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Abstract

In transmission electron microscope imaging, the electrons undergo the effects of inelas-
tic scattering primarily due to phonon excitations. Effects of inelastic scattering cause
a gradual decrease in the intensity of the elastic scattering component of the electron
beam. We thus need a good model of absorption in order to accurately simulate TEM
images. In the thesis we utilize the quantum scattering theory and compare two frozen
phonon models and complex absorptive model of absorption via results from extensive
multislice simulations and molecular dynamics simulations.

Keywords

electron scattering, absorption model, frozen phonon model, transmission electron mi-
Croscopy

Abstrakt

Pfi zobrazovédni v transmisni elektronové mikroskopii dochazi pfi interakci elektronti
se vzorkem k neelastickému rozptylu vlivem excitaci fononti. Efekty neelastického
rozptylu pak zapfi¢ini sniZeni intenzity elastické slozky elektronového svazku. Pii
simulaci TEM obrazu je proto dilezité uzivat spravny absorpéni model. V této préci
vyuZivame kvantové teorie rozptylu a porovnavame dva modely takzvanych zamrznutych
fonond vhci komplexnimu absorptivnimu modelu za pomoci vysledkt z rozséhlych

multislice simulaci a molekuldrni dynamiky.
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rozptyl elektronti, absorpéni model, model zamrznutych fonont, transmisni elektronova
mikroskopie

HAJEK, Martin. Comparison of absorptive model of electron scattering to frozen phonon model
calculations. Master’s Thesis. Jan RUSZ (supervisor). Brno: Brno University of Technol-
ogy, Faculty of Mechanical Engineering, 2025. Available at:

https:/ /www.vut.cz/en/students/final-thesis/detail / 166097 .






Hereby I declare that I wrote the diploma thesis Comparison of absorptive model of electron
scattering to frozen phonon model calculations by myself under the supervision of doc.
RNDr. Jan Rusz, Ph.D., all sources and references are cited and listed in Bibliography
section. This work was created with the help of generative AI model ChatGPT, which
was used for text formatting. In case of using Al, the generated text has been reviewed
and checked, and I take full responsibility for the text in the thesis.

Bc. Martin Hajek



Acknowledgements

One big Thanks belongs to my supervisor Jan Rusz, not only for the enjoyable talks,
discussions, and successfully guiding me through the writing of this thesis, but also
for the wonderful opportunity to work with You and Your amazing group at Uppsala
University, where I have been warmly welcomed. Also, Thanks to all the friends at
Uppsala, who always kindly helped me whenever I needed, and for the fun we had
inside or outside of academia.

I also cannot forget to express my great Gratitude, which belong to Andrea Kone¢n4,
who introduced me to the topics of electron microscopy and led me from almost the
beginning of my university studies. In my five-year studies at FyzING, I have always
been accompanied by great friends, and together, with the help of our mutual support,
we overcame all the obstacles we faced, and for this, I am very grateful to them.

Lastly I have to say Thanks to my parents, mym rodiciim Dékuji za tu nekoncici, nevycer-
patelnou podporu, kterou mi ddvite Q.

The thesis was written with the support of the Czech Science Foundation GACR under
the Junior Star grant No. 23-05119M.



Contents

ix

Introduction

1

Fundamentals of Transmission Electron Microscopy

1.1 TEM Construction . . .. .. ... ... ... ... ... .. .. ......

1.2 Basics of Imagingin TEM . . .. ... ... ... .. ... .. ......
121 STEMMode . . . ... .. .

1.3 Kinematical Theory of Electron Diffraction . . ... ... ... .......
131 FormFactors . ... ... ... ... .. .. ... .
1.3.2 Ewald Sphere and Laue zones . . . ... ...............

14 Quantum Mechanical Theory of Scattering . . . ... ... .........
141 Scattering Amplitude and Born Approximation . . ... ... ...
142 Phase Object Approximation . . .. ... ...............

1.5 Multislice Method . . . . . ... ... L o
1.5.1 Propagation of Electron Wave Function . . . . ... ... ......
1.5.2  Space Discretization and Multislice Algorithm . . . . ... ... ..

Absorption Models

2.1 Thermal Diffuse Scattering . . .. . ... ... ................
211 Debye-Waller Factor . . .. ... ....................

2.2 Frozen PhononModels . . . . ... ... ... ... .. o L.
221 EinsteinModel . . ... ... ... o o oo oo
2.2.2 Molecular Dynamics for Correlated Atomic Motion Model

2.3 Quantum Excitation of Phonons . . ... ... ... ... ... .......
2.3.1 Statistics for Einsteinmodel . . . . . ... ... ..o 00

2.4 Complex Absorptive Model . . . . ... .. ... .. ... .. .. . ...

Calculations and Results

3.1 Crystal Materials and Molecular Dynamics . . . .. ... ..........
311 Diamond . . . . . . . . . e e
3.1.2 Strontium Titanate . . . . ... . ... ... ... ... .
313 Silicon . ... e e

3.2 Multislice Calculations . . . . . .. ... ... .. .. e

3.3 Resulting Diffraction Patterns . . . . . ... ..................
331 Diamond Results . . . ... ... ... ... ... .. ... ...
332 STOResults . . .. .. .. .. . .
3.3.3 Silicon CBED Results of Si (111) . . . ... ... ... ... .....

34 ComparisonoftheModels. . . .. ...... ... ... ... .. ...

O 0N O W W

10
12
12
14
14
15
16

19
19
20
21
21
22
24
26
26



X Contents

3.4.1 Thickness Dependence . . . .. ... ..... .. ... .. ...... 49
Summary 53
List of Abbreviations 55

Bibliography 61



Introduction

Electron microscopy is a rapidly developing field and plays a significant role in many sci-
entific applications such as material science, the semiconductor industry, or biosciences.
Instrumentation development and aberration correction of the last couple of decades
allowed us to acquire an image of the specimen with atomic resolution [1, 2]. With
additional equipment, such as energy filters, we are capable of atomic resolution spec-
troscopies, for example, the electron energy loss spectroscopy [3, 4, 5].

The instrument that reaches the highest resolution in electron microscopy is the trans-
mission electron microscope (TEM) and its modification, capable of operating in scan-
ning mode, so-called scanning transmission electron microscope (STEM). TEMs accel-
erate electrons to energies ranging from tens of keV up to MeV. At such energies, the
electron wavelength is significantly shorter than the inter-atomic distances. Yet, it is
difficult to obtain resolution beyond the capabilities mentioned in [1], which means that
the effect of diffraction, due to the wave-like properties of electrons, is not the primary
limitation of electron imaging. Instead, the resolution limitation in aberration-corrected
systems comes from specimen-related factors such as thermal vibration effects, which
may cause smearing of the image. [6]

A comprehensive understanding of image formation requires a detailed description of
the system, i.e., electron optics, and the electron-specimen interaction, which govern the
contrast and resolution in transmission electron microscopy imaging. The understand-
ing enables us to predict the correct electron optics setup and the shape of the travers-
ing electron wave function. The implementation of the theory of image formation and
specimen-related effects helps us to direct the development of new instrumentation as
well as research in material sciences. With powerful computers and software that utilize
the theory, we can significantly speed up the process of research. [7, 8]

This thesis primarily focuses on the theoretical framework of electron-matter interac-
tion. In transmission electron microscope imaging, when probing the thin specimen
the electrons undergo the effects of elastic and inelastic scattering. The inelastic scatter-
ing is mainly due to thermal excitations of the lattice, so-called phonons. The inelastic
scattering causes an electron energy loss which inherently leads to a gradual decrease
(absorption) in the intensity of the elastic scattering component (elastic channel) of the
electron beam [9].

The inelastic scattering on phonons is also known as thermal diffuse scattering (TDS).
The TDS plays a crucial role in high-resolution transmission electron microscopy (HRTEM)
and electron diffraction since it causes the depletion in the electron elastic channel and
is responsible for thermal smearing [10].



The electrons that are scattered to high scattering angles make up a significant portion
of the intensity signal in the annular dark-field (ADF) and high-angle annular dark-field
(HAADF) [11], that is also known as Z-contrast. The absorptive effects caused by TDS
are more apparent in the ADF/HAADF since the relative value of the inelastic signal
compared to the elastic signal is higher in the ADF/HAADEF than in the low-scattering
angle bright-field (BF) [12].

Various methodologies and models regarding the absorption effects exist. In this thesis,
the widely used complex absorptive potentials method is compared to the more elabo-
rate frozen phonon model coming from correlated atomic motion and Einstein model of
atomic motion, respectively. [13, 14, 15, 16, 17]



Chapter 1

Fundamentals of Transmission
Electron Microscopy

The field of transmission electron microscopy began in the early 1930s with the inven-
tion of the first conventional transmission electron microscope (TEM) by M. Knoll and
E. Ruska [18]. Not much later, the invention of the scanning transmission electron mi-
croscope (STEM) followed [19]. It was anticipated that electron imaging could surpass
conventional light microscopes, because the electron wavelength was much shorter, as
was well-known thanks to L. de Broglie, who stated that every particle of matter can be
assigned a so-called de Broglie wavelength [20] A = h/p, where h is Planck constant and
p is momentum. So, only a few keV of energy (therefore high momentum) is sufficient
to achieve the de Broglie electron wavelength comparable to the atomic scales.

1.1 TEM Construction

Although the electron-optics development faced technical challenges, further research
pushed the boundaries of TEM design, and the first commercial production began in
the late 1930s by Siemens. As time passed, the (S)TEMs were further equipped with
more sophisticated emission guns, electron-optical components, and high-end correc-
tors, which today put it in a leading place in terms of spatial resolution among other
instruments [1, 21]. A simplified fundamental structure of a TEM is shown in Fig. 1.1.
The whole system consists of several key components, namely the electron gun, accel-
erator, condenser system, objective lens, specimen stage, projection system, detection
chamber, and the vacuum system, which is not displayed in the figure for the sake of
simplicity, and since it is mainly an external system. We now proceed in brief discussion
of each of the individual components.

Electron Gun

The most commonly used electron guns are divided, by the emission process, into
thermionic-emission, field-emission, or their combination. The electron beam is pro-
duced and then accelerated by a cascade of electrodes to very high energies.
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Figure 1.1: Schematics of (S)TEM.

