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Abstract

This thesis focuses on the study of the Traveling Salesman Problem (TSP), a classical combinatorial
optimization problem concerned with finding the shortest possible route through a set of cities.
The introductory part presents a formal definition of TSP and an overview of its computational
complexity. The following chapters are dedicated to genetic algorithms, with a particular focus
on permutation-based approaches tailored for solving TSP instances. Subsequently, the thesis
explores the foundations of cooperative game theory and its solution concepts, with emphasis
on their application to cost allocation problems. The practical part of the thesis consists of the
implementation of a modular and parallelized TSP solver based on a genetic algorithm. This solver
is then extended to approximate the Shapley value, which is used to fairly distribute travel costs
among agents in the context of TSP-based cooperative games.

Abstrakt

Tato bakaldiskd prace se zabyva problémem obchodniho cestujictho (TSP), klasickym kombi-
natorickym optimalizacnim problémem, jehoZ cilem je nalezeni nejkrat$i mozné trasy spojujici
danou mnozinu mést. Uvodni ¢4st prace poskytuje formalni definici TSP a prehled jeho vypoéetni
slozitosti. Nasledujici kapitoly jsou vénovany genetickym algoritmtim, se zvlastnim dtrazem na
permutacéni pristupy prizpusobené reSeni TSP. Déle se prace zaméruje na zaklady kooperativni
teorie her a jeji resitelské koncepty, zejména z hlediska spravedlivého rozdéleni nékladd. Prakticka
¢ast prace spociva v implementaci moduldrniho a paralelizovaného reSice TSP zaloZeného na
genetickém algoritmu. Tento teSi¢ je ndsledné rozsifen o aproximaci Shapleyho hodnoty, ktera
slouZi ke spravedlivému rozdéleni cestovnich nakladti mezi agenty v kontextu kooperativnich her
zalozenych na TSP.
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Rozsifeny abstrakt

Tato bakalar'skd prace se zabyva problémem spravedlivého rozdéleni ndkladii v tilohéch trasovani
prostfednictvim kombinaci konceptti z oblasti kooperativni teorie her a kombinatorické optimalizace.
Préce je strukturovdna do dvou ¢asti: prvni predstavuje nezbytny teoreticky zdklad, zatimco druha
se zaméruje na praktickou implementaci a benchmarking.

Teoreticka cast zac¢ind problémem obchodniho cestujictho (TSP), klasickym NP-tézkym prob-
1émem, jehoz cilem je nalézt nejkrat$i moznou trasu, kterd navstivi kazdé mésto praveé jednou a vrati
se do vychoziho bodu. Nasleduje podrobny prehled genetickych algoritmii (GA)—stochastickych
optimalizacnich metod, které pracuji s populaci feSeni a jsou zvlasté efektivni pro tlohy s per-
mutacnim kéddovanim, jako je praveé TSP. Poté jsou predstaveny kli¢ové pojmy z kooperativni
teorie her, se zamérenim na ndkladové hry, kde hraci spolupracuji na snizeni celkovych naklad
namisto maximalizace zisku. Diskutovany jsou ctyti hlavni koncepty teSeni: jddro, relaxované
jddro, nukleolus a Shapleyho hodnota, pticemz hlavni daraz je kladen na Shapleyho hodnotu diky
jeji skdlovatelnosti a srozumitelnosti v kontextu trasovani.

Druhd ¢ast prace predstavuje komplexni implementaci moduldrniho a rozsititelného resice
TSP v jazyce Python vyuzivajici geneticky algoritmus. Navrh klade diraz na flexibilitu a umoznuje
uZivatelim konfigurovat operatory vybéru, kiizeni, mutace a strategie preziti. Kandidatni reseni
jsou reprezentovana jako permutace a podporovany jsou bézné operatory, jako naptiklad turnajovy
vybér, fadkové kiizeni nebo inverzni mutace. Implementace zahrnuje grafické uzivatelské rozhrani
(GUI) postavené na knihovné customtkinter, které umoziuje interaktivni nastaveni parametrt
a vizualizaci vysledki v redlném case.

Pro ovéreni vykonnosti a spravnosti algoritmu je geneticky resi¢ porovnavan s optimalnimi
reSenimi ziskanymi pomoci Concorde TSP Solver, a to na standardnich instancich z databaze
TSPLIB. Tyto externi benchmarky slouzi jako referen¢ni bod pro hodnoceni kvality ptibliznych
feSeni a ladéni parametrti algoritmu.

V rdmci kooperativni teorie her je tento radmec rozsiten o vypocet Shapleyho hodnoty—alokace
ndkladt zalozené na prumérném prispévku kazdého mésta ke koali¢nim ndkladiim. Vzhledem
k faktoridlnimu riistu poc¢tu usporadani koalic je presny vypocet redlné proveditelny pouze pro
malé instance. K tomuto tcelu je implementovdna aproximacni metoda zaloZend na ndhodném
vybéru permutaci, kterd odhaduje mezni prispévky. Vypocet je paralelizovdn pomoci modulu
multiprocessing jazyka Python, coz umoznuje efektivni skdlovani na vétsi problémy.

Klasické statistické nastroje, jako jsou Pearsontiv a Spearmantv korela¢ni koeficient, byly
pouzité pro zkoumadni vztahu mezi geometrickymi charakteristikami mést (napt. vzdalenosti
od depa nebo primérnou vzdélenosti od ostatnich) a jejich Shapleyho hodnotou. Tato analyza
poskytuje vhled do vlivu prostorového umisténi na mezni prinos v kooperativnich trasovacich
problémech.

Kombinaci teorie, navrhu algoritmu a empirického ovéreni prace ukazuje, ze heuristické
optimalizacéni techniky lze efektivné integrovat s kooperativnimi koncepty spravedlivé alokace
nakladt. Vyvinuty rdmec predstavuje zdklad pro dal$i vyzkum v oblasti kolaborativni logistiky,
sdileni zdroji a optimalizace rizené umélou inteligenci.
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1 Introduction 15

1 Introduction

The aim of this thesis is to study cost allocation methods in cooperative settings arising from the
TSP and to implement efficient computational tools for solving such problems. TSP is a classical
combinatorial optimization problem with a wide range of practical applications, particularly in
logistics and routing. Due to its complexity, exact solutions become computationally intractable
for larger instances, making heuristic approaches, such as genetic algorithms, an essential part of
modern solution techniques. Additionally, the cooperative aspect of TSP enables the study of fair
cost distribution among multiple agents using concepts from cooperative game theory.

In Chapter 2, the Traveling Salesman Problem is introduced and various mathematical formula-
tions are discussed, starting with integer linear programming models. The chapter then transitions
to a graph-theoretical perspective, where the problem is reframed as a search for Hamiltonian
cycles. Both exact and heuristic solution approaches are reviewed, emphasizing their applicability
and limitations.

Chapter 3 is dedicated to genetic algorithms, focusing on permutation-based representations
tailored for solving TSP. Specific genetic operators such as crossover and mutation are discussed
in detail, along with their behavior on permutation-encoded solutions.

Chapter 4 explores cooperative game theory and its relevance to TSP as a multi-agent cost
allocation problem. Fundamental solution concepts such as the core, the relaxed core, the nucleolus,
and the Shapley value are introduced, and their theoretical properties are examined.

Chapter 5 presents the implementation of a genetic algorithm-based TSP solver. Its perfor-
mance is benchmarked across various instances, and insights into parameter selection, operator
effectiveness, and scalability are discussed. This chapter also includes proposals for future im-
provements.

Finally, Chapter 6 builds upon the previous implementation to construct a solver for the Shapley
value. The genetic algorithm TSP solver is used to evaluate the characteristic function of coalitions,
enabling the approximation of the Shapley value in otherwise intractable cooperative games.
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2 Traveling salesman problem

Before presenting a formal definition, we begin with an informal formulation of the TSP:

Given a set of cities and pairwise distances between them, determine the shortest
possible route that visits each city exactly once and returns to the original city.

In this chapter, we primarily build upon the concepts and explanations provided in [1, 2].

2.1 Formal Mathematical Formulation of TSP

TSP can be expressed as an Integer Linear Program (ILP), with several formulations available in
the literature. Among the most prominent are the Miller-Tucker-Zemlin (MTZ) formulation and
the Dantzig—Fulkerson—-Johnson (DFJ) formulation.

