], VSET_Y = -2.5 V [24], G 
= 1, VDD = 5 V). For lossy inductive impedance character 
BB+CA = -1 (VSET_B = 2 V, VSET_Y = 2.5 V, G = 1).  

 Regarding the passive values of the passive elements 
C = 1 nF, R1 = R2 = 1 kΩ = (895 Ω + 95 Ω + 10 Ω) where the 
additional 95 Ω and 10 Ω are the impedances of OPA615 and 
EL2082. Simulations results were obtained for the phase shift as 
well. The same settings as for the magnitude impedance 
characteristics in Fig. 3 in full frequency range have been used 
and resulting traces can be seen in Fig. 4. Note that the real input 
impedance of terminal ZINP(s) causes the parasitic pole at high 
frequencies and it cannot be avoided in the  real measurements.  

III. THE ADDITIONAL EXTENSION OF CONTROL WITH SECOND 

CURRENT CONVEYOR. 

For the extended control of the solution, the circuit in Fig. 1 
can be modified with one additional ECCII- (Fig. 5) connected 
in collector node of OPA615 (additional current gain parameter 
B2). This extension has no effect on the lossy character of the 
input impedance if B2 = 1 and causes the same results as in Fig. 3 
and in Fig. 4. Also the parameter VSET_B2, (B2) can be set in range 
of -1 V up to +7 V [21]. In practice, we tested VSET_B2 = 0.1 V, 
VSET_B2 = 0.4 V, VSET_B2 = 1 V and VSET_B2 = 4 V in Fig. 6. 

 The overall input impedance of the circuit from Fig. 5 
achieves expression: 

2
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B
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INP
INP ⋅−

−+−== + .  (5) 
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Fig. 5. Extended circuitry of synthetic inductor using five active and three 
passive elements. 

 

Fig. 6. Magnitude of input impedance vs frequency plot of the circuit in 
Fig. 4 for four different settings of DC voltage VSET_B2. 

 As can be seen, parameter BB1+CA remains at the position in 
numerator part of the function and parameter B2 in the 
denominator part of the function.  The increased number of 
elements in the equation represents cost for the intended 
features, but now the device offers additional level of electronic 
controllability.  

 Not only the lossy or lossless type of impedance 
(immittance) character can be set but even the equivalent 
inductance value (shift of the trace in magnitude characteristics) 
can be tuned by B2 now (Fig. 6). 

IV. SUBSTITUTION CAPACITANCE FOR COSNTANT PHASE 

ELEMENT 

 Interesting results for the input impedance in lossy mode 
were obtained for standard integer-order capacitor C when it was 
replaced by the passive version of the fractional order element, 
so-called CPE [20], [25] (Fig. 5). The whole procedure of the 
CPE design can be found in [25]. The overall impedance of the 
CPE30 is expressed as ZCPE(s) = 1/sαCα, where Cα = 1/XCPEα and 
the order α = φ/90. 

 Therefore, φ = 30 ° → α = φ/90 = 1/3 and XCPEα = 10 kΩ. As 
clear from Fig. 7, lossless character changes into lossy character 
 



 

Fig. 7. Fractional-order input impedance characteristic for different settings 
of VSET_B2 (implementation of CPE30 [25]) compared with standard 

capacitor. 

 

Fig. 8. Phase response characteristic of synthetic inductor with CPE30. 

when the CPE is used for setting of BB1+CA = 1 
(VSET_B1 = 2 V, VSET_Y = - 2.5 V) and specific settings of ܤଶ . 
Input impedance value starts from 550 Ω at frequency 100 Hz.  

 High-frequency operational range remains almost the same. 
The interesting results are evident in phase responses (Fig. 8). 
Subtracting the integer-order and fractional-order traces, the 
gained phase shift represents value of the CPE (φ = 30 °) itself. 
Operational frequency range falls between 1 kHz and 101 kHz. 

V.  CONCLUSION 

The novelty of this paper consists of proposed structure of 
the synthetic element (synthetic inductor) and its tunability. This 
paper deals with the procedure of the designing of such a 
structure and describes all important parameters including the 
theoretical characteristics and results simulated in PSpice. The 
device performs valid operation in the range of  frequencies from 
100 Hz up to 1.5 MHz (simulated in Fig. 3 and Fig. 4) for 
BB+CA = 1 (the lossless character) and BB+CA = -1  (the lossy 
character). Fig. 4 shows the confirmation of the theoretical 
expectation and changes its phase for the lossless setup from 
180 ° to 90 ° and for the lossy setup from 0 ° to 90 ° limiting at 
higher frequency of 2 MHz. The simulation results of the 
function (5), based on the circuitry in Fig. 5, are shown in Fig. 6. 
It indicates behavior for different setting of VSET_B2 (tuning of 
equivalent inductance). The resulting traces are given in Fig. 7 
(behavior obtained for a replacement of integer-order capacitor 
by fractional-order CPE30 [20]) where the phase response 

respects the phase shift of CPE30 in bandwidth of 
BW(φ) = 100 kHz (a limitation of the bandwidth is allowable 
phase ripple of CPE30 and it is further described in [20]). The 
proposed structure brings interesting results in the field of 
synthetic elements which are expected to be useful in the 
development of further applications (for example in fractional-
order resonators [26]-[27]).  
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ABSTRACT A novel electronically reconfigurable fractional-order filter allowing independent electronic
frequency tuning and switchless change of the transfer response by a single parameter between standard
band-pass, inverting all-pass response and special type band-reject response is presented in this work.
The differences between these special transfer characteristics and standard features consist in magnitude
and phase response behavior. Inverting amplification or attenuation is also available. The filter has tested
frequency range between 1 Hz and 100 kHz. The proposed fractional-order filter (using two fractional-order
element having equivalent capacity 8.7 uF/sec^1/4, α = 3/4) tunability yields one-decade range approxi-
mately between 10 Hz and 100 Hz by transconductance between 0.19 and 1.1 mS (fractional-order design
helps with reduction of driving force less than one decade). The application example in frequency/phase
detector (operationability around center frequency 100 Hz - between 50 and 180 Hz) and further signaling
frequency detecting system for frequency shift keying demodulator offers maximal detectable voltage (about
300 mV) for alignment (zero phase shift) of the signals of the same frequency (center frequency of the
proposed filter in inverting all-pass mode). It also offers an interesting application in frequency shift keying
demodulation process (or for identification/signalization purposes of certain frequencies) by usage of a
simple additional comparator generating clear output state. Cadence simulations as well as experimental
tests using integrated cells of special multipliers fabricated in ON Semiconductor 0.35 µm I3T25 CMOS
process confirm operationability of the proposed concept as well as simple application of special response
of the filter for phase/frequency detection and demodulation purposes.

INDEX TERMS Active filter, electronic adjustment, fractional order, operational transconductance ampli-
fier, resonator, switchless adjustment, transfer response reconfiguration.

I. INTRODUCTION
In many cases, signal processing and readout systems
require modification of transfer response (the type of transfer
response, bandwidth limit, etc.). In such cases, only tunability
or multifunctionality (manual selection of the output type
of response by switches) is insufficient [1], [2]. Reconfigu-
ration of the transfer response of a filter cannot be solved
by standard active devices (operational amplifiers) because

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuh-Shyan Hwang .

many degrees of freedom are expected (pass-band gain, pole
frequency, etc.) [3].

Fractional-order (FO) circuits [4] bring new features to
this field because areas between stop-bands and pass-bands
can be set with less steepness than in integer-order cases.
It is consequence of the magnitude slope dependence on
frequency and its direct relation with the order of the FO
devices used in the design [5]. Complex structures of many
integrators in feedback loops [1], [2] offer reconfiguration of
the slope of response by selection of an appropriate output
of the integrator [5]. The full reconfiguration of transfer
response (switchless change of transfer response) requires
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more extensive modifications, degrees of freedom and coor-
dination (suitable setting and simultaneous adjustment) of
driving forces – DC voltages [6]. Specific requirements on
the slope of response can be fulfilled by FO approaches [4].
These requirements depend on specific applications.

The following part of the work introduces corresponding
topics and highlights advantages of the presented solution
among already studied and analyzed concepts in the field
of reconfigurable filters. Specific setting of the filter has
an interesting and unusual application for frequency/phase
detection. It is important to note that presented combina-
tions of magnitude and phase responses are also unavailable
in standard integer-order concepts (without reconfigurable
features).

A. RECONFIGURABLE FILTERS
Reconfigurable filters [3] can be used with high benefits
for equalization (modification and optimization of gains
in various frequency bands based on current conditions
of transmission environment or requirements of a system)
of a communication channel. The most important feature of
these types of filters consists in a single-input single-output
topology.

The transfer response is not selected at several input or
output terminals but established by appropriate setting of the
parameters of topology (in many cases continuously). Several
topologies in standard circuit theory (lumped elements) have
been reported in [3] but significant attention is especially
devoted to higher radiofrequency (RF) bands (GHz) due to
the easiest construction of these devices (electromagneti-
cally coupled elements). In these RF bands, the switchless
change of transfer response can be easily solved even in
passive solutions [7]–[11]. Research in this field especially
targets on microwave systems. However, in the field of
low-frequency applications, it is not an easy task. Special
active elements having various degree of freedom (multi-
parameter adjustability) and extensive complexity of active
circuitry are required [5]. Microwave-based concepts use
electromagnetic couplings existing in RF bands (higher than
MHz), which is not easily available for low-frequency sig-
nals. These concepts have certain advantages of power con-
sumption because majority of these circuits, except biasing
of diodes for tuning [10], [11], does not require power sup-
ply [7]–[9]. However, very high geometrical accuracy of the
designs must be ensured. In some cases, reconfiguration is
given by micro-electro-mechanical systems (MEMS) based
switches [9]. If there are electronic adjustable features (i.e.
center frequency or bandwidth adjustment), they are concen-
trated to PIN diodes, varactors [10], [11] or even mechanical
switches [9] that are not allowing continuous adjustment.
In order to see conceptual differences, typical solutions
using lumped elements as well as microwave approaches are
compared in Table 1. The analysis of solutions, presented
in Table 1, leads to the following conclusions:

a) resonators are not frequently used for design of recon-
figurable filters in standard lumped elements-based

approaches (it is a significant domain of microwave
circuits) [3]–[6];

b) the highest degree of reconfigurability of the fil-
ter requires a complex circuitry and multiparameter
adjustable active elements [5], [6];

c) the adjustment of the order reconfiguration influences
the slope between pass and stop band, without change
of the transfer type [5];

d) the number of available transfer responses in microwave
resonator based approaches is either quite low [7], [8], 10]
or does not include band-pass (BP) response (it is
the most frequently used response in many applica-
tions) [7], [8];

e) the adjustment of microwave filters has not electronic
character [7]–[9], only several cases include some
electronic adjustment employing variable capacity of
diode (varicap) by bias voltage [10], [11];

f) transfer responses of special character (untypical behav-
ior of magnitude and phase responses) together with
simple amplification simultaneously) are not available
and studied.