Lenses

Lenses in electron microscopes govern the electron beam trajectory along the electron-
optical column. These lenses can be either magnetic or electrostatic, but in TEM, they are
predominantly magnetic and exhibit rotational symmetry. The excitation of magnetic
lenses in electron microscopes is induced by passing an electric current through the
coils of wire wound around a ferromagnetic core. The flowing current generates a
magnetic field, thus a magnetic flux within the material of the lens. The magnetic flux is
concentrated by the high-permeability core and governed through the polepieces onto
the so-called gap of the lens, creating a highly localized, strong magnetic field along
the electron-optical axis. The resulting magnetic field behaves as a lens and acts via
the Lorentz force on the traversing electrons. The force causes electron beam rotation,
which furthermore enables the focusing towards the electron-optical axis. The strength
of focus then relies on the lens design and magnitude of the electric current passing
through the coil’s copper wires. The TEM condenser system consists of two or more
magnetic condenser lenses. Condenser lenses shape the electron beam before it reaches
the objective lens, and together they shape and finally illuminate the specimen. In
both TEM and STEM modes, the objective lens plays the most critical role in forming
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the high-resolution image, and the objective lens design aims to minimize aberrations,
mainly the most influential spherical aberration [22]. The objective lens consists of upper
and lower pieces; between them, in the gap, the specimen is placed. The transmitted
electron beam, containing the specimen imprint, is then imaged and further magnified
with (typically) four projection lenses onto the detectors.

Detectors

In TEM or STEM, various types of detectors are used to capture the signal, each utilizing
slightly different contrast mechanisms. The detector choice relies on the imaging mode
and the nature of the interaction between the electrons and the specimen. We may
divide the primary detectors into bright-field (BF) and dark-field (DF) according to the
scattering angle of the electrons, as discussed in the Introduction. While BF detectors
collect unscattered electrons or the ones that have a very low scattering angle, dark-
field imaging enhances contrast by capturing scattered electrons at large angles. A DF
detector is located off-axis to collect scattered electrons. In TEM, the dark-field imaging
can be performed using apertures placed in the back focal plane of the objective lens to
let through only the electrons scattered at a high angle. On the other hand, in STEM,
the acquisition of the signal is simultaneous, and the annular dark-field (ADF) and
high-angle annular dark-field (HAADF) detectors consist of off-axis annular rings to
collect the electrons at various angles at once. Moreover, special detectors can be used,
such as energy-dispersive X-ray spectroscopy detector for X-ray signal or an electron
energy loss spectrometer; these detectors process the signal originating from the inelastic
interactions in the specimen.

Additional Components

The vacuum system maintains a high vacuum environment, which is necessary for the
TEM operation. The vacuum quality can vary across different parts of the microscope,
depending on the specific requirements of each component, e.g. cold field emission gun
typically requires a very high vacuum for its operation.

Additional components as apertures, deflectors, and stigmators, are present to help
control the electron beam trajectory. The apertures cut off the off-axis part of the electron
beam to control the passing electron current or the electron beam angle, to reduce the
off-axis aberrations effects. The deflectors are used to align the electron beam to the
optical axis and, in STEM mode, are utilized to scan across the sample. The stigmator
basic function is to correct the astigmatism (for example, the ellipticity) introduced by
slight imperfections in the component production. For specific (5)TEM applications,
geometrical aberration correctors can be mounted. Moreover, monochromators can be
used to reduce the energy spread, thus chromatic aberrations.

Having established the fundamental components and instrumentation of a TEM, we
will now take its setup as a given and proceed to focus exclusively on the theoretical
parameters derived from it. But we will keep in mind that every theoretical parameter
is linked with a function of a specific electro-optical component or their combination
and may fundamentally have certain limitations. Our focus will now shift towards the
theoretical aspects of image formation and electron-specimen interactions.
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1.2 Basics of Imaging in TEM

In TEM, a thin sample, typically on the order of several tens of nanometers in thickness,
is irradiated by an electron wave, which interacts strongly with the matter. The electron
beam itself can either be transmitted without interaction or may undergo scattering,
which is either elastic or inelastic. In TEM, the primary contrast is formed via elastic
scattering, which occurs due to Coulomb interactions with electric charges in the sample
(atomic nuclei and distribution of electrons) and preserves the electrons initial energy.

On the other hand, inelastic scattering results in electron energy losses. Additionally, the
inelastic scattering is generally less localized and therefore may degrade the resolution
of the image. However, the inelastic scattering processes, such as plasmon or core-loss
excitations, can provide valuable spatially resolved electronic or chemical information
of the sample via a technique called electron energy loss spectroscopy (EELS) and with
high energy resolution (in tens of meV), one may observe low-loss phonon states.

Incident beam

Sample

Objective lens <

v

Back focal plane ... NN ;

Image plane

Figure 1.2: TEM imaging scheme.

In crystal samples, the scattering angles' depend on the crystallographic structure, and
specific preferential diffraction directions, called Bragg reflections, are then apparent in
the diffraction pattern. In conventional TEM, an aperture can be placed in the back
focal plane to select specific diffraction spots, enabling the BF or the DF imaging. Al-
ternatively, phase-contrast techniques, such as HRTEM, utilize the interference between
scattered and unscattered electron waves to achieve atomic-resolution imaging [23].

In Fig. 1.2 scheme of TEM imaging is displayed. The incident beam is a plane wave
and illuminates the sample homogeneously, we thus say the electron beam wavefront is
parallel. The beam then interacts with the sample and scatters, the objective lens then

Due to the high energies, the electron scattering angles in TEM are usually in the range around 1 — 200
mrad. The signal from so-called back-scattered electrons, utilized in contrast forming in conventional
low-energy scanning electron microscopy (SEM), is too weak to form an image in TEM.
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focuses the scattered beam into the back focal plane and further into the image plane. In
the back focal plane, the diffraction pattern can be observed because the rays diffracted
at the same angle form an image in the reciprocal space. In the image plane real image
of the specimen forms.

1.2.1 STEM Mode

STEM stands for Scanning Transmission Electron Microscope, a different variant of con-
ventional TEM, i.e., STEM operates with a convergent beam of electrons instead of plane
wave illumination. The convergent electron beam is focused into a spatially confined
sub-nanometer electron probe, which is then scanned in a raster pattern across the spec-
imen via the scanning coils. The scanning coil design allows for scanning in two axes
across the designated specimen area and enables the collection of the signal at each pixel

position.
Scan coils . .
[ D) ;2 -------------------------------- 1

Upper-objective |

polepiece D ! \/ v
Sample

Lower-objective S ! /\ o
polepiece DR R T "

Back focal plane

ADF BF ADF

Figure 1.3: STEM imaging scheme.

The objective lens in STEM focuses the incident probe onto the sample, and the contrast
is formed by detecting the transmitted or scattered electrons. The detectors, that is, the
BF detector, ADF, or HAADF detector, collect the signal at various angles. As previously
discussed, low-angle scattered electrons are collected to form BF images, whereas high-
angle scattered electrons are captured by an ADF or HAADF detector, yielding so-called
Z-contrast images, which are sensitive to the atomic number of the atoms present in



8 1.3. Kinematical Theory of Electron Diffraction

the specimen. Unlike the parallel illumination in TEM, the convergent beam in STEM
allows the simultaneous acquisition of multiple signals, enabling thorough analysis of
the sample. Moreover, in the STEM mode, the projection lenses may not be active, so
in this mode of operation, the objective lens can transmit the electron beam directly
to the detectors. The detector signal is then sent via electronics and processed in the
microscope software, where the image is formed pixel by pixel in digital processing.

The resolution in STEM is primarily determined by the size of the probe and the stability
of the scanning system. Modern aberration-corrected STEM instruments can achieve
probe sizes smaller than 1 A, allowing for direct imaging of individual atomic columns
even in complex materials [6, 1, 12].

In Fig. 1.3, a schematic of STEM imaging is presented. The convergent probe scans
pixels and can probe each position thanks to the scanning coils. The coils come in pairs
to create beam shift and beam tilt; in such a way, they create a so-called pivot point
in the front focal plane of the objective lens. Note that in the back focal plane of the
objective lens, we can observe a diffraction pattern similar to TEM mode. However, we
see that what would be one point/pixel in TEM mode is now a diffraction spot of finite
diameter. One can observe these diffraction spots on pixelated detectors in a technique
called convergent beam electron diffraction (CBED); this fact will be utilized later on in
CBED simulation.

1.3 Kinematical Theory of Electron Diffraction

In crystalline solids, the incoming electron wave scatters from the atoms in the lattice
and reflects. The superposition of scattered waves from all the atoms in one or more
atomic planes then results in a diffracted wave at specific angles, provided a diffraction
condition is met. The resulting diffraction pattern contains information about the crys-
tal’s spatial structure and symmetries. A handful of the diffraction conditions laws have
been described, with the most commonly used being Bragg’s law [24]. The diffracted
waves with the wavelength A interfere destructively, or constructively, resulting in bright
spots in the reciprocal (diffraction) space. We write the Bragg’s law as:

2dsin = nA, (1.1)

where d is the distance between two atomic planes, and 6 is the angle between the
atomic plane and the trajectory of the reflected wave.

Although Bragg’s law yields correct results, for the determination of diffracted intensity
distribution, we will need to extend this theory to a more elaborate description. First,
we define lattice basis vectors aj, ap, a3, so that each lattice vector T can be expressed as
a linear combination of the basis vectors: T = uja; + usap + uzaz, where uq,u», uz € 2
and additionally we denote the crystallographic plane by the indices (hkl) as defined in
[24]. Corresponding to real space vectors, we define reciprocal lattice basis vectors:

ay X az az X ai
bi=2n———7—, by =21—"———, by =21————.
ai -az X as ai -az X as ai -az X as

a; X ap
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And similarly as T in real space, we write reciprocal vector G = v1b; + vbs 4 v3bg,
where v1,v5, 03 are integers.”

The diffraction condition then relies on the local property of the crystal n(r), which
describes the periodic electron density (and later on in Section 1.4.1 will turn into the
atomic potential). We can write the function n(r) as a Fourier series with Fourier coeffi-
cients ng:

n(r) =Y nge'S™. (1.2)
G

Now let’s imagine an incoming wave of a wave vector k, that scatters on the local
electron density 7(r) into a wave with the wave vector k' and we define scattering wave
vector q as:

q=k-K. (1.3)

Between two points in the crystal connected with real vector r, the incident and scattered
wave experience a phase shift e'9T. The amount of intensity diffracted in the direction
Kk’ is determined by the scattering amplitude f, which is a function of the local electron
density n(r) and the scattering wave vector q. We integrate over the real space to account
for all the contributions:

F(n,q) = / n(r)e U7 dPr. (1.4)

Furthermore, if we input the Fourier coefficients from 1.2 into 1.4 we get:

fla) =) / ngel ¢~y (1.5)
G

from which we see that the diffraction condition is met for maximum in f(q), when the
reciprocal vector G is equal to the scattering wave vector q, as it results in constructive
interference:

q=0G. (1.6)

1.3.1 Form Factors

We now take a more generalized approach and denote the positions of the atoms in the
crystal r;. Then we may define the so-called atomic form factor as:

fil@) = [ e —x)e s, 1.7)

where 7(r) is the electron density for the single atom. f;(q) is tightly linked to the
scattering amplitude f(q), in other words, the form factor is a scattering amplitude of
one atom. Provided, the diffraction condition 1.6 is satisfied the scattering amplitude fg
can be expressed in terms of single cell structure factor Sg as fg = NSg, where N is the
number of cells from which the diffraction is contributing. The structure factor itself is
a property of the single cell and can be expressed as the following sum:

2The two spaces, real and reciprocal, are complementary, and in TEM we may map them in imaging
mode or diffraction mode of TEM operation, respectively.
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Sg = Zf]-(G)e_iG'rf. (1.8)
)

The definition of form factors in [24] is discussed; however, note that this form factor
definition is applied for X-ray scattering (generally function 7 is a density of "scatterer"),
but can be further recalculated to account for electron scattering by the Mott-Bethe for-
mula [25, 26, 27]:

me? Z— fj)
e, i\, Z) = ’ 1.9
f,](q ) 3291y ( 7 (1.9)

where Z is the atomic number, g is the magnitude of scattering vector, and ¢y is the
vacuum permittivity.