To formulate the TSP as an optimization problem, we begin with a set of n cities denoted by
V = {v1,0s,...,0,}. Each city v; € V is associated with a location in two-dimensional Euclidean
space [E2, represented by coordinates (x;, y;) € R2. We also need to introduce a binary decision
variable representing a tour between two cities

Definition 2.1. The decision variable is a binary variable x;; defined for each pair of distinct cities
v;,0; € V as follows:

1, if the tour includes a direct path from city v; to city v;,
Xi: =
Y 0, otherwise.

The travel cost between two cities v; and v; is given by their Euclidean distance:

Cij = \/(xi —xj)*+ (yi —y))?,

which captures the straight-line distance between cities and ensures the symmetry of the cost
matrix C = [c¢;;].

This cost structure forms the basis of the Euclidean TSP, where the objective is to select values
of x;; € {0, 1} that minimize the total travel cost subject to constraints ensuring a valid tour. We
also consider the cooperative extension of this problem, known as the Traveling Salesman Game
(TSG), which builds upon the same geometric cost structure and focuses on fair cost allocation
among the participating cities.

2.1.1 Miller-Tucker-Zemlin formulation

In addition to the binary decision variables x;; introduced earlier, the MTZ formulation incorporates
a set of auxiliary variables u; for all v; € V. These variables represent the relative position of each
city in the tour and are used to eliminate subtours, a tour that visits only a proper subset of the
cities, instead of all cities, by enforcing a consistent ordering of the visited cities. The interpretation
is that u; < u; implies that city i is visited before city j in the tour. Together, x;; and u; form the
basis of the following integer programming model.

Objective function

mn 33
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Subject to:

xj=1 Vo eV (2)
i=1

1#]

n

injzl Yo, eV 3
=1

i#j
ui—uj+1§(n—1)(1—x,~j) 2<i#j<n “4)
2<u;<n 2<i<n (5)
Xij S {O,l},u,- e N (6)

Constraints (2) and (3) ensure that each city is entered and departed exactly once through selected
arcs, forming a collection of one or more cycles that together cover all cities.

Constraint (4) eliminates subtours by imposing an ordering on the cities using auxiliary
variables u;. If a arc (v;, v;) is selected in the tour (i.e., x;; = 1), the constraint enforces u; +1 < uj,
meaning city v; must appear later in the tour than city v;. If directed arc (v;,v;) is not selected
(i.e., x;; = 0), the constraint becomes non-restrictive. This prevents the formation of smaller cycles
that do not include all cities, ensuring that only a single tour can satisfy all constraints.

Finally, Constraint (5) defines the valid bounds for the MTZ variables u;. These bounds are
essential to ensure the correctness of the subtour elimination mechanism and to maintain feasibility
in the ILP model.

2.1.2 Dantzig-Fulkerson-Johnson Formulation

An alternative to the MTZ formulation is the DFJ model. Unlike the MTZ model, it eliminates
subtours by adding one constraint for each subset of cities, leading to an exponential number of
constraints. Although this increases the model size, the linear relaxation of the DFJ formulation is
tighter, meaning that its optimal value is closer to the true integer solution. This makes the DFJ
model more effective in exact solution methods. It is formulated as follows:

Objective function:

n n

min CijXij (1)
Yozl =1
J#i

Subject to:
injzl VU]' ev 2)
D oxy=1 Vo, eV 3)

szijg|5|—1 VScV,2<|S|<n-1 7)

xl-j S {0, 1} (6)
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Constraints (2) and (3) were already introduced in the MTZ formulation and serve the same
purpose in the DFJ model.

However, these constraints alone are insufficient to prevent the formation of multiple discon-
nected subtours. To eliminate such subtours, constraints (6) are introduced. For every proper
subset S € V with 2 < |S| < n — 1, the total number of edges traversed within S is restricted to
at most |S| — 1. This condition ensures that no subset of cities can form an independent cycle,
thereby enforcing that the solution constitutes a single connected tour over all cities.

2.1.3 The TSP and Hamiltonian Cycles

Another powerful perspective on the TSP comes from graph theory. While the previous section
introduced the problem through the lens of optimization, we now shift focus to its combinatorial
structure. In this view, cities are modeled as vertices in a graph, and potential direct connections
between cities correspond to edges. This abstraction allows us to formulate the TSP as the problem
of finding a Hamiltonian cycle of minimal total length.

At the foundation of this graph-theoretic approach lies the concept of a graph, which formally
describes how entities (in our case, cities) are connected through pairwise relationships.

Definition 2.2. An undirected graph is a pair G = (V, E), where V is a finite set of vertices, and
E C {{w,v} | u,0 € V, u # v} is a set of unordered pairs of distinct vertices, called edges.

Definition 2.3. A complete graph is an undirected graph in which every pair of distinct vertices
is connected by a unique edge. Formally, a complete graph on n vertices is denoted by K,, and
consists of:

* avertex set V = {v1,0,...,0,}, and
* anedgeset E = {e;; = {v;,0;} | 1 <i < j < n},

n(n-1)

such that the number of edges satisfies |E| = ==

vertices is connected exactly once.

, reflecting the fact that each pair of distinct

Definition 2.4. The degree of a vertex in an undirected graph is the number of edges connected
to it.

With these basic notions in place, we now turn to the concept of Hamiltonian paths and cycles,
which lie at the heart of the TSP’s graph-theoretic formulation.

Definition 2.5. A Hamiltonian path in a graph G = (V, E) is a sequence of distinct vertices in
which each vertex of V is visited exactly once, and consecutive vertices are connected by edges in
E. If, in addition, the first and last vertices are connected, the path forms a Hamiltonian cycle.

Definition 2.6 (Hamiltonian graph). A graph G = (V, E) is called Hamiltonian if it contains a
Hamiltonian cycle.

A fundamental sufficient condition ensuring the existence of a Hamiltonian cycle is provided
by Dirac’s theorem.

Theorem 2.7 (Dirac). Every graph with n > 3 vertices and minimum degree at least n/2 has a
Hamiltonian cycle [2].
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Applying Dirac’s theorem to complete graphs, we immediately see that for a complete graph K,
each vertex has degree n — 1, which is greater than n/2 for all n > 3. Therefore, every complete
graph with at least three vertices is Hamiltonian.

Since complete graphs are Hamiltonian, and in fact much richer in structure, we can observe
an even stronger property: in a complete graph K, every permutation of the n vertices naturally
defines a Hamiltonian path, and by adding the edge from the last vertex back to the first, a
Hamiltonian cycle. Conversely, every Hamiltonian cycle in K, corresponds to a unique ordering of
the vertices, up to cyclic shifts.

Thus, there is a one-to-one correspondence between the set of permutations of the vertices
and the set of Hamiltonian cycles in K, provided we fix a starting vertex. This observation allows
us to reformulate the Traveling Salesman Problem as the search for a permutation that minimizes
the total travel cost.

To formalize this idea, we fix a starting vertex, say v;, and consider all permutations of the
remaining n — 1 vertices. Each such permutation uniquely determines a Hamiltonian cycle in K.

Let o = (031, 09, ..., 0,) denote a permutation of the vertices, where o is the fixed starting ver-
tex, and oy, . . ., 0, represent the order in which the remaining cities are visited. The corresponding
tour follows the sequence:

(43

1 > Vo 7 " 7 Vg, 7 Ugy-

Given a cost matrix C = [c;;], where c;; denotes the cost of traveling from city v; to city v},
the total cost associated with a permutation o is

n—1

Cost(o) = Z Coropay T Conor -
k=1

Thus, the Traveling Salesman Problem can be reformulated as the problem of finding a
permutation o that minimizes Cost(o). The final term ¢, ,, ensures that the tour returns to the
starting city, thereby completing the Hamiltonian cycle.

Formally, the objective can be expressed as

min Cost(o)
o€S,

where S, denotes the set of all permutations of the n vertices.

Although the permutation-based formulation of the TSP is compact and intuitively appealing,
it is not well suited for exact solution methods when the number of cities becomes large. The
number of possible permutations grows factorially with n, making exhaustive search or exact
optimization approaches computationally infeasible for all but very small instances. However, this
representation is particularly advantageous for heuristic and metaheuristic algorithms. In the
later chapters, we will build on this formulation to develop a genetic algorithm tailored to solving
the TSP.

