BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNIHO INZENYRSTVI

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS

USTAV MECHANIKY TELES, MECHATRONIKY A BIOMECHANIKY

DEVELOPMENT OF AN AUGMENTED REALITY APPLICATION
FOR VISUALISATION OF THE ENVIRONMENT AND CONTROL OF
A DEMOLITION EXCAVATOR

VYVOJ APLIKACE ROZSIRENE REALITY PRO UCELY VIZUALIZACE OKOLI A RiZENi DEMOLICNIHO
BAGRU

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Ondiej Richter
AUTOR PRACE
SUPERVISOR doc. Ing. Robert Grepl, Ph.D.

VEDOUCI PRACE

BRNO 2025

BRNO FACULTY
I UNIVERSITY OF MECHANICAL

OF TECHNOLOGY ENGINEERING

Assignment Master's Thesis

Institut: Institute of Solid Mechanics, Mechatronics and Biomechanics
Student: Bc. Ondfej Richter

Degree programm: Mechatronics

Branch: no specialisation

Supervisor: doc. Ing. Robert Grepl, Ph.D.

Academic year: 2024/25

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and

Examination Regulations, the director of the Institute hereby assigns the following topic of Master's
Thesis:

Development of an augmented reality application for visualisation of
the environment and control of a demolition excavator

Brief Description:

Advances in virtual reality are increasing the potential for its use in industrial practice, and the
move to augmented reality allows the real and digital worlds to be combined. This combination
makes it possible to increase safety and user orientation in space. Modern systems, such as the
Oculus Quest 3 goggles, offer significant computing power, which is crucial for demanding
computation and image processing.

This thesis focuses on the development of a mobile application for augmented reality goggles that
allows the visualisation and simulation of industrial machine movement using camera footage and
computer vision.

Master's Thesis goals:

1. Research available technologies in the field of virtual and augmented reality, with a focus on the
possibilities of developing specific applications.

2. Propose ways of measuring essential variables and possible modifications of the excavator in
order to obtain the necessary parameters and machine states (e.g. estimation of the centre of
gravity).

3. Do the development of a mobile application for augmented reality glasses that processes and
visualizes camera footage with the lowest possible latency.

4. Create a 3D model of the excavator and implement it in the app along with the parameters of
the excavator.

5. Test the functionality of the application with a real system.

Recommended bibliography:
[1] Meyers, Scott. Effective Modern C++. O'Reilly Media. 2014. ISBN 9781491903995

Faculty of Mechanical Engineering, Brno University of Technology / Technicka 2896/2 / 616 69 / Brno

[2] GREPL, Robert. Kinematika a dynamika mechatronickych systému. Brno: Akademické
nakladatelstvi CERM,2007. ISBN 978-80-214-3530-8

[3] Romero, Marcos. Sewell, Brenden. Blueprints Visual Scripting for Unreal Engine 5. 2022. Packt
Publishing.ISBN 978-1801811583

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2024/25

In Brno,

L.S.

prof. Ing. Jindfich Petruska, CSc. doc. Ing. Jifi Hlinka, Ph.D.
Director of the Institute FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technicka 2896/2 / 616 69 / Brno

Abstrakt

Tato diplomova préace se zabyva ndavrhem a implementaci systému pro vizualizaci provoznich
stavu demolicniho bagru s vyuzitim rozsitené reality, jehoz hlavnim cilem je zvyseni
bezpecnosti operdtora pti manipulaci se strojem. V ramci préce je feSeno stanoveni lim-
obrazového zaznamu s minimalni latenci prostiednictvim WiFi sité do zafizeni pro rozsitrenou
realitu a vytvorenim funkcéniho virtualniho dvojcete bagru pro vizualni zpétnou vazbu v
realném case.

Summary

This thesis focuses on the design and implementation of a system for visualizing the op-
erational states of a demolition excavator using mixed reality, with the primary objective
of improving operator safety during machine handling. The work explores the determina-
tion of the excavator’s center of gravity limit positions to prevent tipping. Furthermore,
it focuses on the transmission of video footage with minimal latency via a WiFi network
to an mixed reality device, and the creation of a functional digital twin of the excavator
for real-time visual feedback.

Klicova slova

prostorové povédomi, Meta Quest 3, Meta Spatial SDK

Keywords

Mixed reality, center of mass, strain gauge, digital twin, demolition excavator, low latency,
ArUco, spatial awareness, Meta Quest 3, Meta Spatial SDK

Bibliographic citation

RICHTER, O. Development of an augmented reality application for visualisation of the
environment and control of a demolition excavator. Brno: Brno University of Technology,
Faculty of Mechanical Engineering, 2025. 80 pages, Master’s thesis supervisor: doc. Ing.
Robert Grepl, PhD..

I hereby declare that I have completed this thesis independently and that I have not
used any sources or assistance other than those explicitly referenced. All data and results
presented are my own work unless otherwise stated.

Ondrej Richter

I would like to express my gratitude to my supervisor, doc. Ing. Robert Grepl,
Ph.D., for his guidance and support. I also extend my thanks to all the members of the
Mechatronics Laboratory. Finally, I am deeply grateful to my family and my beloved for
their encouragement, patience, and emotional support throughout my studies.

Ondrej Richter

Contents

1 Introduction

2 (General research
2.1 Immersive reality
2.2 Software development tools
2.3 Measurement and estimation methods

3 Center of mass measurement and estimation
3.1 Specification and general concept
3.2 Proofofconcept.
3.3 Force transducer development L.
3.4 Manipulator joint coordinates estimation 0L
3.5 On-site measurement
3.6 Analysis
3.7 Measurement conclusion

4 Mixed reality application development
4.1 Specification of application scope
4.2 System design and architecture
4.3 Video stream and data transfer implementation
4.4 User interface and visualization
4.5 System latency
4.6 Excavator kinematic model implementation

5 Conclusion
5.1 Improvements

List of Abbreviations
References

List of Figures

10
14
16

18
19
20
22
26
35
37
45

46
47
47
20
26
59
61

68
69

70

72

79

1 Introduction

As a member of the mechatronics team, I had the opportunity to work on several industrial
projects. One such project was a collaboration with Mrozek, a company specializing
in demolition. The project involved the development of a mechanical platform capable
of lifting a small excavator onto a tall chimney and securing it in place. Additionally,
hydraulic legs were designed to enable controlled movement on the chimney’s top surface.
The excavator’s surroundings were intended to be monitored from four different angles
using industrial cameras.

Last specification is important for situational awareness, because the working envi-
ronment during the demolition can pose significant threats to the surrounding personnel.
Nowadays it might be difficult to get rid of old structures in urban areas due to the high
concentration of surrounding buildings. Special threats pose high buildings and chimneys
as they can’t be simply torn down. Company Mrozek uses small excavators to disassemble
the structures from top to bottom. Workers sitting in the cabin are essentially digging
under themselves. This maneuver can be very dangerous even with significant safety pre-
cautions. By allowing the operator to control the excavator from the ground, the dangers
can be reduced.

In this project, I was tasked with the implementation of four video streams into the
mixed reality headset, which became one of the main goals of this thesis. Additional sub-
tasks were added over time, each contributing to the successful fulfillment of the overall
project. Together, they form the foundation of this thesis and the results are intended to
improve overall safety during the demolition. In order to provide a better understanding
of my thesis, I will introduce my goals.

e The first objective is to design methods for measuring the excavator’s center of
mass. This is necessary to gain insights into its stability limits, as the movement
of the excavator’s arm shifts the center of mass. Accurate knowledge of the center
of mass will be utilized in the mixed reality application.

e The second objective is the development of a mobile application for a mixed
reality headset. Mixed reality spatial applications can potentially provide greater
situational awareness than traditional mobile interfaces. This task includes selecting
a suitable headset and determining optimal methods for integrating four real-
time camera streams with minimal latency. The final solution should enable the
operator to monitor the excavator remotely.

e The third objective is to create and implement a 3D model of the excavator,
including its parameters, into the headset. This should enhance the operator’s
understanding of the excavator’s state on the chimney.

2 (General research

The aim of this chapter is to outline several conceptual and methodological directions
through which the objectives of this thesis may be approached. Rather than offering
definitive answers, the research will introduce several key areas and outline their positive
and problematic sections.

This includes an overview of the various forms of immersive technologies, such as
virtual reality, augmented reality, and mixed reality. Each of them plays a significant
role in the user experience and also in overall system design. Furthermore, the chapter
provides a brief survey of available software development tools that support the creation
of applications within immersive environments. Lastly, it addresses the topic of parameter
acquisition using direct and indirect measurement and parameter estimation methods.

Brief diagram of the whole research is visible below in the picture (2.1).

~
Immersive %V§ > >\/l

Reality Technology

~
t t
Development ; >Un1> Godo
Tools % Meta SD> OpenXR
J

~
Measurement %Ang@ Center of mas

and

Estimation Estimation methods]
y {

W

Figure 2.1: Diagram representing research flow

2 GENERAL RESEARCH

2.1 Immersive reality

Interactions between the virtual and the physical world have never been more immersive,
thanks to the constant technological evolution. Immersive reality can take the form of
a funny game or a helpful tool, but it can also manifest as an unintended or undesired
experience. Immersive realities are often categorized by distinct terms which are visible
in the figure 2.2.

Headsets like Bigscreen Beyond [1] or Shiftall MeganeX [2] are exclusively Virtual
Reality (VR) [3] headsets, often used for racing games or aviation simulators. Their
primary goal is to fully immerse the user in a virtual environment, effectively isolating
them from the physical world. Any external influence could negatively impact the user’s
experience within this virtual realm.

On the contrary, Augmented Reality (AR) [4], Extended Reality (XR) [5], and Mixed
Reality (MR) [6] are designed to be influenced by the external world. By leveraging and
enhancing aspects of the real environment, the immersion is less prone to disruption by
outside factors.

AR overlays digital content onto the real world without necessarily integrating or
responding to real-world elements. The product is generally referred to as AR goggles
as they use transparent waveguide displays. An example of this technology is Microsoft
HoloLens [7] or Meta Ray-Ban [8]. In contrast, XR utilizes the physical environment to
enhance the experience. For instance, spatial anchors [9] can be used to position virtual
screens or models in fixed locations relative to the real world. A practical example would
be a 3D bounding box representing a real-world table acting as an obstacle to a falling
virtual ball.

MR serves as a general term encompassing all realities that interact with the real
world, blending physical and digital elements to create new environments where real and
virtual objects coexist and interact in real time [6]. It often refers to the combination of
image data. However, it is possible to argue that any virtual reality that can enhance
the experience through the usage of the real world could be considered mixed reality. For
instance, some racing games allow the utilization of a feedback controller or even feedback
seats. In combination with these technologies, a virtual headset could be considered
Mixed. For the purposes of this thesis, MR will be considered as a combination of visual
data.

\

f Y ([N
Real world Extended reality
~ o Mixed reality :
(:) Augmented reality
Virtual world _) L
_ J P
ﬂl Virtual reality

Figure 2.2: Diagram representing state of realities

10

2 GENERAL RESEARCH

2.1.1 Optics and display technologies

Every type of digital reality has to be implemented on a piece of hardware (HW), that
has the features allowing for good immersion. The essential capabilities are clear optics,
high-resolution displays, and good sensor fusion for spatial positioning.

There are a few different types of lenses, that are often used for VR and MR applica-
tions. The types can be either categorized by the materials [10] or by the technology used.
Glass lenses have good optical properties, but they are heavy and difficult to manufac-
ture compared to the other lens materials. Plastic lenses are more common due to their
light weight and ease of manufacturing with worse but comparable optical quality. In
this context, " plastic” refers to a plethora of different materials like resin, polycarbonate,
and specialized high-index materials as they are usually made from plastic-like substances
[10].

Technological differences in the lenses can be made to optimize certain aspects of the
lenses. The most basic type of lens is a spherical lens. This type, commonly made from
glass, is often too heavy and has numerous optical defects like spherical aberrations. Both
issues can be resolved by using the following types of lenses [11].

The Fresnel lens was originally made as a light guide in lighthouses, but its construction
was developed to optimize the thickness and weight of the lens [12]. Modern manufac-
turing capabilities allow us to make lenses as thin as a piece of paper with good optical
clarity, but the other optical properties are usually much worse. The discretizations lead
to unwanted scattering and loss of light [13] which can be visible in the picture 2.3 created
using an online simulator [14]. This type of lens is found in most head-mounted displays.

Figure 2.3: Difference between spherical and fresnel lens

Aspherical lenses [15] address the issues of chromatic aberration, providing clear images
in a wide field of view, but do not solve the issue of weight. Aspherical lenses are known
to be used in Varjo [16] headsets, but their overall usage is quite rare.

Technology that solves both spherical aberration and the weight problem is known as
polarization-based folded optics, commonly referred to as pancake lens [17]. By utilizing
half mirrors and polarizing filters, pancake lens offers the best image of all available optics.
Downsides are poor optical efficiency and difficult manufacturing procedures. These lenses
can be found in Meta Quest 3 and pro headsets [18].

11

2 GENERAL RESEARCH

For most AR headsets that resemble regular glasses, a so-called waveguide (2.4) can
be used. These waveguides are made from a piece of glass or resin that has a specific
internal structure. This structure can guide photons through a narrow, flat space similar
to the optics of dioptric glasses.

Figure 2.4: WaveGuide lens [19]

Optics can directly affect a field of view (FOV) [20]. It can be defined in both horizontal
and vertical axes or by the diagonal FOV. Its value directly specifies the area of visibility
from the eye’s point of view. Most modern headsets have a horizontal FOV above a
hundred degrees [21].

Same as the optics, the displays are a very important part of the whole assembly.
Most of the affordable headsets use either one wide LCD panel or two square panels, each
for one individual eye.

The benefits of the LCD are an affordable price, high resolution and wide viewing
angle. The main downside of the panel with static backlight is a very low contrast ratio
compared to the other technologies [22]. When using a dynamic backlight, the contrast
is much better. However, these displays suffer from so-called blooming, which appears as
a light halo around the bright objects, which is especially noticeable around text.

OLED’s and micro LED’s are a newer technology [23], making them the more expen-
sive option with superior specifications. Headsets with these panels benefit from better
efficiency, deeper dynamic range, faster response times, and much higher brightness and
vibrance.

Another important aspect of modern displays is high resolution, refresh rate, and
latency. Resolution is defined by pixels per inch (PPI) or in the case of VR and MR
headsets pixels per degree (PPD). Usual resolution is around 20 PPD, but for instance,
Meta Quest 3 supposedly has a PPD of twenty-five and Varjo XR~4 [16] has around fifty.
Resolution without speed is not enough these days, a typical refresh rate of the displays is
sixty at minimum and 144 Hz in the better alternatives. High enough resolution and fast
refresh rate are key for the elimination of motion sickness that is often connected with
VR and MR [24].

All important metrics are shown in the table below (2.1). Instead of the advertised
PPD, a calculated one was used to better compare the individual headsets.