1.3.2 Ewald Sphere and Laue zones

Ewald sphere construction in Fig. 1.4 is commonly used to visualize the process of
diffraction; we do so in the reciprocal space (k space), and the points represent the
reciprocal lattice. The incident vector k is defined by direction and length |k| = 277/A
and is placed at the origin O, the other end of the vector act as a center for the Ewald
sphere, which then inherently has the radius |k|. As stated in [6], any other reciprocal
lattice point that lies on the Ewald sphere then satisfies the diffraction condition for
scattered wave vector k'.

reflecting lattice planes

Figure 1.4: Two-dimensional representation of the general Ewald sphere construction.
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Zone axis

Ewald sphere

2nd-order

1st-order

Zero-order Laue zone o

Figure 1.5: Illustrated Laue zones as in [6].

Zero-order Laue zone

1st-order Laue zone

2nd-order Laue zone

Figure 1.6: Typical electron diffraction pattern for parallel illumination in high-energy
TEM, showing the diffraction Bragg spots in reciprocal space, with the gray-scale rep-
resenting their relative intensity. The zero and first-order Laue zones are depicted by
the blue rings. Spots in the area between those two rights then exhibit a much lower
intensity compared to other Bragg spots (thus, they are not visible. Also, usually, the
most intensive Bragg peaks are in zero-order and first-order Laue zone).

In case of electron diffraction in TEM, the high energy of the electrons results in a
much larger radius of the Ewald sphere than in Fig. 1.4, effectively making it almost flat
compared to the reciprocal distances among the reciprocal points.
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The zone axis is a defined crystallographic direction, and in electron microscopy usually
aligned with the direction of the electron beam, which is common to the reflecting (hkl)
planes. Furthermore, if the zone-axis is parallel to the incident wave vector, for low
scattering angles we see diffraction from the so-called zero-order Laue zone and for high
scattering angles the Ewald sphere crosses higher-order Laue zones (HOLZ) depicted
in Fig. 1.5. This phenomenon is then apparent in the diffraction patterns (Fig. 1.6),
where we see a sudden increase in the diffraction signal intensity for high angles, which
indicates HOLZ intersection.

1.4 Quantum Mechanical Theory of Scattering

The nature of electron-matter interactions, thus the scattering events, calls for a thor-
ough description via the quantum mechanical theory and therefore also expanding the
previous approach used in 1.3. We begin by introducing the fundamental equation of
wave function evolution, the Schrédinger equation:

d 5
in—|y) = Hlp), (1.10)

where % is reduced Planck constant, ¢ time, |¢) the state and H is the Hamiltonian
operator. Provided the potential in the Hamiltonian is time independent, the equation
1.10, can be rewritten in time independent form as:

Elyp) = Hlp), (1.11)

where E is energy.

The Hamiltonian operator H = Hy(p) + Hinter (V) will be the cornerstone of the interac-
tion, as it generally contains the momentum of the electrons p, and the interaction part
of the system, which depend on the atomic potentials V, that affect the electron beam.
We view the scattering as a transition from the initial state into the final state |i) — |f).
If the energy of the electron in the initial state is equal to the electron energy in the final
state the interaction is elastic, otherwise it is inelastic. The transition is caused by the
action of the atomic potential, which acts as a time-independent perturbation. In the
elastic scattering theory as described earlier in the chapter, the negatively charged elec-
trons in the form of plane waves in TEM mode (convergent spherical waves in STEM)
interact with the electrostatic potential of the crystal, thus every atom acts as a scattering
center [28, 29].

1.4.1 Scattering Amplitude and Born Approximation

It is suitable to write the probability of the elastic interaction in terms of the scattering
differential cross section, which also gives us the intensity distribution. In this section
we take the generalized form of scattering and simplify the problem only to a case of
incident plane electron wave.

The state of the scattered electron, traversing along the z-axis, can be expressed as wave
function 1, which is a superposition of a wave function:

P(r) = e, (1.12)

and scattered wavefunction:
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ikr
se = f(k, k')er , (1.13)

where k, reads as

_2m 2m/el(2moc? + ell)
A he

k, is a relativistically corrected wave vector, A is wavelength, e the elementary charge,
U acceleration voltage, c the speed of light, mg electron rest mass and h the Planck
constant. We can then write the superposition of the incident and scattered waves as:

k. . (1.14)

ikr
s(r) = % 4 f(k,k’)er , (1.15)

where r = (x,y,z), r = (x*> + y? + z%)1/? are spatial coordinates, and f(k, k') = f(q)

is the scattering amplitude, and in case for single atom scattering, also a represents a
form factor. Wave vector q is the difference between the incident and scattered wave
vector q = k — k/. Also, sometimes it is suitable to define angle 6 as the angle between k
and K/, since for a spherically symmetrical potential, the f(q) is a function of scattering
angle 6. Then we can write the differential cross section as described in [28, 6]:

do 2

1q = O (1.16)
where do/d() is a differential scattering cross-section for scattering into the solid angle
aQ.

From equations 1.15 and 1.16 it is apparent that in order to obtain results of scattered
waves we need to describe the scattering amplitude f(k, k). Previously in section 1.3
we expressed the scattering amplitude as a function of electron density, now, however,
we will replace the electron density function with a different approach by inserting the
atomic potential from the atoms. In general, we may write:

FlkK) = mohez / e KTV () ()Y, (1.17)

271

where V(r) is then the implemented atomic potential from the atoms in the specimen. To
calculate this expression is not so straightforward; that is why the Born approximation
is often used for simplification of the problem, and we thus apply this approximation.
We use the so-called first-order Born approximation [28]:

mope
2

f(k/ kl) =

/e_ik/'r/V(r’)eik'r/dsr’, (1.18)
27th
and with the help of the previously defined relation between incident and scattered
wave vectors 1.3 we can rewrite the equation as:

moe

flq) = Py /eiq'r/V(r’)d3r’. (1.19)

This then becomes Fourier transform of the potential, which will prove to be useful
when inspecting the forms of the potentials from multiple atoms in a crystal. In many
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cases the scattering factors are calculated in Born approximation and then tabulated for
different atomic numbers Z or alternatively use more complex models of the scattering
factors such as described in [7]. Now we can take the newly acquired f(q), and calculate
the potential as inverse Fourier transform:

2
Vi =20 [ dar(q (120

mope
The effective potential of the crystal consists of individual contributions from all atoms
in the crystal. To calculate the total crystal potential we sum up all the contributions as

linear superpositions:
N

Viot(r) = ) Vi(r—17), (1.21)
j=1
where r; are the positions of individual atoms, from which the potential V; contribute in
position r.

1.4.2 Phase Object Approximation

In the calculation of electrons passing through a thin specimen, the wave function phase
is altered. Now once we can express the scattering effects from the specimen, we can
describe the transmitted wave function in a more suitable form for the upcoming mul-
tislice method. The phase change accumulates gradually by the potentials 1.21 as the
wave function passes the specimen. We can introduce a projected potential Vj;; which
is just a projection of the total potential along the trajectory of the electron beam (z-axis)
resulting in 2D potential in the XY plane Vpri(R), where R = (x,y):

pr0] /Vtot X, y/ (1.22)

The phase object approximation (POA) then expresses the transmitted wave as the initial
wave function altered by this phase shift as follows:

P(R) = ey (R), (1.23)
2mtmel . . o
where 0 = — s the interaction parameter and m = mg7y relativistically corrected
mass.

1.5 Multislice Method

The phase object approximation has already been introduced, and with it, we project the
three-dimensional potential into two two-dimensional projection. Electron then scatters
via the interaction with the projected potential.

The issue is that in probing the specimen, the interaction with only a few atomic lay-
ers already leads to multiple scattering events. Thick specimens not only modulate the
phase but also the amplitude. Therefore, the previous kinematical approach no longer
replicates the correct electron transmission for thick samples. We thus have to move
on towards the dynamical theory of electron diffraction. The distinction in the defini-
tion of the kinematical and dynamical theories is in the number of scatterings taken
into account. The kinematical theory describes only one scattering event, whereas the
dynamical theory accounts for multiple scattering events. In the dynamical theory of



Chapter 1. Fundamentals of Transmission Electron Microscopy 15

electron diffraction, analytically solving the problem for multiple scattering events has
proved to be difficult, and new rigorous methods have to come into play [30, 7]. The
dynamical theory for electron scattering was first studied by Bethe [31] in 1928, who
utilized the Bloch wave representation. His theory is still used in the calculation of
dynamical diffraction [32]. Furthermore, later in 1957, Cowley and Moodie presented
a different method, nowadays called the multislice method [33, 7]. We will proceed to
discuss and to use the multislice method, as it is more suitable and easier to implement
to the calculations.

In the multislice method, we simplify the process of electron-sample interaction by split-
ting it into a finite number of single scattering events. In this method, we divide the
sample into very thin slices, which are effectively small intervals z + Az along the elec-
tron trajectory (z-axis), so that we will ensure only a single (or none at all) scattering
event happens in this interval, also the modulation of amplitude is negligible for very
thin slices. Thus the used POA is a good approximation for very thin slices. In case the
slices are not thin enough, and in the real scenario multiple scatterings happened over
the incorrectly chosen slice distance, undesired discrepancies would be introduced into
the calculations.

The division of the sample, in principle, inherently means division of the potential, and
the potential projection 1.22 is then carried out for each of the thin slices separately. We
end up with a set of two-dimensional projections of the potential separated in space
by Az, and this set then represent the whole sample, with an arbitrary thickness of the
sample, that is used in TEM®. After having divided the space along the z-axis into slices,
the electron wave function is then repeatedly propagated from one slice to another in
the direction of the electron beam. As the electron wave function is propagated towards
a new slice, the scattering (in this context, we will also call it transmission) occurs on
the corresponding potential projection. The whole process propagation-transmission-
propagation-... is then repeated until the electron wave function reaches the end of the
sample [34, 35].