2.2 Computational Complexity of the TSP

An algorithm is said to run in polynomial time if its worst-case running time is bounded above by
a polynomial function of the input size. That is, for an input of size n, the algorithm completes
in at most O(n¥) steps for some constant k € N. In contrast, a non-polynomial time algorithm
may require O(2"), O(n!), or other super-polynomial bounds, which grow much faster and are
generally considered infeasible for large input sizes.
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Problems in class P are those that can be solved in polynomial time. The class NP contains
problems for which a given solution can be verified in polynomial time, and it includes P as a
subset. NP-Complete is the complexity class representing the set of all problems X in NP such that
any other problem Y in NP can be reduced to X in polynomial time. Finally, NP-hard encompasses
problems that are at least as hard as NP-complete problems, but which may not themselves belong
to NP; they may not even have solutions verifiable in polynomial time.

The famous open question in computational complexity theory is whether P = NP, that is,
whether every problem whose solution can be verified quickly can also be solved quickly.

The TSP is formally classified as NP-hard, whereas the decision version of the TSP, which asks
whether there exists a tour with a total cost less than or equal to a given bound, is NP-complete.

The combinatorial complexity of the problem arises from the factorial growth of the solution
space. For a set of n cities:

¢ in the symmetric TSP (where ¢;; = c¢j;, Vv;,0; € V,i # j), the number of distinct tours is

(n—=1)1/2.
* in the asymmetric TSP (where ¢;; # cj;, Vv;,0; € V,i # j), the number of distinct tours is
(n—1)".

Thus, the number of possible tours grows factorially with n, making exhaustive search infeasible
even for moderate instance sizes.

Despite this theoretical intractability, a variety of exact and heuristic methods have been
developed to solve practical instances of the TSP efficiently. In the following sections, we examine
the principal approaches for solving the TSP, starting with exact algorithms capable of guaranteeing
optimality and then exploring heuristic and metaheuristic methods that provide high-quality
solutions for larger and more complex instances.

2.3 Exact Solution Methods

While the TSP is computationally difficult, exact algorithms play a crucial role by aiming to find
provably optimal solutions. These methods are designed to guarantee optimality, at the cost of
potentially high computational effort. In this section, we examine the two most prominent exact
approaches for solving the TSP: Branch and Bound (B&B), which systematically explores the
solution space while pruning suboptimal regions, and Branch and Cut (B&C), an advanced method
that combines B&B with cutting-plane techniques to strengthen the search process.

2.3.1 Branch and Bound

Basic Principle. The B&B algorithm explores a search tree in which each node represents a
partial tour, and each branch corresponds to a decision, such as selecting or excluding a particular
edge. The full solution space is thus divided recursively into smaller subproblems. At each node, a
lower bound on the total tour cost is computed. If this lower bound exceeds the cost of the best
complete tour found so far (the current upper bound), the subproblem can be safely discarded
(pruned) because it cannot lead to an optimal solution.

Bounding Strategy. Bounding is crucial for the efficiency of the algorithm. Common bounding
techniques include:

* The cost of a minimum spanning tree on the remaining unvisited cities.

* Computation of an approximate dual solution that serves as a lower bound

* Heuristics that provide fast approximations of the remaining tour cost.
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Branching Strategy. Branching decisions vary by implementation. One common approach is to
branch on the next city to visit from the current city, generating child nodes corresponding to
each possible continuation. Alternatively, one may branch based on the inclusion or exclusion of
specific edges in the tour.

Termination. The algorithm terminates when all subproblems have been either solved or pruned.
The best feasible tour found during the search is then guaranteed to be optimal.

Algorithm 1 Branch and Bound for the TSP

1: Initialize bestTourCost «— 0o, bestTour «

2: Initialize a priority queue with the root node (no cities visited, cost 0, lower bound 0)
3: while priority queue is not empty do

4: Extract the node with the lowest lower bound from the queue

5 if node represents a complete tour then
6 if tourCost < bestTourCost then
7: Update bestTour and bestTourCost with the current tour
8 end if
9 else if lowerBound(node) < bestTourCost then
10: Generate child nodes by visiting an unvisited city from the current node
11: for each child node do
12: Compute the lower bound for the child node
13: if lowerBound(child) < bestTourCost then
14: Add the child node to the priority queue
15: end if
16: end for
17: end if

18: end while
19: return bestTour and bestTourCost

To see a more detailed examination of the B&B method, see [1]. We now move on to the next
method, called Branch and Cut (B&C), which builds upon B&B by incorporating cutting plane
techniques.

2.3.2 Branch and Cut

The B&C algorithm is the best exact method currently known for solving the TSP. It combines the
systematic exploration of the solution space, as in B&B, with the addition of dynamically generated
linear inequalities, called cutting planes, that tighten the linear programming (LP) relaxation of
the problem where relaxation is obtained by replacing x € {0, 1} with x € [0, 1]. This method is
particularly effective for large instances and forms the foundation of the state-of-the-art Concorde
TSP Solver [9].

Basic Principle. At the core of the algorithm is a relaxation of the TSP as an LP, typically based
on the DEJ formulation. Since this LP relaxation permits fractional solutions, additional constraints
(cuts) are added dynamically to eliminate infeasible solutions and strengthen the relaxation. If the
solution remains fractional after applying cuts, the algorithm proceeds by branching on a decision,
such as fixing an edge to zero or one, thereby generating subproblems that are solved recursively.
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Cutting Planes. The cutting planes are valid inequalities that are satisfied by all feasible solutions
of the original integer TSP problem but violated by some LP-relaxed solutions. Common classes of
cuts include:

* Subtour elimination constraints
* Comb inequalities

* Blossom inequalities

* Clique tree inequalities

The effectiveness of Branch and Cut depends critically on the ability to detect (or separate) violated
cuts efficiently, which is typically done using specialized combinatorial algorithms.

Branching Strategy. When no further violated cuts can be found and the LP solution remains
fractional, the algorithm branches, typically by selecting a fractional variable x;; and creating
two subproblems: one with x;; = 0, and one with x;; = 1. The resulting subproblems are solved
recursively, each with their own cutting plane phase.

Termination. The algorithm continues recursively, branching and cutting, until all subproblems
are either solved or pruned. The best integer solution found across all branches is then guaranteed
to be optimal.

Algorithm 2 Branch and Cut for the TSP

1: Initialize bestTourCost «— oo, bestTour «— @
2: Add root node (full relaxed problem) to queue
3: while queue is not empty do

4: Extract node and solve LP relaxation

5: while violated cuts are found do

6: Add cuts to LP and re-solve

7: end while

8: if solution is integer then

9: if tour cost < bestTourCost then
10: Update bestTour and bestTourCost
11: end if
12: else if lower bound < bestTourCost then
13: Branch on fractional variable
14: Add resulting subproblems to queue
15: end if

16: end while
17: return bestTour and bestTourCost

For a more detailed examination of the B&C method, see [1].

Above mentioned Concorde solver uses B&C as its core exact method for solving the TSP.
However, it also incorporates heuristic approaches, mainly based on local search techniques, to
quickly find high-quality tours and to enhance the performance of the exact solver. In the following
chapter, we introduce some of the heuristic methods, as well as metaheuristic strategies, that are
commonly employed in TSP solvers.



2 Traveling salesman problem 23

2.4 Heuristic and Metaheuristic solution and refinement methods

Heuristic: A heuristic is a problem-solving method designed to quickly find a good, though not
necessarily optimal, solution by using rules of thumb, approximations, or local search strategies.

Metaheuristic: A metaheuristic is a higher-level framework that guides and controls a set of
heuristics to explore the solution space more effectively, often to escape local optima and find
better solutions over time.

Heuristic methods are particularly valuable for tackling large or complex instances where exact
methods become computationally infeasible, offering a practical means to obtain high-quality
approximate solutions within reasonable time frames.

For further examination of 2-opt, Lin-Kernighan, and Lin-Kernighan-Helsgaun local search
heuristic see again [1].

2.4.1 Nearest Neighbor Heuristic

The Nearest Neighbor (NN) heuristic is one of the simplest and most intuitive methods for construct-
ing an approximate solution to the TSP. Despite its simplicity and speed, it does not guarantee
high-quality solutions and can perform poorly depending on the starting city and structure of the
distance matrix.

Algorithm 3 Nearest Neighbor Heuristic for the TSP

Input: Distance matrix C = [¢;;], set of cities/vertices V
Output: Tour T, total cost
Choose a starting city s € V
Initialize T « [s], visited « {s}
while not all cities are visited do
Let v; be the last city in T
Find v; € V' \ visited that minimizes c;;
Append v; to T, add v; to visited
end while
Append starting city s to T to complete the tour
: Compute total tour cost
: return T, total cost
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While construction heuristics like Nearest Neighbor focus on generating an initial feasible
tour, local search heuristics such as 2-opt and k-opt aim to refine and improve an existing tour by
iteratively applying cost-reducing modifications.