Important advantage of our concept consists in utilization
of basic active devices withoutmutliparameter feature (allow-
ing extended degree of freedom) but sufficient for expected
purpose of electronic tunability and transfer reconfiguration.
Based on Table 1, no design was target to low-frequency
domain. Standard ideal integer-order LC resonator cannot be
used in the presented solution because of instability when
certain conditions are fulfilled. Therefore, some settings of
the presented circuit, using integer-order elements, will cause
instable operation (BP response especially). On the other
hand, the utilization of FO elementsmakes the solution stable.
The main results of the analysis of solutions indicated by
Table 2 show the following:

a) there is no relation between reconfiguration of transfer
responses and variation of parameters of FO devicewhen
a passive FO device is used [6], [15], [16];

b) electronic tuning (center, pole frequency) does not
require modification of the set of parameters when a
passive FO device is used [6], [15];

c) the passive FO devicemust be completely replacedwhen
the change of order is required [6], [15], [16];

d) electronic tuning requires modification of the set of
parameters when active solution of FO filter (the
FO character is approximated by higher-order filter
response [13]) is used [13], [14];

e) active solution of FO character offers electronic setting
of the order [12]–[14], [17] but topology is very com-
plex (many active elements [13], [14]) requiring many
degrees of freedom of many parameters [13], [14];

f) electronic adjustment of stop-band attenuation (in order
to set useful as well as undesirable spectral components
properly) of the BP response is not solved in the reported
cases;

g) previous solutions do not use resonator concept;
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h) in some works [12], [14], [17], the number of transfer
responses is quite low;

i) the input impedances are not high and output
impedances are not low simultaneously in several
promising structures (for immediate application in
voltage mode) [6], [13]–[15]. However, it cannot be
considered as a direct disadvantage in current-mode
solutions [5].

Very often, solutions approximating FO Laplace operator
have a complex topology [13], [14], [18], [19]. However,
it is a cost for beneficial reconfigurable features (tuning
and transfer response reconfiguration) of the filter (electron-
ically). Reconfiguration of the order and transfer function
is also available in works [18], [19] but solved by switches
and decoders discontinuously. Therefore, these solutions are
excluded from Table 2 where continuously electronically
adjustable solutions are compared.

The most important drawback of recently reported
multifunction solutions consists in necessity of new set of
values of parameters (matching for simultaneous change)
for each change (readjustment) of the order. Therefore,
utilization of the resonator concept in FO designs brings
significant advantage. The FO device has fixed features –
passive RC approximation) and responsibility for tuning con-
centrates to active elements except operational amplifiers
(they offer complex and non-tunable solution of resonator
[20]). The operational transconductance amplifiers (OTAs)
[21] are used in our case. Moreover, the adjustment of the
order can be separated from tuning when the FO device is
replaced by active solution [13]. A simple core of the useful
reconfigurable filtering topology, allowing special transfer
functions, can be created by a simple resonator structure.
There were reported several examples of fractional-order LC
resonators (see Table 3) but they have some disadvantages
(e.g. linear electronic tuning is not allowed [22]–[25] and
high complexity [26], [27) reported in detailed comparison
in [22]–[27]. Their basic principle utilizes standard Anto-
niou gyrators [20] with operational amplifiers for not easily
tunable passive solutions and electronically adjustable OTA-
based gyrator [21]. Different circuit solutions of the gyrator
were obtained by current conveyors and optocouplers for
electronic adjustment [27]. Our modification in the topology
of [21], used in this work, brings new linear voltage control
of transconductance (OTAs are created by linear multipliers)
where the value of transconductance has no lower limit (can
be even zero). Topology in [26] offers electronically read-
justable order of the FO resonator (equivalent inductance,
capacity or both). However, this useful feature results in
complexity of the concept.

B. PHASE DETECTOR
Standard concepts of phase detector in frequency demod-
ulators employ integer-order band-pass filters using basic
passive elements (LC) having non-tunable properties. The
phase detector solves especially phase relation between the

input and reference waveforms. On the other hand, the val-
ues of amplitude have also significant influence because
they determine the value of DC (or low-frequency) voltage
given by the value of phase shift. In the case of standard
integer-order RC and LC filters in the phase shifting path,
the magnitude changes with ±20 dB/dec around the center
frequency of the filter. It may have significant impact on
the DC output level and accuracy of phase shift evaluation,
especially for large values of phase shift changes where
magnitude response varies significantly. The presented tech-
nique offers a simple solution for the issue with magnitude
increase/decrease in the input path of frequency demodula-
tor providing phase shift for input waveform with varying
frequency. Our application example shows utilization of one
selected and set transfer response (inverting AP response)
in phase/frequency detecting circuit. Phase and frequency
detectors may find applications in many areas including com-
munication systems [28]–[32] and low-frequency biomedical
technologies [33]. Electroencephalogram (EEG) and electro-
cardiogram (ECG) signal readouts appreciate operation of
these applications in units-hundreds of Hz [33]. Comparison
of typical concepts in Table 4 shows usefulness of solu-
tions from both topological (complexity) and performance
aspects. The filters used in works [28]–[32] do not have flat
magnitude responses ensuring constant amplitude for both
incoming signals for multiplication. In addition, also overall
complexity of detectors is larger in many works [29]–[32]
than in our case. Electronic tuning of the filter brings useful
feature because the operation (carrier) frequency can be easily
changed (impossible in [29]) and not documented in the
rest of works [28], [30]–[32]). The last work [34], regarding
to this topic, has very similar features. However, there are
significant differences. In this paper, the multiplier has a
single output (the type of multiplier in this work and in [34]
is different and has different internal CMOS topology, i.e. the
doubled output voltage is not available here (not necessary
here – sufficient dynamical ranges of active devices) but
the topology is simpler than in [34]). Next, there is differ-
ence in the phase response of the ‘‘filtering’’ block in the
frequency/phase detector. Work [34] uses a standard first-
order all-pass response (0◦→ 180◦) whereas solution in our
actual work employs a special response of fractional-order
reconfigurable filter generating inverting all-pass response
having phase limits in ±180◦ (+180◦ → −180◦) with 0◦

at the target value of the detected frequency (the same as
compared). It results in the maximal detected output voltage
of the multiplier when the phase difference of signals of the
same frequency is zero (or the input frequency of complete
phase detector is identical with the setting of the filter). On the
other hand, the behavior of phase detector in [34] is different.
The maximal output DC voltage is available for the largest
phase/frequency difference, zero voltage for alignment of the
input and reference waves. The overall complexity of both
circuits is similar and in [34] the power consumption is lower
than in our presented solution (given by the used technology
and supply voltage).
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TABLE 1. General comparison of principles of filters having a feature of transfer response reconfiguration.

C. CONTRIBUTION OF THIS WORK
Based on the above discussions, the main contribution of this
work is in the design of a novel type of reconfigurable filter
using specific electronically adjustable feedforward path and
electronically adjustable resonator. Among others, the new
feature of the filter consists in simultaneous availability of BP
(order of passive FO elements allowing the set of magnitude
slope of attenuation), inverting all-pass (iAP), and special
band-reject (sBR) response having a common magnitude
response and special phase response not available in standard
range between 0 → ±90◦ (integer order case – 2nd order
circuit) but in range of +180◦ → −180◦. The proposed
filter offers features (available simultaneously) which are not
standardly available and discussed in similar solutions:

a) several types of magnitude and phase responses avail-
able by electronic reconfiguration (single parameter);

b) stable operation of LC resonator without dumping
(impossible in ideal integer-order systems – issues with
stability);

c) a resonator-based concept excluding utilization of float-
ing passive elements;

d) a concept useful for specific demand on the slope of
attenuation (fitting for FO circuit applications – cannot
be solved by integer-order circuits);

e) high input and low output impedances and
f) electronically adjustable active devices (OTAs) that

allows to set both polarities of transconductance (useful
in reconfigurable systems) for complete electronic con-
trol (tuning, switchless transfer response configuration)
of the proposed filter. Note that the presented method of

transfer response reconfiguration does not suppose any
change (modification) of the FO device (independent on
the order and inductive or capacitive character).

The application example in phase/frequency detection (for
demodulation or synchronization purposes) indicates a sim-
ple circuitry and easily electronically tunable input/carrier
frequency. Therefore, features of the system can be easily
modified.

D. ORGANIZATION
This paper is organized as follows. Introductory section
shows comparison of the proposed solution and its applica-
tion with hitherto published works and explains motivation
and contribution of this work. Section II introduces the pro-
posed concept and its principle. Section III describes the used
active elements. Experimental verification of the proposed
filter and its application is presented in Section IV. Section V
concludes this work.

II. PROPOSED SOLUTION OF SPECIAL
FRACTIONAL-ORDER FILTER
The FO filter, shown in Fig. 1, offers reconfigurable fea-
tures that are useful for further applications. The proposed
topology includes two feed-forward branches performing
adjustable inverting amplification and tunable FO band-pass
filter based on an LC resonator. The sum of both branches
creates the target reconfiguration. This technique is similar
to the so-called Shadow filter operation [35] (difference is
in the orientation of loop transfer) and it represents cer-
tain alternative targeting on the reconfiguration of transfer
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TABLE 2. Specified comparison of lumped elements based recent switchless transfer response electronically reconfigurable (continuously)
fractional-order active filters.

responses more than on quality factor adjustment in Shadow
filter design [35]. However, to the best of authors’ knowledge,
this approach was not presented with advantages that are
discussed in this paper.