1.5.1 Propagation of Electron Wave Function

Let’s now move on to the mathematical description of the electron propagation in the
multislice method, which has been thoroughly described in [7]. As a starting point we
come back to the the electron representation as an electron wave function, which should
satisfy the Schrodinger equation 1.11:

-
<—2mv - eV(r)) Pr(r) = Egps(r), (1.24)
5 "
where the Hamiltonian operator H = —ﬂVZ — eV/(r) has been inserted. The subscript

in ¢¢ is denoting "full” wave function, because we can then express the full wave function
as a multiplication of two terms, the slowly varying ¥(r) and a factor 2™/, that is

3The sample thickness in TEM can vary from a few tens up to hundreds of nanometers, and since
multiple scattering already occurs for few atomic layers, we may end up having to divide the sample in the
calculation into thousands of slices.



16 1.5. Multislice Method

responsible for the traversing along the z-axis:

Pr(r) = p(r)e?™/, (1.25)

where A is the relativistically corrected electron wavelength from 1.14. We can further-
more separate the z coordinate, from x,y and express the square of the nabla operator

Vot L where v, = L4 2
as = xy+@,were xy—@—ka—yz.

the in-plane components and the longitudinal components. After the substitution of the

wave function 1.25 into 1.24, while the energy E is expressed as E = 472h?/ (2mA), we
obtain the modified Schrodinger equation:

This will help us distinguish between

Wl , & 4mid 2meV(r)
—% <va+822+)\aZ+hz> lp(l‘) =0. (126)
L %Y | . L
In an approximation the term 552 18 then neglected. This approximation, also called

paraxial approximation, is valid, because for very high-energy electron the main trans-
lation happens in the z direction, thus change (the second derivative) is very small

10
compared to the term X%. With the use of the already introduced interaction param-

2mrmeA . . . . . .
——-— we end up with an essential result featuring a first order differential

2
equation for traversing electrons:

eter 0 =

op(r) _ ( iA

5 Eviy + iaV(r)> ¥(r). (1.27)

1.5.2 Space Discretization and Multislice Algorithm

In order to propagate the electron wave function, we have previously stated that dis-
cretization into slices is required. We thus take the equation 1.27 and plug it into a
Taylor expansion in z direction §(z 4 Az):

2
Pzt 82) = p(z) + 42200 4 a2 T PE)

4o, (1.28)

and with substituting for Taylor expansion of an exponential function e* = 1+ x +
%xz + - - -, which yields:

P(x,y,z+ Az) = exp (AZZ\TVfCO exp (i0AzV (r)) ¥(x,y,2z) + O(AZ?), (1.29)

where the O(Az?) represents higher order expansion terms, which we are going to ne-
glect, due to their small value. Furthermore AzV (r) will result in the projected potential
1.22 in one slice:

z+Az
V(r)Az = / V(1)dz = Viroi (R). (1.30)
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In
t(R) = exp (i0Vproj(R)) (1.31)

we recognize the transmission function, analogous to the one used in the POA 1.23.
Moreover, the term

iAAZVE,
® (1.32)

p(R,Az) = exp (471

represents the propagation operator, where ® is convolution, which is converted multi-
plication in Fourier space. The space is divided into n slices as z, = } Azj, illustrated
in Fig. 1.8, we can then denote the corresponding functions by integer index j as p; and
t;. The wave function propagation then takes the form:

¥ir1(R) = pj(R,Az) @ (t(R)ga(R)) . (1.33)

or in equivalent representation with the help of the Fourier transform FT and inverse
Fourier transform FT~!, which will then be particularly useful when implementing the
calculation in software:

i1 (R) = FT7! [P(K)FT (t(R);(R))], (1.34)

where Pj(k) = exp (—inAkZAz) is the propagator function in reciprocal space. The
equation 1.34 then yields the multislice algorithm (MSA) solution for electron propa-
gation through the specimen. It is also worth noting that for the indices a < b, the
wave function ¢, is independent of . This effectively means that we can read out an
intermediate wave function from an arbitrary sample thickness along the electron prop-
agation. The practical realization of the specimen slicing is carried out accordingly to
the specimen symmetry. In our case, the specimens will exclusively be crystalline lattice
structures. Therefore, the slices should reflect the symmetries; for example, the number
of equidistant slices is a whole number multiple of the atomic layers present, or another
example being: eight slices per unit cell, etc. In software computations, the expression
with the Fourier transforms 1.34 is, as mentioned, beneficial thanks to the speed and
efficiency of the calculation method*. Moreover, the practical slice representation is also
discretized in the xy plane, thus, the two-dimensional discrete fast Fourier transform, or
FFT for short, is applied.

4The convolution turns into a simple multiplication in Fourier space.
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Crystal specimen

1 Az Slice representation

Slicing the crystal

Projected atomic potential
from atoms in one slice

Vproj,j = fzj+AZ V(r)dz’

zZ

Figure 1.7: The creation of slices in the specimen, each slice then contains the projected
potential of the atoms present in the particular slice.

o Initial electron wave function

The electron wave function propagation
$jp1 = FT [P () FT((R) ;)]

1§, Final electron wave function

Figure 1.8: The schematics representing the multislice algorithm. We divide the speci-
men into thin slices and then propagate the electron wave function along the z-axis.
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Chapter 2

Absorption Models

To further develop the methodologies for (S)TEM imaging modes and electron diffrac-
tion, the absorption effects have to be included [15, 36, 2]. As the electron passes through
the specimen, in our case a crystal, the elastically scattered or non-scattered electrons
form the main contrast in TEM, moreover in STEM, the inelastic signal can be utilized.
The intensity in the so-called elastic channel is directly influenced by the losses into the
inelastic component of the total intensity. Not paying attention to the absorption parts
of the interaction may result in obtaining incorrect intensity distribution, and that is the
reason why a good absorption model for electron scattering is needed [15, 16].

The primary losses in the Bragg-reflected electron beam are caused by exciting vibra-
tional modes in the crystal, so-called phonons, otherwise known as the vibrations of
the lattice or thermal vibrations. Other excitations such as ionization, plasmons, and
magnons might be present, but for non-metal or non-magnetic specimens, these excita-
tions are either non-existent or in our context negligible. Our primary focus is therefore
on inspecting the losses in the vibrational part of the energy loss spectrum. The corner-
stone of the thesis is to evaluate electron energy absorption models on phonons. But
before we present three distinct absorption models, compare and evaluate them among
themselves, it is convenient to further introduce the thermal diffuse scattering (TDS).

2.1 Thermal Diffuse Scattering

Generally speaking, the TDS is the background diffuse signal in diffraction patterns
induced by the thermal vibrations of the atoms, which are moving around their equi-
librium positions. The chaotic motion of atoms then causes the electron to be scattered
seemingly randomly, which deviates from the Bragg condition, thereby making the TDS
signal highly unlocalized, forming a diffuse background rather than sharp Bragg spots
[37, 10, 13].

The TDS plays a crucial role in high-resolution imaging and electron diffraction. The
TDS background may differ in shape, intensity, and characteristic features, such as
Kikuchi lines, depending on the absorption model used. The Kikuchi lines, or Kikuchi
bands, are characteristic structures on the diffraction pattern, which arise from the in-
elastically or diffusely scattered electrons, which are then Bragg-reflected from atomic
planes and are visible outside the Bragg spots. [6, 38]
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Figure 2.1: The characteristic Kikuchi bands in electron diffraction patterns of Si foils.
Pattern a) shows diffraction spots of the zero- and first-order Laue zones; b) shows
excess Kikuchi lines at medium angles. Reprinted from [6].

2.1.1 Debye-Waller Factor

The thermal vibrations of atoms effectively manifest as a smearing of the atomic poten-
tial around the equilibrium position of the atomic nuclei. It is valid to view the smearing
as such, because in the real TEM systems, the acquisition time, to collect enough parti-
cles to form a signal, is usually much longer than the timescale on which atoms vibrate.
In other words, the position of the atom around its equilibrium "averages" in time. What
this means is that the atom then scatters the electron outside the Bragg spots, inherently
causing a decrease in intensity in the elastic channel of the well-defined Bragg spots.

The decreased magnitude of effective potential is then described by the Debye-Waller
factor (DWEF) [6]. The DWF increases with temperature, as the atoms gain more thermal
energy. DWF is also tightly linked to the mean square displacement of atoms, and arises
from time-averaging of the atomic potential displacement [39]. We can express the DWF
as:

DWF = exp <—;q2<u2>) , (2.1)

where u(T) is the instantaneous atomic displacement, which is temperature (T) depen-
dent, g magnitude of scattering wave vector, and () denotes the time-averaging. Also
notice the 1/3, which implies that the atomic motion is isotropic; otherwise, generally
one would have to consider all three directions in the multiplication q - u, therefore we
would write:

DWF = exp (—((q-u)?)). 22)

The atomic potential V(q) from atoms in static lattice in equilibrium is then multiplied
by the DWF to introduce the thermal effects into the calculation.
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2.2 Frozen Phonon Models

The first two of the absorptive models are going to be models based on the so-called
frozen phonon model (method) (FPM), or when directly combined with the MSA, it
is called Frozen phonon multislice (FPMS) [3]. The frozen phonon model is a semi-
classical approximative approach that incorporates electron propagation through a static
lattice. Since the velocity of the impinging electron is significantly higher relative to the
motion of atoms in the lattice, for the traversing electron, the atoms appear as "frozen in
time"; therefore the name.

The image of the specimen in TEM consists of counting multiple electrons on the de-
tector during the acquisition time. This behaviour is projected into the simulation via
introducing a concept of so-called snapshots, i.e., static lattice configurations. The in-
dividual snapshots in FPM arise from the simulation of the atomic displacements. The
snapshots represent the crystal configuration of atoms at different points in time. There
is a sufficient time gap between each snapshot to emulate experimental conditions, as
each traversing electron "sees" a different incoherent crystal configuration, as the elec-
trons in real TEM would. In principle, for the electron traversing, we utilize the MSA
1.34 and propagate the electron through one configuration of the lattice, the snapshot.
We repeat the process for multiple of the snapshots, each having a different atomic
position distribution [3]. It is possible to then read out the wave function ¢ for each
snapshot, and the intensity distribution in the diffraction pattern is then the square of
the wave function. Moreover, after propagating over N snapshots, the total diffraction
image is expressed as an incoherent average over the number of snapshots, i.e.:

1 N
Ippm = N Y (g qy) % (2.3)
n=1

where gy, q, are the reciprocal wave vectors. We now have to resolve the creation of the
snapshot used, i.e., providing the MSA with atomic lattice arrangements from which
the potential arises. In this thesis, snapshots used in the frozen phonon model are going
to be of two kinds. The first kind is of snapshots corresponding to the Einstein model
i.e., independent harmonic motion of atoms, further in section 2.2.1. And the second set
is of snapshots with correlated atomic motion obtained via molecular dynamics (MD),
further discussed in detail in 2.2.2.