12

2 GENERAL RESEARCH

Brand Optics FOV | Display type PPD | Refresh rate
Product B [deg] -] [5—9] [Hz]
Varjo XR-4 Aspheric 120 Mini LED ~33 90
Apple Vision pro Pancake | ~105 | Micro OLED | ~35 100
Meta Quest 3 Pancake 110 LCD ~20 120
Pico 4 Ultra Pancake 104 LCD ~21 90
Valve Index Fresnel 108 LCD ~15 144
Microsoft HoloLens 2 | Waveguide | 43 N/A ~30 60

Table 2.1: Comparison of different headsets

2.1.2 Processing capabilities

Another way to categorize immersive technologies is by their dependency on processing
units. Some headsets function primarily as head-mounted displays (HMDs), as they are
fully dependent on an external PC. They are typically connected via a DisplayPort or
a USB Type-C interface that supports high-speed video data transfer. Head tracking in
these systems is performed using external infrared trackers or by specialized laser stations.
Although this tracking solution offers high accuracy, it requires external HW.

An alternative approach uses in-built inertial sensors combined with camera data to
track the headset’s position in real time. While this method is less accurate, it eliminates
the need for external HW. The majority of MR headsets use this approach, as they are
designed to operate independently of an external computer.

A significant leap in the processing power of ARM-based [25] devices has enabled
the elimination of external computing units, allowing full independent battery use. The
most commonly used systems on chip (SoCs) are produced by Qualcomm, particularly
the Snapdragon series. Meta Quest 3 uses Snapdragon XR2 Gen 2 [26], and even though
it is not the most powerful chip, it is optimized for low power consumption and minimal
heat dissipation. These SoCs also include graphical accelerators and specialized circuits
for AI computing.

Comparing classical computers equipped with dedicated graphics cards to systems
utilizing Snapdragon SoCs reveals notable differences in computational performance. In
terms of total computational power, PCs with x86 architecture generally outperform
ARM-based counterparts. However, when evaluating performance relative to power con-
sumption, ARM SoCs demonstrate superior single-core capability per watt. For instance,
Qualcomm’s Snapdragon X Elite SoCs achieve approximately 6 to 8 points per watt in
Cinebench 2024, whereas comparable x86 processors like the AMD Ryzen 7 8845HS and
Intel Core Ultra 7 155H score around 3 points per watt. This indicates that ARM-based
systems can deliver more than double the performance per watt compared to their x86
equivalents [27].

13

2 GENERAL RESEARCH

2.2 Software development tools

As established in the previous section, many different platforms support some form of
reality enhancement. To utilize these platforms meaningfully, appropriate development
tools are required. The choice of tool depends on the specific platform.

For platforms that rely on an external computer, development tools must be compat-
ible with the operating system of that computer. For instance, if the external computer
runs Windows, a development tool that supports Windows development is necessary.

In contrast, for platforms that perform their own computing and operate on an internal
operating system, different tools are needed. The most commonly used operating systems
on such platforms are Android or various Linux distributions.

For general development, most platforms support the creation of virtual worlds using
complete pre-made solutions such as game engines, which often eliminate the need for ad-
ditional functionality. However, for applications requiring specialized features, it may be
preferable to use a dedicated VR/MR API or a software development kit (SDK) provided
by the specific manufacturer.

2.2.1 Game engines

Game engines are powerful tools that simplify the development of complex applications.
Originally developed by gaming studios for internal use, these tools combined assets and
applied logic. Over time, the companies streamlined the process that led to the creation
of high-quality games. While many engines remain proprietary—such as Frostbite [28]
and Snowdrop [29], some companies have chosen to make their engines publicly available
under specific conditions.

One of the most popular game engines to date is Unreal Engine. Originally developed
for a game called Unreal, it has since become an industry standard for creating visually
stunning and highly playable games. Unreal Engine is also widely used in the entertain-
ment industry as a real-time rendering engine for virtual production and mixed reality
applications [30]. At the time of writing this thesis, the latest version is Unreal Engine 5
[31].

Another widely used engine is Unity. It was specifically designed to help aspiring
developers enter the game development industry. Unity supports both 2D and 3D game
development and uses the C# programming language [32].

Unity has recently faced backlash over changes to its licensing model, which initially
proposed fees based on the number of game installs. Although the company later reversed
these changes, the controversy led many developers to consider switching engines for their
future projects .

One alternative engine gaining popularity is Godot [33]. This lightweight, open-source
engine is particularly well-suited for 2D games but also supports 3D development. Godot
uses its own scripting language, GDScript, and offers support for VR and MR develop-
ment.

Although not a game engine in its current form, older versions of Blender included
a built-in game engine. Today, Blender [34] functions as an all-in-one open-source ap-
plication for 3D modeling, texturing, video and sound editing, sculpting, drawing, and
rendering. It can also serve as a development tool for MR applications running on external
devices.

14

2 GENERAL RESEARCH

2.2.2 APIs and SDKs

Software development kits (SDKs) and application programming interfaces (APIs) are
essential components in the development of any MR platform. An SDK is a collection of
tools, libraries, debuggers, and comprehensive documentation. SDKs support both rapid
prototyping and the development of robust final applications.

Vendor-specific SDKs provide access to proprietary HW features while maintaining
a high-level programming interface to accelerate development. Examples of such SDKs
include Microsoft Mixed Reality Toolkit (MRTK3) [35], Valve SteamVR [36], Google VR
SDK, ARCore [37], ARKit, PICO XR SDK [38], Qualcomm’s Vuforia [39], and Varjo
SDK [40] (2.5).

Hardware-agnostic SDKs and APIs are not tied to any specific hardware. They achieve
portability by abstracting certain functionalities. Examples include WebXR [41] and
OpenXR [42].

OpenXR is an open-source API standard developed by the Khronos Group [42]. Its
goal is to unify development across hardware platforms. By incorporating vendor exten-
sions—such as foveated rendering, hand tracking, eye tracking, and depth masking—into
optional modules, OpenXR is ideal for early-stage development when the hardware is not
finalized and also for production scenarios requiring advanced features (2.5b).

A typical OpenXR workflow consists of several basic steps:

1. Instance creation — Initializes the OpenXR runtime.

2. System call — Selects the appropriate hardware and platform.

3. Session creation — Binds the chosen graphics API and initiates a session.

4. Space and action set definition — Defines interaction contexts and input mappings.
5. Swapchain creation — Enables rendering by looping and updating frames.

6. Polling for state changes — Continuously checks for events before each frame.

7. Cleanup on exit — Destroys swapchains, sessions, and OpenXR instances.

00 (OpenAR :

) Meta) Khronos group (¢) Microsoft

Figure 2.5: SDK and engine logos

-l

(d) Godot (e) Unreal Engine

15

2 GENERAL RESEARCH

2.3 Measurement and estimation methods
2.3.1 Angle measurement

Direct methods require no additional computation to determine the desired angle. Many
devices, such as mechanical protractors, can be used for this purpose. However, measuring
joint coordinates of an excavator in real-time requires more advanced devices.

One solution involves rotary encoders mounted on rotating shafts. These encoders
can be either absolute or incremental. Absolute encoders output a specific n-bit value
corresponding to a particular angle. Incremental encoders, on the other hand, count
pulses to measure angular displacement. These devices can achieve high precision and are
a suitable choice for angle measurement.

If it is not possible to implement an encoder in the system, a digital inclinometer can
be used instead. These sensors often work on MEMS technology and typically combine
accelerometers and gyroscopes. This sensor might not retain its accuracy or work properly
when exposed to vibration noise.

when direct measurement is not possible, an indirect technique has to be used. For
instance, Encoder measurement on a linear actuator would classify as an indirect mea-
surement with fairly high precision. Installation would require tampering with existing
hydraulic systems which might not be permitted.

Alternative methods include using LiDAR and point cloud analysis. By generating
extensive 3D point data, it is possible to approximate the spatial position of an object.
This approach can be very computationally expensive.

Another approach is using computer vision with standard RGB cameras. By placing
markers on the system, it is possible to track joint coordinates in real time. This method
generally provides lower accuracy and robustness compared to other solutions, but its
implementation is easy and requires close to no modifications to the existing system.

2.3.2 Center of mass measurement

To measure the center of mass (COM) of a rigid object, two primary methods can be
used.

The first method works by suspending the object from multiple points, tracing the
vertical planes defined by the suspension rope, and finding their intersection. Steady state
is achieved when the net force and torque are equal to zero (eq.: 2.1). This method works
well for small simple static objects, but it becomes rather impractical for large changing
objects like excavators.

Y F=0
> M=0

(2.1)

16

2 GENERAL RESEARCH

This equation can also be utilized when using the second method, which involves the
measurement of static forces acting on the object. By placing the object on a few force
gauges, we can calculate the exact position of the resulting force from the reaction forces
of the gauges.

If the masses of the individual parts of the object are known, it is possible to ap-
proximate the center of mass from coordinate position using the analytical solution. This
approach is done by weighted averaging of individual mass centers (eq.: 2.2).

_ 2l (2.2)

STy

The COM can also be approximated through visual data. By analyzing the volume of a
model or the area in an image, an approximate COM position can be estimated. However,
this method can be inaccurate due to challenges in estimating material densities and
internal mass distributions. In cases where the weight or density of individual components
is unknown, estimation methods must be employed to approximate these values.

2.3.3 Estimation methods

Parameter estimation is a mathematical procedure that aims to approximate unknown
variable values using real measured data. Classical techniques such as the method of
moments, least squares, and maximum likelihood estimation provide estimates based on
sampled data, typically without explicitly considering statistical distributions.

The least squares method minimizes the sum of squared errors, known as residuals,
between the model predictions and the observed data. A common extension is non-
linear least squares, where the model output depends nonlinearly on the parameters.
The efficiency of this algorithm can be improved using the Gauss-Newton method. The
Levenberg-Marquardt algorithm further stabilizes convergence by incorporating both gra-
dient descent and damping strategies [43],[44],[45].

The Bayesian approach treats parameters as random variables and updates statistical
beliefs based on observed data. It combines a prior distribution, representing prior knowl-
edge, with the likelihood of observed data to form the posterior distribution. A single
parameter estimate can be obtained by taking the maximum value of this distribution
estimate or its mean. Algorithms such as Metropolis-Hastings, Sequential Monte Carlo,
Particle Filters, and Variational Inference are commonly used for Bayesian estimation
[46].

17

3 Center of mass measurement and

estimation

This chapter presents the development of a methodology for estimating the masses of
excavator arm segments. Knowledge of these masses enables subsequent simulations and
visualizations of the machine’s center of mass in an external device. This provides the
operator with real-time feedback, especially valuable when the system approaches tipping
conditions.

To support this goal, a set of system specifications is defined to guide the process.
Several measurement strategies are considered and evaluated based on their feasibility
and practical constraints. Emphasis is placed on non-intrusive techniques suitable for
deployment on existing machinery.

The methodology combines mechanical measurement with computer vision, enabling
both force and angle acquisition without requiring structural modifications. The chapter
also discusses the reasoning for the selected approach and outlines the steps taken to
prepare for real-world implementation, including validation and data processing.

Figure 3.1: Brokk 520 [47]

18

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.1 Specification and general concept
e Development of measurement methods and procedures
e Minimal modifications of the measured excavator
e Acquisition of joint coordinates and center of mass for multiple static positions
e Repeatability of the measurement

3.1.1 Concept

Based on a review of relevant literature, force transducers were selected as the primary
measurement method. The excavator is equipped with four actuated legs capable of
supporting its weight under various conditions (3.1). The goal is to place force transducers
beneath each leg to measure the forces acting at these points across different arm positions.
The angles of the arm will be determined using computer vision techniques, specifically
by detecting the positions of ArUco markers. Subsequently, the center of mass will be
determined using one of two methods, which will be detailed in the following sections.

F1,4 F2,3

Figure 3.2: Concept of the measurement

Exact location of the force gauges and the ArUco markers is visible in the figure 3.2.
Blocks F1,2,374 represent force transducers and g 1,23 represent ArUco markers.

19

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.2 Proof of concept
3.2.1 Simulation

As mentioned above, the center of mass of the excavator can be determined using several
methods. The first involves creating a dependency table, where the center of mass depends
on up to three joint coordinates. Since this step occurs early in the study, a simplified
Simscape Multibody simulation of an approximate model was made to accelerate the
process of choosing the right method.

e 2 o
Bootoo

0.3

e o
= o

Normalized distance [-]

[SIE]

0 0

p2[rad] ¢1[rad]

Figure 3.3: Dependency table for two angles

In Figure 3.3, the behavior of the center of mass as a function of joint coordinate
changes is clearly apparent. That means that the creation of the dependency table is
possible. However, the number of joint coordinates on the real excavator is three, which
would create a three-dimensional lookup table. That implies cubic growth of the number
of values inside this lookup table.

The total number of required measurements is directly tied to the desired resolution.
For example, achieving a resolution of ten steps per joint (approximately every 20 de-
grees) would require 1,000 measurements. Since the measurement process is not easily
automated, this approach becomes unmanageable in practice.

An alternative is to calculate the center of gravity directly using an analytical equation.
The equation T, = f (p123, L123,M01,23) depends on the joint angles ¢; 23, segment
lengths L; 23, and segment masses my123. While the kinematic parameters are known,
the individual masses are usually unavailable and must be approximated or estimated.

Given that the first method is very impractical, the second method is used. A detailed
explanation of this approach can be found in Section 3.6 Analysis, under the subsection
Excavator mass distribution estimation.

20

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.2.2 Physical model

To further prepare for the actual measurement, a simple physical model of the excavator’s
base was constructed (3.4). This model was designed so that the placement of the strain
gauges corresponds to the placement of the force transducers on the actual excavator. This
configuration allows for testing the measurement system in a controlled environment.The
physical model aids in identifying unforeseen issues that may arise during actual measure-
ments. Determining the exact mass of an object necessitates a calibration procedure.

Figure 3.4: Sketch and render of physical model

Strain gauges measure strain by detecting changes in electrical resistance, which are
then converted into voltage signals. These voltage signals must be converted back to
strain and subsequently to force and mass. When the measurement system is unloaded,
the average offset of each strain gauge can be determined using the following equation
3.1.

n z;
Tost = (3.1)
=1

where n is the number of measured points.

Similarly, the gain of the gauge can be obtained using the equation 3.2.

n Ti—Toff
Lgain = Zz_lm = (32)

where m is the known mass applied during calibration.
As mentioned in the subsection Simulation, the masses of the system are not entirely

known, making it difficult to determine the forces acting on the transducers. An alterna-
tive approach to determining these forces is explained in the following section.

21

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.3 Force transducer development

Commercial force gauges are often excessively expensive. To reduce costs, one viable
approach is to develop a transducer using readily available semi-finished workpieces. Se-
lecting commonly used materials with regular shapes simplifies the design process and
minimizes the need for complex calculations. The designed transducer should be vali-
dated using the finite element method (FEM) to ensure measurement linearity and safety.