The circuit topology uses OTAs [21], [36], [37] and volt-
age differencing differential buffer (VDDB) [36], [37] for
summing operation. The LC resonator employs an OTA-
based gyrator (immittance converter and inverter [21]) where
passive RC approximants of the FO passive device (con-
stant phase element) [38]–[40] are employed (see Fig. 2).
Such an implementation offers simple electronic tunability
of the pole (center) frequency of the filter. Note that several
attempts with sum of simple fractional and integer-order
responses (integrators, differentiators) and resulting features
were already studied [41], [42]. However, this work is differ-
ent from previous studies due to the presence of full resonator
allowing adjustable features in the topology together with
adjustable feed-forward path. Considering the gain of the
amplifier A = gm4 ·R (and equal order α of both FO elements
in topology), the complete circuitry of reconfigurable filter
in Fig. 1 has the following transfer function:

Kf (s) =
s2αLαCαA+ sαLα · gm1 + A

s2αLαCα + 1

=
s2αLαCαgm4R+ sαLα · gm1 + gm4R

s2αLαCα + 1
, (1)

where simple electronic adjustability and tunability of reso-
nant frequency can be obtained by replacement of Lα (see
Fig. 2) by synthetic equivalent [21]:

ZLα=sαLα=sαCα
1

gm2gm3
∼=sαCα

1(
k · VSET_gm2,3

)2 , (2)

where parameter k represents transconductance constant of
the used multiplier/OTA. Then, (1) can be modified to:

Kf (s) =
s2αC2

αgm4R+ s
αCαgm1 + gm2gm3gm4R

s2αC2
α + gm2gm3

. (3)

The first available transfer – BP response is obtained for
A = gm4 · R = 0 (i.e. gm4 = 0):

KBP(s) =
sαLα · gm1
s2αLαCα + 1

=
sαCαgm1

s2αC2
α + gm2gm3

. (4)

The magnitude response has slopes defined by order of CPE
(α·20 dB/dec and phase response crosses 0 ◦ and reaches
limits ±α · 90◦ as visible in Fig. 3 for A = 0).

Transfer response changes to sBR filter character when
A = −1 (gm4 = 1/R) having standard BR magnitude
response but phase response having different shape than
expected for standard BR (see Fig. 3):

KsBR/iAP(s) = −
(
s2αLαCα − sαLα · gm1 + 1

s2αLαCα + 1

)
= −

(
s2αC2

α − s
αCαgm1 + gm2gm3

s2αC2
α + gm2gm3

)
. (5)

Symbolical representation (5) fits for iAP filter, but mag-
nitude response has a character of BR filter. The phase
responses of sBR has untypical behavior and phase range
(see Fig. 3 and Section IV). The behavior for the value
of A between 0 and −1 has very important consequences.
The required value of A (negative) can be obtained by the
multiplicative feature of the used specific OTA solutions or
by proper polarity of transfer function (polarity of terminal
selected for input of the OTA). The transfer response of
inverting/noninverting follower or amplifier (abbreviated as
inverting direct / direct transfers - iDT/DT) can be obtained
for A < 0 (A > 0 respectively) and gm1 = 0 mS (available
by multipliers).

Detailed study of (1) and variation of A between 0 and
−1 by analytical form is not providing an easy survey. There-
fore, a graphical solution of the ideal magnitude equation of
(1) was prepared for specific condition of center frequency,
which is derived below. This evaluation supposes the follow-
ing definitions. The low-frequency and high-frequency band
is determined by A when s = jω→ 0 or∞, which is clearly
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TABLE 3. Comparison of fractional-order resonators.

TABLE 4. Comparison of typical frequency/phase detectors.

visible from (1). The center frequency transfer is given as
a modification of (1) where frequency dependent terms are
substituted by center frequency:

ωp =

(
1

CαLα

) 1
2α

=

(
gm2gm3
C2
α

) 1
2α
∣∣∣∣∣
gm2=gm3=gm23

=

(
gm23
Cα

) 1
α

, (6)

to the form:

Kf (ω = ωp) =
j2αA+ jα

√
Lα
Cα
gm1 + A

j2α + 1

=

j2αA+ jα gm1√
gm2gm3

+ A

j2α + 1
. (7)

Graphical analysis is more effective and illustrative than
complex and extensive formulas. We are searching for a point

where the magnitude of |Kf| of the limits (for ω→ 0 and∞)
equals to the gain of the BP filter at center (pole) frequency.
Our theoretical discussion supposes two identical FO devices:
Cα = 8.7 µF/sec1/4 (α = 3/4) and center frequency 100 Hz
(ωp = 2π · 100, i.e. gm2 = gm3 = gm23 = 1.1 mS). Exem-
plary results and solution of this case are shown in Fig. 4.
The point of intersection of lines of |Kf (ω → 0 (∞))| and
|Kf (ω → ωp)| yields A = gm4 · R = −0.6. Then iAP
response is obtained. Results in Fig. 4 indicate magnitude
levels in low-frequency (0), high-frequency (∞) and center
frequency (ωp) positions for variation of A. The specific value
of A, valid together for all three cases, yields almost constant
(very small ripple) overall magnitude response of the filter (it
is useful for further application). The specific configuration
of the circuit allows for us to obtain a sBR filter response
(phase response similar to standard iAP response in integer-
order circuit) in the FO system, that cannot be commonly
achieve by standard design approaches. The magnitude has
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FIGURE 1. Proposed approach of reconfigurable fractional-order filter:
a) block principle, b) specific scheme available by standard circuit
components.

typical minimum (transfer zeros) but the phase response is
not achieving the range of 0→ ±90◦ but +180◦ →−180◦

(typical for iAP). From the results is clear that the center
(‘‘linear’’) member of numerator of (3) or (5) respectively is
not disappearing from equation as in standard integer-order
case for 2nd-order BR responses. Traces (linear in interesting
range) and coordinates in Fig. 3 depend on the order α, next
on the values of gm1 and gm23 (Lα value) but not on the value
ofCα as visible in (7). An illustrative example of ideal transfer
responses for stepped A in (1) is shown in Fig. 3 (including
standard ideal BR response in order to see differences from
sBR). Note that the following behavior will not be available in
standard integer-order circuits because standard second-order
circuits (LC resonator, etc.) have unstable operation (without
dumping lossy resistor as a part of LC resonator) when the
linear term of denominator is missing in transfer equations
(see green and black traces in Fig. 3). Integer-order example
(illustrative only) in Fig. 3 is obtained for C = 8.7 µF and
gm23 = 5.47 mS at center frequency of 100 Hz.

III. DESCRIPTION OF ACTIVE DEVICES
The presented concept employs two types of active ele-
ments fabricated in 0.35 µm I3T25 ON Semiconductor
3.3 V (±1.65 V in our case) CMOS process. Principles
of both devices with basic ideal definition of operation are
shown Fig. 5. Figure 5 a) shows OTA formed by multiplier
with two differential inputs and single current output. The
transconductance constant has typical value k = 1.8 mA/V2

FIGURE 2. Adjustable immittance inverter and converter based on OTAs.

in Cadence Spectre simulations and 1.3 mA/V2 in real exper-
iments (expectable range of fabrication dispersion). The
range of experimentally tested transconductance reaches
0→±1.2 mS (the multiplier-based concept allows to
achieve a value of 0) for VSET_gm = 0→±0.7 V. The band-
width of gm reaches more than 30 MHz for all conditions of
tests [43], [44]. The dynamical range is supposed as linear
for the input voltage higher than ±0.5 V, where the total
harmonic distortion (THD) falls between 0.1 and 1.5%. The
terminal resistances of voltage inputs are higher than 100M�
and more than 100 k� for the current output. VDDB creates
a simple sum and subtraction operation as it is captured
in Fig. 5 b). The frequency response of unity-gain has a
3 dB drop at value higher than 45 MHz (all inputs). The
input dynamical range reaches more than ±0.7 V with THD
below 1% (0.1% obtained for 500 mVp−p). The voltage input
resistances are higher than 100 M� and the voltage output
resistance has a value lower than 0.4 �. More details can be
found in [43] and [44]. The power consumption of the single
multiplier and single VDDB reaches 7.8 mW and 9.1 mW
respectively.

IV. EXPERIMENTAL VERIFICATION
The proposed filter was tested in simulations as well as
in experiments by AC analysis. Furthermore, the filter has
been utilized in a complex application example and tested
in time domain. The application targets on simple frequency
detection by a multiplier-based circuit. The RC approximant,
so-called constant phase element (CPE) [38], [39], of the FO
element (Cα = 8.7 µF/sec1/4, α = 3/4) is plotted in Fig. 6.
The bandwidth of constant phase range should reach at least
1 Hz – 100 kHz (tested experimentally) and the phase ripple
in this band is maximally ±2◦. The design of this device
was performed by Valsa algorithm [38]–[40]. Note that traces
(in figures) marked as ‘‘ideal’’ were gained from simulations
with ideal active elements (modeled by controlled sources)
and traces marked as ‘‘theory’’ are based on the discussed
theoretical equations.

The values of parallel RC segments depend on the target
value of equivalent capacity/inductance (pseudocapacity in
our case) and on the order. The design has scalability of
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FIGURE 3. Illustration example of ideal behavior of the reconfigurable
fractional-order filter: a) magnitude responses, b) phase responses.

FIGURE 4. Searching for optimal value of gain A (gm4 · R) giving almost
flat magnitude response of the reconfigurable filter.

pseudocapacity (Cα) because not only the order but also
the value of pseudocapacity is important for designers and
final application. The values of the lowest ‘‘low-frequency
RC segment’’ as well as the highest ‘‘high-frequency RC
segment’’ have extreme values when extremely wideband
(many decades, in our case theoretically from 1 Hz up to
more than 5 MHz) operation and very low value of pseu-
docapacity (more than units of µF/sec1−α) of CPE solution
are required. Our design presents a wideband CPE supposed

as universal for many tests and solutions (not optimized for
specific application) having quite large value of pseudocapac-
ity (i.e. low impedance levels at lowest frequencies). It also
helps in the designs using active elements having low val-
ues of terminal impedances (real parts for example around
50-100 k�) in order to prevent real parasitic effects in the
intended bandwidths. Different magnitude impedance plots
are easily available but magnitudes higher than 100 k� are
significantly influenced by real properties of active devices
(many integrated as well as commercially available opera-
tional amplifiers have terminal impedances typically in hun-
dreds and units of M�). However, many frequency-selective
applications (e.g. filters and oscillators) have also similar
selective requirements on the validity of CPE approximation
(bandwidth of constant phase zone). In many cases, tunability
of standard active filters is not significantly larger than one
decade (based on available ranges of adjustable parameters
of active elements). Therefore, also bandwidth limitation of
CPE operation may be acceptable and significantly decreases
complexity of the solution (number of RC segments). On the
other hand, in our case, the low-frequency design still requires
‘‘borderline’’ values of RC segments (large R - M�, large
C – µF), but the high-frequency segments can be removed.
Experimental tests indicate that sufficient number of seg-
ments in our application and presented bandwidth can be
reduced to half of original complexity (see Fig. 6). As it
was explained, the complete circuit in Fig. 6 serves also
for different purposes in different bandwidths. Therefore, its
design respected universal application. The exact value of
passive elements was obtained by serial/parallel combina-
tions of partial elements (SMD elements can be placed and
soldered in so called sandwich form). The electronic adjust-
ment of the order and equivalent value of CPE is possible
in active form by various methods [12]–[14], [17] (the chain
of bilinear sections allowing the set of zero-pole adjustments
was discussed for example in [41]) after simple modifica-
tion – voltage to current converter and feedback modifying
two-port/filter into impedance. However, it always results in
significant increase of complexity and also unsynchronized
readjustability of many active parameters.