2.4.2 2-opt and k-opt Local Search

The 2-opt and, more generally, k-opt local search heuristics are powerful techniques for improving
existing tours in the TSP.

2-opt Algorithm. The 2-opt algorithm removes two non-adjacent edges from the tour and
reconnects the two resulting paths in a different way that still produces a valid tour. If the new
tour is shorter, the change is accepted. This process is repeated until no improving move exists,
yielding a locally optimal tour with respect to all 2-edge exchanges.



24 2 Traveling salesman problem

k-opt Generalization. The k-opt algorithm extends this idea by simultaneously replacing k
edges in each move. While this allows for exploration of a larger neighborhood and potentially
better solutions, the computational cost increases rapidly with k.

Algorithm 4 2-opt Local Search for the TSP

1: Input: Initial tour T = (01, 03, . .., 0y), distance matrix C = [c;j]
2: Output: Locally optimized tour T
3: improvement «— true
4: while improvement do
5: improvement «— false
6: fori=1ton-2do
7: for j=i+2tondo
8: if i=1and j = n then
9: continue (skip swapping first and last city)
10: end if
11: Compute change in cost if segment oy41 . .. 0 is reversed
12: if cost decreases then
13: Reverse segment 041 ... 0
14: improvement «— true
15: end if
16: end for
17: end for

18: end while
19: return T

While 2-opt and k-opt algorithms provide effective frameworks for improving TSP tours by
performing fixed-size exchanges of edges, their ability to escape local optima is limited by the fixed
value of k chosen in advance. To address this limitation, the Lin—Kernighan heuristic extends the k-
opt approach by dynamically selecting the number of edges to exchange during the search process.
This flexibility enables deeper and more adaptive local improvements, significantly enhancing the
ability to find high-quality tours even for large instances. We now describe the Lin—-Kernighan
method in more detail.

2.4.3 Lin-Kernighan Heuristic

The Lin—Kernighan heuristic is one of the most successful and widely used local search methods
for improving TSP tours.

Basic Idea. The Lin—Kernighan algorithm iteratively searches for sequences of edge exchanges
that reduce the total tour length. Starting from an initial tour, it removes and reconnects edges
to create a new tour, where the number of exchanged edges can vary depending on the local
structure of the solution space. By allowing flexible-depth moves, the heuristic escapes shallow
local optima more effectively than standard 2-opt or 3-opt methods.

Advantages and Limitations. The flexibility of dynamically adjusting the move size makes
Lin—-Kernighan highly effective for producing high-quality tours. It typically finds near-optimal
solutions quickly, even for large instances. However, the complexity of managing dynamic moves
also increases the algorithm’s implementation complexity compared to simpler fixed-k heuristics.
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Algorithm 5 Lin—-Kernighan Local Search for the TSP

Input: Initial tour T = (o1, 09, . . ., 0y), distance matrix C = [c;j]
Output: Locally optimized tour T
improvement «— true
while improvement do
improvement «— false
for each city u; in the tour do
for each neighbor v; of i do
if removing edge (v;, vex:) and adding edge (v;,v;) improves tour length then
Perform the move
improvement «— true
Try additional exchanges recursively to deepen the move (variable-depth)
end if
end for
14: end for
15: end while
16: return T
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While the Lin—Kernighan heuristic remains one of the most effective local search methods for the
Traveling Salesman Problem, it has been further refined in the state-of-the-art Lin—-Kernighan-Helsgaun
(LKH) heuristic. The LKH algorithm builds upon the core principles of LK but introduces more
sophisticated mechanisms for selecting candidate edges. These enhancements allow LKH to guide
the search more intelligently, significantly improving both efficiency and solution quality on large-
scale TSP instances. Due to its complexity, the LKH algorithm is not discussed in detail here, but
it is widely regarded as the most powerful heuristic for symmetric TSPs currently available.

2.4.4 Genetic algorithms

Genetic Algorithms (GAs) are a class of population-based metaheuristics inspired by the principles
of natural selection and genetics. In the context of the TSP, solutions are typically represented as
permutations of cities, and new solutions are evolved over generations through genetic operators
such as selection, crossover, and mutation. GAs are particularly advantageous due to their ability to
explore a large and complex solution space in a highly parallel and adaptive manner, making them
well-suited for combinatorial optimization problems like the TSP. Given their flexibility, scalability,
and effectiveness, GAs will be the method of choice going forward. The following chapter will
examine their structure and application to the TSP in greater detail.
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3 Genetic algorithms

In this chapter, we focus on genetic algorithms in which the genome is represented as a permutation.
The operators introduced are specifically tailored for this type of representation. Before discussing
these operators in detail, we briefly review essential concepts in genetic algorithms, such as the
structure of the search space, the role of the objective function, and the definition of fitness. This
overview is primarily based on [3], which served as the main reference during the preparation of
this chapter, with additional inspiration drawn from [4].

To begin, let S denote the search space of all possible solutions, and let f : S — R be the
objective function, where lower values of f correspond to better solutions (e.g., shorter tour lengths
in the case of the TSP). Genetic algorithms typically operate within a maximization framework,
where higher fitness values indicate better candidates. To align minimization objectives with this
framework, we apply a transformation function g to the objective values to define the fitness
function:

Fit(s) = g(f(s)),  s€S

with property f(s1) < f(s2), than Fit(s;) > Fit(s). A typical transformation g is then:

. 1
Flt(S) = m

However, based on the operators used, we can also define the fitness function directly as:
Fit(s) = f(s)

Once the fitness function has been defined, genetic algorithms operate on populations P c S
of candidate solutions. In each generation, a new population is generated from the previous one,
guided by the fitness values of the individuals, which influence selection, reproduction, and survival.
This iterative process is designed to gradually steer the population towards a local optimum or,
preferably, the global optimum.

To formalize this, we define P*) c S as the population consisting of u individuals at generation
t, where the population size y remains constant throughout the evolutionary process:

p = {sit), sét), e, s,(f)}.

The evolution of the population across generations can then be modeled as a stochastic process:

plt+l) _ a(p(f)),

where & encapsulates the genetic operators applied to the population. These operators include
selection, which stochastically favors individuals with higher fitness; crossover, which combines
parts of two parent solutions to create offspring; and mutation, which introduces random variations
to maintain diversity. The stochastic nature of & arises from the probabilistic components inherent
in these operations, such as the random selection of parents, crossover points, and mutation events.
A detailed description of each operator will be provided later in this chapter.
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Algorithm 6 Genetic Algorithm for the TSP

Input: Problem to solve, Parameter configuration
Output: Best tour found
Initialize population P(?) with u random permutations of {1,2,...,n}
Evaluate fitness of the initial population
while not (Termination conditions) do
Select parents from P®*) using a selection operator
Generate offsprings through crossover operator
Mutate offsprings with a given probability
Evaluate fitness of offsprings
Form next population pl+1) using a replacement strategy
: end while
. return the best tour found in P(")
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Having established the general structure of a genetic algorithm, we now focus on its application
to the TSP. As a first step, it is necessary to specify how candidate solutions (genomes) are
represented within this framework.

3.1 Representation of the Genome for the TSP

For the TSP, a candidate solution is a tour that visits each city exactly once before returning to the
starting point. The natural and most effective representation for this problem is the permutation
representation, where each individual is encoded as a permutation of the set {1, 2,...,n}. This
encoding has several advantages:

* Feasibility by Design: Every permutation inherently represents a valid tour without dupli-
cate or missing cities.

* Direct Mapping: The order of the permutation corresponds directly to the order in which
cities are visited, making the interpretation and evaluation straightforward.

* Operator Compatibility: Specialized crossover and mutation operators can be designed to
maintain the permutation structure, ensuring offspring remain feasible.

Thus, for the TSP, the permutation-based representation is the most natural and efficient encoding
strategy.

3.2 Parent Selection Operators

Selection operators are responsible for choosing individuals from the current population to serve
as parents for the next generation. The goal of selection is to favor individuals with higher fitness,
thereby guiding the evolutionary process towards better solutions, while also maintaining sufficient
diversity to avoid premature convergence. Various selection mechanisms have been developed
to balance these objectives, each introducing different stochastic or deterministic strategies for
choosing parents. The main selection operators used in genetic algorithms will be described in
the following subsections.
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3.2.1 Fitness-Proportional Selection
Given a population P = {s1, So, . .., s, }, the selection probability of individual s; is defined as:

Fit(Si)

prps(si) = =———
5:1 Fit(s))

This ensures that individuals with higher fitness are more likely to be selected for reproduction.