3.3.1 Dimensions consideration

To determine the optimal strain for the transducer, simple equations can be employed to
specify the sensor’s dimensions. The approximate mass of the excavator with attached
tooling is around six tons. Consequently, the force gauge must withstand the associated
pressures. Given that the yield strength of steel is approximately 350 MPa, the maximum
strain on the sensor can be calculated using the following equation 3.3.

o=FEec—e= (3.3)

~ 1.6 [m]

o
E m

Lets assume that dynamic movement of the excavator can generate substantial forces
on the gauges, then a larger safety factor should be used. If maximum strain is set to
around 30027, the resulting safety factor approximates to around five.

original iteration of the transducer was designed to be made from a pipe workpiece.
Various types of piping are commercially available but, from an economic standpoint, a
welded pipe was the most cost-effective choice. Because the dimensions were configured in
a way that the strain equaled 31027, there was no need for manufacturing. High strain is
also beneficial for achieving a high signal to noise ratio (SNR), especially when used with a
good data acquisition system. The main concern was the weld failure and buckling of the
whole gauge due to uneven load distribution. To mitigate the issue, a FEM experiment
was performed to get an idea of potential risks.

3.3.2 FEM simulation

As previously mentioned, to validate the chosen dimensions, a simple FEM experiment
was performed. Several cylindrical pipe models were created using a design modeler and
imported into static structural and buckling analysis modules. The model was constrained
at the bottom and loaded with a force of 50,000 newtons, which is equivalent to the
complete mass of the excavator.

Special attention was given to the center of the piece, as this is the optimal location for
attaching the strain gauge. The primary concern was whether the cylinder would exhibit
linear behavior under load.

The maximum directional strain of the gauge in the measurement region is approx-
imately 35 [%} which aligns with the value calculated using the reorganized equation
3.14, given known dimensions, a force of F' = 50 [kN] and E = 210 - 10° [Pa].

22

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.3.3 Manufacturing

After performing the buckling simulation using FEM and consulting with experts in the
field, several modifications were necessary to better align the design with realistic dimen-
sions. According to the professionals, a strain of 30 [%} would be sufficient, provided that
the acquisition card offers adequate resolution. To ensure stability during measurement,
the outer dimensions had to remain fixed. This left only the inner diameter d, visible in
the picture 3.5b, as a variable parameter.

A former mechatronics PhD student offered assistance with the manufacturing of the
transducer. Since their primary expertise does not lie in working with hard metals, the
available tooling for this task was limited. Nevertheless, the inner diameter was set to
30 mm. Due to manufacturing constraints, the precise dimensional targets were not fully
achieved. However, the functional behavior of the workpiece remained unaffected. All
dimensions and their corresponding strain values are listed in table 3.1.

Outer diameter | Inner diameter | Height | Force | Strain
[mm] [mm] [mm] | [kN] [%]
original dimensions 100 95 100 50 310
recommended dimensions 100 30 100 50 33
manufactured dimensions 98 29 100 50 35

Table 3.1: Comparison of transducer development iterations

After finalizing the dimensions, the force transducer was completed by applying the
strain gauge. The most suitable type for this application would be a rosette strain gauge,
as it compensates for potential rotational misalignment during placement. However, to
minimize the overall cost of the measurement setup, strain gauges already available locally
were used. The strain gauge employed is the 1-XY31-0.6/120 model from HBM [48]. This
gauge is capable of measuring strain in two directions, as illustrated in Figure (3.5a).

< oD >

il

(a) Strain gauge [48] (b) Workpiece
Figure 3.5: Force sensor dimensions and layout

23

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

The strain gauge was connected in a full-bridge configuration (3.6). This setup offers
several advantages, including improved sensitivity, as well as better compensation for
temperature fluctuations and bending forces. The main drawback of using a full-bridge
configuration is the increased number of strain gauges required, which raises the overall
cost.

R,[/ R,/

/] /]

Ri/ R,/

Figure 3.6: Schematic of the connections

The electrical connections and gauge surface bonding were carried out by a specialist
at the faculty, as these procedures require specialized skills that could not be acquired
within the time frame of this thesis (3.7a). The sensitive strain gauge was mechanically
protected using a special compound visible in the picture 3.7b

(a) Gauge application (b) Protective material
Figure 3.7: Force transducer

24

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.3.4 Force transducer linearity

Using a calibrated force sensor positioned above the manufactured force gauge, it is pos-
sible to assess the linearity of the device by applying gradually increasing load. This was
done by a small hydraulic press capable of producing up to 50 kN of force. In the figure
(3.8a) it is clearly visible that the gauge suffers from slight nonlinearity. This deviation
from the linear function is visible in the figure (3.8b).

(a)

—— Linear function
o5 || Force transducer

30

10 + P(1)=-0.59461x+0.26658]

0 10 20 30 40 50

Force [kN]
Figure 3.8: (a) Force gauge linearity (b) Linearity error

During measurement, the applied force on each gauge was in the region of 10 kN to
25 kN, which means that the measurement was slightly affected by this error. However,
this nonlinearity can be removed with a polynomial function whose coefficients are easily
obtainable by solving a system of linear equations (3.4).

-1

2
c1 ry xy] - af Y1
2 n
(6)) To Ty -+ Ty Yo
- (3.4)
2 n
C, Tp i Ty Un

Where ¢, are the polynomial coefficients, z,, is the force from the calibrated sensor,
and ¥, is the corresponding strain from the manufactured gauge.

25

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.4 Manipulator joint coordinates estimation

Due to constraints in time and resources, machine vision measurement employing ArUco
[49] markers was selected. This method provides a viable alternative to traditional mea-
surement techniques for determining the coordinates of excavator arm joints. It requires
minimal modifications to the excavator. However, prior to conducting any measurements,
a portable computer application is necessary.

3.4.1 OpenCV

The OpenCV library was chosen for the development of the application as it is an open-
source standard offering numerous useful features [50]. The core library supports basic
image processing tasks such as image format conversion, transformations, filtering, en-
hancements, camera calibration, and the creation of simple user interfaces. For more
advanced functionalities, extension modules can be built from the source. These modules
include algorithms for face recognition, tracking, ArUco marker detection, and additional
deep neural networks.

An example of a simple color correction is provided below, where the contrast variable
functions as the gain of the image and the brightness variable as a value offset. By using
the imread method, a variety of image formats can be imported in color, grayscale, or
with reduced bit depth.

cv::Mat src = cv::imread("inputImage.png", cv::IMREAD_COLOR) ;
cv::Mat corrected; // corrected image matrix allocation
double contrast = 1.2;

int brightness = 20;

src.convertTo (corrected, -1, contrast, brigthness);

The output of the convertTo method is the corrected matrix. Another useful operation
is thresholding, for which OpenCV provides a dedicated function. Initially, the image is
converted to grayscale by averaging all colors into a single-channel matrix. Subsequently,
the threshold method can be applied, resulting in a binary black-and-white image.

cv::Mat gray, thresh;
cv::cvtColor (corrected, gray, cv::COLOR_BGR2GRAY);
double tValue = 100;

double maxValue = 255;

cv::threshold(gray, thresh, tValue, maxValue, cv::THRESH BINARY);

26

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

In most machine vision applications, edge detection is a crucial step. An easy method
to compute edges involves applying a convolution with a derivative kernel, such as the So-
bel operator. OpenCV provides a built-in function, Canny, which performs edge detection
by applying gradient calculations, non-maximum suppression, and double thresholding.
By setting the high threshold, low threshold, and kernel size, this function returns an
image highlighting edges in white.

cv::Mat edges;
double lowThreshold = 50;
double highThreshold = 150;

int kernelSize = 3;

cv::Canny (gray, edges, lowThreshold, highThreshold, kernelSize);

3.4.2 Video acquisition

Still images are often insufficient for real-time machine vision applications. In such cases,
video capture is utilized. Similar to reading an image, OpenCV’s VideoCapture class
allows for capturing video from various sources. For example, to read from a video file,
the following code can be used.

cv::VideoCapture cap("C:/videoFile.MP4",cv::CAP_ANY) ;

However, for real-time processing, a live video source, such as a USB camera, is prefer-
able. If only one camera is connected, it can be accessed using index 0. For systems with
multiple cameras, it’s useful to use the device’s specific path to avoid ambiguity. On
Windows, this can be achieved by specifying the device’s unique ID.

Source = "@device_pnp_\\?\usb#vid 046depid_085c&mi_00#. ..
8&21a08ad1&0&00004#. ..
{65e8773d—8f56—lld0—a3b9—00a0c9223196}\global"

cv::VideoCapture cap (Source,cv::CAP_ANY);

If the video source is accessible over a network, such as an IP camera streaming
via RTSP, OpenCV can capture the stream using the appropriate URL. It’s important
to ensure that the stream is secured to prevent unauthorized access. An example of
capturing a network stream is as follows:

Source = "rtsp://username:password@l.1.1.1:500/media/videol"

cv::VideoCapture cap (Source,cv::CAP_ANY);

27

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

Data from various sources can be raw, compressed, or have low /high frame rates. To
avoid unnecessary complications, these attributes must be explicitly set. When using a
USB webcam, it may be necessary to specify the CAP_DSHOW backend to ensure proper
functionality. To accelerate video transfer, the feed can be set to the Motion JPEG
(MJPG) format for compression.

cap.set (cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M','J','P',"'G"));

After successfully capturing and compressing the video, the frame rate and resolution
can be configured. If these parameters are not set, the video capture defaults to the
camera’s standard settings.

cap.set (cv::CAP_PROP_FPS, 30);
cap.set (cv::CAP_PROP_FRAME_WIDTH, frameWidth);

cap.set (cv::CAP_PROP_FRAME_HEIGHT, frameHeight);

Setting a fixed frame rate is ineffective if the exposure time exceeds the frame interval.
If the exposure is set to automatic, the frame rate gets adjusted according to the exposure
time. To fix the exposure, the following code can be used.

cap.set (CAP_PROP_AUTO_EXPOSURE, 0);

cap.set (CAP_PROP_EXPOSURE, -6);

By configuring these variables, data consistency is ensured throughout the measure-
ment process.

Similar to human eyes, though to a lesser extent, digital cameras and their optics have
imperfections. By calibrating the camera, the best possible image quality for machine
vision applications can be achieved [51],[52]. In OpenCV, several camera parameters are
tuned using intrinsic parameters and distortion coefficients. Intrinsic parameters describe
the internal characteristics of the camera and are represented by the camera calibration
matrix.

C = 0 fymy Dy (3.5)
0 0 1

where f, and f, are focal lengths, m, and m, are pixel sizes, p, and p, are principal
points in pixel coordinates, and s is a skew factor

28

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

Camera lenses inherently introduce various distortions due to imperfections in lens
design, manufacturing, and alignment. These distortions cause deviations from the ideal
pinhole camera model, leading to inaccuracies in image representation. To correct these
deviations, camera calibration involves estimating distortion coefficients that model the
lens’s behavior. OpenCV supports several types of distortion coefficients, including radial,
tangential (decentering), and thin prism distortions. The number of coefficients used can
vary. Four, five, eight, twelve, or fourteen, depending on the desired calibration accuracy
and the complexity of the lens distortion.

DistCoef f = [k, ka, p1, D2, ks, ka, ks, ke, 51, 52, 53, 54] (3.6)

Where k123456 are radial distortion coefficients. Radial distortion occurs when light
rays bend more near the edges of the lens than at the center, causing straight lines to
appear curved in the image. This distortion is symmetric around the principal point and
is modeled using a simplified equation (3.7).

1+k’17”2+k27“4+k337“6
" //: / / 37
vy x’y1+k47’2+l€57’4+k67“6+ ()

Coefficients p; o represent tangential distortion, that occurs when the lens and the
image sensor are not perfectly parallel, causing the image to appear tilted. This misalign-
ment is modeled using the following expression (3.8).

" = 4 2paly 4 p2(r® 4 227%) + ...

3.8
Y = ...+ 2px’y + pl(r? + 2¢%) + ... (3:8)

Thin prism distortion is represented by coefficients s; 23 4. It describes imperfections in
the lens elements that cause additional radial and tangential distortions. This distortion
is modeled using part of the equation (3.9)

2= 4 st + sor?
" 2 2 (39)
Y = ...+ S3r° + s4r
where r from equations 3.7, 3.8, 3.9 is the distance of the pixel from the image center.

r? =2 +y? (3.10)

29

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.4.3 ArUco

ArUco markers, named after augmented reality and the University of Cordoba, are binary
square fiducial markers primarily used for camera pose estimation [49]. FEach marker
encodes a unique identifier (ID) within a black-bordered square, enabling identification
and estimation of position and rotation in 3D space.

The marker detection algorithm involves several key steps:

1. Image Pre-processing - The input image is converted to grayscale, and adaptive
thresholding is applied to segment potential marker regions.

2. Contour Detection - Contours are extracted from the segmented image. Non-convex
shapes and those not approximating a square are discarded.

3. Candidate Filtering - Additional filters remove contours that are too small, too
large, or too close to each other.

4. Marker Identification - For each candidate, a perspective transformation is applied.
The marker is divided into a four by four grid based on the dictionary’s specifica-
tions, and the bit pattern is analyzed to determine the marker’s ID and orientation.

To utilize ArUco in OpenCV, the aruco module from the opencv_contrib repository
must be included, as it is not part of the core OpenCV modules. Building OpenCV
with the extension modules ensures access to ArUco functionalities. After linking all
dependencies and static libraries, ArUco should be accessible. To use this feature, a
detector object has to be made.

Dictionary dictionary = getPredefinedDictionary (DICT_4X4_50);

DetectorParameters parameters;

RefineParameters refineParams RefineParameters (10.0£f,1.0f, true);

parameters.useAruco3Detection = true;

parameters.cornerRefinementMethod = CORNER_REFINE_SUBPIX;

Ptr<ArucoDetector> detector =

makePtr<ArucoDetector>(dictionary, parameters, refineParams);

Dictionary specifies the bitfield the detector should find. Using the DetectorParam-
eters, it is possible to adjust some functionalities. RefineParameters sets the minimum
distances for ArUco candidates, error correction rate, and orientation checking function.

Using the previously mentioned camera calibration, it is possible to solve pose esti-
mation to recover the 3D position and orientation of the marker in space relative to the
camera.

30

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

To achieve accurate camera calibration, a built-in calibration function can be utilized.
Prior to using this function, it is recommended to capture as many images as possible
that provide new information. Some sources suggest that capturing at least fifteen images
is necessary to attain sub-pixel precision. The validity of these claims is evaluated in the
validation chapter.

The images should contain a ChArUco board, which resembles a checkerboard with
embedded ArUco markers from a specific dictionary. To minimize false distortions in the
images, the board should be mounted on a solid backboard. The calibration process yields
the camera matrix and distortion coefficients.