A. TESTS OF THE FILTER
The parameters of the filter were set for pole-center frequency
fp = 100 Hz (gain A = gm4 · R varies for obtainment of iAP,
BR, sBP and iDT responses). Ideal calculation of the features
(for ideal results see Fig. 3) of the filter is given in Section II
(gm2 = gm3 = gm23 = 1.1 mS, gm1 = 1 mS, R = 1 k�,
gm4 = −1.1, −0.6, −0.1 and 0 mS). Note that there is no
specific filter approximation selected.

The AC analysis was performed for all possible configura-
tions of the filter. The results of analysis including all neces-
sary parameters and driving voltages are shown in Fig. 7. The
frequency responses show evident dependence of stop-band
gain in low- and high-frequency corners. The inverting ampli-
fier/follower (iDT only; DT has difference in phase response
only) was verified for A = −1.1 (gm4 = 1.1 mS) and
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FIGURE 5. Principle of operation of active devices used for construction
of the special fractional-order reconfigurable filter and its application:
a) analog multiplier for application as OTA, b) voltage differencing
differential buffer.

FIGURE 6. RC approximant of constant phase element used in
experiments (Cα = 8.7 µF/sec1/4, α = 3/4).

gm1 = 0 mS as visible in Fig. 8. The function of amplifier can
be obtained for the same setting where Awill be positive. The
ideal traces in Fig. 8 a) and b) were obtained by simulations
with ideal controlled sources representing active elements.
The DSOX-3024T oscilloscope has been used (option of
frequency response analysis) for all AC analyses below (the
amplitude of the input signal is equal to 100 mV). The filter
has center-frequency tunable properties covered by synthetic
form of Lα (gm2,3), see (6). However, this adjustment also
varies with pass-band gain. Therefore, gm1 must be varied
simultaneously too (gm1 = gm2 = gm3 = gm123). The driving
of gm (allowed in specified range 0 → ±1.2 mS ensures at
least one-decade tunability (required gm = 0.19→ 1.1 mS,
i.e. Vset_gm123 = 0.11 → 0.61 V) and adjustment of gain of
the feedforward path of the filter at least 0 → ±1.2 (when
amplifier uses loading resistor of value 1 k�). Example of
tuning of fp between 10 Hz and 100 Hz (the measured values
are 10.7 Hz and 105 Hz and simulation gives 11.1 Hz and
114 Hz) yields value of gm123 = 0.19 and 1.1 mS. The
response of BP and iAP is captured in Fig. 9 and Fig. 10,
respectively.

The value of equivalent quality factor Q = fp/BW (BW –
3 dB bandwidth) has almost constant value varying nonessen-
tially in a range from 0.86 to 1.02 (the nominal value is 0.88)
and for full tunability the range is between 11 and 114 Hz,
as it is visible in Fig. 11. Consequently, the quality factor
has no dependence on tunability of the filter. The gain at the

FIGURE 7. Example of important frequency responses of reconfigurable
filter, shown in Fig. 1, at fp = 100 Hz: a) magnitude responses, b) phase
responses.

FIGURE 8. Inverting amplifier/follower responses of reconfigurable filter
in Fig. 1: a) magnitude responses, b) phase responses.

center frequency can be calculated as a magnitude from (7).
The power consumption of the filter reaches 40 mW (supply
voltage ±1.65 V).
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FIGURE 9. Tuning example of band-pass responses of reconfigurable
filter in Fig. 1: a) magnitude responses, b) phase responses.

The filter was tested by Monte Carlo (MC) statistical vari-
ation as well as by Process, Voltage, Temperature (PVT) and
Corner analyses. Note that the CPEs are excluded from these
tests because of their discrete solution (values of capacitors
on IC are not available – only active devices are included on
the chip). However, these tests for CPE itself are available
in [27].
Fig. 12 shows the results from MC analysis (100 runs)
for BP response at nominal setting (fp = 114 Hz,
Vset_gm123 = 0.61 V, gm123 = 1.1 mS in the case of
simulations). Statistical results indicate deviations between
minimal and maximal values of center frequency fp from
101 up to 127 Hz (the nominal value is 114 Hz with a
dispersion/standard deviation up to 4.4 Hz). The minimal and
maximal Q reaches values between 0.85 and 0.91 (nominal
0.88) with a standard deviation of 9.5 m.

The effects of PVT corner analysis on the performance
of BP are shown in Fig. 13. The center frequency varies
between 83 and 204 Hz while the quality factor is between
0.85 and 1.02. The effects of temperature variation, tested
between 10 and 40 ◦C, have impact on the BP magnitude
response (see Fig. 14). In this case, the frequency varies
between 95 and 145 Hz while the value of Q is between
0.85 and 0.93. Fortunately, all possible deviations can be

FIGURE 10. Tuning example of inverting all-pass responses of
reconfigurable filter introduced in Fig. 1: a) magnitude responses,
b) phase responses.

FIGURE 11. Dependence of quality factor of the BP response on driving
voltage Vset_gm123 (simulation).

easily compensated by electronically tunable features of the
filter.

We have also tested iAP response on MC deviations at
the same conditions because iAP is an important part of
further application (frequency/phase detector). The variation
of frequency fp, where phase equals to 0◦, reaches mini-
mal and maximal values between 97 and 123 Hz (standard
deviation is around 4 Hz). The worst case gain (attenuation
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FIGURE 12. The Monte Carlo analysis results for BP response: a) 100 runs
of magnitude responses, b) histogram of statistical variations of fp,
c) histogram of statistical variations of Q.

respectively) deviation (ripple of the flat magnitude response)
reaches−4.5 ±3.5 dB (typically lower value about±1.5 dB).
The PVT corner effects cause significantly worse results in
accuracy than MC (±5 dB in the magnitude as the largest
value in the whole bandwidth). The temperature effects itself

FIGURE 13. Effect of PVT corner analysis on BP magnitude response.

FIGURE 14. Effects of temperature analysis on BP magnitude response.

FIGURE 15. Proposed application of the frequency detector – a circuit
solution.

yield maximal ±3.5 dB variation of the gain and fp between
93 and 137 Hz. All these results are expectable and have
acceptable and easily compensable values with respect the
dependence of key parameters of the filter (gm of active
elements especially) on PVT corners, temperature and sta-
tistical mismatch.
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B. APPLICATION EXAMPLE OF RECONFIGURABLE FILTER
– PHASE/FREQUENCY DETECTOR FOR FREQUENCY
DETECTING SYSTEM OF FREQUENCY KEYING
DEMODULATION
Transfer of the reconfigurable filter (see Fig. 1) offers a flat
magnitude response in iAP mode useful for further applica-
tions. Such a setting (see Fig. 10) ensures operation without
influence of magnitude slope changes on detection proce-
dure in comparison with BP response. This design yields
pass-band attenuation of the vin2 voltage about 4-5 dB with
maximal magnitude change (fluctuation) 1-2 dB (between
1 Hz and 10 kHz) and center frequency of BP filter fp =
100 Hz. The system of frequency detector is shown in Fig. 15.
The resulting maximal output DC voltage (or signal of very
low frequency – Hz, sub-Hz) of the detector is approximately
determined as follows (Vin1,2 are amplitudes):

Vout_max(τ � t) ∼=
Vin1Vin2

2
· k · RL · cos (ϕ[rad])

∼=
V 2
in1

2

∣∣Kf (ω)∣∣ · k · RL · cos (ϕ[rad]) , (8)

This equation is valid for time larger than time constant
of the detector (RLCL = τ = 100 ms). As it is visible
from (8), a flat magnitude is required for precise frequency
demodulation purposes. Otherwise, variation of vin2(t) (in the
case of BP configuration of the filter in Fig. 15 – low- and
high-frequency areas of magnitude slope outside of -3 dB
band) cause significant impact on the value of Vout_max (DC).
Supposing |Kf(ω)| ∼= const. (due to our reconfigurable filter),
the value of Vout_max(DC) depends on the amplitude of vin1
and phase shift between the input signals of the multiplier.
The phase shift of the iAP filter in the detector has a complex
form as can be seen in (9), as shown at the bottom of the page.
Equation (9) can be substituted to (8) in order to express the
dependence of Vout_max(DC) on input frequency.

The frequency dependence of the phase difference between
the output and input wave of the reconfigurable filter
(iAP response) is shown in Fig. 16. Validity of (9) for
Vout_max > 0 V limits into the range between 50 Hz and
180 Hz. Therefore, results are provided in this range.

Dependences of vin2 (output of the reconfigurable filter)
and output DC voltage Vout_max on phase difference and
frequency are shown in Fig. 17. The voltage amplitude vin1
is equal to 250 mV while vin2 (attenuated by 4-5 dB) reaches
approximately 145 mV. The maximal value of the detected
DC voltage Vout_max indicates phase equality between vin1
and vin2, i.e. the input frequency having a value of center/pole
frequency of current adjustment of the reconfigurable filter.

Once again, the ideal curves in Fig. 16 and Fig. 17 were
obtained at simulations with controlled sources (ideal). The

FIGURE 16. Dependence of phase difference (phase shift) of the
reconfigurable filter in frequency detector on input frequency.

theoretical curves, on the other hand, were obtained by direct
substitution of numeric values to the derived equations (8)
and (9).

Typical examples of time responses of the system are cap-
tured in Fig. 18. These results also confirm that the maximal
output voltage is reached for the input frequency identical
with the center frequency of reconfigurable filter in the detec-
tor. In other words, it means alignment of the input and
reference wave or wave produced at the output of the filter
(iAP transfer is configured). When the maximal voltage is
reached (∼=300-320 mV) then the input frequency is equal
with the center frequency (100 Hz) and phase shift between
both waves is zero. Power consumption of the application
reaches 47 mW at supply voltage ±1.65 V.

The final practical application example of the proposed
phase/frequency detector consists in Frequency Shift Key-
ing (FSK) demodulation [45]. The detector can be utilized
for detection of specific spectral components in slow and
low-frequency signals of various natural sources (EEG, ECG,
etc.) [33] or in power line communication [45]. The output
of the phase detector is connected to the comparator with
thresholds as it is shown in Fig. 19. The comparator uses the
VDDB device from Fig. 5 b). The feedback from the output
to the positive input creates an amplifier with very high (in
ideal case infinite) gain. The second positive feedback using
resistive dividers serves for definition of two threshold levels:

vout_ref _HL(DC) ∼=

(
R2

R1‖R3 + R2

)
VDD

vout_ref _LH (DC) ∼=

(
R2‖R3

R2‖R3 + R1

)
VDD. (10)

The resulting values of resistors for vout_ref_HL = 200 mV
and vout_ref_LH = 150 mV are shown in Fig. 19 (hysteresis
of 50 mV used for better noise immunity). The output level
varies between L state (0 V) and H state (3 V). The output

ϕ(ω) = tan−1
{

Lαgm1ωα sin
(
π
2 α
)
− CαL2αgm1ω

3α sin
(
π
2 α
)

A+ A
(
CαLαω2α

)2
+ Lαgm1ωα cos

(
π
2 α
)
+ ACαLαω2α

[
4 cos2

(
π
2 α
)
− 2

]
+ CαL2αgm1ω3α cos

(
π
2 α
)
}
. (9)
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FIGURE 17. Response of the output voltage level of the reconfigurable filter and output voltage of the frequency detector on: a)
phase difference, b) input frequency.