The advantages of FPS are its simplicity of implementation and its natural bias toward
selecting fitter individuals.

The disadvantages: Premature convergence: Outstanding individuals may quickly dominate
the population, narrowing the search and reducing diversity, which can prevent the discovery of
better solutions. Loss of selection pressure: When fitness values are very similar, selection becomes
almost random, and the average fitness improves very slowly over time. Sensitivity to fitness function
scaling: Changes to the fitness function, such as rescaling or transformations, can alter selection
pressure and negatively impact the algorithm’s behavior.

To address weak selection pressure in FPS, two common techniques are employed:

* Windowing: A baseline /8! is subtracted from all fitness values in the current generation to
increase relative differences. Typically,

B = min Fit(s),
seP
where the adjusted fitness is then
Fit'(s) = Fit(s) — ' Vs e P

ensuring that all adjusted fitness values remain non-negative.
» Sigma Scaling: Fitness values are adjusted dynamically based on sample statistics of the
current generation. Specifically,

Fit' (s;) = max (Fit(s) — (Fit' —c - ot.), 0),

where c is a constant (typically ¢ = 2), and Fit’ and or,. are the sample mean and standard
deviation of the fitness values, computed respectively as:

- 1
Fit' = = Z Fit(s),
J7;

oty = |= > (Fic(s) - Fie) .
‘useP

Both the sample mean and standard deviation are recomputed independently at each gen-
eration, ensuring that the scaling adapts dynamically to the current state of the population.

These modifications enhance selection pressure when fitness values are closely clustered,
promoting a more effective evolutionary search.

Since fitness proportionate selection only defines selection probabilities without specifying a
sampling method. However, before discussing these methods, we first examine ranking selection
as a robust alternative to fitness proportionate selection.
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3.2.2 Ranking Selection

Ranking Selection addresses the limitations of FPS by assigning selection probabilities based on
the rank of individuals rather than their absolute fitness values. The population is first sorted
according to fitness, and each individual is assigned a rank, with the worst individual receiving
rank O and the best receiving rank y — 1, where p is the population size.

In the case of linear ranking, the selection probability for an individual of rank i is given by:

2—«a N 2i(a—1)
pooop(p=1)°
where a € (1,2] is a parameter controlling the selection pressure. This parameter ensures that

the best individual can receive at most « times the average selection probability. Higher values of
a correspond to stronger selection pressure, while lower values promote greater diversity.

Plin-rank ( i ) =

The advantages of Ranking Selection include its ability to maintain a constant selection
pressure throughout the evolutionary process. Since selection probabilities are determined solely
by the rank ordering of individuals rather than their absolute fitness values, Ranking Selection
is less sensitive to changes or distortions in the fitness scale. As a result, it avoids the problems
associated with fitness scaling that can affect Fitness-Proportional Selection, providing a more
consistent and predictable selection behavior across generations.

The disadvantages of Ranking Selection stem primarily from its disregard for the actual mag-
nitude of fitness differences between individuals. Significant differences in fitness do not translate
into proportionally higher selection probabilities, as only the relative ordering is considered. This
limitation can slow down convergence in problems where recognizing and favoring exceptional
individuals early is critical. Furthermore, in linear ranking, the maximum achievable selection pres-
sure is constrained by the requirement that selection probabilities remain non-negative, limiting
the selection pressure parameter « to values within the interval (1, 2].

To increase selection pressure when necessary, particularly when a strong emphasis on selecting
the highest-ranked individuals is desired, an alternative exponential ranking scheme can be used.
In exponential ranking, the selection probability for an individual of rank i is defined as:

o 1-¢
Pexp—rank(l) = T,

where c is a normalization constant ensuring that the total probability sums to 1 and depends on
the population size. This scheme emphasizes top-ranked individuals more aggressively compared
to linear ranking, allowing for stronger selection pressure when needed.

As with fitness-proportionate selection, ranking selection defines selection probabilities but does
not specify a sampling method. In the next sections, we introduce roulette wheel selection and
stochastic universal sampling (SUS), which can implement both approaches.

3.2.3 Roulette Wheel Selection

Roulette Wheel Selection simulates spinning a wheel where each slice is proportional to an
individual’s selection probability. Given a selection probability distribution pg(i), the cumulative
probability array a = [a, ..., a,] is computed as:

a; = 2 Pset ().
=1
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The underlying selection probabilities pse(i) can be based on either fitness-proportionate or
ranking-based selection schemes.

The selection process than proceeds by drawing a random number r uniformly from the
interval [0, 1] and choosing the first individual i satisfying r < a;.

Algorithm 7 Roulette Wheel Selection

Input: Cumulative probability array a = [ay, ..., a,], number of selections A
Output: Mating pool of A individuals
fork=1toAdo

Draw a random number r uniformly from [0, 1]

Initialize i «— 1

while r > g; do

i—i+1

end while

Add individual s; to the mating pool
end for
: return Mating pool
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In Roulette Wheel Selection, each individual selection is made independently by drawing a
separate random number. This independence introduces sampling variance, where the number of
times individuals are selected can deviate significantly from their expected values based on their
selection probabilities. As a result, individuals with high fitness may occasionally be underrep-
resented, while weaker individuals may be selected more often than intended. High sampling
variance can distort the intended selective pressure, slow convergence, and lead to less stable
evolutionary dynamics.

To reduce the sampling variance inherent in Roulette Wheel Selection, Stochastic Universal
Sampling introduces multiple evenly spaced selection points

3.2.4 Stochastic Universal Sampling

Conceptually, Stochastic Universal Sampling (SUS) can be viewed as making a single spin of a
wheel with A evenly spaced pointers, rather than performing A independent spins as in Roulette
Wheel Selection.

The selection is then performed by drawing a random number r uniformly from the interval
[0,1/A], and incrementing r by 1/A after each selection. Because of this even spacing, SUS
guarantees that the number of times an individual i is selected is at least | A - pse(i) | and at most
one greater. This occurs because each increment of r corresponds to an equally spaced pointer, and
an individual may either receive a number of selections exactly matching the floor of its expected
count, or slightly more if a pointer falls just across its cumulative probability boundary. As a result,
the realized number of selections closely matches the expected probabilities, greatly reducing
sampling variance.

It is also worth noting that when A = 1, SUS reduces to standard Roulette Wheel Selection.
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Algorithm 8 Stochastic Universal Sampling (SUS)

1: Input: Cumulative probability array a = [ay, ..., a,], number of selections A
2: Output: Mating pool of A individuals
3: current_member « 1
4: i «— 1
5: Draw a random number r uniformly from [0, 1/1]
6: while current member < A do
7: while r < ag; do
8: Add individual s; to the mating pool
9: re—r+1/A
10: current_ member «— current_ member + 1
11: end while
12: ie—i+1
13: end while
14: return Mating pool

While SUS improves selection reliability by reducing sampling variance, it still relies on
predefined selection probabilities. Tournament Selection, introduced next, adopts a different
strategy based on direct comparisons between individuals.

3.2.5 Tournament Selection

Tournament Selection is a widely used parent selection method that does not require global
knowledge of the population or even an explicit numerical fitness function. Instead, it relies
solely on pairwise comparisons between individuals, making it especially useful in situations
where evaluating absolute fitness values is impractical. Examples include evolving game-playing
strategies, where direct comparisons (e.g., matches) determine relative strength, or in evolutionary
art and design, where subjective evaluations are made by a user.

Unlike fitness-proportionate and ranking-based methods, Tournament Selection selects in-
dividuals based on local relative comparisons. To select A individuals from a population of y, A
tournaments are conducted according to the following procedure:

Algorithm 9 Tournament Selection

1: Input: Population of y individuals, number of selections A, tournament size k, winning proba-
bility p
: Output: Mating pool of A individuals
: fork=1toAdo
Randomly select k individuals from the population (with or without replacement)
Compare the k individuals and determine the best individual
With probability p, select the best individual; otherwise select a random tournament
participant
Add the selected individual to the mating pool
8: end for
9: return Mating pool
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The probability that an individual wins a tournament depends on four key factors:
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* Rank in the population: Higher-ranked individuals are more likely to win tournaments
without needing a full population sort.

* Tournament size k: Larger tournaments increase the likelihood of selecting high-fitness
individuals, thus increasing selection pressure.