Lets set the size of the ChArUco board based on the known dimensions of standardized
paper sizes. An A4 sheet has an aspect ratio of approximately 1.41. To fit as many squares
as possible, a seven by five square configuration, resulting in a ratio of 1.4, is employed.
To ensure the accuracy of the calibration, the exact sizes of the markers and squares are
measured. The following code snippet is used to generate the calibration coefficients.

Ptr<aruco::CharucoBoard> charucoBoard = ...
. makePtr<aruco::CharucoBoard>(Size (squaresX, squaresY),

. squarelLength, markerLength, =xdictionary);

aruco::interpolateCornersCharuco (markerCorners, markerIds,

. gray, charucoBoard, charucoCorners, charucolds);

double error = aruco::calibrateCameraCharuco (CharucoCorners,

. Charucolds, charucoBoard, imageSize, cameraMatrix,

. distCoeffs, rvecs, tvecs);

The final function returns the mean squared re-projection error of the calibration. It
also populates the ”cameraMatrix” and ”distCoeffs” variables, which are utilized in the
subsequent pose estimation stage. The resulting camera calibration matrix and distortion
coeflicients k1, ko, k3, p1, and p, are presented below.

1417.11 0 957.22
Camera matrix = 0 1406.96 538.35
0 0 1

Distortion coefficients = [0.0607 —0.3455 0.0024 —0.0005 0.4084}

31

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

As stated before, angle measurement using ArUco markers can be hindered due to sev-
eral reasons. One of these reasons is wrong camera calibration. The following experiment
represented by a graph will show this particular issue.

(a)

3 I I I I I I I
2.75 —«—Calibration
2.5 —=—Validation |1

(=)

- —e—Calibration
—=—Validation |

= Ot

Error [px]
OO OTN OTW UL CTLOtOto Ot

[\

p—

o

R SRS gHaiEh diih dBEEs JSEE: {HHE) REE: duth GRAE SREIh Gl (it JEHI 1HEE dHbE: (IE) SAEE: SRl Suth SRRk Ui ot |
YN 0N D DDA DD D AP

Number of calibration images |-
Figure 3.9: Calibration and validation reprojection error

The experiments shown in figures 3.9a and 3.9b present the mean squared estimation
error (MSE) of the ArUco markers during the camera calibration. The proper calibration
resulted in an MSE of less than one pixel when using approximately ten to fifteen images
(3.9a). MSE of an improperly calibrated camera does not converge and stays in the
region of four pixels (3.9b). It is important to mention that each value represents the
mean of fifteen validations. The deviation of the error on a properly calibrated camera
with the maximum number of images was around 0.5 pixels. And the maximum error of
the improper calibration was up to 80 pixels.

32

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

The core of pose detection using ArUco markers involves estimating the transfor-
mation matrix by minimizing the re-projection error. Unless otherwise specified, the
Levenberg-Marquardt algorithm is employed for this optimization process [43][44]. As
the estimation function, the pinhole camera model is utilized. This model projects 3D
world coordinates onto 2D image coordinates using the camera’s intrinsic and extrinsic
parameters [52].

X
u famg S Px| |rin iz riz ity v
vl =1 0 fymy py| [rar a2 Tas ty| | 0 (3.11)
1 0 0]_ 31 T32 T33 tz]_w

This equation represents the transformation of a marker’s world coordinates into the
camera reference frame, followed by the application of the camera matrix to convert 3D
coordinates into 2D pixel coordinates.

To reduce the number of parameters estimated during optimization, Rodrigues vectors
are employed [53]. These vectors represent rotations using three parameters, in contrast
to the nine parameters of a full rotation matrix. The conversion from Rodrigues angles
to a rotation matrix is achieved using the following formula.

R =1Icosf + (1 — cosf) uu’ + sin IK (3.12)

Where u is a unit vector of the Rodriguez angles. I is the identity matrix, and K is a
skew-symmetric matrix as follows.

0 —u, wy
K=|u 0 -—u, (3.13)
—Uy Uy 0

OpenCV provides a built-in function that estimates the position the same way as men-
tioned above. The following code snippet demonstrates the basic usage of the pose esti-
mation function.

Mat cameraMatrix; Mat distCoeffs; Mat frame;
float markerSize = 0.08

vector<int> markerIds;
vector<vector<Point2f>> markerCorners;

detector—->detectMarkers (frame, markerCorners, markerIds);

vector<Vec3d> rvecs, tvecs;

estimatePoseSingleMarkers (markerCorners, markerSize,

. cameraMatrix, distCoeffs, rvecs, tvecs);

33

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

The output Rodriguez vectors can be written to a file, used to position a 3D object
on the same device, or be sent through a web interface to a different device. For better
compatibility, it is preferable to convert the pose vectors into their corresponding rotation
matrices. This conversion can be performed using Equation 3.12 or by utilizing OpenCV’s
built-in function.

Mat Rmatrix;

cv::Rodrigues (rvecs, Rmatrix);

A PC application was deployed using Visual Studio C++ to simplify the process
of angle measurement on the job site. As this is only a helper application that won'’t
be used by the end user, it is preferable to use simple controls to avoid additional and
unnecessary programming. The output of the application is shown in the figure (3.10).
There are simple controls for switching the camera input, decreasing or increasing static
exposure, toggling auto-focus, and toggling data acquisition. Data are stored in a CSV
format for later analysis.

FgEPS” Y

Keys:

ESC: Exit

C: Cycle camera

+: Increase exposure

—: Decrease exposure

F: Toggle auto focus | O

D: Toggle data acquisition | 0 |

Figure 3.10: ArUco position acquisition APP

34

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.5 On-site measurement

Goal of the measurement is to gather joint coordinate and force transducer data in order to
find their connection to the center of mass of the excavator using estimation methods. The
center of mass is necessary feedback for the operator to ensure safety during demolition.
To ensure successful measurement, precise planning is required.

Field measurement procedure
e Usage of solid markers with low reflections

Revision of the camera calibration

Test measurement of pose estimation and force traducers

Test of the data logging systems

e Measurement on an excavator

e Documentation of measurement procedures
3.5.1 Data acquisition

To acquire ArUco data, the previously mentioned PC application was used. By using the
simple UI, the measurement could be easily repeated or adjusted on the fly. CatmanEasy
was used for the acquisition of strain data. The sampling frequency of ArUco detection
was 30 Hz and strain data 300 Hz.

Figure 3.11: Acquisition station

35

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.5.2 Measurement process

The measurement procedure was conducted at the job site located near Ostrava. After
arriving, the measurement plan was communicated to the head of the site and to the
assisting excavator operator. All the necessary equipment was set up near the excavator
(3.11). Two independent laptops were used, each carrying out their own task. To ensure
redundancy, markers were filmed from several angles.

The machine was lifted using a forklift and positioned onto the force transducer(3.12).
The first measurement session involved manually moving each joint to various random
positions and measuring the corresponding force while stopped to ensure avoiding dynamic
forces. After a short break, second measurement session was carried out. About fifty
position changes were measured during each session. After knowing that all the data
were saved, the excavator was gradually lifted while measuring the force to measure the
difference between the unloaded and loaded force transducer.

All measurements were documented, saved, and backed up for further analysis. Finally,
the equipment was packed, and the site was cleared.

Figure 3.12: Measured excavator

36

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.6 Analysis

3.6.1 Data processing and correction of strain data

Given that the material is standard structural steel and the dimensions are provided
in Table 3.1, the exact force acting on the gauge can be calculated using the following
formula.

0—§—>F—US—E£S (3.14)

Where S is the cross-sectional area of the transducer from the top view, E is Young’s
modulus for steel, o is the stress, ¢ is the strain, and F' is the magnitude of the acting
force. The area S can be determined using the formula for the area between two concentric
circles.

S = %(DQ —@?) (3.15)

The exact formula for the force magnitude on the gauge is.

F= E%(D2 — d?) (3.16)

Due to the low strain sensitivity of the transducer, the signal-to-noise ratio (SNR) of
the measured signal is relatively low. Since real-time analysis is not required, a simple
low-pass filter can be applied to enhance the SNR. A window size of approximately fifty
samples was selected, with a sampling frequency of 300 Hz.

The excavator manufacturer specifies a dry weight of 4.5 tons and a tool weight of
300 kg. This aligns with the measured total system mass of approximately 4.8 tons, as
illustrated in Figure 3.13.

x 10*
6 =

50000N

Excavator touching ground

0 200 400 600 800 1000
Time [s]
Figure 3.13: Deviation of total normal force

37

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

However, significant deviations in the total normal force were observed. In certain
instances, these deviations resulted from sudden changes in the excavator arm’s position,
leading to dynamic oscillations in the measurements. Additionally, variations in static
force were detected, which may be attributed to calibration inaccuracies or the influence
of forces acting on the gauge in an unexpected way.

As previously mentioned, the SNR of the strain measurements is relatively low, with
a noise amplitude of approximately 0.9 [%] and a signal amplitude around 4 [%] . How-
ever, since the primary objective is to capture the static state of the excavator, the data
can be effectively processed using averaging or low-pass filtering to improve the SNR.
Filtered data can be seen in the figure (3.14).

(a)

dF \ 9
—Strain 1
™ —Strain 4
T
g 0 *ﬁ:m -
5 Jr_\j
& W
_5 [| | | | |]
0 200 400 600 800 1000
(b)
10 H——Strain 2 E
s —Strain 3
=51 .
- .
n
5
0 200 400 600 800 1000

Time [s]
Figure 3.14: Strain on the front (a) and on the back transducers (b)

As previously mentioned in Section 3.5, the excavator was lifted during the measure-
ment process to capture the difference in readings from the force transducer under load
and no-load conditions. This procedure enables the calibration of the sensor using the
measured data from the machine. The lifting procedure is depicted in Figure 3.15.

38

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

[[

——Strain 1
——Strain 2|
—Strain 3
—Strain 4

0) 10 15 20 25 30 35 40
Time [s]
Figure 3.15: Strain after lifting the excavator

3.6.2 Data processing and correction of arm rotation data

Data obtained from ArUco markers represent the rotation and translation of the marker
relative to the camera’s coordinate system. To utilize this data within the excavator’s
coordinate system, a transformation from the camera’s coordinate frame to that of the ex-
cavator is necessary. This transformation can be achieved using rotation matrices derived
from the rotation vectors provided by the ArUco marker detection. Rotational matrix
has the following form (3.17).

Rll R12 R13
R = Rgl R22 R23 (317)
R31 R32 R33

To transform coordinates from the camera frame to the excavator frame, the inverse of
the rotation matrix of a base ArUco marker, visible in the picture 3.12, is applied. Since
rotation matrices are orthogonal, their inverse is equal to their transpose.

R, =R" (3.18)

39

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

By applying matrix multiplication of the inverted base rotation and joint ArUco rota-
tion, the orientation data from the ArUco markers can be accurately represented in the
excavator’s coordinate system.

R, =R, Roi = Ry R (3.19)

Here, m denotes a specific arm marker, b the base marker, and ¢ the camera. R,,;
then represents the rotation of a specific marker with respect to the base marker.

When decomposing the rotation matrix, it is essential to know the order of angles
from the original construction. Considering the ZYX convention, the rotation matrix is
given by three angles. 1) represents yaw (rotation around the Z-axis), € pitch (rotation
around the Y-axis), and ¢ roll (rotation around the X-axis). The rotation matrix is then
expressed as.

R = R.(p)Ry(0)Ra(¢) (3.20)

Assuming perfect measurement, all angles except for the Z-axis rotation (yaw) should

remain static and zero. The individual angles are computed using the following formulas,
valid for |0] # 7.

¢ = arctan2 (Rsz, R33) (3.21)
Y = arctan2 (Ro1, R11) (3.22)
0 = arcsin (—R3;) (3.23)

Due to occasional loss of ArUco marker tracking, some angle data were missing. These
gaps were filled using linear interpolation to maintain continuity in the dataset. The re-
sulting angle data were subsequently unwrapped to correct for discontinuities and filtered
to reduce noise. To further verify the accuracy of the measurements, angles were also
obtained manually. A slight discrepancy between the interpolated and manually mea-
sured angles is evident in Figure 3.16. This difference is likely due to human error during
manual measurement.

40

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

Angle measurements

0 200 400 600 800 1000

@3 [rad

. 0 200 400 600 800 1000
Time [s]
Figure 3.16: Exctracted ArUco angles

41

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.6.3 Excavator mass distribution estimation

The excavator’s arm is a monolithic structure that cannot be easily disassembled. There-
fore, estimating the individual component weights requires estimation methods.

To address this, the Levenberg—Marquardt algorithm, also known as the damped least
squares method, was utilized [43][44]. This algorithm is particularly effective for solving
nonlinear least squares problems, as it interpolates between the Gauss—Newton algorithm
and gradient descent, offering robustness and efficiency in parameter estimation.

The parameter update in the Levenberg—Marquardt method is computed by the fol-
lowing equation.

dp=— (ITT+ A1)~ (37r) (3.24)
In this equation, J represents Jacobian matrix of size n x 4, X is the damping coefficient,
and r is residual vector of size n x 1.

The Jacobian matrix can be defined by.

. 87”1'
N 8mj

J;; (3.25)

Each residual is calculated as the difference between the estimated and measured
centers of mass.

7

(3.26)

The objective of the optimization is to minimize a cost function, which in this case is
a sum of the squares of the individual residuals.

C=r"r (3.27)

Both estimated and measured centers of mass are required for the computation of the
residual. By using a known rule for the center of mass,

d .
coy = Jram _ L xim (3.28)

m > my

it is possible to calculate the estimated center of mass of the excavator using the
following formula.
r ml't11+m2't$2+m3'trg

T, = (3.29)
mi + Mo + ms + my

42

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

The variables mq,mo, m3, my represent the masses of the individual arm segments
and serve as optimization parameters. By adjusting these values using a gradient-based
method, the predicted center of mass is modified, resulting in the decrease of residuals
and thereby reduction of the cost function.

Assuming that the center of mass of each individual arm segment lies at its geometric
center, the missing variables ¢, , ¢,,, t;, can be determined using open manipulator forward
kinematics.

t1 = chleuo

2
t2 = RtleLchpgR%uO (330)
tg = RtleLlR(pQRLQRLp?,R%uO

Where uy is the coordinate vector. The matrix R, denotes a rotation matrix param-
eterized by the joint angles, and Ry represents a translation matrix determined by the
known geometric dimensions of the excavator. When unpacked, t; is following (3.31).

t e cos(pr) —sin(er) 0 0| (1 0 O O [xo
t1y sin(p1) cos(pr) 0 O |0 1 0 £ |y (3.31)
t 0 0 10[lo01 0]z '

1 0 0 0 1] {0 0 0 1 1

These transformation chains can be simplified to express the x coordinates of the
segment centers of mass.

1.
loy = —

: Ly .
tz, = L1sin(pr) + fsm(gol + ¢9) (3.32)

. N L o
tes = Lisin(py) + Lasin(pr + ¢2) + 735271(% + P2 + ©3)

The actual center of mass can be calculated from measured forces obtained via strain
gauges. According to the equilibrium condition (2.1), for an object to be at rest, the sum
of all forces and torques must be zero.