FIGURE 18. Experimental time responses of the detecting system for
three different frequencies (phase shifts): a) 80 Hz, b) 100 Hz, c) 150 Hz.

drive of VDDB causes 300 mV voltage drop [43], [44]. The
signaling frequency is set to 100 Hz. Based on Fig. 17 b), i.e.

FIGURE 19. Comparator with hysteresis for signaling frequency detecting
part of FSK demodulator.

knowledge of thresholds, the frequency below 80 Hz (in the
experiments was set to 70 Hz) or above 130 Hz means output
voltage of the frequency detector below 150mV (below the H
→ L threshold level) and frequency around 100 Hz generates
the maximum voltage at the output of the detector (around
300 mV) that is sufficiently above the H → L threshold
level. Therefore, the presence of 70 Hz signaling frequency
at the output results into state H (3 V) and frequency 100
Hz changes the output into state L (active state in this case)
(0 V). It is compatible with 3.3 V logic for immediate digi-
tal processing. Please note that, in these considerations, the
reference ground refers to VSS (−1.65 V) at the output of
the comparator. Furthermore, these features can be easily
modified for specific design cases.

Employment of the frequency detector with adjustable
frequency (the peak character of the response is cap-
tured in Fig. 17) is useful for decision-making systems in
multi-tone modulations because frequency adjustment of the
detector (fp) and setting of comparator can be precisely
adjusted (at the required value of frequency and sensitiv-
ity/selectivity) in order generate the output state (vout_FSK). In
other words, the change of state occurs only when the input
frequency almost equals to value of the expected (set) fre-
quency of the filter in detector. Such an example of operation
is shown in Fig. 20, where the effect of additional compara-
tor is demonstrated for evaluation of decision between two
exemplary input frequencies (70 and 100 Hz) provided by the
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FIGURE 20. Simulated output response of signaling frequency detecting
system of FSK demodulator (created by frequency detector and additional
comparator) for input frequency: a) 70 Hz, b) 100 Hz.

transmitter. This application allows for us to detect specific
frequency (fp –where filter is adjusted). These distinctive fea-
tures can be specified either by threshold distances (hysteresis
window) of the comparator or by the slope (order, equivalent
quality factor) of phase response of the iAP filter. Note that
two-state demodulation (two signaling frequencies) requires
two differently tuned and adjusted frequency detectors and
comparators.

V. CONCLUSION
The presented concept of electronically reconfigurable filter
offers a simple switchless reconfiguration of the transfer
response (band-pass, inverting all-pass, special band reject
and inverting direct transfer/attenuation) by a single param-
eter, typical for microwave structures, as well as simple
electronic tuning of frequency. The proposed solution offers
special transfer responses (by phase responses behavior)
unavailable in standard concepts that can be beneficially
utilized in further applications (adaptive frequency equaliz-
ers [46], random distortion level control [47], etc.).

Implementation of the FO resonator ensures stable oper-
ation where approximants of FO devices are connected in a
grounded form. Further benefits of the implementation of the
FO devices offer easy interchange of the attenuation slope of

BP response by simple replacement of the FO device having
different order. The circuit has high input and low output
impedance. The design was specified for center frequency
100 Hz (fitting biomedical applications) and special transfer
responses (phase response of sBR and iAP settings) show
good agreement between theory, Cadence simulation and
experimental results in the frequency band from 1 Hz up to
10 kHz. Tuning of the filter was tested between 10 and 100Hz
(the measured values are 10.7 Hz and 105 Hz).

Features of the filter predetermine application in slow ECG
or EEG signal filtering and spectral modification (adaptive
distortion removal [46], [47]) as well as various different
purposes. Moreover, the AP/iAP responses serve as a general
active delay line in many systems for communication and
measurement purposes. The presented device can be used for
phase/frequency detection or synchronization (alignment) of
two signals with identical frequency and phase. The tested
range of detection can be found around center frequency
100 Hz between 50 and 180 Hz (phase difference when input
frequencies ofmultiplier are identical can be detected approx-
imately between ±100◦ in experimental case). The applica-
tion example indicates operationability of phase/frequency
detection in ten-hundreds of Hz. The maximal DC output
voltage of phase/frequency detection reaches slightly more
than 300 mV for alignment of waves, i.e. correspondence
of input phase and frequency with set value of the filter in
phase detector (100 Hz). The additional comparator together
with frequency detector creates a frequency sensitive system
evaluating the presence of specific frequencies for frequency
shift keying demodulators or simple and precise (frequency
resolution with higher accuracy than in filtering realized by a
bank of filters) specific tone identification.

The presented design (theoretical idea) can be solved by
different approaches and also by Field Programmable Analog
Arrays (FPAAs) using different circuit topologies. Common
designs using of-the-shelf (commercially available) active
elements of building blocks in FPAA (standardly based on
operational amplifiers) offer similar performance but the cir-
cuit and organization of passive and active elements will be
more complex. It has different performances thanks to the
available values and ranges (in selected way of design) of
operation of fractional-order and active elements.

Theoretical concept of the system (circuit) can be created
by commercially available analog devices. However, some
transfer responses will not be available (e.g. for BP response
when A = 0 or < 0, gm = 0 or < 0 is unavailable
in standard OTA). Standard OTAs do not provide a single
bidirectional current output. Therefore, full operationability
requires multiplier-based OTAs used in this work.

Limits of the proposed method (reconfigurability based on
the sum of the response of resonator and branch of amplifica-
tion) can be found in high dependence of the features of filter
on accuracy of the equivalent value of CPEs and the quality
of design of CPEs. Correct operation also requires special
types of OTAs (based on multipliers) because zero value
or positive and negative polarity of some transconductances
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is required. The current design limits the tunability of the
filter and operationability of frequency detecting application
to tens-hundreds of Hz (especially by maximal value of gm
around 1 mS) but it is not a conceptual issue. It depends on
the performances of active devices and features of CPEs that
can be redesigned. The mentioned frequency range was set
intentionally to slow operation following behavior of many
natural biological [33] or communication systems [45].
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Abstract: This paper presents a modification of the horizontal structures transformation method 

used for the design of fully-differential (F-D) filters. The modified method has been tested on 

numerous filtering structures based on current followers (CF) and chosen results are included in 

the paper proving its functionality 

Keywords: design method, frequency filters, transformation of horizontal structures 

1. INTRODUCTION 

A demand for better characteristics of filtering structures has been increased in recent years. The 

proposal of fully-differential filters [1-3] seems to be one of the promising area of research in this 

field. Differential signal processing is a part in many industrial fields such as data transmission, 

audio-electronics, instrumentation, etc. thanks to its immunity to external interference. Except the 

ability to suppress the common-mode signals, the fully-differential structures perform better power 

supply rejection ratio, greater dynamic range of the processed signals and lower harmonic 

distortion [1]. 

There are many ways how to propose single-ended (S-E) frequency filters. We can mention the 

way using autonomous circuit design method [4], synthetic immittance system method [5], signal-

flow graphs (SFGs) method [6], etc. The literature describes three possible ways used for the 

design of fully-differential (F-D) filters. The first one is a direct proposal of a F-D filter [7]. 

However, this approach requires an experienced designer and the proposal can be time-consuming. 

The second method implements the coupling of S-E filters [8-9] connected together through a 

common node which is not connected to the ground. The resulting structures obtained by this 

method offer high Common Mode Rejection Ratio (CMRR). The drawback of this method is the 

fact that the resulting filter has approximately twice of the passive (RC) elements than S-E 

structure and it also may consist floating capacitors (unsuitable for the integration). The last 

method focuses on the transformation of the S-E structure into the F-D structure by “mirroring” of 

passive parts around the horizontal axis of the structure [10], [11]. Unfortunately, the number of 

passive components increases approximately two times in comparison to the number of passive 

parts contained in the S-E structure. This method can be easily implemented and the number of 

used active elements remain the same when replacing the S-E active elements by their F-D 

equivalents. The tradeoff of this way leads to lower CMRR [8]. 

The last discussed design method can be divided into the transformation of vertical structures and 

transformation of horizontal structures [12]. Our improved proposal belongs to transformation 

of horizontal structures. Therefore, this type of transformation will be explained in further text. 

This transformation involves the mirroring of passive parts of the horizontal branches of the initial 

S-E circuit structure. The values and positions of passive parts, included in vertical braches, remain 
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unchanged when the values of the horizontal parts are modified in dependence on the specific type 

of used passive element. The values of capacitors are doubled, while the values of resistors are 

halved. Inductors are replaced by transformers with mutually opposite winding when the number 

of windings is even. 

2. MODIFICATION OF THE HORIZONTAL STRUCTURES TRANSFORMATION 

METHOD 

This modified design method is supposed to be implemented in current-mode frequency filters 

based on current followers (CF). The design procedure is explained on the transformation of a 

lossless integrator depicted in Fig. 1a). In order to transform the S-E structure from Fig. 1a) into 

a corresponding F-D structure using the transformation of horizontal structures, the passive 

components placed in the horizontal branches of the circuit are mirrored and their values transform 

as explained above (conductance G is mirrored around the CF and now having value of 2G). The 

value and position of the capacitor C preserves unchanged. The resulting structure is shown in Fig. 