Note that in the FPM multislice calculation, the scattering interactions are strictly elastic,
however some of the intensity is scattered outside the well-defined Bragg spots as diffuse
background. These non-localized scattered waves are treated as the contribution to the
inelastic signal.

2.2.1 Einstein Model

The approach in the Einstein model simplifies atomic motion by assuming that each
atom vibrates independently in a harmonic potential, with the same oscillation fre-
quency in all three directions. In practice for the calculations, this means assigning ran-
dom displacements to atoms around their equilibrium positions, drawn from a Gaussian
distribution whose width is tightly related to the Debye-Waller factor 2.1 or mean-square
displacement, as derived from the Einstein model, we will further comment on this in
2.3.1 after discussion of the QEP theory. The atom "smearing" is then uniform and will
later be apparent in the diffraction patterns in the characteristic TDS background.
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2.2.2 Molecular Dynamics for Correlated Atomic Motion Model

To obtain the lattice configurations, it is necessary to simulate the motion of the lattice.
For the model of correlated atomic motion, we do so by using molecular dynamics sim-
ulations in software called Large-scale Atomic/Molecular Massively Parallel Simulator,
or LAMMPS for short [40]. The requirement for MD simulations may differ based upon
the purpose of the simulations. For the purposes of this thesis, we need to create the
crystal, i.e., a static lattice in equilibrium of the desired material. Furthermore, it is
necessary to insert the inter-atomic potentials and lastly apply macroscopic conditions,
such as temperature. Each atom in the simulation is assigned with position vector r and
momentum p, while the time domain is divided into timesteps, which are set roughly
around one femtosecond apart!.

The software then proceeds to solve classical equations of motion for all atoms, from
one timestep to another, and treats the atoms as centers of mass, while the inter-atomic
potential induces forces among the atoms in the lattice, and this inherently results in
phononic states [17]. The equations of motion for classical particles may be expressed
as:

dp _

= —VVi(r), (2.4a)
dr _p
ai o (24b)

where p is the momentum, r the position vector, m mass, and VVi(r) is the gradient of
interatomic potential, which is responsible for the interatomic forces.

The initial arrangement of the atoms into the static lattice in equilibrium consists of mul-
tiples of unit cells of the crystal, and it is called the supercell. Regarding the number of
atoms in the supercell, the limiting factor in the MD simulation is the computing power
and memory. However, the MD computing demand scales linearly, so it is still possible
to calculate supercells tens of nanometers in length, width, and height [40]. The super-
cell is then placed in a simulation box with periodic boundary conditions. There may be
discrepancies in the macroscopic variables that may be caused by computational errors.
To ensure stable macroscopic conditions of the simulations, one of the so-called statis-
tical ensembles is applied. The ensemble used in the MD simulations, in our case, was
NVT Nosé-Hoover thermostat, which maintains constant number of particles, volume,
and mainly constant temperature, by controlling the kinetic energy of the system. In
case the temperature is lower than the setup, it adds heat to the system, and vice versa.
It is effectively realized by modifying the equations of motion 2.4 [41] :

P I +r(p, 25)

where « is the thermostat friction coefficient, and he value of k¥ changes over time (in
matter of tens of timesteps) depending on the difference between actual and desired
target temperature.

IThis choice originates from the timescale of the atom movement, which is in the order of picoseconds.
This means we will have a good enough sampling in the time domain.
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Interatomic Potential

As stated, the governing element in the MD equations is the interatomic potential.
Among the various potential models available, the Tersoff potential is a widely used po-
tential specifically designed for covalently bonded systems, such as silicon (5Si), carbon
(C), and their compounds. Unlike pairwise additive potentials (e.g., Lennard-Jones), the
Tersoff potential accounts for many-body interactions by adjusting bond strength based
upon the local atom environment [42]. Another advantage of the Tersoff interatomic
potential is that it can be easily parametrized. Moreover, machine-learned interatomic
potentials represent a new way of obtaining the force fields, and combine the efficiency
of classical molecular dynamics with the accuracy of quantum mechanical methods like
Density Functional Theory (DFT), however for the cost of the scale of application, since
machine learned potentials are usually trained to fit specific materials [43, 44, 45].

Simulation box

NVT Thermostat
regulating
temperature

Interatomic potential

)

MD simulation
- oscillating atoms

Figure 2.2: MD simulations scheme. The crystal (supercell) is contained in a well-defined
simulation box with periodic boundary conditions, while the temperature inside the
simulation box is being regulated by the Nosé-Hoover (NVT) thermostat. The atoms
inside the crystal are governed by the Tersoff (or machine-learned deepMD) interatomic
potential.

We aim to study multiple crystalline materials, including carbon in diamond lattice,
silicon, and strontium titanate - STO. For the carbon and silicon, the Tersoff potential
was used. In case of STO MD simulations, we used the more complex machine-learned
deepMD potential [43].
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2.3 Quantum Excitation of Phonons

In contrast to the semi-classical treatment by the Frozen phonon method, it is also
worth viewing the system of phonon scattering from a fully quantum mechanical per-
spective. The theory/model of quantum excitation of phonons (QEP) is a many-body
quantum mechanical representation of thermal electron scattering, based upon the Born-
Oppenheimer approximation as presented by Forbes et al. [46]. The Born-Oppenheimer
approximation states that the wave functions of nuclei and surrounding electrons can
be treated separately. In reality, the mass of the electron is much smaller than that of
an atomic nucleus, therefore, the approximation is valid for a broad spectrum of appli-
cations. In the theoretical framework of QEP, it is stated that the quantum mechanical
calculations and the frozen phonon model calculations give the same results of inten-
sity distributions in the diffraction pattern, and that scattering from moving lattice and
quantum excitation of the crystal are equivalent. Moreover, provided both models are
equivalent, it will allow us to separate the elastic and inelastic channels in the FPM
calculations by utilizing the theory as stated in [46, 47]. Let’s consider a fast electron
impinging on a crystal. We denote r as the coordinate of the impinging electron, and r;
the particles, both nuclei and electrons, in the crystal. The Schrodinger equation of the
system then is:

if V24 HA(ry,...,tN)+

0¥ (r,ry,..., 1N, 1) _12
ot N 2m

+H' (1,11, .. .,rN))‘I’(r, ry,..., N, 1), (2.6)

where three different parts of the total Hamiltonian are treated separately. Firstly the
2

term — %Vf is the kinetic energy of the incoming fast electron, H, is the Hamiltonian of

the particles in the crystal and lastly the I’ is the interaction Hamiltonian of the incident
electron to with the crystal particles [13]. Since H. and H’ are time independent, the
equation 2.6 may be written via time-independent Schrédinger equation:

2
(—ZHme + (1) + H'(x, T)) ¥ (r,7) = E¥(r, 1), (2.7)

where we defined T = ry,...,ry. The wave function can then be expanded into eigen-
functions for the Hamiltonian of the crystal H.. The ay, (T) represent mth state of the
crystal (a9 being the initial state) with eigenenergy ¢,,. And the ¢,,(r) describes the fast
electron wave function after the transition |0) — |n). Note that the term (r) is an
elastically scattered electron.

Y1) =) am(T)Pm(r). (2.8)

By applying the Born-Oppenheimer approximation and separating the wave functions
of the nuclei (with coordinates T,,) and electrons in the crystal (with coordinates 7.), we
then obtain:
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Y(r, 1) =b(T) Y am(Tn)Pm(r). (2.9)
Authors of QEP argue that the solution can be written in the following form [46]:
Y(r,7) = b()a(t)P(xr, ), (2.10)

where a(T,) corresponds to the subsystem of the nuclei, while ay is associated with the
initial state of the crystal, and wave function ¢(r, 7,) to the incident fast electron. After
rigorous calculations [46], we obtain the intensity distribution:

1) = [ 19(c,%)Plao () P, @11)

and it can be shown that the intensity distribution coincides with the probability dis-
tribution |ag(T,)|?. Since each incident electron may impact on a crystal, which is in
different initial state ap (which also does not imply that it is in ground state) we as-
sign the probability of the crystal being in a certain state with a probability distribution
P(7,). The distribution is dependent on the temperature of the crystal, and we can ex-
press it as a function of the Debye-Waller factor. Generally though, the equation 2.11 is
rewritten as:

10) = [ It 70) PP(5,)d. (2.12)

Furthermore, in the QEP, one can separate the elastic intensities apart from the inelastic
simply by assuming the summation over initial states, which correspond to the elastic
wave function ¢y(r), yielding only the elastic part of the scattering intensity. In other
words, from the general expression for an arbitrarily scattered wave:

m(r) = /V @y (Tw)a(Ta) P (x, T ) ATy, (2.13)

we separate the sum (average over initial states):
Po(r) =) /V ¢(r, ) (T )d T, (2.14)
i

where Pi(7,) = ‘ai(Tn)|2‘

This gives us a powerful tool for interpreting the incoherent averages of the wave func-
tions obtained from the multislice calculations 2.3. Since both theories give numerically
equivalent results, we may express the intensities in FPM (2.3) as discrete realizations of
the intensities in the QEP model, therefore resulting in an expression [47]:

Iinelastic = Itotal - Ielasticr (215)
1Y , 1|& P
Iinelastic = N 2 ’lP(R)| - ﬁ E ¢(R) ’ (216)
n=1 n=1

where N is the number of snapshots, on which the multislice was conducted.
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2.3.1 Statistics for Einstein model

With the help of the QEP theory, we can thereby extend the fundamental description
of the Einstein model 2.2.1. In the equation 2.12, the distribution P(7,) may then be
adjusted accordingly to the Einstein model statistics. As described in [5], we treat the
atoms as independent, isotropic harmonic oscillators, and we may write the initial state
coefficients |ao (T, )|?, with the assumption of all the oscillators in the ground state:

|ao ()| = HH | Ao(Ti,)[%, (2.17)
i

where j is the nuclei index and i denotes is indexing coordinates x,y,z. The thermally
averaged | Ao(7;;)|? then follows a distribution [5] as:

1 _ L2 2
[Ao(w)* = =", (2.18)
where 0% = Mo coth (hw/2kgT), furthermore M is atomic mass, w angular frequency,
ky Boltzmann constant and T temperature. Also, 0> = (72) is the mean-squared dis-

placement, which directly ties it together with the Debye-Waller factor [14].