Y F=0 Y M=0

43

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

Figure 3.17: Applied forces

As illustrated in the figure 3.17 the force F,; generated by the excavator exerts pressure
onto the force gauges, represented by the forces F, and Fj,. The force Fy is applied at the
actual center of mass, which is offset from the geometric center. By applying equation
(2.1), the following equations are derived.

ZF:FaJer—Fd:O

(3.33)
> M= M, — My~ M,=0
Rearranging the force equilibrium equation (3.33) yields.
Fy=F,+F (3.34)
The individual torques can be expressed in terms of their corresponding forces.
M,=F, - L
2
L
M, = F, - . (3.35)
My=F;-T,

Substituting equations (3.35) and (3.34) into the moment equilibrium equation and
solving for T, yields the equation for the actual center of mass.
L F,—F
2 E,+F

T, (3.36)

44

3 CENTER OF MASS MEASUREMENT AND ESTIMATION

3.7 Measurement conclusion

This chapter outlines the development of a measurement methodology aimed at acquiring
key states of the excavator, with the center of mass (COM) as the primary focus.

To gain an initial understanding of the problem, a simulation and proof of concept
were developed. The simulation revealed that storing COM data in a lookup table was
impractical. Achieving meaningful resolution would require over a thousand physical
measurements. Therefore, an analytical approach for determining the excavator’s COM
was chosen. Before investing in or developing expensive force transducers, a proof-of-
concept device was created to validate the chosen COM measurement method on a smaller
scale.

Following successful validation, full-scale force transducer development was chosen,
as it was more economical at the time than purchasing commercial gauges. The devel-
opment began with analytical calculations to determine the necessary dimensions of the
transducer, which were then validated using a simple Finite Element Method (FEM) sim-
ulation. Materials were sourced and sent for manufacturing. After applying strain gauges
in a full-bridge configuration, the force transducers were prepared for use.

To measure the excavator’s joint coordinates, a machine vision approach was selected.
This method enabled real-time measurement of all essential data without modifying the
excavator. Utilizing C++ with OpenCV and its contrib modules, a measurement applica-
tion was developed and deployed. The development process included camera calibration,
video capture, pose estimation, and the ability to save acquired data to a file. The ap-
plication was verified on a small locally available excavator before being used for actual
measurements.

Upon completing preparations, measurements were conducted using the developed
force gauge and C++ application. Three continuous measurements were performed to
ensure redundancy. The acquired data were analyzed and used for final parameter es-
timation. Mass estimation was carried out using both a custom Levenberg-Marquardt
algorithm and MATLAB’s Parameter Estimation Toolbox for verification. The resulting
parameters are as follows.

Estimation using own Levenberg—-Marquardt algorithm has produced the following
parameters.

mo = 3500kg, m1 = 700kg, mo ~ 350kg, mz ~ 450kg

These figures were validated using the parameter estimation toolbox.

mo ~ 3850kg, my =~ 450kg, my ~ 250kg, mz ~ 450kg

The estimation suffers from large deviations of the mass parameters. This is probably
caused by the high sensitivity of the model to noise and measurement error.

45

4 Mixed reality application

development

This chapter describes the development of the mixed-reality (MR) application. It begins
by defining the system specifications that will guide each subsequent task. Establish-
ing this high-level overview up front ensures that all foundational tasks are aligned and
completed in the correct order.

One of the core challenges is close to real-time video streaming from four industrial
digital cameras mounted on the excavator. Addressing this requires choosing efficient
video compression algorithms, setting up a low-latency streaming server, and integrating
a client capable of receiving and rendering the live feeds on virtual displays within the
MR headset.

In parallel, the excavator’s operational state should be visualized through an animated
3D model. First, a mathematical kinematic model of the excavator is derived to capture
its motions accurately. Next, an optimized 3D representation is created using specialized
modeling software. This model is then imported into the MR application and animated
using real sensor data that is received through the wireless connection.

Finally, to enhance usability, a human interface panel is implemented, providing intu-
itive controls and feedback to optimize the operator’s experience.

Figure 4.1: Meta Quest 3 [18]

46

4 MIXED REALITY APPLICATION DEVELOPMENT

4.1 Specification of application scope

e Four video streams with minimal latency
e 3D manipulator integration
e Overview of the states of the excavator

e Good user experience

4.2 System design and architecture

4.2.1 Overall system architecture

Camera 1
— Excavator

Camera 2 —I
- I

! |
! |
! |
! |
[Camera 3
Jetson |
I em— Sensor data
Nano |
| Camera 4 |
! |
! |
: |
|

N
A

L) _ J
I

(5 5)
Directional

WiFi
(__transmitter
I ———————— 10()I)m-————————|
I Direc.t.ional - I
. Local WiFi
! WlFl router I
| Operator reciever I
S — ~10 miz '
I : |
: (— Meta Quest 3 /ﬁ\ :
| Stream Stream
1 3 I
I I
| —< Animiated 3D —< |
| Stream Manipulator Stream |
| 2 4 |
. J . J
I o
! HUD !
I)
| S J :

Figure 4.2: Overall system architecture

47

4 MIXED REALITY APPLICATION DEVELOPMENT

The architecture was specifically designed to enable data acquisition from at least four
industrial cameras, internal sensors and gauges, and specialized sensors for measuring the
position of a lifting platform. Although sampling frequencies are not explicitly defined,
it is recommended to target rates exceeding 30 FPS for the cameras and 100 Hz for the
other sensors to ensure accurate data capture.

The architecture also factors in data transmission over distances of up to a kilometer,
while maintaining minimal latency. Additionally, it supports the visualization of video
and sensor data through an immersive reality headset.

The selected cameras are industrial-grade variants from Basler [54]. According to the
specifications, these cameras offer Full HD resolution at up to 30 FPS. Selecting higher
resolutions would be unnecessary and could introduce increased system latency. Basler
provides various configurations, including different connection types, sensor sizes, and
sensor types (infrared or color).

(a) Basler [54] (b) Jetson [55]
Figure 4.3: Basler camera body, Jetson Nano

The internal and external sensors consist of position sensors in the excavator’s legs,
an oil temperature sensor, a hydraulic fluid pressure sensor, ultrasonic distance sensors,
and IMUs mounted on the lift platform.

All inputs are collected via a Data Acquisition (DAQ) system and transmitted to a
single-board computer. The chosen processing unit is NVIDIA’s Jetson Nano 4.3b, which
features four USB 3.0 Type-A ports suitable for connecting Basler cameras [56]. It also
includes a Gigabit Ethernet port utilized for communication with a directional Wi-Fi
antenna.

The directional Wi-Fi setup enables bidirectional communication between the Jetson
Nano and the Mixed Reality headset. Data transmission from the excavator to the headset
benefits from a relatively wide transmission field, whereas data sent from the headset to
the excavator requires a more directional approach.

For the immersive reality headset, the Meta Quest 3 [18] was selected (4.1). Among
available platforms, this headset offers an optimal balance of cost, performance, and ease
of development.

48

4 MIXED REALITY APPLICATION DEVELOPMENT

4.2.2 MR googles design environment

Research has identified several methods for programming and developing applications
for mixed reality headsets. The ideal approach to implement the required specifications
involves using the OpenXR API [42] in conjunction with Android-compatible OpenCV
[50]. This combination offers several advantages, including complete control over the
programmed device, the capability to perform client-side ArUco pose estimation, and the
opportunity to gain experience in low-level C++ mobile programming. However, this
approach poses a steep learning curve for beginners, as it requires advanced knowledge of
C++ and the OpenGL Shading Language (GLSL). The challenges associated with GLSL
can be mitigated by employing game engines such as Unreal Engine 5 (UE5), Unity, or
Godot. However, using these engines limits the ability to integrate OpenCV and handle
video streams without reverting to low-level programming [31],[32],[33].

Due to these constraints and the selected hardware, the chosen design environments
are the Meta Spatial SDK, Meta Spatial Studio, and Android Studio. The Spatial SDK
utilizes Kotlin, a modern, high-level programming language developed by JetBrains, which
is fully compatible with Java as it runs on the Java Virtual Machine [57], [58].

Android Studio serves both as the programming environment and as the design plat-
form for the application’s interface [59].

Meta Spatial editor enables the integration of assets into the MR environment without
the need for custom shaders. Additionally, the studio provides a preview of the application
and its assets, as illustrated in Figure 4.4.

Figure 4.4: Meta spatial editor

Additional environments

Given the selected workflow, integrating machine vision directly within the goggles is not
achievable at the time of development. Machine vision processing is conducted remotely
on the excavator using Jetson Nano depicted in the diagram 4.2. Marker detection has
been implemented in both C4++ and Python, allowing straightforward deployment [56].

49

4 MIXED REALITY APPLICATION DEVELOPMENT

4.3 Video stream and data transfer implementation

To achieve data transfer from the Jetson Nano to the MR environment, a WiFi direc-
tional antenna was used. Selecting an appropriate protocol is important to ensure robust
transmission with minimal latency. Additionally, suitable colour and compression formats
must be utilized to ensure data usability. A simplified overview of the video and data
handling process is illustrated in the diagram below.

)

Initialization Video
of
the streams

WiFi
data

panels

Ve

Telemetry

Arm angles

II: 3D excavator

Figure 4.5: Video stream setup

4.3.1 Client side video and data handling

The Meta Quest 3 headset runs on a specialized operating system, with Android OS at
its core. Android provides various extensions to streamline development, one of which is
Media3 ExoPlayer. This component enables applications to receive video data in multiple
media formats. The table below compares these formats in terms of latency.

’ Media type H Typical latency \ Live offset tracking ‘

DASH 10 - 30 Yes
DASH - LL 3-10 Yes
HLS 20 - 30 Yes
HLS - LL 2-8 Yes
SS 25 - 30 Yes

SS - LL 2-3 Yes
RTSP ~2 No
UDP 2-6 No

Table 4.1: Latency comparison

20

4 MIXED REALITY APPLICATION DEVELOPMENT

As shown in Table 4.1, many sources report video feed latencies exceeding two seconds
[60],[61],[62]. For this application, latencies above 500 milliseconds are nearly unusable. To
achieve lower latencies, compromises in image quality, compression ratio, and resolution
are necessary.

Supported video formats include H.263, H.264, H.265, and MPEG-4. Android sup-
ports various container formats; however, Meta specifies that the .mp4 container is re-
quired. The recommended frame rate ranges between 30 and 60 fps. The stream’s pixel
format must be YUV 420p to ensure proper image rendering [63],[64]. These specifica-
tions are important when configuring the server. To implement video streaming to the
MR goggles, the necessary dependencies were defined in the app-level build.gradle.kts
file.

implementation("androidx.media3:media3-exoplayer:1.6.1")

implementation("androidx.media3:media3-ui:1.6.1")

implementation ("androidx.media3:media3-exoplayer-rtsp:1.6.1") //for RTSP

implementation ("androidx.media3:media3-exoplayer-hls:1.6.1") // for HLS

implementation ("androidx.media3:media3-exoplayer-dash:1.6.1") // for DASH

Subsequently, these packages were imported into the main program file, alongside
additional functionalities.

import androidx.media3.exoplayer.ExoPlayer
import androidx.media3.ui.PlayerView
import androidx.media3.common.MediaItem

import androidx.media3.common.Player

import androidx.media3.common.util.Log

After all dependencies were met, a property of type ExoPlayer was created. This
property was declared as lateinit, which means that the creation of the object instance
is yet to be performed. Since the property was instantiated elsewhere, it was declared
as a non-nullable var type. The object was instantiated within the onCreate method, a
member function of the main activity class. The complete object creation and basic usage
are demonstrated in the following code snippet.

51

4 MIXED REALITY APPLICATION DEVELOPMENT

private lateinit var objPlayer: ExoPlayer

override fun onCreate (savedInstanceState: Bundle?) {

objPlayer = ExoPlayer.Builder (baseContext) .build()

val medialtem = ...
. MediaItem.Builder ()

.setUri ("streamType://123.456.0.789:1234/1ive")

objPlayer.setMedialtem(medialtem)

objPlayer.prepare ()

objPlayer.play ()

In this example, medialtem is a non-nullable, read-only instance of the Medialtem
class, encapsulating the specified stream URI. This medialtem is assigned to the objPlayer
instance, as a carrier of the setup data, which then prepares and initiates playback.

Depending on the specific media type and usage requirements, objPlayer and medi-
altem can be configured with various parameters, such as MIME types, DRM settings,
or additional metadata, to accommodate different streaming scenarios. To collect time-
sensitive data from both the excavator and the Jetson device, fast data communication
is required. Utilizing JavaScript Object Notation (JSON) in connection with WebSocket
technology allows for efficient and structured transfer of multiple variables.

Establishing a WebSocket connection on the client involves a process similar to set-
ting up the video stream. This begins with adding the necessary dependency in the
build.gradle.kts file.

implementation("io.socket:socket.io-client:2.0.0")

Subsequently, the required classes are imported into the main Kotlin file.

import io.socket.client.IO
import io.socket.client.Socket

import io.socket.emitter.Emitter

import org.json.JSONObject

52

4 MIXED REALITY APPLICATION DEVELOPMENT

As before, a property is declared and instantiated in the onCreate method. To ensure
that a new WebSocket is created every time, options carrier object is created with a force-
New parameter set to true. The address of the server and the options are then passed to
the socket class instantiating the mySocket object. By setting mySocket.on(attribute,fcn)
a function can be called during runtime when the attribute is received. It is possible
to set the attribute server-side, so every time the "update” string is sent, the onUpdate
function is called.

private lateinit wvar mSocket: Socket

override fun onCreate (savedInstanceState: Bundle?) {
val opts = I0.Options().apply {forceNew = true}
mySocket = IO.socket ("http://123.456.0.789:1234", opts)
mySocket.on (Socket .EVENT_CONNECT, onConnect)

mySocket.on ("update", onUpdate)

mySocket.connect ()

onConnect function serves as a helper function for debugging and providing contextual
feedback to the developer and the end user. onUpdate function updates transferred
variables in a specific global variable. This variable is packaged in an object visible in the
code snippet.

object GlobalData {var numbers = NumberData (0.0, 0.0, 0.0, 0.0)}

The onUpdate function is structured as a lambda expression that is invoked whenever
a specific event fires, which in this case is the socket event with the string "update”. The
function first checks that the argument is not empty and that it is a JSON object. If
these conditions are met, the data in the global variable is replaced with the data from
the JSON object after converting the values to doubles.

private val onUpdate = Emitter.Listener { argument —>
if (argument.isNotEmpty() && argument[0] is JSONObject) {
val data = argument[0] as JSONObject
// Parse the JSON data and update the global variable
GlobalData.numbers = NumberData (

varl = data.optDouble("varl"), ... , ... ,

var4 = data.optDouble("var4")

23

4 MIXED REALITY APPLICATION DEVELOPMENT

After completing the setup, various media types were evaluated. The first protocol
examined was RTSP/RTP, primarily because, according to Table 4.1, it is expected to
provide the lowest average latency. However, testing revealed that the system’s latency
consistently exceeded four seconds, rendering it unusable for this application. This high
latency was partially due to Media3’s RT'SP implementation missing support for live offset
tracking.