1b). However, originally grounded capacitor C turns into a floating capacitor which is not suitable 

for the integration. This capacitor must be then replaced by two grounded capacitors (one for each 

branch of the F-D structure) as illustrated in Fig. 1c). Note that the transformation of the horizontal 

structures (explanation in literature [12]) does not include this additional step of the design. The 

values of the grounded capacitors (Fig. 1c), given in the F-D structure, must reach two-times 

higher value than capacitor used in the S-E structure due to the doubled values of horizontal parts 

in order to obtain the same pole frequency of transfer function of both mentioned structures. 
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Figure 1: Design steps: a) initial S-E structure, b) the resulting F-D structure created by the 

transformation of horizontal structures, c) the resulting F-D structure with grounded capacitors, d) 

corresponding simplified M-C graph 

Figure 2 illustrates the transformation of the same S-E structure as presented in Fig. 1a) using the 

modified method. The modified method considers the grounded capacitors contained in the F-D 

structure as starting point of the proposal. Therefore, the values of resistors (conductances G) and 

capacitors C of the F-D structure stay the same as values of passive parts of the S-E structure as 

shown in Fig. 2b). 
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Figure 2: Design steps: a) initial S-E structure, b) the resulting F-D structure created by the 

modified design method, c) corresponding simplified M-C graph 

Figure 1d) and Fig. 2c) show the Mason-Coates (M-C) graph of the F-D structure from Fig. 1c), 

Fig. 2b) respectively. The identical result of symbolical transfer function and behavior of F-D 

structures in Fig. 2b and Fig. 1c (while circuit in Fig. 2b employs half of values of passive 
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elements than in Fig. 1c) is supported by following mathematical derivation. These calculations are 

based on the SFG method using the Mason gain formula. 

The denominator of transfer function of the simplified M-C graph from Fig. 1d) is given by: 
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The numerator of the given M-C graph is equal to: 
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As can be seen all terms of the denominator and numerator contain "4" which will cancel each 

other and the transfer function of the F-D structure from Fig. 1c) is given by: 
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The denominator of transfer function of the simplified M-C graph from Fig. 2c) is calculated as:  
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The numerator of the corresponding M-C graph is given by: 
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Thus, the resulting transfer of the F-D structure from Fig. 2b) is given as:  
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The equation (3) describes the resulting transfer function of the F-D structure which has been 

created by the transformation of the horizontal structures. The equation (6) denotes the resulting 

transfer function of the F-D structure based on the modified transformation method. Both 

equations are identical. Therefore, the modified design method can be used instead of the 

transformation of horizontal structure. 

3. SIMULATIONS AND RESULTS 

Figure 3 shows several results of simulations of band-pass filter (BP) which is taken from [13] as 

well as the values of all passive elements and parameters. The initial S-E transfer function (Figure 

1a)) is represented by blue line in Fig. 3. The green line visualizes the F-D transfer function 

(Figure 1b)) created by transformation of S-E function where horizontal conductance G was 

replaced by two horizontal conductances 2G and by one floating capacitor C. The purple dot line 

indicates modified F- D structure where floating capacitor C was transformed into two grounded 

capacitors 2C (having value of the original floating capacitor). The construction based on new 

modified method discussed in previous chapters results in simulated trace distinguished by the red 

line. The transfer function obtained by the modified method almost follows original S-E function 

and at lower frequencies (up to 10
4
 Hz) achieves better attenuation,  in the whole decade, than F-D 

horizontal floating structure. 
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Figure 3: Comparison of BP simulated S-E and 

F-D transfer functions  

Figure 4: Comparison of HP simulated S-E 

and F-D transfer functions 

Figure 4 is the comparison of HP transfer function of the filter from [14]. As in previous case 

modified F-D method (red line) offers better results than F-D method with floating capacitor 

(green line) as well as F-D method with horizontal structure (purple dot line).   

The simulation results presented in Fig. 3 and Fig. 4 are carried out using a 3
rd

 level simulation 

model of the UCC (closely described in [15]) and 3
rd

 level simulation model of the DACA 

(presented in [16]). These models include the frequency depended imitation of impedances of 

input and output terminals of given active elements alongside with current limitations of individual 

inputs and outputs. 

4. CONCLUSION 

The proposed method is based on the transformation of the design method for horizontal filtering 

structures which was modified in accordance to the specific requirements and characteristics 

of differential structures. The validity and operation of the modified method was proved 

mathematically and supported by simulations. The obtained results are subsequently compared 

with results gained from method dealing with transformation of the horizontal structures.  
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Abstract—This paper demonstrates through computer-aided 
simulations that simple loop composed of single nonlinear active 
two-port and a fractional-order filter can generate robust chaotic 
attractor. Involved passive ladder trans-impedance mode filter 
contains two-terminal constant phase element that is accurately 
approximated in the frequency domain in wide frequency range; 
beginning at 10 Hz and ending with 1 MHz. It is shown that the 
mathematical order of a designed lumped chaotic system can be 
decreased significantly below 3 without qualitative changes in the 
global dynamics. Fundamental properties of the filtering network 
responsible for chaos evolution are specified and discussed. 

Keywords—chaos theory; fractional-order inductor; laplace 
transform; nonlinear dynamics; oscillator; strange attractors; 
trans-immittance; transfer function 

I. INTRODUCTION 

Construction of chaotic oscillators becomes a favorite topic 
of design engineers since discovery and description of the first 
very simple autonomous deterministic electronic circuit that 
exhibits robust chaotic behavior [1, 2]. This kind of oscillator 
was discovered by Prof. L. O. Chua and can generate a dense 
bounded state attractor with the non-integer metric dimension. 
Generally speaking, circuit synthesis leading to the fully analog 
chaotic oscillator is a simple and straightforward process [3] 
especially if the covering mathematical model is known. Thus, 
implementation of individual analog building blocks as well as 
whole chaotic system on a single chip using unified fabrication 
process is nothing than one logical step further [4]. Sampling of 
continuous-time signals for a digital realization of complicated 
nonlinear transfer functions represents changes in mathematical 
model. However, global behavior can be still preserved [5]. 

Basically, there are two mechanisms simultaneously acting 
in a vector field that are responsible for evolution of the chaotic 
dynamics. First one is called stretching and causes exponential 
divergence (separation) of two neighboring state trajectories. 
Second one eventually folds state orbit to make the ω-limit set 
bounded. Because of the consequences coming from Poincaré-
Bendixon´s theorem the isolated dynamical system must have 
at least three degrees of freedom to exhibit true chaotic nature. 
For deterministic dynamical systems periodically driven by one 
or several external energy sources chaos can be observed in the 
case of second-order internal dynamics [6] and higher. 

Recently, a fractional-order (FO) calculus [7, 8] enters also 
research area of mathematical modeling and nonlinear system 
analysis. It is generally assumed that FO dynamical system is 
more accurate in task of modeling real physical, technical and 
environmental phenomenon. In the case of the specific chaotic 
systems, it turns out that one or several describing ordinary 
differential equations could be considered with the non-integer 
real-valued order between zero and one while desired strange 
attractor remains robust and observable both numerically and 
experimentally, i.e. chaos is not a transient motion.  

So far, FO lumped chaotic circuits were mostly constructed 
using well-established conception of the analog computers. FO 
element used here is designed in the form of inverting voltage 
integrators where feedback capacitor is replaced by few passive 
series-parallel RC sections. There are two serious drawbacks of 
this approach. Firstly, many RC sections need to be used if 
wideband chaotic signals with continuous frequency spectrum 
are involved. Unfortunately, this is common error overlooked 
in many papers. Secondly, final oscillators are too complicated 
with necessity to utilize many active as well as passive circuit 
components. Upcoming sections of this brief paper study very 
simple oscillator´s configuration where a conventional inductor 
is replaced by FO two-terminal passive linear equivalent. 

II. CONFIGURATION OF CHAOTIC OSCILLATOR 

Searching for the canonical circuitry realization of a chaotic 
oscillator starts with finding a convenient algebraically simple 
mathematical model. Jerky dynamics, i.e. a single higher-order 
ordinary differential equation, seems to be a good candidate.  

Let suppose that nonlinear active two-port works in trans-
admittance mode, i.e. as voltage-controlled current-source [9]. 
Thus, in order to close loop of two blocks, filter needs to work 
in a complementary, trans-impedance mode Zt(s)=Vout/Iin. This 
trans-impedance can be expresses in Laplace transform as  
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where E is constant in s1–α/F defined as value of module at the 
singular frequency 1 rad/s.   
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Proposed novel chaotic oscillator with single FO element is 
provided by means of Fig. 1. Note that, excluding realization of 
FO element, a designed oscillator contains only one active and 
four passive components. Dynamics of this network is uniquely 
described by a following mathematical model 
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where a state vector is x=(v1, v2, iE)T, K=0.1 represents internal 
constant of four-quadrant analog multiplier AD633 and the real 
number α∈(0, 1) stands for a decimal order of last differential 
equation. As prototype of integer-order chaotic system, we can 
adopt the following values C1=5.7 nF, C2=1 nF, L=700 mH and 
Rx=2 kΩ. Remaining resistor R changes; larger values of this 
resistor need to be used for a decreased mathematical order α. 
For α=1 this resistor will be R=7.7 kΩ. Preliminary numerical 
analysis of dynamical system (2) for order α=1 is provided by 
means of Fig. 2. State trajectories presented here were obtained 
using Mathcad and a build-in fourth order Runge-Kutta method 
with fixed time step 10 μs and final time 100 ms. 

III. DESIGN OF FO TWO-TERMINAL DEVICE  

After years of intensive experimentation with FO circuits in 
different applications (such as frequency filters, phase shifters, 
oscillators, feedback controllers and PID regulators) it seems 
that the best way how to realize a FO circuit element dedicated 
for useful signal frequencies up to tens of MHz is thoroughly 
described in [10, 11] including numerical routine how to obtain 
values of passive circuit components. It also means that a fully 
passive ladder circuitry realization of FO circuit element has 
superior properties over existing active implementation that are 
based on ideal cascade synthesis: using standard bilinear filters 
[12, 13], electronically adjustable first-order filtering sections 
[14, 15] or band-reject biquadratic filters [16]. Approach [11] 
represents approximation of ideal FO element in the frequency 
domain by a complex two-terminal immittance function having 
real zeroes and poles. These zeroes and poles alternate on a real 
(frequency) axis of complex plane and create a phase response 
rippled around some predefined ideal value. 

For α=0.9, that is a phase shift between voltage and current 
81°, we can utilize serial connection of Ls=330 mH and Rs=4 Ω 
and seven series-parallel combinations R1=20 Ω, L1=200 mH, 
R2=105 Ω, L2=170 mH, R3=556 Ω, L3=140 mH, R4=2860 Ω, 
L4=120 mH, R5=14750 Ω, L5=97 mH, R6=77 kΩ, L6=80 mH, 
R7=400 kΩ and L7=67 mH. In this case, numerical value of the 
fundamental constant E is 8.596 s0.1/F. 

For α=0.8, that is a phase shift between voltage and current 
72°, we can use serial combination of Ls=150 mH and Rs=15 Ω 
and seven series sub-blocks R1=60 Ω, L1=600 mH, R2=256 Ω, 
L2=418 mH, R3=1100 Ω, L3=285 mH, R4=5 kΩ, L4=200 mH, 
R5=21 kΩ, L5=137 mH, R6=91 kΩ, L6=95 mH, R7=400 kΩ and 
L7=75 mH. Numerical value of constant E is 19.605 s0.2/F. 