24 Complex Absorptive Model

Finally, we will discuss the third absorption model - Complex absorptive model, fol-
lowing the Einstein FPM and correlated atomic motion FPM. The complex absorptive
potential model as described by Yoshioka [13] views inelastic scattering as the excita-
tion of the crystal and uses many-body quantum mechanics to describe absorption in
the elastic channel due to inelastic scattering, similarly to the approach in [46]. In fact,
some of the core ideas in the description of fast electron scattering in [46] were devel-
oped upon the theory of Yoshioka. However, the theories then deviate, as Yoshioka
implements additional complex parts into the crystal potential, inherently resulting in
an absorptive effect. First, we look at a brief historical overview of the model.

In the formalism of Yoshioka’s complex absorption potentials, Hall et al. [10] states
that the TDS is the leading cause of absorption and that it significantly contributes to
the absorption, which strongly depends on the atomic number of the elements in the
crystal. Yoshioka’s theory has later been extended by Weickenmeier et al. [48], Peng
et al. [27], both utilizing the absorptive scattering form factors. Further development
was presented by Martin et al. [14] and Forbes et al. [9], who work in context of non-
local projected potentials. Martin et al. presents and compares the complex absorptive
potential model for correlated atomic motion and independent harmonic atomic motion,
also known as the Einstein model, and claims that both approaches are in agreement,
provided a large detector collection area. Forbes et al. shows a model for the electron
energy loss spectra for multiple thermal scattering events. Forbes et al., as well as D.
Van Dyck [16], show that the results of the quantum mechanical model agree well with
the results of the frozen-phonon model.

The approach is similar to 2.3, starting with describing the incident fast electron scatter-
ing off a crystal with the stationary Schrodinger equation of the system:
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n N
(—MVE + H. + Hl> T(I‘, rj, Rk) = E‘F(I‘, I, Rk), (2.19)

while the interaction Hamiltonian H’ is given by Coulomb interactions of the nuclear
and electronic structure as:

A=y _"°

; drreg|r — 1]

2 B Z Zk€2

— 47teg|r — Ry|” (220
where Zj is the atomic number, I denotes the coordinate of electrons in the crystal and
R; denotes the nuclei coordinates. The expansion of ¥(r,1;) (with respect to A,) can
be carried out for excited states of the crystal with wave functions a,, assuming the
interaction Hamiltonian H’ is small in comparison to H.. If we furthermore account for
the Born-Oppenheimer approximation, we assume only the coordinates of the nuclei Ry:

I‘ Rk Zl[]n ay Rk (221)

By substitution of 2.21 to 2.19 we obtain two equations, one with ¢y representing the
elastic interaction, and one with ¢, representing inelastic interaction:

2m
V2o + (k%+ 2 Hoo) o = hz Y Hyom, (2.22)
m##0
2 5 . 2m A, 2m ,
Ve, + |k + ?Hnm Py = z Y. Htm, (2.23)
m#n

where k2 = zh—T(E — E,) are the scattered wave vectors. The transition |[n) — |m) is
then treated with respect to the interaction Hamiltonian as:

A, = / (n|H'|m)dT = / 0t B and, (2.24)

where T is denoting the coordinates T = Ry, ..., Rg. We can further simplify equation
2.23, provided [2mH,,/h?| < k2, which is valid approximation as stated in [13]:

2m
V2u + kntpy = ) noto, (2.25)

The solution for 2.25 is an inelastically scattered wave, after the excitation of state |n):

m exp (ik,|r — |)

W (1) = — 2.26
pnlr) = =1 [P A (ol 226
By substitution of the equation 2.26 into 2.22 we obtain:
V2o + <k2 2 Hoo) lP0+ ; /A 1, )iho(r')dr’ =0, (2.27)
where k.
Alr, 1) = Y. Hp(x ) SRk r = 1)) (2.28)

27Th2 n#0 |I'— 1'/|
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is a nonlocal potential representation. Further definition from [2] converts it into her-
mitian nonlocal absorptive potential W(r,t') = i[A(r,r') — A*(r,')]. In multislice, we
also need the potential to be projected into a two-dimensional plane; we do so with the
following integration:

1 z4+Az  rz+Az . iy
W(R,R) = A—Z/ / e EW(r, v el dzdz . (2.29)
z z

It is also stated that in case of a large enough detector (large collection angle), we may
further translate the nonlocal absorptive potential into local absorptive potential V' via
local approximation [2]:

W(R,R') ~ 2V'(R)§(R — R'). (2.30)

In the treatment of [48, 27], the complex absorptive potentials V' are then used alongside
the real part of the potential. Furthermore, they can be implemented and parametrized
into so-called complex absorptive form factors, which are a direct extension of the reg-
ular form factors. The multislice algorithm software [34], which we use in this thesis,
utilizes this theory of absorptive form factors from [48] in optional absorptive calcula-
tions.

In Fig. 2.3 we see an illustrative depiction of the shape of the components for complex
absorptive potential. The projected potential comes from a slice as used in diamond
calculations.

Complex part of the potential Real part of the potential
3.5 Vinax 3.5 Vinax
3 3
25 2.5
T 2 2
N2
< 15 1.5
1 1
0.5 0.5
0 Vrlnnlln 0 Vinin
0 051 15 2 25 3 35 0 051 15 2 25 3 35
X (nm) X (nm)

Figure 2.3: The components of the projected local potential V’'(R) in slice (slice which
contains atoms) in arbitrary units. The potentials come from the calculations for dia-
mond 3.1.
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Chapter 3

Calculations and Results

In the third chapter, a detailed overview of the extensive calculations and simulations
will be presented. We begin with the specific implementation of molecular dynamics
simulations (2.2.2) and proceed to the multislice method (1.34) [49], while the absorption
models will be applied for each crystal sample. The three models as presented in chapter
2 are the frozen phonon model for the Einstein model of atomic motion, then the FPM
for correlated atomic motion with atom motion implemented as snapshots from MD
simulations, and lastly the Complex absorptive model.

We aim to obtain the intensity distribution in diffraction patterns, mainly the elastic
component of the intensity, which is depleted due to the losses into the inelastic channel.
The frozen phonon models also offer the possibility of extracting the inelastic part of the
signal by subtracting the elastic component from the total intensity, yielding the shape
of the TDS background. Furthermore, the total intensity, more precisely, the square of
the absolute value of the total wave function, is the value measured on the detector.
In the frozen phonon models, the diffraction pattern is obtained via thermal averaging
over the correlated atomic motion snapshots, or configuration variants in the case of the
Einstein model.

The quality of the FPM diffraction pattern simulation is then determined by the resid-
ual TDS noise in the elastic channel, since in theory, for an infinite number of snap-
shots/variants, the elastic channel should contain the Bragg peaks only. Therefore, the
more snapshots/variants we use, the lower the noise should be and the more precise
the FPM diffraction patterns are.

The frozen phonon model with correlated atomic motion is expected to be the most
exact in comparison to experiment, in terms of intensity distribution and characteristic
features. Primarily because of its capability to realistically represent the phonon modes.
The main limitation being the quality of the interatomic potential used. [16, 50, 17]

We then begin the analysis of the diffraction pattern and compare the depleted elastic
components of the models, which will give us an idea about the validity and potential
discrepancies with experiments, in certain use cases. But before we dive into the eval-
uation and comparison of the models, let’s define the crystalline materials upon which
the calculations are carried out, and also their resulting lattice configurations from MD.
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3.1 Crystal Materials and Molecular Dynamics

The definition of the crystals took place in the LAMMPS software. Previously, we dis-
cussed the MD simulations for the FPM with correlated atomic motion, which were
carried out in LAMMPS. But the functionality of the software also allowed us to also
create just one snapshot of a static lattice configuration in the equilibrium, for the use in
the Einstein model and complex absorptive model. Three of the crystal samples created,
namely carbon atoms in diamond lattice - Diamond, strontium titanate SrTiO3 - called
STO, and silicon in diamond lattice - Si.

Each of the crystals is defined by a unit cell with specifically set lattice parameters, then
the unit cell is repeated to obtain the desired dimensions of the supercell. We have
to be cautious in choosing the dimensions, since we are limited by the memory and
computational power of the machines. Also, the machine-learned potentials for STO are
much more computationally demanding than the simpler Tersoff variants for diamond
and silicon, thus resulting in a smaller supercell. We now proceed to describe each
crystal in detail.

3.1.1 Diamond

The choice for the carbon (C) atoms in diamond lattice was made based on the idea of
testing the absorption models on relatively light atoms (atomic mass 12.011u'), and later
to put it in contrast with the results from the STO crystal containing heavy elements. The
diamond crystal dimensions are 3.5nm x 3.5nm x 50nm and the lattice parameter of
the face-centered cubic unit cell is set to 0.35724 nm [24] (slightly adjusted for convenient
thermal relaxation). The supercell is oriented in such way so that the xy plane face is
(001) surface, depicted in Fig. 3.1. The structure is simple and trivial to define, also
the interatomic potential for diamond, which was a carbon (C-C) Tersoff potential, is
accessible and easy to implement.

Diamond (001) _ -7, A
- / y X
X - / z

50nm

3.5nm
< >

Figure 3.1: The supercell of diamond, top view (on the left), side view (on the right).

IThe atomic mass unit is defined as u = 1.660539066 x 10~2" kg
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Concerning the MD, the process consisted of letting the MD simulation run for a couple
of thousand timesteps (one timestep is set to 1 fs) from the starting point, which was
the lattice in equilibrium. In this way, we ensure that the crystal has enough time
to thermally relax. The crystal was kept at 300K via NVT thermostat, and after the
thermal relaxation, snapshots are read out every 1000 timesteps. The MD simulations
yielded total of 100 snapshots, which are stored in .xyz data file, containing coordinates
of all the atoms, in every snapshot configuration. In the Einstein model 50 variants were
used, since the noise threshold in diffraction patterns was determined to be low enough
compared to the main Bragg peak intensity.

3.1.2 Strontium Titanate

As stated, the heavy elements of STO will represent a testing sample for the mod-
els in contrast to the light carbon atoms in diamond. Moreover, the STO exhibits
anisotropic vibrations, which is another variable in the absorption model procedure
and the anisotropy may result in significat differences in the models (for example, the
basic form of the Einstein model calculates with isotropic displacements).

STO (001 - -
(001) /////,/ / A y/[\x
x - / z

_ - /
/
y /
/
/ 30nm
® Sr /
Ti /
/
e O /
/
/
v
3.1nm
< >

Figure 3.2: The supercell of strontium titanate, top view (on the left), side view (on the
right).