* Winning probability p: If p = 1, the tournament is deterministic, and the best individual is
always selected. If p < 1, the tournament becomes stochastic, allowing a less-fit individual
to be selected with nonzero probability, thereby reducing the selection pressure.

* Replacement policy: Selecting tournament participants with or without replacement affects
the possibility of low-fitness individuals being selected. Without replacement, lower-ranked
individuals may be systematically excluded.

Because Tournament Selection depends only on relative rankings, it shares the same invariance
properties as ranking-based selection: translation or rescaling of fitness values does not affect the
outcome. Moreover, by adjusting the tournament size k and probability p, Tournament Selection
provides an intuitive and simple way to control selection pressure.

Despite its simplicity, Tournament Selection suffers from a drawback similar to that of Roulette
Wheel Selection: high sampling variance between runs can cause fluctuations relative to the theo-
retical selection probabilities. Nonetheless, due to its extreme simplicity, efficiency, and controllable
pressure, Tournament Selection is one of the most commonly used parent selection operators.

Having completed the selection stage, we will now focus on crossover operators, which generate
offspring by combining genetic material from selected parents.

3.3 Crossover (Recombination) Operators

Crossover operators are responsible for combining the genetic information of selected parents to
create new offspring, enabling the exploration of new regions of the search space. In standard
genetic algorithms, crossover operates on simple string-based representations; however, when
working with permutation-based representations, such as in the Traveling Salesman Problem,
additional constraints must be respected. Specifically, the crossover must preserve the validity
of offspring as permutations, ensuring that each element appears exactly once. In the following
sections, we introduce various crossover operators designed specifically for permutation-based
genomes.

3.3.1 Partially Mapped Crossover

Partially Mapped Crossover (PMX) is a widely used recombination operator for permutation-
based problems, especially TSP. PMX preserves relative order and position by defining a mapping
between two parent permutations. The operator works as follows:

1. Select two crossover points at random and copy the segment between them from the first
parent (P1) into the offspring.
2. For each element, let say i, in the same segment of the second parent (P2) that is not already
in the offspring:
* Identify the position of that element i in P2.
* Determine the element j at same position in P1 (which was copied into the offspring).
* Place the element i from P2 into the position where the element j from P1 occurs in
p2.
* If that position is already occupied, repeat this mapping recursively until an empty
position is found.
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3. Fill the remaining positions in the offspring using elements from P2 that are not yet present,
maintaining their original order.
4. Create the second offspring analogously by reversing the roles of the parents.
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While PMX preserves a significant portion of the parental structure, it does not guarantee the
respect property, meaning that any information carried in both parents should also be present in
the offspring. To address this limitation, alternative crossover operators have been developed, as
discussed in the following sections.

3.3.2 Edge Crossover

Edge crossover is based on preserving adjacency relationships between elements in the parents,
rather than their absolute positions or orderings. To facilitate this, an edge table (also called an
adjacency list) is constructed, where each element is associated with its neighbors from both
parents. Edges common to both parents are specially marked to prioritize their preservation.

In this work, we use the Edge-3 crossover variant proposed by Whitley [?], which is specifically
designed to maximize the preservation of common edges. The offspring construction proceeds as
follows:

1. Construct the edge table based on both parents’ adjacency information.
Randomly select an initial element and place it as the first entry of the offspring.
Set the current element to this initial entry.
Remove all references to the current element from the edge table.
Examine the adjacency list for the current element:
* If a common edge (present in both parents) exists, select it as the next element.
* Otherwise, select the element in the list that has the shortest adjacency list (smallest
number of neighbors).
* If there is a tie, select randomly among tied elements.
6. If an empty adjacency list is encountered, attempt to continue construction from the opposite
end of the partial offspring; otherwise, select a new element at random.

A
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An example of the construction process is shown in Tables 1 and 2, where two parent permu-
tations [123456789] and [93 782651 4] are combined using Edge-3 crossover. Notably,
this operator produces only a single offspring per recombination.

Table 1: Edge crossover: example edge table

Element Edges \ Element Edges
1 2,5,4,9 6 2,5+,7
2 1,3,6,8 7 3,6,8+
3 2,4,7,9 8 2,7+,9
4 1,3,5,9 9 1,3,4,8
5 1,4,6+

Table 2: Edge crossover: example of permutation construction

Choices Element Selected Reason Partial Result

All 1 Random [1]

2,549 5 Shortest list [15]

4,6 6 Common edge [156]

2,7 2 Random choice (both lists size 2) [15 6 2]

3,8 8 Shortest list [15628]

7,9 7 Common edge [156287]

3 3 Only item in list [1562873]
4,9 9 Random choice [156287309]
4 4 Last element [156287394]

Although Edge-3 crossover effectively preserves common adjacency information between
parents, it may sometimes produce offspring that are minor variations, such as cyclic shifts, of one
of the parents. This conservative behavior can limit the genetic diversity of the population and
may reduce the algorithm’s ability to explore new regions of the search space.

3.3.3 Order Crossover

Order Crossover (OX) is a recombination operator specifically designed for order-based permutation
problems. It aims to preserve the relative ordering of elements from both parents. The procedure
resembles PMX in its first step, but diverges in how it fills the remaining positions to maintain

relative order.

1. Select two crossover points at random and copy the segment between them from the first

parent P1 into the offspring.

2. remaining unused elements from P1 are inserted into the offspring in the order they appear
in P2 starting at the second cut-off point
3. Create the second offspring analogously by reversing the roles of the parents.

The key strength of OX lies in balancing structural inheritance with controlled randomness,
making it one of the most widely adopted crossover operators for permutation problems such as
the Traveling Salesman Problem.
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@ [7] 5] [7]
e asninniniololulols

Step 2

Typically, two offspring are created by applying the same procedure with parents’ roles reversed.
Its simplicity and structural preservation make it a standard operator.

3.3.4 Cycle Crossover

Cycle Crossover (CX) is designed to preserve information about the absolute positions of elements
in permutation-based representations. The key idea is to identify cycles of values that occupy the
same positions across both parents and use these cycles to construct offspring. Each offspring
inherits alternating cycles from each parent, ensuring that each value appears exactly once and
that positional consistency is partially preserved.

The process of identifying a cycle works as follows:

1. Start with the first unused position in the first parent (P1) and record the allele at that
position.

Look at the allele in the same position of the second parent (P2).

Find the position in P1 where this allele occurs.

Add the allele from that position to the cycle.

Repeat steps 2—4 until the cycle returns to the starting allele from P1.

Al A

]2]s[afsle|7][8lo] [1]2]s]a[s]e]7]8[o] [1]3[7]a]2][6]5]8]9]

ofsl7]8]2[e[s]1]a] [o]s[7]8[2]e[s]1]a] [9]3[7[8]2]e[5[1]4]

Cycle Identification

[l2]s[4]s[e]7]8]o] [1]3]7[4]2]s[5[8]0]

ofsl7[8]2]e[s[1]a] [9]2][3]8]5][6]7[1]4]

Resulting offsprings

Similarly to OX, CX also produces two offspring simultaneously by alternating cycles between
parents, maintaining positional consistency while introducing diversity.

3.4 Mutation Operators

Mutation plays a crucial role in evolutionary algorithms by introducing diversity into the population.
It is specifically designed to widen the search space and help escape local optima by making random
alterations to candidate solutions. In permutation-based representations, mutation operators
rearrange elements in a solution, enabling the algorithm to explore new regions of the solution
space that may not be reachable through crossover alone. This prevents premature convergence
and increases the likelihood of finding globally optimal or near-optimal solutions.
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3.4.1 Swap Mutation

Two positions in the permutation are selected at random, and their values are swapped. This
operator makes minimal changes and is often used for its simplicity.

[2]sfafsle]7[8]9] —[1]2][3]8]5][6]7[4]9]

Swap Mutation

3.4.2 Insert Mutation

Two elements are selected at random, and one is inserted next to the other, shifting the intermediate
elements accordingly. This operator slightly adjusts the ordering and is useful for fine-tuning
solutions.

1[2]s]afsle]7[8]9] —[1]2][3]4]8]5]6]7]9]

Insert Mutation

3.4.3 Scramble Mutation

A randomly chosen subset of the permutation is selected and its elements are randomly shuffled.
This introduces more randomness than swap or insert, while still preserving feasibility.

1]2[slafs]e[7]8]o] —[1]5][4a]6]2][3[7]8]9]

Scramble Mutation

3.4.4 Inversion Mutation

A substring between two randomly selected positions is reversed. This is particularly suited for
adjacency-based problems, as it minimizes the number of broken links and preserves internal
structure.