For α=0.7, i.e. for phase shift of FO impedance 63°, we can 
use serial connection of Ls=21.6 mH and Rs=14 Ω and seven 
series-parallel combinations R1=45 Ω, L1=450 mH, R2=164 Ω, 
L2=252 mH, R3=581 Ω, L3=155 mH, R4=2100 Ω, L4=86 mH, 
R5=7400 Ω, L5=50 mH, R6=27200 Ω, L6=29 mH, R7=100 kΩ 
and L7=18 mH. Numerical value of constant E is 15.678 s0.3/F. 

For α=0.6, that is for phase shift of FO impedance 54°, we 
can use following values Ls=2.5 mH and Rs=9 Ω in cooperation 
with seven series-parallel combinations R1=22 Ω, L1=219 mH, 
R2=67 Ω, L2=105 mH, R3=200 Ω, L3=50 mH, R4=588 Ω,  
L4=24 mH, R5=1700 Ω, L5=11.6 mH, R6=5.3 kΩ, L6=5.5 mH, 
R7=16100 Ω and L7=3.1 mH. Numerical value of fundamental 
constant associated with FO inductor E is 9.468 s0.4/F. 

 
Fig. 1. New concept of the simple fully analog chaotic system with general 
realization of FO passive floating inductor (situated inside a dotted area). 

 
Fig. 2. Three-dimensional visualization of the numerically integrated typical 
strange attractor generated by the integer-order prototype of proposed chaotic 
system (upper plots): v1 vs v2 plane (blue), v1 vs iE plane (green) and v2 vs iE 
plane (orange) for Vext=2.9 V (left) and Vext=3.4 V (right). Chaotic signals v1 
and v2 in the time domain (lower graph). Individual pairs of the waveforms 
demonstrate sensitivity of a dynamical system (2) to tiny changes in the initial 
conditions: light blue and orange traces have initial state x0=(2, 0.03, 0)T while 
dark blue and brown trajectories have initial state x0=(2, 0.031, 0)T.  



For α=0.5, i.e. for phase shift of FO impedance 45°, we can 
use serial connection of Ls=0.73 mH and Rs=20 Ω and seven 
combinations R1=36 Ω, L1=348 mH, R2=87 Ω, L2=140 mH, 
R3=217 Ω, L3=56 mH, R4=541 Ω, L4=22.3 mH, R5=1370 Ω, 
L5=9 mH, R6=3800 Ω, L6=3.7 mH, R7=10 kΩ and L7=1.4 mH. 
Because of its dynamics this FO element can be marked as the 
passive half-inductor. In this case, numerical value of the 
fundamental constant E is 20.469 s0.5/F. 

Control Orcad Pspice based analysis of the constructed FO 
two-terminal devices is shown in Fig. 3. Note that, as requested 
by a “chaotic” application, approximation for all orders is valid 
in a wide frequency range starting with 10 Hz and ending with 
1 MHz. Designed passive FO approximants are quite accurate; 
a maximal phase error in above-mentioned frequency range is 
less than 1.5° and relative error is less than 1% in a quite large 
middle part of frequency operational range (100 Hz to 30 kHz). 
For better clarification see visualization provided in Fig. 4.  

 
Fig. 3. Phase frequency responses of designed FO two-terminal devices used 
for the computer-aided verification of the proposed chaotic electronic system, 
theoretical value is flat with a constant value 90α°. 

 

Fig. 4. Phase difference between ideal FO inductor and its approximation for 
different decimal orders (upper graph) and frequency dependence of a relative 
error expressed in % (lower plot). 

However, such phase precision will be seriously violated if 
inductors and resistors will be subjects of fabrication tolerances 
and similar imperfections. Figure 5 shows that phase difference 
between real and ideal (flat) value can raise up to 3° (especially 
for order α=0.6) if very small 0.2% tolerances of inductors are 
considered. Note that maximal phase error double. Such large 
errors make FO approximant useless for many practical signal 
processing applications. Thus, FO approximants in general 
needs to be constructed very carefully and by using measured 
passive circuit components. These plots demonstrate 1000 runs 
with random generation of the circuit parameters with uniform 
distribution were used. 

 
Fig. 5. Orcad Pspice based Monte Carlo analysis applied on constructed 
passive FO two-terminal elements; small but achievable 0.2% tolerance 
(normal distribution) of each inductor is assumed. 



IV. ORCAD PSPICE VERIFICATION OF FO CHAOTIC SYSTEM 

Chaotic circuit provided in Fig. 1 with passive two-terminal 
FO elements with different mathematical orders was verified 
by the computer-aided analysis. Basic parameters of simulation 
profile of Orcad Pspice program was fixed to final time 300 ms 
and maximum step size 1 μs. 

Figure 6 shows Monge projections of the typical strange 
attractor generated by network with α=1. Figure 7 provides us 
with the same kind of results but for order α decreased to value 
0.9. Simultaneously, also system dissipation was significantly 
lowered by increasing resistance R=50 kΩ. Note that generated 
strange attractor is slightly different. For both cases mentioned 
above external voltage was set to Vext=3.4 V. Experimentation 
shows that mathematical order can be further lowered but with 
the cost of raised external DC voltage. FO element with α=0.8 
approximation can be used for chaos generation if Vext=5 V and 
R=200 kΩ, see Fig. 8. For order α=0.7 strange attractor can be 
observed if the external voltage Vext=10 V, resistor being raised 
to R=500 kΩ and Rx=1.2 kΩ, consult graphical output in Fig. 9.  

 

Fig. 6. Circuit simulation results for the integer-order prototype of a chaotic 
oscillator: v1 vs iE plane projection (upper plot) and v1 vs v2 plane (lower plot). 

 

Fig. 7. Circuit simulation results for a chaotic oscillator in configuration with 
FO α=0.9: v1 vs iE plane projection (upper plot), v1 vs v2 plane (lower plot). 

 

Fig. 8. Circuit simulation result for chaotic oscillator with total mathematical 
order 2.8 (α=0.8): v1 vs iE projection (upper plot), v1 vs v2 plane (lower plot). 

 

Fig. 9. Circuit simulation results for order α=0.7 of designed chaotic system: 
v1 vs iE plane projection (upper plot) and v1 vs v2 plane (lower plot). 

 

Fig. 10. Comparison between frequency components of a signal generated by 
oscillator with α=1 (blue) and α=0.6 (red), plane projections of limit cycle. 



Unfortunately, it turns finally out that chaotic orbit cannot 
be generated by FO circuit having the lower order. Figure 10 
shows that the chaotic nature disappears, and dynamical system 
starts to exhibit periodic solution. If approximated order α=0.6 
is used with external voltage Vext=10 V, resistor R=300 kΩ and 
Rx=600 Ω, corresponding graphical visualization is shown by 
means of Fig. 10. Note that, for constructed CPE, frequency of 
self-oscillation is about 45 kHz, i.e. value much higher than the 
highest significant frequency of a chaotic waveform generated 
by the original integer-order chaotic circuit. 

There is a strong reason to believe that used passive ladder 
FO filter can be interchanged by arbitrary two-port structure 
(including active realizations) with a complex trans-immittance 
transfer function equivalent to module frequency characteristic 
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with order-dependent constants A=cos(απ/2) and B=sin(απ/2). 
Finding suitable passive filter with only resistors and capacitors 
could be interesting topic for future investigations. 

V. CONCLUSION 

This paper demonstrates that the structurally stable strange 
attractors can be observed in a very simple autonomous chaotic 
oscillator with a mathematical order less than three. Chaotic 
nature of the generated waveforms is proved and quantified by 
positive largest Lyapunov exponent; this exponent is extracted 
from sequence of time-domain data. It turns out that total order 
can be decreased to value 2.7 but not further. Thus, total circuit 
order seems to be additional degree of freedom that can be 
used for the control of chaos. Designed chaotic oscillators are 
also suitable for true practical experiments if FO approximant 
are implemented precisely. 

Further research in this area, that is lowering mathematical 
order of chaotic oscillator, can be conducted by substitution of 
standard capacitors by FO immittance equivalents [17]. Such 
substitution can give rise to interesting dense strange attractors; 
if either isolated [18, 19] or non-autonomous [20, 21] nonlinear 
dynamical systems are considered. 
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Abstract—This paper compares several ways of electronic 
resistance control for tunable applications (filters, oscillators, 
amplifiers, etc.). Simulation (PSpice) and experimental tests of 
basic J-FET transistor-based adjustable resistor, optocoupler as 
well as more advanced active solutions using active devices 
(variable gain amplifiers, voltage-mode multiplier) are 
performed in order to see available linear range, readjustability 
range and expected frequency features.  

Keywords— Electronic control, J-FET, resistor, variable gain 
amplifier, voltage driving 

I. INTRODUCTION 

 Integrated circuit design [1] offers very easy way of 
adjustability in applications depending on resistor value(s). 
Especially very simple construction of operational 
transconductance amplifier (OTA) [2]-[4] and its simple 
application for resistor emulation [2] represents the main 
benefit of this way. However, standard constructers and 
designers have quite limited possibilities. There are several 
ways including also discontinuously settable digital 
potentiometers [5], [6] or digital to audio converters [7]. 
Unfortunately, many analog and mixed applications and 
systems require continuous adjustability of resistance value 
where these solutions are not suitable. The continuous control 
of resistance value, solved by analog way, has certain 
limitations. The highest issues are linearity of voltage 
dependence across the element on current and frequency 
bandwidth limitation. Standard component base, available for 
designers, offers several types of J-FET and MOSFET 
transistors [8], that can be used for resistor replacement 
(operating in linear/triode regime [1], [8]) but also some 
special types of electronically adjustable active elements can 
be selected as better option for indicated features (resistivity 
control in circuit application with operational amplifiers for 
example).  

 The following text compares several typical and also 
unusual ways of electronic control of resistance and compares 
their linearity, range of applied current and voltage across the 
element, frequency bandwidth and range of available 
resistance value. 

II. EASILY AVAILABLE METHODS OF RESISTANCE CONTROL 

A. Single J-FET transistor 

The simplest method of replacement of resistor by 
electronically adjustable equivalent supposes usability of 
MOSFET transistor [1], [8] in triode/linear (ohmic regime). 
The method is very simple and straightforward but result has 
several important drawbacks and limitations discussed in 
experimental part. The basic circuits using depletion Junction 

FET (J-FET) [8] of N channel polarity are shown in Fig. 1. 
The driving voltage Vset has negative polarity for this type of 
transistor. Large signal analysis of circuit in Fig. 1(a) 
determines equivalent resistance of JFET in form (VGS(off) is 
threshold voltage and IDSS is maximal drain short channel 
current for zero bias): 
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Small-signal resistance (for VDS < VGS – VTH) is defined as: 
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unfortunately, nonlinearity of this solution for larger VDS 
voltages is high (usability up to tens of mV and low tens-
hundreds of mA), therefore Senani et al. [9], [10] presented 
improved version using resistor divider in Fig. 1(b) (having 
equal resistances) in order to reduce influence of VDS in (1). 
This modification has form: 
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The values of Ra,b should be several times (100 kW) larger than 
expected channel resistance Req. However, the range of 
resistance adjustability is very narrow. 