We further define the crystal of STO; chemically SrTiO3, namely strontium (Sr, atomic
mass 87.62u), titanium (Ti, atomic mass 47.867 u) and oxygen (O, atomic mass 15.999 u)
with cubic unit cell lattice parameter 0.3905nm [51] (slightly adjusted for convenient
thermal relaxation). Due to the complexity of MD calculations with the machine-learned
deepMD interatomic potential, the size of the supercell needs to be reasonably small.
Otherwise, the calculations would be time-consuming, due to the sheer computational
demand. The supercell dimensions are 3.1 nm x 3.1nm x 30 nm, with the supercell face
oriented in (001). The structure is further shown in Fig. 3.2.

The MD simulation process was analogous to the one presented in 3.1.1, i.e., temperature
of 300 K with thermal relaxation of the crystal. The only difference in the process was in
the use of the deepMD interatomic potential for STO. The MD simulation then resulted
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in obtaining 100 snapshots in .xyz files. The variants in the Einstein model were later
set to 100 as well.

3.1.3 Silicon

The Silicon (Si) crystal is the only one of the crystals to be probed by a convergent beam
in the convergent beam electron diffraction (CBED). It is because the aim is to compare
the model characteristic features to experimental data, and Si CBED measurements hap-
pen to be very common and accessible. However, the experiments are rarely carried
out on very thin samples (below 50nm), thus the simulations require the construction
of a larger supercell than it was in the previous two crystals. Here, the computational
demand is not as high as for STO, because we once again use Tersoff potential, now in
(Si-Si) variant.

The construction of FCC silicon (atomic mass - 28.0855u) crystal with lattice parameter
0.5430nm [24], was performed. The dimensions therefore are: 6.2nm x 6.2nm x 85nm
oriented so that the face is in (111) orientation” Fig. 3.3. After an analogous process to
diamond, once again, 100 snapshots are the result of the MD simulations, and later, we
set 50 atomic variants for the Einstein model.

PR y/|\x
Si — - / z
i(111) _
-~ /
—~
-7 /
-7 /
X _ —~ /
/
Y / 85 nm
/
/
/
/
/
/
/ v
6.2nm
< >

Figure 3.3: The supercell of Si, top view (on the left), side view (on the right). Note that,
unlike in previous crystals, the orientation of the face is (111).

2The (111) orientation was chosen because of the comparison with Si(111) CBED experiments
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3.2 Multislice Calculations

In this section, the process of multislice calculations is discussed. The main tool in this
case is the Dr. Probe software [34]. This software not only implements the MSA as
described in 1.34, but also contains multiple functionalities that will come in useful. For
the case of the correlated atomic motion model, the distribution of atoms is obtained
exclusively from the previous LAMMPS MD simulations, and Dr. Probe then only
projects the potential from the atoms present. However, a special functionality exists
for the Einstein model, i.e., independent harmonic motion of atoms, which enables the
generation of atomic variants (completely analogous to snapshots in MD). These atomic
variants are generated with the user’s specification of Debye-Waller factors, which are
element-specific. Moreover, there is also a possibility of applying the complex absorptive
potentials in the form of [48]. In contrast to the Einstein model or the correlated atomic
model, the complex absorptive model consists of only one simple propagation through
the static lattice in equilibrium, but also requires the specification of DWF. The single
propagation then results in an elastic channel intensity distribution, which is decreased
by the effect of inelastic scattering. Also, unlike in the FPM, in the complex absorptive
model, the TDS distribution cannot be obtained.

Firstly, by an own code in Python, the .xyz atomic configuration data from LAMMPS
were converted into .cel files so that the Dr. Probe software may read them. The .cel
files are software-specific definition of atomic coordinates in the supercell, which is then
divided into slices. For each case of the model and for all the materials in question,
potential projections in individual slices were created, accordingly to the model in use.
Namely, we define the x-y resolution of the simulation (discretization of the supercell in
xy plane) and then we define the number of slices (discretization of the supercell in z
direction). To represent the potential and beam wave functions, we have used numerical
grids of 640 pxx640px for all materials. The potentials are then projected via software
binary function "celslc" in slices and then stored as so-called .sli data files. The .sli files
are in many cases very large.” Once all the .sli files containing the two-dimensional
projected potentials are calculated, the multislice algorithm may take place.

The parameters of the simulations are controlled by so-called parameter files .prm,
where the TEM setup is defined, i.e., accelerating voltage, detector area, beam tilt, and
aberrations. The aberrations are in our case set to zero, we use an aberration-free sys-
tem to selectively highlight the effects that are introduced by the TDS. Further in STEM
mode, we define the probe position and convergence angle (otherwise we use TEM
parallel illumination, where the convergence angle is set close to zero and the probe po-
sition is thus irrelevant). The acceleration voltage was set to 300 kV, except for Si CBED
calculations, where it was set to 100kV. The "msa" function then works with uploaded
sli files into the memory, whilst applying the TEM parameters from the .prm file. The
wave function, which has intensity normalized to one, is propagated from slice to slice,
where it is transmitted, as described in 1.34. The results consist of wave function values
in binary data files (in numbers float32/64) in a chain containing a pair of numbers: real
and complex for each pixel. These files are further analysed (the FPM according to 2.3)
in MATLAB/Python, yielding intensity distributions in diffraction patterns.

3The file size is determined by x resolution x y resolution x 32/64 bits (the data limit for one pixel,
64bit is for the case the numbers are double-precision floating-point format) x number of slices. And in
the process of electron propagation, all these slices are then loaded into the RAM memory; it is therefore
recommended to choose a suitable sampling, not to exceed the memory capacity of the computing device.
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Figure 3.4: Scheme of the calculation processes. The corresponding calculations were

carried out for all three materials, that is, 3 models x 3 materials.
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3.3 Resulting Diffraction Patterns

We now show and analyze the results of the calculation processes. First, we show
the diffraction patterns from the inspection of the three materials, then we proceed
into more deeper analysis of the intensity profiles. There are seven possible relevant
diffraction pattern outputs for each material, that is, the total FPM intensity of correlated
atomic motion model and Einstein model (2), inelastic intensity channel (TDS) from
both of the model (2), elastic channel for both frozen phonon models (2), and lastly the
complex absorptive potential calculation, which yields only the elastic channel intensity
(1). Special attention then will be put on the total intensity in CBED patterns from Si,
which will be compared by characteristic features with experiment.

We start by showing the set of diffraction pattern outputs for the diamond crystal, a total
of five (without the TDS). The signals displayed are total intensity and elastic channel;
the TDS is then apparent by observing the background of the total intensity pattern
outside the one-pixel Bragg spots. In Diamond and STO, we are then interested in the
depleted elastic channel, which will later be compared among all the models. And to
compare the features of diffractions with experimental data, we will use and show the
total intensity (representing detector measurements) in Si CBED patterns.

3.3.1 Diamond Results

In Figs. 3.5-3.6 is the elastic channel from the complex absorptive model and FPM, and
in Fig. 3.7 we see the total intensity FPM diffraction patterns.
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Figure 3.5: Diffraction pattern, elastic channel of complex absorptive potential model
for diamond with thickness t = 50nm, and electron accelerating voltage U = 300kV.
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Figure 3.6: Diffraction patterns, elastic channel of frozen phonon models for diamond
with thickness t = 50nm, and electron accelerating voltage U = 300 kV.
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Figure 3.7: Diffraction patterns, total intensity of frozen phonon models for diamond
with thickness t = 50nm, and electron accelerating voltage U = 300 kV.
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Note that most of the intensity remains in the central Bragg spots, hence, we use the
logarithmic scale to highlight the intensity distribution, also the total initial intensity is
normalized to be equal to 1. In the complex absorptive potentials model, only Bragg
spots are present. However, in the elastic channel of frozen phonon models, we may
still notice the background noise, even though the elastic signal should remain in the
Bragg spots. This is due to the averaging over the snapshots and the noise is decreasing
with increasing number of snapshots. In the TDS signal background visible in total
intensity patterns, both frozen phonon models show distinctive Kikuchi lines, which
are caused by elastic scattering of inelastically scattered electrons and thus do not fall
in the elastic channel. The Kikuchi lines are also more noticeable in the diffraction
patterns of thick samples. Furthermore, the Bragg spots vicinity in the correlated atomic
motion model exhibits intensity smearing and is brighter than in the Einstein model.
Also, higher-order Laue zone Bragg spots are visible around 6 ~ 100 mrad. The Bragg
spot asymmetry in Fig. 3.5 (forbidden reflections) is a very subtle change in Bragg spot
intensities caused by the electron beam deformation in transition between the atomic
layers in unit cell. It is visible merely because of the broad dynamical range of the plot.

3.3.2 STO Results

Results for STO crystal Figs. 3.8-3.10 continue in the same theme as it was in the case of
diamond. We observe sharp Bragg spots in the elastic channels, but we also see some
residual TDS background in frozen phonon models. Atoms in STO are, however, much
heavier than carbon in a diamond crystal, so in analysis, we will pay great attention
to the large scattering angles (Z-contrast HAADF area). Full TDS distribution is then
visible in total intensity patterns.
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Figure 3.8: Diffraction pattern, elastic channel of complex absorptive potential model
for STO with thickness t = 30 nm, and electron accelerating voltage U = 300 kV.
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Figure 3.9: Diffraction patterns, elastic channel of frozen phonon models for STO with
thickness t = 30nm, and electron accelerating voltage U = 300kV.
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Figure 3.10: Diffraction patterns, total intensity of frozen phonon models for STO with
thickness t = 30nm, and electron accelerating voltage U = 300kV.
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3.3.3 Silicon CBED Results of Si (111)
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Figure 3.11: Diffraction pattern, elastic channel of complex absorptive model (top) and
total intensity of FPM Einstein model (bottom) for Si with thickness t = 85nm, electron
accelerating voltage U = 100kV, and convergence angle 6 mrad.
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Figure 3.12: Diffraction pattern, total intensity of FPM correlated atomic motion model

for Si with thickness t = 85nm, electron accelerating voltage U = 100kV, and conver-
gence angle 6 mrad.

Figure 3.13: Experimental CBED pattern of Si(111) ¢ ~ 85nm as presented by Ogata
et al. [52], imaged at 100kV. The CBED pattern is reprinted from [52] with inverted

colormap.
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Figs 3.11-3.12 show the CBED simulation results, the dynamical range on the colorscale
was slightly adjusted compared to the parallel illumination simulation, since the inten-
sities in Bragg peaks are spread into broader spots. Fig. 3.13 is then reprinted experi-
mental data [52], to compare the diffraction pattern features with the theoretical results.
We see that the most of the common features with the experiment has the FPM corre-
lated atomic motion model. It fits in the Bragg disc intensity distribution as well as the
TDS shape. The Bragg discs in the Einstein model are swiftly disappearing when going
further from the center of the diffraction pattern, and the complex absorption model, in
principle, cannot recreate the TDS background.