1]2]s]afse]7[8]9] —[1]e[5]4[3][2]7]8]9]

Inversion Mutation

Among these, inversion mutation is especially effective for problems like the Traveling Salesman
Problem.

3.5 Survivor Selection

Survivor selection, also referred to as replacement, determines which individuals from the combined
pool of parents and offspring survive to form the next generation. While similar mechanisms as
used in parent selection can be applied, a number of specialized strategies have been developed in
evolutionary computation to manage survivor selection efficiently. These strategies are generally
categorized based on whether selection is based on fitness, age, or a combination of both.
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3.5.1 Age-Based Replacement

In age-based replacement, individuals are removed from the population based solely on their age,
regardless of fitness. This strategy ensures that all individuals have an equal lifespan in terms
of evolutionary iterations. In generational models, where the number of offspring A equals the
number of parents y, the entire parent population is replaced at each generation. This approach
maintains diversity but may result in temporary decreases in average fitness.

3.5.2 Fitness-Based Replacement

Fitness-based replacement selects survivors based on their performance. A range of strategies
exist under this category:

* Replace Worst (GENITOR): The worst A individuals (by fitness) are removed. This can lead
to fast fitness improvement but risks premature convergence and diversity loss.

* Elitism: The best individual(s) are always preserved in the population.

* Round-Robin Tournament: Common in Evolutionary Programming, each individual com-
petes against q randomly selected peers, earning a "win" if it outperforms them. The y
individuals with the most wins are selected. This introduces stochasticity and helps preserve
diversity.

* (u + A) Selection: The union of parents and offspring is ranked by fitness, and the top
1 individuals form the next generation. This strategy preserves strong individuals across
generations and is widely used in Evolution Strategies.

Survivor selection plays a crucial role in balancing exploitation and exploration in evolutionary
algorithms. The appropriate strategy depends on the specific problem, representation, and goals
of the search process.
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4 Cooperative Game Theory

This chapter introduces key concepts from cooperative game theory to address the problem of cost
allocation in the Traveling Salesman Game (TSG). In this setting, cities cooperate to minimize the
total travel cost of a tour, and the challenge lies in fairly distributing this cost among them. Since we
are concerned with minimizing and allocating costs rather than distributing payoffs, all concepts
will be defined in the context of cost games. We explore four fundamental solution concepts—the
Core, Least Core, Nucleolus, and Shapley Value—each offering a different perspective on fairness
and stability. The main sources used in preparing this chapter were [5, 6, 7, 8].

Remark. In cooperative game theory, a fundamental distinction is made between payoff games
and cost games.

* In a payoff game, the characteristic function v(S) represents the maximum total payoff that
coalition S can jointly achieve. The goal is to fairly distribute this value among players.

* In a cost game, which is the focus of this thesis, v(S) denotes the minimum total cost that
coalition S must incur. The objective is to allocate this cost among the players in a way that
reflects fairness and stability.

As a result, many standard inequalities and definitions must be reversed in cost games.

4.1 Basic Notation and Transferable Utility Games

To study cooperative behavior in the context of cost-sharing, we first introduce the mathematical
structure used throughout this chapter: transferable utility games. These provide a flexible frame-
work for modeling how groups of players (e.g., cities in the TSG) can cooperate to reduce their
collective cost.

Definition 4.1. A Transferable Utility Game (TU-game) is a fundamental model in cooperative
game theory. It is defined as a pair (N, v), where:
* N={1,2,...,n} is a finite set of players, and
» v : 2N — Ris the characteristic function, which assigns to each coalition S C N a real number
v(S), representing the total payoff (or cost reduction, in cost games) that the members of S
can collectively achieve. By convention, v(0) = O.

A game is called a transferable utility game because the total payoff or cost is assumed to be
perfectly divisible and can be freely redistributed among the players without any loss. This
assumption allows us to work with numerical allocations that can be split arbitrarily between
coalition members.

We will denote by Gy the set of all such TU cost games on the player set N.

To express the total allocation assigned to a coalition, we frequently use the notation:

x(S) := Z X

ieS

for a cost (or payoff) distribution x = (x1,...,x,) € RN and any coalition S C N. This notation al-
lows us to compactly express how much a group of players receives (or pays) under the allocation x.

Definition 4.2. An imputation, is a vector x € R that satisfies two key conditions:
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* Efficiency: The total cost is fully allocated among the players:
x(N) = v(N).
* Individual Rationality: No player pays more than their standalone cost:

x({i}) <v({i}) forallie N.

The set of all imputations of the game v is denoted by I(v) c RY. Efficiency ensures that no
more is allocated than what the coalition can achieve collectively, while individual rationality
guarantees that each player is not allocated more cost than they would incur on their own.

Definition 4.3. A game v is essential if

o(N) < ZU({i}).

ieN

In addition to the properties of individual rationality and efficiency, several structural properties
of the characteristic function are frequently studied:

* Additivity: A game is additive if
o(SUT) =0(S) +0(T) for all disjoint S, T C N.

Additive games model situations where the value of a union of coalitions is simply the sum
of their separate values.
* Superadditivity: A game is superadditive if

o(SUT) >o0(S)+0(T) forall disjoint S,T C N.

Superadditivity models situations where cooperation between disjoint coalitions creates
additional value.
e Subadditivity: A game is subadditive if

o(SUT) <ou(S)+o(T) forall disjoint S,T C N.

Subadditivity reflects economies of scale in cost games; merging coalitions can reduce overall
costs.
* Convexity: A game is convex if for all S,T C N,

o(SUT)+o(SNT) <o(S)+o(T).

Convexity implies that incentives to cooperate increase as coalitions grow larger.

Beyond structural properties, it is often valuable to understand how a game can be broken down
into simpler building blocks. One powerful approach is to represent any game as a combination of
standardized elementary games. This leads us to the concept of the unanimity basis, which forms
a foundational tool for analyzing games in a framework of linear algebra.
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4.2 The Unanimity Basis Representation of games

The set of all TU-games Gy forms a real vector space in the sense that for all games v, w € Gy
and scalars A, 4 € R, we can define the linear combination Av + yw € Gn by

(Ao + pw)(S) = Ao(S) + pw(S), forall S C N.
The zero element of this space is the zero game 0 € Gy, defined by 0(S) =0 forall S C N.

This vector space structure allows any game v € Gy to be expressed as a linear combination
of basis elements. To construct such representations explicitly, we begin by defining the building
blocks of this basis the unanimity games.

Definition 4.4 (Unanimity Game). For every nonempty subset S C N, the unanimity game

us € Gn is defined by:
1 ifSCT,
us(T) = {

0 otherwise.

Definition 4.5 (Unanimity Basis). The set of all unanimity games
U:={us|0+SCN}

forms a basis of the vector space Gy. This unanimity basis is particularly useful for decomposing
games and analyzing solution concepts like the Shapley value.

To express a game v € Gy in terms of the unanimity basis U, we need to determine the
coefficients associated with each basis element. These coefficients are known as the Harsanyi
dividends and capture the unique contribution of each coalition.

Definition 4.6 (Harsanyi Dividend). Let v € Gy be a TU-game. The Harsanyi dividend A,(S) of a
coalition S C N represents the unique contribution of S that is not attributable to any of its strict
subcoalitions.

The Harsanyi dividends can be computed in two equivalent ways:

¢ Closed form:

Ao(8) = 3 (=D o(T)

TCS
¢ Recursive form:

A(0) =0, Ay(S) =0(8) = > A(R) forall S # 0
RCS

The Harsanyi dividends provide a natural way to decompose any game as a linear combination
of unanimity games, as formalized in the following theorem.

Theorem 4.7 (Unanimity Basis Representation). Every TU-game v € Gn can be written uniquely
as a linear combination of unanimity games:

o(T) = § Ay (S) - us(T),
SCN
S#0

where A, (S) denotes the Harsanyi dividend of coalition S.

A complete proof of this theorem can be found in [5].
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4.3 The Core

The core is one of the central solution concepts in cooperative game theory. It captures the idea of
stability: an allocation belongs to the core if no coalition has an incentive to deviate and act on its
own. In cost games, this means that the total cost allocated to any coalition should be no more
than what the coalition would incur by organizing its own tour or solution independently.

Formally, given a transferable utility game (N, ), an allocation x € R¥ is said to be in the core of
the game if it satisfies:

* Efficiency: The total cost is fully allocated among the players:
x(N) = o(N),
* Coalitional Rationality:
x(S) <v(S) forallS C N,
meaning that no coalition S would benefit by breaking away and bearing its own cost v(S).