In contrast, DASH and HLS protocols support live offset tracking, allowing latency
optimization using functions seekTo 4.6. This function gradually reduces latency by
adjusting the playback speed. Utilizing this approach decreased overall latency to ap-
proximately 800 ms, which is barely acceptable.

Media3
package

[build.gradle] Medialtem = URL [0 ms

(& J

1 1 1

(")
[Str?am]: Stream.setMedialtem :{ Stream.seekTo H Stream.play }
object
\ J/

Figure 4.6: latency minimiyation using seekTo

As a final option, streaming via UDP without TCP fallback was explored. Disabling
TCP fallback resulted in data transmission, susceptible to packet loss and corruption.
However, this approach achieved lower latency than HLS. By implementing server-side
optimizations, such as reducing buffer sizes and discarding late frames, the final latency
was reduced to approximately 200 ms. This performance is acceptable, provided that
occasional image corruption due to packet loss is tolerable. The code included an ad-
ditional loadControl parameter, and specific configurations to the medialtem for further
improvements.

val loadControl = DefaultLoadControl.Builder () .setBufferDurationsMs (...

. 50, 100, 0, 0).build()

val medialtem = Medialtem.Builder () .setUri("udp://@123.456.0.789:1234")
.setlLiveConfiguration (MediaItem.LiveConfiguration.Builder ()
.setTargetOffsetMs (0) .setMinOffsetMs (0) .setMaxOffsetMs (150) .build())
.build()

objPlayer = ExoPlayer.Builder (this) .setLoadControl (loadControl) .build()

obijPlayer.setPlaybackSpeed (1.05F)

54

4 MIXED REALITY APPLICATION DEVELOPMENT

4.3.2 Serverside video and data handling

The video data needs to be transmitted to be received. This requires a server that is able
to provide the necessary data. For modern protocols like Low-Latency HLS (LL-HLS), a
straightforward and robust tool such as MediaMTX can be employed [65]. MediaMTX
functions as a media server or proxy, supporting various streaming protocols including
SRT, WebRTC, RTSP, RTMP, and LL-HLS. In the case of a UDP stream, an additional
server is unnecessary. However, transcoding and format conversion are required.

To experiment with different settings before implementing the final code, FFmpeg
can be utilized. It serves as an efficient prototyping tool for capturing video data from
various sources, converting formats, and streaming. For instance, to capture media using
FFmpeg, the following command can be used.

ffmpeg —-f dshow -1 video="Webcam" I

This command captures the webcam video source available on a Windows machine.
It’s possible to specify the resolution, frame rate, and other parameters of the input device
using specific commands.

-video_size 1920x1080 —-framerate 30 I

While setting resolution and frame rate is beneficial, the primary focus of this thesis is
minimizing latency. To configure the server for minimal latency, the following adjustments
should be applied.

—c:v 1ibx264 -preset ultrafast -tune zerolatency -pix_fmt yuv420p I

This configuration sets the encoding type and speed, targets zero latency, and specifies
the video format. The encoding speed depends on the specific hardware capabilities.
If the hardware is powerful, slower encoding can be used to produce smaller file sizes.
Conversely, if the hardware has limited encoding capabilities, the ultrafast setting is
preferable to prevent the hardware from being the system’s limitation.

If network bandwidth is the main source of latency, the amount of transmitted data
can be adjusted by setting target and maximum bit rates alongside the buffer size.

-b:v 500k -maxrate 500k -bufsize 1000k I

The final step involves setting up the output by specifying the data wrapper type and
the output address. In this case, the MPEG transport stream and a UDP address are
used.

-f mpegts udp://123.456.0.789:1234 I

95

4 MIXED REALITY APPLICATION DEVELOPMENT

4.4 User interface and visualization

Developing an application in Android Studio includes backend programming, typically
written in Java or Kotlin, and frontend design using XML markup language. Android
Studio also provides a graphical user interface that provides automatic code generation,
streamlining the development process [59)].

4.4.1 Graphical implementation of video stream

The Meta Spatial SDK offers functionality to create instances of 3D spatial panels. These
panels function similarly to mobile phone screens. They are fully interactive and can
be manipulated using hand gestures or controllers. However, utilizing them requires a
specific approach [57].

To instantiate a panel, it is possible to use the Meta Spatial Editor, a graphical
interface, to spawn the panel. For greater control, panels can be created in program using
Kotlin code, as demonstrated in the following example [58].

panelEntity = Entity.createPanelEntity (
R.layout.PlayerView,

Transform(Pose (Vector3(0f, 0f, 0f), Quaternion(0f, 0f, 0f))),

Grabbable (true),

This code snippet creates a panel entity using the XML layout named player_view _layout.
The panel is positioned at the origin of the global coordinate system with default rotation.
The Grabbable(true) parameter enables the panel to be movable via controller input.

To make the panel interactive and visible within the 3D scene, it must be registered
using the registration process. It associates the panel with a unique identifier and ensures
it is properly integrated into the scene. An illustration of this registration process is
shown in Figure 4.7.

S
I . I
| PlayerView.xml |
| Panel Width, Height, Get view by I
| Registration Transparent,... ID ' I
I : Player view ID |
' , | I
| PlayerView : |
I “: Config Panel Lo i
| - - |
l |
I f [
| . . view = Stream
PanelRegistration.kt L |
l |
I |

Figure 4.7: Panel registration

26

4 MIXED REALITY APPLICATION DEVELOPMENT

To register the panel, the precompiled PanelRegistration object from the Meta Spa-
tial SDK is used. A registration ID must be provided to associate the object with the
corresponding layout file [57].

The panel registration includes configuration attributes such as width, height, and
transparency. To pass the video object, the panel argument is employed. The following
snippet demonstrates the panel registration:

PanelRegistration(R.layout.player_view_layout) {
config {
width = 1920
height = 1080
enableTransparent = false
}
panel {
val playerView = ...

..rootView?.findViewById<PlayerView>(R.id.player_view)

playerView?.player = objPlayer

In this snippet, the PanelRegistration associates the player_view_layout with specific
configuration attributes such as width, height, and transparency. Inside the panel block,
the PlayerView component is retrieved and linked to the objPlayer instance, enabling
video playback functionality. The PlayerView component is defined in the XML layout
as follows.

<androidx.media3.ui.PlayerView
android:id="@+id/player_view"
android:layout_width="match parent"

android:layout_-height="match_parent"”

app:surface_type="surface_view"

Layout PlayerView specifies the maximum width and height by the parent layout and
assigns the surface type for the video rendering.

o7

4 MIXED REALITY APPLICATION DEVELOPMENT

4.4.2 User interface layout

The application requires a graphical user interface (GUI) that displays key variables and
the states of the excavator (4.8). All important data are positioned on the right side of the
GUI. This includes the individual angles of the excavator arm, essential telemetry data,
the lifting platform angle, and stream latency. Using this information and previously
estimated masses, the center of mass (COM) is calculated and visualized in the bottom-
center area of the GUI. The COM calculation also considers the influence of the lifting
platform angle.

The GUI includes slider inputs for rotating and scaling the simulated excavator, but-
tons for enabling or disabling passthrough, and for switching between stationary and
attached modes of the GUI. The online tool Photopea was used for graphical aesthetics
[66].

Figure 4.8: Graphical user interface

When the attached mode is selected, the panel entity updates its position based on the
headset’s pose. The transformation refresh rate must not exceed approximately 120 Hz, as
higher rates can cause the application to crash. The following code snippet demonstrates
the process of retrieving and applying the viewer pose:

val transform = panelEntity?.getComponent<Transform> ()

val viewerPose = scene.getViewerPose ()

. //pose update

panelEntity?.let{panel > panel.setComponent(Transform(updatedPose))}

o8

4 MIXED REALITY APPLICATION DEVELOPMENT

4.5 System latency

Due to the choice of a UDP video stream, there is no built-in method to measure latency
directly. Additionally, the Meta Quest 3 operating system does not support synchronized
wall-time clocks over the network, making accurate time alignment more difficult. To
overcome this, a simple measurement method was devised, as illustrated in Figure 4.9.
The server encodes a timestamp into the video stream’s visuals and simultaneously sends
the same timestamp over a WebSocket connection. By visually comparing these two
timestamps, the latency can be determined.

Additionally, the client sends a ping message to the server every ten milliseconds,
including a nanosecond counter that begins at the client’s startup. Upon receiving the
ping, the server immediately sends the value back. Once the client receives this ”pong”
response, it subtracts the original timestamp from the current time and divides the result
by two to estimate the WebSocket network delay.

[Server]
VideoCap
—
l Decoding
[Client } :
\ TimeStamp
" UDP ()
, <€------ ' :
Timestamp ! Encoding
Socket : S 4
_____ v (g
TimeStamp < v UDP b
Socket |---- R S—
Ping J<-, . ---{ Socket | Threading
L ——
Render + '---» Socket
video R | Pong f_)

Figure 4.9: Sequence of the network latency measurement

Fortunately, both the server and client support measuring decoding, encoding, and
rendering times. This enables a full assessment of system latency. However, the latency
introduced by the video capture device remains unknown due to the camera’s construction.
However, the video capture latency was measured using a high-speed camera, providing
an estimate of this value.

29

4 MIXED REALITY APPLICATION DEVELOPMENT

The network latency was also measured with varying distances or signal strengths.
Interestingly, the median network latency appeared to be higher when the receiver was
close to the source WiFi transmitter. The optimal range, where latency was lowest, seems
to lie between -40 dBm and -70 dBm. Although the latency remained approximately
consistent across the entire range, it became noticeably less stable near the maximum
distance, as shown in figure 4.10.

180

160

140

120

—_
]
]

Latency [ms]
09)
]

60

40

20

Distance estimate [m]
400 600 800 1000

0 200

T
B Rendering
Bl Network

B Encode and decode

[1Video capture (estimate)

-20 -40

-60 -70 -75 -80

Signal strength [dBm)|
Figure 4.10: Latency with distance

60

4 MIXED REALITY APPLICATION DEVELOPMENT

4.6 Excavator kinematic model implementation

As previously stated, implementing a 3D simulation of the excavator in the MR headset
can considerably assist the operator with spatial orientation in the demolition environ-
ment. The implementation can be divided into two main tasks. Mathematical derivation
of the manipulator’s kinematics, and creation of a game-optimized 3D model.

4.6.1 Analytical solution

Figure 4.11: Simple manipulator

The simplified arm of the excavator qualifies as an open-chain manipulator with three
degrees of freedom (4.11). Since the individual joint angles are known, the position of the
end effector can be expressed using the following formula.

Ucsf = Ragger; Toer o (4.1)
However, for visualization purposes, all intermediate joint translations and rotations
must be calculated. This leads to the following.

u; = RqOTHuO
Uy = RqQTHquTLluO

(4.2)
uz = R‘IO THRCH T, RQQ Tr,ug
Uerf = RQO THRth Ty, RQ2 Ty, RQ3 Tru0
The corresponding rotation matrices are:
r = Rqo
Iy = RQORQ1 (4 3)

s = RQOth Rq2
rerr = Ry Ry R, Ry

Implementing this simplified manipulator model is straightforward. However, a more
accurate representation, visible in the figure (4.12), requires additional derivations.

61

4 MIXED REALITY APPLICATION DEVELOPMENT

Figure 4.12: More accurate manipulator

To determine the joint coordinates of the pistons and the effector mechanism, several
trigonometric functions must be solved. The entire first section of the excavator shown
in figure (4.13) needs to be analyzed to compute the rotations of the first piston base and
its follower.

Figure 4.13: Detail at the first portion of manipulator

The rotation angle 6, is given by:

T
91 =oq + Y1 — 5 (44)

where
ay = arctan (|a1|, |b1]) (4.5)

a and b are constants.

62

4 MIXED REALITY APPLICATION DEVELOPMENT

~1 can be derived from the reorganized rule of cosines.

2, 2 _ 2
71 = arccos <Cl+c—3€2) (4.6)
20103

Where ¢y, co and c3 are.

c1 = 1/a? + b? (4.7)
cy = 1/ a3 + b3 (4.8)

c3 = \/C% + €3 — 2109 COS Y3 (4.9)

To calculate 3, two helper angles 8; and Sy are required.

™

51 = § — 7 (410)
s
52 = § — (9 (411)
Finally 73 can be calculated using.
Y3 =T — 1 — P — B (4.12)

Follower of the first piston can be calculated using the following equation.

3
82 = §7T — Q9 + V2 (413)

Angle as is computed similarly to equation 4.5, but with ay and by as inputs. The
angle 7, is derived by rearranging equation 4.14.

2 2 _ 2
Yo = arccos (%) (4.14)

63

4 MIXED REALITY APPLICATION DEVELOPMENT

The same equations can be applied to calculate the motion of the second and third
pistons. Finally, the transformation of the end-effector must be described. This transfor-
mation can be performed either using inverse kinematics during runtime or by deriving
an analytical solution for the mechanism’s kinematics. Assuming that the motion of the
effector is constrained between 0 and 7, an analytical solution for the four-bar mechanism
of the effector can be derived.

Figure 4.14: Detail at effector mechanism

Given the known link lengths [y, l5, I3, [4 and the measured angle 3, the length [of the
diagonal linkage connecting opposite joints in the four-bar mechanism can be calculated.

l= \/l% + 13 — 21115 cos(p3) (4.15)

Knowing that the first link is rotated by angle 3, and having all the link lengths, the
rotation of the second link can be obtained using.

(51 =T — 1/11 - w4 (416)
Where 9, and 1), are.
2 72 _ 72
Yy = arccos (%—2&11) (4.17)
2 12 _ 72
1y = arccos (#) (4.18)

Using Equations 4.17 and 4.19, the remaining angles required to determine the rotation
of the effector can be calculated. The second rotation angle is:

(52 = 7,02 — ¢3 (419)

64

4 MIXED REALITY APPLICATION DEVELOPMENT

4.6.2 Modeling of an excavator

The excavator was recreated using the open-source all-in-one 3D modeling software Blender.
This software offers a wide range of tools for creating game-ready assets. The basic work-
flow begins with preparing a 2D sketch, blueprint, or photograph. These 2D representa-
tions can be placed in multiple viewports as references [34].

3D modeling typically starts with the construction of simple shapes. These shapes are
then improved by adding finer details, often through mesh sculpting. While sculpting is
commonly used for organic forms, it can also be applied to technical objects.

The detailed 3D model is not suitable as a game asset because it usually contains
millions of polygons. To optimize the model, it must be re-meshed, either automatically
or manually. Automatic re-meshing can lead to lighting artifacts, so manual re-meshing
is often preferred.