M1

BF245A

Vset

Req

 

M1

BF245A
Vset

Ra

Rb Req

 

(a)    (b) 

Fig. 1. J-FET(N) grounded resistors: a) basic concept, b) modified concept. 

B. Optocoupler 

Optocouplers, having resistive output port, were very 
popular in recent works as parts for adjustability and tunability 
of oscillation frequency and oscillation condition in several 
types of modern oscillators [11]-[14]. However, types 
(3WK16341) used in [11]-[14] are quite obsolete and 
unavailable. The modern type of the optocoupler NSL-32SR3 
[15] in Fig. 2 represents quite new device very useful for many 
applications [16]. These resistive equivalents have quite slow 
reaction on driving voltage (units of ms) but it is not important 
issue in adjustable applications (condition for oscillation 
control [11]-[14]). The resulting form for equivalent 
resistance is: 

Research described in the paper was supported by Czech Science 
Foundation project under No. 19-22248S. For the research, infrastructure of 
the SIX Center was used. 
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Fig. 2. Optocoupler with resistive output used as floating resistance 
equivalent. 

C. Variable Gain Amplifier 

The variable gain amplifier (VGA) [3] in the function of 
equivalent adjustable resistance offers very useful way and 
also good linearity. The basic operation supposes resistor 
connected in the feedback and the variable gain serves for 
control of overall resistance in the input node (Fig. 3). The 
resulting equation for overall resistance has form: 

( )1
ext

eq

R
R

A
@

+
,    (5) 

for solution in Fig. 3(a) and  

( )1eq extR R A= + ,    (6)7 

for solution in Fig. 3(b). The application of VGA in the 
resistance equivalent offers simple possibility for negative 
resistance emulation ( ↔ ±). Unfortunately, instability issues 
must be solved in the case of negative resistance quite 
frequently. This solution was used in recent works very 
effectively [17]-[19]. There are devices that allow linear 
driving of gain A (VCA822 [20], VCA824 [21]). Exponential 
driving of voltage gain A (A = 102(Vset − 1)) offers very large 
range of resistance control in some types of VGA (VCA810 
[22] for example).  

Vset

VCA810

Req

Rext

A
VGA

 

Vset

VCA810

Req

Rext

A
VGA

 

(a)    (b) 

Fig. 3. Grounded equivalent resistance based on variable gain amplifier: a) 
single feedback, b) two feedbacks. 

The voltage-mode multipliers (AD835 [23] for example) 
also offer very interesting feature for linearly tunable 
resistance. Typical concept of the controllable resistance is 
shown in Fig. 4 and has practically identical topology as 
previous solution using VCA. Therefore, also definition and 
equation for equivalent resistance has identical form as (5). 
Again, polarity of Rext connection is not important because of 
simple change by driving voltage ±Vset. 
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Fig. 4. Grounded equivalent resistance based on variable gain amplifier 
using voltage-mode multiplier. 

III. ANALYSIS OF PRESENTED SOLUTIONS 

 Solutions of discussed adjustable resistance circuits are 
analyzed by computer simulations (PSpice) and 
experimentally (optocoupler NSL-32SR3 has no model). 

A. Simulation of J-FET in linear regime 

 The simplest method of electronic resistance adjustability, 
shown in Fig. 1(b), was simulated for BF245A J-FET element 
[24] using both identical resistors Ra = Rb = R = 100 kW. and 
parameters VGS(off) = –1.8 V, IDSS = 4 mA. The DC driving 
voltage Vset was changed between –1.79 and –0.1 V while 
resistance varied from 560 up to 211 W (theory 450→231 W). 
The analysis in Fig. 5 indicates DC behavior and limits of 
linearity (up to ±1.8 mA for maximum 560 W). Frequency 
features of the impedance are analyzed in Fig. 6 (good 
performance up to 10 MHz approximately – flat response). 
The dependence of resistance on driving parameter (Req vs 
Vset) is indicated in Fig. 7. 

 
(a) 

 
(b) 

Fig. 5. J-FET-based resistor analysis: a) voltage across element vs current 
trougth element, b) resistance in dependence on current trougth element. 



 

Fig. 6. Frequency responses of impedance magnitude (J-FET). 

 

Fig. 7. J-FET Dependence of resistance on driving voltage (J-FET). 

B. Measurement of optocoupler 

 The device NSL-32SR3 [15] in Fig. 2 was experimentally 
tested for parameters: Rm = 2.2 kW, Vset = 1.62 → 5 V. The 
Req varied between 15 kW and 160 W (22 kW → 127 W 
theoretically). Resulting behavior in DC domain indicates 
excellent performance in dynamics and linearity (Fig. 8) in 
wide range (more than ±30 mA) for Req = 160 W. Flatness of 
impedance magnitude frequency responses (Fig. 9) is 
observable up to 500 kHz (Req = 15 kW). Figure 10 shows the 
dependence of Req on Vset. 

 
Fig. 8. Voltage across the optocoupler element vs current through element. 

 
Fig. 9. Frequency responses of impedance magnitude (optocoupler). 

 
Fig. 10. Dependence of resistance on driving voltage (optocoupler). 

C. Simulation of Variable Gain Amplifier Based Resistance 

 Tests of VGA using VCA810 [22] in adjustable resistor 
(Fig. 3(a)) bring results valid for Rext = 100 W and variation of 
Vset = –0.5 → –1.5 V. Dynamics with good linearity restricts 
into the range ± 10 mA (Fig. 11) with flat magnitude up to 
10 MHz (Fig. 12) and adjustability of resistance Req in Fig. 13 
between 98 and 9.2 W (91 → 9.1 W theoretically). 

 The second version of the circuit in Fig. 3(b) allows 
narrower range of good linearity (Fig. 14) than solution in 
Fig. 3(a), approximately only ±1 mA for Req = 1.2 kW (Vset = –
1.5 V). Frequency features show flat magnitude up to 3 MHz 
(Fig. 15). Adjustability of Req was tested between 0.12 and 
1.2 kW (0.11 → 1.1 kW theoretically), see Fig. 16. 

 Two previous solutions used exponentially adjustable 
gain. However, the linear driving of gain can be also 
interesting. The typical modern device known as voltage-
mode multiplier AD835 [23] was selected for these purposes 
(Fig. 4). The value of Rext = 100 W was applied also in this 
case but driving voltage Vset was adjusted from 0.1 up to 1 V. 
Figure 17 illustrates better width of linearity than previous 
case (± 5 mA) for very similar range of Req between 0.19 and 
0.9 kW (0.2 → 1.1 kW in theory). Frequency features in 
Fig. 18 show constant Req value up to 200 kHz. Dependence 
of Req on Vset is given in Fig. 19. 

 
(a) 

 
(b) 

Fig. 11. The first VGA-based resistor analysis : a) voltage across element vs 
current trougth element, b) resistance in dependence on current trougth 
element. 



 
Fig. 12. Frequency responses of impedance magnitude (first VGA-based 
resistor). 

 
Fig. 13. Dependence of resistance on driving voltage (first VGA-based 
resistor). 

  

 
(a) 

 
(b) 

Fig. 14. The second VGA-based resistor analysis : a) voltage across element 
vs current trougth element, b) resistance in dependence on current trougth 
element 

 

 
Fig. 15. Frequency responses of impedance magnitude (second VGA-based 
resistor). 

 
Fig. 16. Dependence of resistance on driving voltage (second VGA-based 
resistor). 

   

 
(a) 

 
(b) 

Fig. 17. Voltage-mode multiplier-based resistor analysis : a) voltage across 
element vs current trougth element, b) resistance in dependence on current 
trougth element. 



 
Fig. 18. Frequency responses of impedance magnitude (voltage-mode 
multiplier-based resistor). 

 
Fig. 19. Dependence of resistance on driving voltage (voltage-mode 
multiplier-based resistor). 
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Fig. 1(b) 0.21→0.56 0.1→1.8 0.15 10 ±1.8 

Fig. 2 15→0.16 1.62→5 30 0.5 ±30 

Fig. 3(a) 0.098→0.009 0.5→1.5 3.6 10 ±10 

Fig. 3(b) 0.12→1.2 0.5→1.5 3.3 3 ±1 

Fig. 4 0.19→0.9 0.1→1 0.5 0.2 ±5 

IV. COMPARISON OF STUDIED SOLUTIONS 

All tested types were designed with very similar or 
identical values of external Rext component (when applicable) 
in order to ensure very similar conditions for all tests. Table 1 
shows comparison of studied solutions from several points of 
view (Req range, ratio of readjustability in dependence on 
applied driving voltage, frequency limitation, and linearity 
restriction). The conclusions are following. As expected, the 
J-FET has the narrowest range of Req control and linearity. 
Due to the simplicity, the frequency features should be good 
(about 10 MHz). Both VGA-based equivalent resistors have 
quite good ratio of readjustability. However, the linear 
dynamics of the second type (Fig. 3(b)) is very similar to J-
FET (Fig. 1(b)) type (the worst one from the studied cases). 
The best dynamical performances were obtained for 
optocoupler in Fig. 2 (wide dynamical range of good linearity 
and readjustability ratio), however, frequency features are 
almost the worst from studied cases. The optocoupler 
represents very useful solution for circuit structures using 

many floating passive resistors. Perfect examples of 
application are frequency filter [25], oscillator [16]. 

V. CONCLUSION 

Presented results show important findings. Standard 
MOSFET or J-FET transistors are suitable only for very 
simple applications where quite narrow range of resistance 
(even for linearized solution) and quite low signal level (< 
500 mV) is processed. However, many standard application 
work with significantly higher levels (typically more than 500 
mV). The very simple way of usage of OTA-based adjustable 
resistance exists as discussed [2]. The IC design offers 
promising features when appropriate linearization method can 
be applied. However, the commercial availability of these 
devices (OTAs using differential pair) is very limited (two or 
three active products) and they suffer from bandwidth or 
linearity issues. 

We tested five types of easily available electronically 
(voltage) adjustable equivalent of resistance operating in 
dynamics of units-tens of mA and frequency bandwidths in 
hundreds and units of MHz. These circuits can be used in 
various applications based on operational amplifiers and other 
active elements effectively. 
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