3.4 Comparison of the Models

We follow up with an analysis of the diffraction pattern results. Since it is impractical
to directly subtract and analyze the diffraction models, the methodology of model com-
parison was carried out as follows: we annularly integrate the diffraction pattern into
an intensity profile as depicted in 3.14. The Bragg peaks of the same diffraction angle

(which is radius coordinate of the pattern) 6 = /0% + 07, then project into one peak

in the intensity profile; e.g., the value of the four peaks in the same scattering angle
is averaged into one. We utilize this fact to compare corresponding peaks among the
models. In practice, the discretized dataset of the diffraction pattern is segmented into
rings of width exactly one pixel, while we ensure that no pixel is left over, or no pixel is
counted multiple times. All pixels in the one ring are then summed up and normalized.
The summation of each of the corresponding 6-dependent rings then yields the single
value in the intensity profile I,(8). Doing this for every ring inherently maps the whole
intensity profile.

The profiles are shown from all models and all three combinations of model differences
log,,(I1 — I»), where 1, 2 represent the arbitrary models. Moreover, for the Diamond and
STO crystals, the thickness dependence of the annular profile is presented in 3.4.1.

Annular integration into intensity profile

> .
& g ~ ~
&
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Figure 3.14: Depiction of the annular integration to obtain the intensity profile of the
diffraction patterns.
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Diamond analysis
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Figure 3.15: Diamond crystal - intensity profiles of the diffraction patterns from all three

models.
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Figure 3.16: Diamond crystal - differences of intensity profiles of the diffraction patterns
from all three models.
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Fig. 3.15 shows the intensity profiles of diamond to visualize the intensity distribution
in the elastic channel. Also note that the scale is again logarithmic. It is apparent that
besides the Bragg spots, the TDS background noise still remains present in the frozen
phonon models, and has a threshold level in the order of magnitude around 10751y in
the Einstein model and around 10~ I, in the correlated atomic motion model, where I,
is the initial intensity. We thus can not compare the models beyond this threshold.

Furthermore, in the case of frozen phonon models, with the addition of more snap-
shots/variants to the calculations, the Bragg spot intensity value slowly converges. We
therefore ensure that the central (and 2nd most intensive) Bragg peak intensity error
is well below the observed differences among the models. We observe the evolution
of the Bragg spot intensity dependent on the addition of the snapshots. The intensity
error is then monitored via the standard deviation value taken from the thermally aver-
aged Bragg peak intensity for the last 50 snapshot additions, and confirmed to be below
the typical model difference values in Bragg spots. It has been achieved by providing
enough of snapshots to the MSA simulation.

If we compare the differences between the three models in Fig. 3.16, we see that some of
the Bragg spots carry an error way above the TDS background noise threshold. We see
discrepancies primarily between the FPM correlated atomic motion model and the rest.
The Einstein model and complex absorptive model, as presented, should, in theory,
be equivalent for an infinite detector area. In certain Bragg spots, including central
Bragg spot (Omrad), this difference is in the order of 10~3Iy; moreover, after closer
inspection, we notice that in the large scattering angles (around 110 mrad) the error is
still as significant as in bright field.

There are similar errors near the center of the diffraction pattern as there are in higher-
order Laue zone Bragg spots, which are typically weaker in intensity than central Bragg
spots. Note the fact that the difference displayed is an absolute error between the mod-
els, thus, the relative error in the higher-order Laue zone is significant and may impact
HAADF imaging. The error, thus, may be considered as a valid indicator of the discrep-
ancy of the models.

The frozen phonon model is deliberately calculating with atomic motion and shows,
that its correspondence to reality is more elaborate [50] than the complex absorptive
model. Specific conditions must be met for the models to agree, such as a large collection
area, due to the local approximation of the non-local absorptive potential [2]. The large
collection area (large detector) can be imitated by convolution of the diffraction pattern
with a large kernel matrix Fig. 3.17. For a circular kernel of diameter 110 mrad, the
resulting intensity profiles show maximum discrepancies around 10~4°Iy, which is an
error notably lower than before the convolution. We can thus say that, large collection
area increases the precision of the models.
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Figure 3.17: Elastic intensity profile for diamond convoluted diffraction patterns, repre-
senting a large collection area of 27 mrad, 55 mrad, and 110 mrad in diameter. Note that
the intensity profiles for the 110 mrad detector almost overlap.
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STO analysis

In STO, the relative difference in signal for the high scattering angle region is also signif-
icant, which may result in discrepancies in HAADF simulation. Further, in low angles
we see errors in orders of 1071 — 1072y, which are already units of percent. Both of
those results are non-negligible. (Fig. 3.19)
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Figure 3.18: STO - intensity profiles of the diffraction patterns from all three models.
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Figure 3.19: STO - differences of intensity profiles of the diffraction patterns from all
three models.
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Silicon analysis

Primarily due to the broader spot (Bragg discs) in the Silicon STEM CBED simulations,
the noise background is higher than in previous cases, this might be resolved by adding
more atomic snapshots/variants. However, the peaks in the differences in Fig. 3.21 move
in orders 1072, which is above the noise, therefore can be considered as a notable error.
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Figure 3.20: Si - elastic intensity profiles of the diffraction patterns from all three models.
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Figure 3.21: Si - differences of elastic intensity profiles of the diffraction patterns from
all three models.
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3.4.1 Thickness Dependence

The intensity distribution depends heavily on the thickness of the sample. To cover for
this dependence, the intensity profiles can be obtained for multiple thickness values and
stacked together to create the two-dimensional function Figs. 3.22-3.25. The thickness
is sampled into 20 different thickness values. We can see that, in some cases, Bragg
spot intensities tend to oscillate with the increasing thickness, and the intensity is, in
that case, redistributed into other Bragg spots. The oscillations are directly caused by
dynamical diffraction effects. We also see a gradual increase in the TDS background in
frozen phonon models, which solely reflects the fact that the inelastic scattering proba-
bility grows with sample thickness. In Fig. 3.25 we see increasing errors (between A-B)
with thickness at scattering angles around 100 mrad, which indicates a gradual devia-
tion of the models with increasing thickness, it is especially interesting as we only have
a 30nm thick sample.
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Figure 3.22: Thickness dependence of intensity profiles for diamond crystal.
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Figure 3.23: Differences among the models, depending on thickness presented in the
two-dimensional function for diamond crystal.
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Figure 3.24: Thickness dependence of intensity profiles for STO crystal.
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Figure 3.25: Differences among the models, depending on thickness presented in the
two-dimensional function for STO crystal.
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Summary

The cornerstone of this thesis is to investigate the theory behind the absorptive models
of electron scattering in transmission electron microscopy (TEM) and carry out thorough
TEM simulations. The approach was divided into multiple systematic stages, to which
the thesis chapters of this thesis refer to.

Firstly, the Chapter 1 briefly sums up the fundamental knowledge from transmission
electron microscopy and the instrumentation. This helps us to better understand the
image formation and types of imaging/diffraction modes, as well as various capabili-
ties or limits of TEM machines. Another very important topic is the electron-specimen
interaction, which is a quantum-mechanical phenomenon, and with rigorous mathe-
matical apparatus, we could extract important forms of exciting wavefunctions in the
multislice algorithm (MSA).

In Chapter 2, the main focus shifted towards the absorption models on phonon exci-
tations. In total, three absorption models were investigated. Each of the models has a
different treatment of the absorptive effects, which are carefully explained. Two of those
models come from a so-called frozen phonon model (FPM) theory, and we further di-
vide them into the correlated atomic motion model and the Einstein model. Moreover,
for the function of the correlated atomic motion model, it is necessary to implement
atomic configurations obtained via molecular dynamics (MD) simulations. The third
model is the complex absorptive model described by Yoshioka [13].

The Chapter 3 contains the description of calculation processes and results. Many exten-
sive calculations were carried out. First, it was necessary to define the samples, which
were chosen to be diamond crystal, STO crystal, and silicon crystal. The molecular dy-
namics yielded static lattice configurations, so-called snapshots, which were used in the
FPM correlated atomic motion model. The lattice configurations, which come from vari-
ants (snapshots) of harmonic atomic motion, were applied in the Einstein model, and
lastly complex absorptive model only needs an equilibrium definition of the lattice. As
soon as the sample was clearly defined, another set of calculations, this time the MSA,
provided us with results in the form of diffraction patterns. Characteristic features of
each of the models were then presented on Si crystal convergent beam electron diffrac-
tion (CBED) and compared to experimental CBED images, containing typical diffraction
features.

All the diffraction patterns were then rigorously analyzed, and many possible vari-
ables were taken into account. The intensity profiles of the diffraction patterns were
directly compared via subtraction among the three models. In conclusion, the simula-
tion yielded results that show non-negligible differences between the models of frozen
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phonon correlated atomic motion model and complex absorptive model, up to units of
percent. The errors were investigated to be well above the background noise of frozen
phonon models. The FPM Einstein model shows better agreement with the complex
absorptive model than the correlated atomic motion model, with absolute errors not
exceeding 10~2]y. The absolute error was clearly the most significant in the STO crystal,
which might indicate the model volatility in terms of atomic masses, as the STO crystal
contains heavy elements. Results from light-element diamond crystal calculations also
show noticeable errors, however, still not as high as in the case of STO. The relative error
is especially significant in the higher-order Laue zone area of the diffraction patterns.
We therefore have to be cautious in a simulation of HAADF and HRTEM, while using
the complex absorptive model, as the FPM correlated atomic motion is considered more
elaborate and closer to real data [50, 16]. The thickness dependence has been presented,
and for STO calculations, it shows a gradual increase in errors with greater thickness of
the sample.

Even though the discrepancies of the models are in some cases non-negligible, a rela-
tively good agreement of the models has been achieved, provided a large detection area.
With the increasing detector area, the errors among the models gradually disappear, as
was predicted by [14].



List of Abbreviations

TEM
STEM
TDS
HRTEM
ADF
HAADF
BF

EELS
CBED
HOLZ
POA
MSA
DWF
FPM
FPMS
MD

DFT
LAMMPS
QEP

Transmission electron microscopy (microscope)
Scanning transmission electron microscopy (microscope)
Thermal diffuse scattering

High-resolution transmission electron microscopy
Annular dark-field

High-angle annular dark-field

Bright-field

Electron energy loss spectroscopy

Convergent beam electron diffraction

Higher-order Laue zone

Phase object approximation

Multislice algorithm

Debye-Waller factor

Frozen phonon model

Frozen phonon multislice

Molecular dynamics

Density functional theory

Large-scale Atomic/Molecular Massively Parallel Simulator

Quantum excitation of phonons
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