Since re-meshing significantly reduces detail, a method for detail preservation is re-
quired. A high-polygon mesh is used to generate a normal map, a texture that stores
surface detail through image data. This approach enables much higher visual quality
than what the simplified mesh geometry would allow.

In addition to geometry, the model includes various colors and material properties,
which are stored in texture maps. The albedo map contains the base color of the object,
either with or without indirect lighting. The roughness map defines the amount of surface
reflectivity. The specular map specifies the shininess of highlights on the surface. The
textures are visible in the figure (4.15). To generate these textures, the 3D object must
be projected onto a 2D plane with a process known as UV unwrapping.

Figure 4.15: Textures for the arm segment

65

4 MIXED REALITY APPLICATION DEVELOPMENT

The origin of each object was placed at the joint, and all objects were initially posi-
tioned at the global coordinate system’s origin. This setup enables the use of rotation
matrices for subsequent positioning and animation. The final models are shown in Figure
4.16.

jl“'ﬂl“

Figure 4.16: Individual objects

4.6.3 Implementation and animation

The finalized models were exported in GLTF format, and the textures in PNG format,
which supports alpha blending. Importing everything into the Meta Spatial Editor is
handled via a single import button. After assigning the textures, the scene with the
models is ready for programming. To enable movement of individual objects, the meshes
must be saved into an entity object. The following code demonstrates this workflow.

private var arm3: Entity? = null

arm3 = composition.getNodeByName ("R3") .entity

To enable the use of the kinematic model, several helper functions were implemented.
These functions create four-by-four identity, rotation, and translation matrices.

fun Ident (): Matrix44{...}
fun Ry (): Matrix44{...}
fun Rz (): Matrixd44{...}
fun Ty (): Matrix44{...}
fun Tx(): Matrix44{...}

66

4 MIXED REALITY APPLICATION DEVELOPMENT

Using these helper functions, it is possible to exactly recreate the kinematic model
described by equations 4.2 and 4.3. The implementation of the remaining computations
follows a analogous approach.

myMatrix = Ident () =

Ty (h+H) =

Ry (GlobalData.numbers.vard.toFloat ()) =
Rz (phil) =

Ty (L1) =

Rz (phi2) =

Ty (L22)

myVec = myMatrix * Vector4(0.0F, 0.0F, 0.0F, 1.0F)

myMatrix = Ident () =

Rz (delta2 - PI.toFloat()) =
Rz (phi2) =
Rz (phil) =

Ry (GlobalData.numbers.vard4.toFloat ())

The Pose of the arm3 entity must be set using a translation vector and a quaternion
representing the rotation. The quaternion can be derived from the rotation matrix. The
following code demonstrates how to apply the transformation.

arm3?.setComponent (
Transform (
Pose (

Vector3 (-myVec.x, myVec.y, myVec.z),

myMatrix.decompose () .first.q

These calculations are encapsulated in the Fkine function, which is called every time
there is a change in joint angle variables.

67

5 Conclusion

The goal of this thesis was to develop a mixed reality (MR) application capable of visu-
alizing surroundings, center of mass, and the internal states of an excavator operating in
a demolition environment.

To begin, research into immersive technologies was conducted. It provided an un-
derstanding of various commercially available devices. These were compared based on
optical and display quality, computational capabilities and software support. The chosen
headset, Meta Quest 3, offered a good compromise between cost and capabilities, broad
developer support, and an accessible SDK.

One of the objectives of this thesis was to develop a measurement methodology for
acquiring the center of mass of the excavator. This involved the design and fabrication
of a force gauge capable of measuring a five-ton excavator, as well as the creation of
a C++ application for joint coordinate measurement using OpenCV’s ArUco markers.
Early testing confirmed successful data acquisition for both joint coordinates and force
measurements. However, the subsequent mass estimation of the excavator showed low
accuracy, likely due to measurement noise and sensor imprecision. Interestingly, the center
of mass proved less sensitive to arm positioning than expected, reducing the impact of
the estimation error.

The MR application was developed with a focus on integrating four parallel video
streams with minimal latency. RTSP, HLS, and UDP transfer protocols were tested to
identify the most effective streaming approach. RTSP proved to be insufficient due to high
latency above two seconds and the inability to use live offset tracking. UDP streaming
with minimal buffering yielded the lowest latency, achieving a minimum of 100 ms and an
average of around 200 ms. Although HLS offered higher latency, it proved more robust
and supported live offset tracking. UDP was chosen for its speed. In parallel, bidirectional
data transfer using WebSockets was also implemented, achieving a latency of 20 ms.

Additionally, a GUI was implemented, providing the operator with critical information
such as temperature, pressure, and the center of mass.

Using the open-source application Blender, a 3D model of the excavator was created.
A mathematical kinematic model was subsequently derived and implemented into the MR,
environment, allowing the virtual excavator to accurately mirror the movements of its
real-world equivalent.

Testing on a real system was conducted. First, the accuracy of ArUco pose estima-
tion was evaluated using various camera calibration procedures. Poor calibration methods
resulted in high reprojection errors, which caused tracking failures. In contrast, effective
calibration, requiring at least ten well-captured images, achieved reprojection errors of
less than one pixel, ensuring reliable tracking. Secondly, network latency was measured
in relation to the distance from the WiFi transmitter. While latency remained relatively
consistent, connection stability declined once the signal strength dropped below -70 dBm.

68

5 CONCLUSION

5.1 Improvements

e Measurement:

— Increase of measurement accuracy in order to improve mass estimation preci-
sion.

e Application:

— Utilization of OpenXR CPP development.
— Direct implementation of ArUco marker tracking within the MR headset.

— Opverall improvement of the application reliability.
e User feedback:

— Transition to more intuitive controls using a physical controller instead of hand
tracking.
— Introduction of depth masking to improve visual realism in MR.

— Addressing occasional jitter issues for a smoother user experience.

69

List of Abbreviations

2D
3D
API

Two Dimensional
Three Dimensional

Application Programming Interface

AR Augmented Reality

COM

Center Of Mass

CR Contrast Ratio

DAQ
DASH
DRM
FEM
FOV
FPS
GLSL
GUI
HLS
HMD
HTTP
HW
ID
JSON
LCD

Data AcQuisition

Dynamic Adaptive Streaming over HTTP
Digital Rights Management

Finite Element Method

Field Of View

Frames Per Second

Graphics library Shading Language
Graphical User Interface

HTTP Live Streaming

Head Mounted Display

HyperText Transfer Protocol
HardWare

[Dentifier

JavaScript Object Notation

Liquid Crystal Display

LiDAR Light Detection and Ranging

LL
MEMS

Low Latency

Micro Electro Mechanical System

70

5 CONCLUSION

MIME
MR
OLED
oS
PC
PPD
PPI
RGB
RTP
RTSP
SDK
SNR
SoC
TCP
UDP
URI
VR
XML
XR

Multipurpose Internet Mail Extensions

Mixed Reality

Organic Light Emitting Diode
Operating System

Personal Computer

Pixels Per Degree

Pixels Per Inch

Red Green Blue (Color)

Real Time Protocol

Real Time Streaming Protocol
Software Development Kit
Signal to Noise Ratio

System on Chip

Transmission Control Protocol
User Datagram Protocol
Uniform Resource Idetifier
Virtual Reality

eXtensible Markup Language

eXtended Reality

71

References

[10]

bigscreenvr.com [https://www.bigscreenvr.com/|. [N.d.]. [Accessed 21-05-2025].

MeganeX superlight 8K — en.shiftall.net [https://en.shiftall.net/products/
meganex8k|. [N.d.]. [Accessed 21-05-2025].

Virtual reality - Wikipedia — en.wikipedia.org [https://en.wikipedia.org/wiki/
Virtual_reality|. [Accessed 30-04-2025].

Augmented reality - Wikipedia — en.wikipedia.org [https://en.wikipedia.org/
wiki/Augmented_reality]. [Accessed 30-04-2025].

RAGHAVAN;, Rithesh. What Is XR (Extended Reality) and Application of XR in
Various Industries — acowebs.com |[https://acowebs.com/what-is-extended-

reality-xr/|]. [Accessed 30-04-2025].

SPEICHER, Maximilian; HALL, Brian D.; NEBELING, Michael. What is Mixed
Reality? In: Proceedings of the 2019 CHI Conference on Human Factors in Comput-
ing Systems. ACM, 2019, pp. 1-15. CHI "19. Available from DOI1: 10.1145/3290605.
3300767.

JOYJAZ. Microsoft HoloLens — learn.microsoft.com [https://learn.microsoft.
com/cs-cz/hololens/]. [N.d.]. [Accessed 21-05-2025].

Ray-Ban Meta Wayfarer Al Glasses and Sunglasses — meta.com [https://www.
meta.com/ai-glasses/wayfarer/]. [N.d.]. [Accessed 21-05-2025].

Spatial Anchors Overview — developers.meta.com [https://developers .meta.
com/horizon /documentation /unity /unity - spatial - anchors - overview/|.

[N.d.]. [Accessed 21-05-2025].

Lens Material Properties - EyeWiki — eyewiki.org [https://eyewiki.org/Lens_
Material_Properties|. [N.d.]. [Accessed 21-05-2025].

72

https://www.bigscreenvr.com/
https://en.shiftall.net/products/meganex8k
https://en.shiftall.net/products/meganex8k
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Augmented_reality
https://en.wikipedia.org/wiki/Augmented_reality
https://acowebs.com/what-is-extended-reality-xr/
https://acowebs.com/what-is-extended-reality-xr/
https://doi.org/10.1145/3290605.3300767
https://doi.org/10.1145/3290605.3300767
https://learn.microsoft.com/cs-cz/hololens/
https://learn.microsoft.com/cs-cz/hololens/
https://www.meta.com/ai-glasses/wayfarer/
https://www.meta.com/ai-glasses/wayfarer/
https://developers.meta.com/horizon/documentation/unity/unity-spatial-anchors-overview/
https://developers.meta.com/horizon/documentation/unity/unity-spatial-anchors-overview/
https://eyewiki.org/Lens_Material_Properties
https://eyewiki.org/Lens_Material_Properties

REFERENCES

[11] 3 Types Of VR Headset Lenses Explained — Which One Is Best For You? - Vskel.com
— wskel.com |[https://vskel.com/3-types-of-vr-headset-lenses/|. [N.d.].
[Accessed 21-05-2025].

[12] Fresnel lens - Wikipedia — en.wikipedia.org [https://en.wikipedia.org/wiki/
Fresnel_lens]. [N.d.]. [Accessed 21-05-2025].

[13] PASCHOTTA, Dr. Riidiger. Fresnel lenses — rp-photonics.com [https://www.rp-
photonics.com/fresnel_lenses.html#0ptical-Performance|. [N.d.]. [Accessed
21-05-2025].

[14] Ray Optics Simulation - PhyDemo — phydemo.app [https://phydemo.app/ray-
optics/|. [N.d.]. [Accessed 21-05-2025].

[15] Aspheric lens - Wikipedia — en.wikipedia.org [https://en.wikipedia.org/wiki/
Aspheric_lens]. [N.d.]. [Accessed 21-05-2025].

[16] The world’s most advanced virtual and mized reality devices. — varjo.com |[https:

//varjo.com/|. [N.d.]. [Accessed 21-05-2025].

[17) SCT4DMIN. Looking Behind the Lens of Meta’s VR Optics - Smart Cities Tech
— smartcitiestech.io [https://smartcitiestech.io0/2022/06/1looking-behind-

the-lens-of-metas-vr-optics/|. [N.d.]. [Accessed 21-05-2025].

[18] Meta - Shop MR, VR Headsets & Al Glasses — meta.com |[https://www.meta.
com/quest/quest-3/]. [N.d.]. [Accessed 21-05-2025].

[19] LANG, Ben. DigilLens is Developing a Waveguide Display for 150 Degree XR Head-
sets — roadtovr.com [https://www.roadtovr.com/digilens-developing-150-
degree-waveguide-display-for-ar-vr-xr-headsets/]. [N.d.]. [Accessed 21-05-
2025).

[20] Field of view - Wikipedia — en.wikipedia.org [https://en.wikipedia.org/wiki/
Field_of _view]. [N.d.]. [Accessed 21-05-2025].

[21] MUSIL, Richard. HMD Geometry Database — risa2000.github.io [https://risa2000.
github.io/hmdgdb/|. [N.d.]. [Accessed 21-05-2025].

73

https://vskel.com/3-types-of-vr-headset-lenses/
https://en.wikipedia.org/wiki/Fresnel_lens
https://en.wikipedia.org/wiki/Fresnel_lens
https://www.rp-photonics.com/fresnel_lenses.html#Optical-Performance
https://www.rp-photonics.com/fresnel_lenses.html#Optical-Performance
https://phydemo.app/ray-optics/
https://phydemo.app/ray-optics/
https://en.wikipedia.org/wiki/Aspheric_lens
https://en.wikipedia.org/wiki/Aspheric_lens
https://varjo.com/
https://varjo.com/
https://smartcitiestech.io/2022/06/looking-behind-the-lens-of-metas-vr-optics/
https://smartcitiestech.io/2022/06/looking-behind-the-lens-of-metas-vr-optics/
https://www.meta.com/quest/quest-3/
https://www.meta.com/quest/quest-3/
https://www.roadtovr.com/digilens-developing-150-degree-waveguide-display-for-ar-vr-xr-headsets/
https://www.roadtovr.com/digilens-developing-150-degree-waveguide-display-for-ar-vr-xr-headsets/
https://en.wikipedia.org/wiki/Field_of_view
https://en.wikipedia.org/wiki/Field_of_view
https://risa2000.github.io/hmdgdb/
https://risa2000.github.io/hmdgdb/

REFERENCES

[22] CHEN, Haiwei; TAN, Guanjun; WU, Shin-Tson. Ambient contrast ratio of LCDs
and OLED displays. Optics Fxpress. 2017, vol. 25, p. 33643. 1SSN 1094-4087. Avail-
able from DOI: 10.1364/0E.25.033643.

(23] MicroOLED and MicroLED: The Future of AR/VR Displays — displaydaily.com
[https://displaydaily.com/micro-oled-and-microled-the-future-of-ar-
vr-displays/]. [N.d.]. [Accessed 22-05-2025].

[24] VRcompare - The Internet’s Largest VR € AR Headset Database — vr-compare.com
[https://vr-compare.com/|. [N.d.]. [Accessed 22-05-2025].

[25] LTD., Arm. Building the Future of Computing — arm.com [https://www.arm.
com/|. [N.d.]. [Accessed 22-05-2025].

[26] Qualcomm Snapdragon XR2 5G Platform — Qualcomm — qualcomm.com |[https:
//www . qualcomm. com/products/mobile/snapdragon/xr-vr-ar/snapdragon-

xr2-5g-platform|. [N.d.]. [Accessed 22-05-2025].

[27] OSTHOFF, Andreas. Qualcomm Snapdragon X Elite Analysis - More efficient than
AMD & Intel, but Apple stays ahead — notebookcheck.net [https://www.notebookcheck.
net/Qualcomm-Snapdragon-X-Elite-Analysis-More-efficient-than-AMD-
Intel-but-Apple-stays-ahead.850221.0.html]. [N.d.]. [Accessed 22-05-2025].

[28] Frostbite (game engine) - Wikipedia — en.wikipedia.org [https://en.wikipedia.
org/wiki/Frostbite_(game_engine)]. [N.d.]. [Accessed 22-05-2025].

[29] Snowdrop (game engine) - Wikipedia — en.wikipedia.org [https://en.wikipedia.
org/wiki/Snowdrop_(game_engine)]. [N.d.]. [Accessed 22-05-2025].

[30] CASSAING, Jonathan. Which architecture should be implemented to manage data

from the real world, in an Unreal Engine 5 simulator and in the context of mized

reality? 2023.

[31] Unreal Engine 5 — unrealengine.com [https://www .unrealengine . com/en-

US/unreal-engine-5]. [N.d.]. [Accessed 22-05-2025].

[32] Unity (game engine) - Wikipedia — en.wikipedia.org [https://en.wikipedia.
org/wiki/Unity_(game_engine)]|. [N.d.]. [Accessed 22-05-2025].

74

https://doi.org/10.1364/OE.25.033643
https://displaydaily.com/micro-oled-and-microled-the-future-of-ar-vr-displays/
https://displaydaily.com/micro-oled-and-microled-the-future-of-ar-vr-displays/
https://vr-compare.com/
https://www.arm.com/
https://www.arm.com/
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.notebookcheck.net/Qualcomm-Snapdragon-X-Elite-Analysis-More-efficient-than-AMD-Intel-but-Apple-stays-ahead.850221.0.html
https://www.notebookcheck.net/Qualcomm-Snapdragon-X-Elite-Analysis-More-efficient-than-AMD-Intel-but-Apple-stays-ahead.850221.0.html
https://www.notebookcheck.net/Qualcomm-Snapdragon-X-Elite-Analysis-More-efficient-than-AMD-Intel-but-Apple-stays-ahead.850221.0.html
https://en.wikipedia.org/wiki/Frostbite_(game_engine)
https://en.wikipedia.org/wiki/Frostbite_(game_engine)
https://en.wikipedia.org/wiki/Snowdrop_(game_engine)
https://en.wikipedia.org/wiki/Snowdrop_(game_engine)
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unity_(game_engine)

REFERENCES

33]

[34]

[38]

[39]

ENGINE, Godot. Godot Engine - Free and open source 2D and 3D game engine —
godotengine.org [https://godotengine.org/|. [N.d.]. [Accessed 22-05-2025].

FOUNDATION, Blender. blender.org - Home of the Blender project - Free and
Open 3D Creation Software — blender.org [https://www.blender .org/]. [N.d.].
[Accessed 22-05-2025].

MARLENAKLEIN-MSFT. Mized Reality Toolkit 3 Developer Documentation - MRTKS
— learn.microsoft.com |[https://learn.microsoft.com/en-us/windows/mixed-

reality/mrtk-unity/mrtk3-overview/]. [N.d.]. [Accessed 22-05-2025].

Steam VR - Valve Developer Community — developer.valvesoftware.com [https :

//developer.valvesoftware.com/wiki/SteamVR]. [N.d.]. [Accessed 22-05-2025].

Build new augmented reality experiences that seamlessly blend the digital and physi-
cal worlds — ARCore — Google for Developers — developers.google.com [https:
//developers.google.com/ar|. [N.d.]. [Accessed 22-05-2025].

Resources — PICO Developer — developer.picoxr.com [https : / / developer .
picoxr.com/resources/|. [N.d.]. [Accessed 22-05-2025].

Qualcomm Announces Vuforia for Digital FEyewear, Powering the Next Genera-
tion of Augmented Reality Experiences — Qualcomm — qualcomm.com [https :
//www.qualcomm.com/news/releases/2014/09/qualcomm-announces-vuforia-

digital-eyewear-powering-next-generation|. [N.d.]. [Accessed 22-05-2025].

Varjo Native SDK — developer.varjo.com [https://developer.varjo.com/docs/
native/varjo-native-sdk]. [N.d.]. [Accessed 22-05-2025].

WebXR - Wikipedia — en.wikipedia.org [https://en.wikipedia . org/wiki/
WebXR|. [N.d.]. [Accessed 22-05-2025].

OpenXR - High-performance access to AR and VR —collectively known as XR—
platforms and devices — khronos.org [https://www.khronos.org/openxr/]. [N.d.].
[Accessed 22-05-2025].

LEVENBERG, Kenneth. A method for the solution of certain non-linear problems
in least squares. Quarterly of Applied Mathematics. 1944, vol. 2, pp. 164-168. ISSN
0033-569X. Available from DOI: 10.1090/gam/10666.

75

https://godotengine.org/
https://www.blender.org/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://developer.valvesoftware.com/wiki/SteamVR
https://developer.valvesoftware.com/wiki/SteamVR
https://developers.google.com/ar
https://developers.google.com/ar
https://developer.picoxr.com/resources/
https://developer.picoxr.com/resources/
https://www.qualcomm.com/news/releases/2014/09/qualcomm-announces-vuforia-digital-eyewear-powering-next-generation
https://www.qualcomm.com/news/releases/2014/09/qualcomm-announces-vuforia-digital-eyewear-powering-next-generation
https://www.qualcomm.com/news/releases/2014/09/qualcomm-announces-vuforia-digital-eyewear-powering-next-generation
https://developer.varjo.com/docs/native/varjo-native-sdk
https://developer.varjo.com/docs/native/varjo-native-sdk
https://en.wikipedia.org/wiki/WebXR
https://en.wikipedia.org/wiki/WebXR
https://www.khronos.org/openxr/
https://doi.org/10.1090/qam/10666

REFERENCES

[44]

[45]

[49]

[50]

[51]

[52]

MARQUARDT, Donald W. An Algorithm for Least-Squares Estimation of Non-
linear Parameters. Journal of the Society for Industrial and Applied Mathematics.

1963, vol. 11, pp. 431-441. 1SSN 0368-4245. Available from DOI: 10.1137/0111030.

GAVIN, Henri P. The Levenberg-Marquardt method for nonlinear least squares curve-
fitting problems ¢ (©). 2013. Available also from: https://api.semanticscholar.
org/CorpusID:5708656.

DAHLIN, Johan; SCHON, Thomas B. Getting Started with Particle Metropolis-
Hastings for Inference in Nonlinear Dynamical Models. Journal of Statistical Soft-

ware. 2019, vol. 88. 1SSN 1548-7660. Available from DOI: 10.18637/jss.v088.c02.

Brokk 520D - Brokk Global — brokk.com [https://www .brokk . com/product/
brokk-520d/]. [N.d.]. [Accessed 22-05-2025].

XY (T Rosettes) strain gauges — hbkworld.com [https://www.hbkworld.com/en/
products/transducers/strain/experimental -testing/y-series/xy#!ref _
hbm. com|. [N.d.]. [Accessed 22-05-2025].

GARRIDO-JURADO, S.; MUNOZ-SALINAS, R.; MADRID-CUEVAS, F.J.; MARIN-
JIMENEZ, M.J. Automatic generation and detection of highly reliable fiducial

markers under occlusion. Pattern Recognition. 2014, vol. 47, pp. 2280-2292. 1SSN
00313203. Available from DOI: 10.1016/j.patcog.2014.01.005.

Home — opencv.org [https://opencv.org/|. [N.d.]. [Accessed 22-05-2025].

WENG, J.; COHEN, P.; HERNIOU, M. Camera calibration with distortion mod-
els and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1992, vol. 14, no. 10, pp. 965-980. Available from DOI: 10.1109/34.
159901.

OpenCV: Camera Calibration and 3D Reconstruction — docs.opencv.org [https :
//docs . opencv . org/4.x/d9/d0c/group__calib3d . html]. [N.d.]. [Accessed
22-05-2025].

Rodrigues’ rotation formula - Wikipedia — en.wikipedia.org [https://en.wikipedia.

org/wiki/Rodrigues%27_rotation_formulal. [N.d.]. [Accessed 22-05-2025].

acA1920-50gm — Basler AG — baslerweb.com [https://www.baslerweb.com/
en/shop/acal920-50gm/|. [N.d.]. [Accessed 23-05-2025].

76

https://doi.org/10.1137/0111030
https://api.semanticscholar.org/CorpusID:5708656
https://api.semanticscholar.org/CorpusID:5708656
https://doi.org/10.18637/jss.v088.c02
https://www.brokk.com/product/brokk-520d/
https://www.brokk.com/product/brokk-520d/
https://www.hbkworld.com/en/products/transducers/strain/experimental-testing/y-series/xy#!ref_hbm.com
https://www.hbkworld.com/en/products/transducers/strain/experimental-testing/y-series/xy#!ref_hbm.com
https://www.hbkworld.com/en/products/transducers/strain/experimental-testing/y-series/xy#!ref_hbm.com
https://doi.org/10.1016/j.patcog.2014.01.005
https://opencv.org/
https://doi.org/10.1109/34.159901
https://doi.org/10.1109/34.159901
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
https://www.baslerweb.com/en/shop/aca1920-50gm/
https://www.baslerweb.com/en/shop/aca1920-50gm/

REFERENCES

[55]

[56]

[59]

[60]

[61]

[64]

Nvidia Super Developer Kit Jetson Orin Nano 8 GB 6 x 1.5 GHz — Conrad Elec-
tronic — conrad.cz [https://www.conrad.cz/cs/p/nvidia-super-developer-
kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html]. [N.d.]. [Accessed
23-05-2025].

Jetson Orin Nano Super Developer Kit — nvidia.com |[https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-

developer-kit/|]. [N.d.]. [Accessed 23-05-2025].

Building with Meta Spatial SDK — developers.meta.com |[https://developers.
meta.com/horizon/develop/spatial-sdk|. [N.d.]. [Accessed 23-05-2025].

Meta Spatial Editor for Windows — developers.meta.com |[https://developers.
meta.com/horizon/downloads/package/meta-spatial-editor-for-windows/|.

[N.d.]. [Accessed 23-05-2025].

Download Android Studio € App Tools - Android Developers — developer.android.com
[https://developer.android.com/studio]. [N.d.]. [Accessed 23-05-2025].

Low Latency, LL-HLS, LL-DASH — ottball.com [https://ottball.com/low-
latency-11-hls-11-dash/|. [N.d.]. [Accessed 23-05-2025].

OPTIVIEW, Dolby. Low Latency DASH (LL-DASH) — optiview.dolby.com [https:
/ /optiview . dolby . com/resources/blog/streaming/low- latency-dash/|.
[N.d.]. [Accessed 23-05-2025].

OVENMEDIAENGINE. Low-Latency HLS: The Era of Flexible Low-Latency Stream-
ing — OvenMediaEngine [https://medium.com/@0venMediaEngine/low-latency-
hls-the-era-of-flexible-low-latency-streaming-ec675aa61378]. [N.d.].
[Accessed 23-05-2025].

Supported media formats — Android media — Android Developers — devel-
oper.android.com [https://developer.android.com/media/platform/supported-
formats|. [N.d.]. [Accessed 23-05-2025].

Meta Quest for Creators — creator.oculus.com |[https://creator.oculus.com/

media - studio/documentation/rectangular - video-spec/|. [N.d.]. [Accessed

23-05-2025].

77

https://www.conrad.cz/cs/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html
https://www.conrad.cz/cs/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/nano-super-developer-kit/
https://developers.meta.com/horizon/develop/spatial-sdk
https://developers.meta.com/horizon/develop/spatial-sdk
https://developers.meta.com/horizon/downloads/package/meta-spatial-editor-for-windows/
https://developers.meta.com/horizon/downloads/package/meta-spatial-editor-for-windows/
https://developer.android.com/studio
https://ottball.com/low-latency-ll-hls-ll-dash/
https://ottball.com/low-latency-ll-hls-ll-dash/
https://optiview.dolby.com/resources/blog/streaming/low-latency-dash/
https://optiview.dolby.com/resources/blog/streaming/low-latency-dash/
https://medium.com/@OvenMediaEngine/low-latency-hls-the-era-of-flexible-low-latency-streaming-ec675aa61378
https://medium.com/@OvenMediaEngine/low-latency-hls-the-era-of-flexible-low-latency-streaming-ec675aa61378
https://developer.android.com/media/platform/supported-formats
https://developer.android.com/media/platform/supported-formats
https://creator.oculus.com/media-studio/documentation/rectangular-video-spec/
https://creator.oculus.com/media-studio/documentation/rectangular-video-spec/

REFERENCES

[65]

[66]

GitHub - bluenviron/mediamtz: Ready-to-use SRT / WebRTC / RTSP / RTMP /
LL-HLS media server and media proxy that allows to read, publish, proxry, record
and playback video and audio streams. — github.com [https://github . com/

bluenviron/mediamtx|. [N.d.]. [Accessed 23-05-2025].

Photopea — Online Photo Editor — photopea.com [https://www.photopea.com/|.
[N.d.]. [Accessed 23-05-2025].

78

https://github.com/bluenviron/mediamtx
https://github.com/bluenviron/mediamtx
https://www.photopea.com/

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Diagram representing research flow 9
Diagram representing state of realities 10
Difference between spherical and fresnel lens 11
WaveGuide lens [19] 12
SDK and engine logos Lo 15
Brokk 520 [47] 18
Concept of the measurement 19
Dependency table for two angleso 20
Sketch and render of physical model 0. 21
Force sensor dimensions and layout 23
Schematic of the connections 24
Force transducer 24
(a) Force gauge linearity (b) Linearity error 25
Calibration and validation reprojection error 32
ArUco position acquisition APP 34
Acquisition station 35
Measured excavatoro Lo 36
Deviation of total normal force 37
Strain on the front (a) and on the back transducers (b) 38
Strain after lifting the excavator 39
Exctracted ArUco angles 41
Applied forces 44
Meta Quest 3 [18] 46
Overall system architecture 47
Basler camera body, Jetson Nano 48
Meta spatial editor 49
Video stream setup 50
latency minimiyation using seekTo00 54
Panel registration Lo 56
Graphical user interface oo 58
Sequence of the network latency measurement 59
Latency with distance 60
Simple manipulatoro 61
More accurate manipulator 62
Detail at the first portion of manipulator 62
Detail at effector mechanism L. 64
Textures for the arm segment 65

LIST OF FIGURES

4.16 Individual objects

80

	Introduction
	General research
	Immersive reality
	Software development tools
	Measurement and estimation methods

	Center of mass measurement and estimation
	Specification and general concept
	Proof of concept
	Force transducer development
	Manipulator joint coordinates estimation
	On-site measurement
	Analysis
	Measurement conclusion

	Mixed reality application development
	Specification of application scope
	System design and architecture
	Video stream and data transfer implementation
	User interface and visualization
	System latency
	Excavator kinematic model implementation

	Conclusion
	Improvements

	List of Abbreviations
	References
	List of Figures