Definition 4.8. The core of the game is then defined as the set:
C(v) := {x € RN | x(N) = o(N), x(S) < v(S) forall S C N}.

In contrast to individual rationality, which only considers the incentives of individual players, the
core strengthens this requirement by imposing rationality for all coalitions. It ensures that no
group of players has a financial incentive to break away from the grand coalition, as each coalition
is guaranteed an allocation no worse than its standalone cost. Because the core also satisfies the
conditions of efficiency and individual rationality, it is naturally contained within the imputation
set: C(v) C I(v). However, the core of a game can be empty; there may exist no allocation that
satisfies all coalitional constraints simultaneously, especially in cost games. A notable exception
occurs in convex games, where the core is always guaranteed to be non-empty due to the increasing
incentives for larger coalitions to form.

4.3.1 Existence of Core Imputations

The existence of core allocations in cooperative games is intimately tied to the concept of bal-
ancedness, which provides a necessary and sufficient condition for the non-emptiness of the core.

Definition 4.9. Let N = {1,2,...,n} be the set of players. Amap 1 : 2V \ {0} > R, :={t e R |
t > 0} is called a balanced map if
Z A(S) e’ = eV,
Se2N\{0}
where ¢ € RY is the characteristic vector of coalition S, with components defined by

s 1 ifi €S,
o ifig¢s.

Intuitively, a balanced map assigns weights to coalitions so that each player is covered with a total
weight of exactly 1. This condition is expressed as:

ZA(S) =1 forallie N.

SCN
ieS
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Definition 4.10. A collection 8 C 2V \ {0} of nonempty coalitions is called a balanced collection
if there exists a balanced map A such that

B={Se2V A >0}
Definition 4.11. A game (N, v) is called a balanced game if for every balanced map
22N\ {0} - R,

we have

Z A(S)v(S) < v(N).

SCN

This naturally leads to one of the central results in cooperative game theory:

Theorem 4.12 (Bondareva—-Shapley). Let (N, v) be a TU-game. Then the following two assertions
are equivalent:

1. C(v) # 0,

2. (N,v) is a balanced game.

A complete proof of this theorem can be found in [6] or [5].

This theorem provides both a necessary and sufficient condition for the existence of core allocations.
In practice, verifying balancedness for arbitrary games can be computationally intensive due to
the exponential number of coalitions. However, the result remains central to cooperative game
theory and forms the theoretical basis for understanding why the core may be empty.

4.4 Relaxing the Core: The Least Core

In many cooperative games, especially cost games such as the Traveling Salesman Game, the core
may be empty. According to the Bondareva—-Shapley Theorem, this occurs when the game is not
balanced, meaning that no allocation can simultaneously satisfy both efficiency and coalitional
rationality for all coalitions. To address this issue, the concept of the least core provides a systematic
relaxation of the core constraints. Specifically, we allow each coalition to be charged up to a small
uniform excess ¢ > 0, replacing the strict condition x(S) < v(S) with the relaxed version:

x(S) <v(S)+e forall S C N.
This defines a family of feasibility regions, one for each ¢, and the goal is to find the smallest
such ¢ for which a feasible allocation x € RY still satisfies efficiency. The resulting set of solutions
defines the least core.
Definition 4.13. Let (N, v) be a TU-game. The least core of the game is the set of allocations
LC(v) := {x e RN | x(N) =o(N), x(S) <ov(S)+¢" VScC N},

where ¢ is the optimal value of the linear program:

e*=min{e|Ix e RV : x(N) =0(N), x(S) <0(S)+e VSCN}.
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By construction, the least core always exists, since increasing ¢ sufficiently renders the system of
inequalities feasible. The parameter £* quantifies the minimum level of dissatisfaction that must
be tolerated to achieve an approximately stable allocation. When ¢* = 0, the least core coincides
with the core, meaning the game is balanced.

The least core also plays a central role in the computation of the nucleolus. The nucleolus is defined
as the unique allocation that lexicographically minimizes the vector of excesses over all coalitions.
Its computation proceeds by solving a sequence of linear programs, the first of which is precisely
the least core problem.

4.5 The Nucleolus

The nucleolus is a central solution concept in cooperative game theory that aims to identify the
most equitable allocation among players. It does so by minimizing the dissatisfaction of the most
dissatisfied coalitions in a lexicographic sense. Unlike the core, which may be large or even empty,
the nucleolus always exists, is unique, and, if the core is non-empty, it lies within the core. To
define the nucleolus, we first introduce the concept of a coalition’s excess.

Definition 4.14. Let (N, v) be a cooperative game, and let x € R" be an allocation. The excess of
coalition S € N with respect to x is defined as:

e(S,x) =0v(S) — x(9),

In cost games, the excess measures how much more the coalition would have to pay if it acted
independently. A coalition is dissatisfied when the excess is negative, meaning it is being charged
more than its standalone cost. The larger the excess, the more satisfied the coalition is with the
allocation.

Definition 4.15 (Excess Vector). Let (N, v) be a cooperative game and let x € RY be an allocation.
The excess vector of x is the vector

0(x) = (e(S1,x),e(S2,x),...,e(San_n,x%)),

where each e(S, x) is the excess of a non-empty proper coalition S C N, and the vector is sorted in
non-decreasing order:
e(S1,x) < e(Sg,x) < -+ < e(San_g, x).

In order to define the nucleolus, we first need to introduce a specific ordering on excess vectors
that allows us to compare allocations in terms of dissatisfaction.

Definition 4.16 (Lexicographic Ordering). Leta = (a1, ay,...,an) € R™andb = (b1, bs,...,by) €
R™. We say that a is lexicographically greater than b, written a >y b, if there exists an index
k € {1,..., m} such that:

e q;=b;foralli < k, and

* ay > bk.

Given the previous definitions of excess and lexicographic ordering, we can now define the nucleolus
as the unique allocation that lexicographically minimizes the excess vector.

Definition 4.17 (Nucleolus). Let (N, v) be a cooperative cost game, and let 8(x) denote the
excess vector. The nucleolus of the game is the unique imputation x* € RY that satisfies:

0(x*) Z1ex O(y) for all imputations y € RN
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In other words, the nucleolus maximizes the smallest excess and, subject to that, the second
smallest, and so on, resulting in the most stable and least dissatisfying allocation. If the core is
non-empty, the nucleolus lies within the core.

Computation via Successive Linear Programs. The nucleolus can be computed by solving a
sequence of linear programs that iteratively refine the set of tight constraints. The process begins
by solving the least core problem to maximize the minimum excess w;. Coalitions for which the
excess equals this maximum (identified via positive dual variables II, (S) > 0) are added to the
active set [}, as equality constraints in the next iteration. This procedure is repeated until the
solution becomes unique, yielding the nucleolus.

Algorithm 10 Computing the Nucleolus via Successive Linear Programs

Juy

. Initialize k := 1, active constraint set Iy := 0

2: repeat
3: Solve the LP:
max wg
s.t. x(N) =0(N)

x;i <ov({i}) forallie N

x(S) +wr <0(S) forallSc N\ T,

x(S) +wr =0(S) forall S € I}
4: Let xy be the solution and IT; (S) the dual variables
5:  Define Iy := Ty U {S € N | IT}(S) > 0}
6: k:=k+1
7: until The solution xj is unique
8: return xj

In this algorithm for computing the nucleolus, the dual variables HZ(S) correspond to the
constraints x(S) + wr < v(S) and measure how strongly each coalition S influences the current
solution. A dual value IT, (S) > 0 indicates that the constraint for S is binding, meaning its excess
is equal to the current worst-case excess wi. These coalitions are added to the active set I} to
ensure their excess remains fixed in future iterations. This process systematically identifies the
most critical coalitions and refines the allocation until a unique solution is found, which will be
the nucleolus.

This process is guaranteed to terminate in at most 2" — 1 steps.

4.6 The Shapley Value

Another prominent solution concept in cooperative game theory is the Shapley value. It provides
a unique and fair allocation of the total value generated by a coalition of players based on their
marginal contributions. Unlike the core or the nucleolus, the Shapley value is always well-defined
and exists for every transferable utility (TU) game.

The key idea behind the Shapley value is that each player’s payoff should reflect their average
marginal contribution to all possible coalitions they can join. This makes the concept particularly
appealing in settings where fairness and symmetry are important considerations.

Definition 4.18 (Shapley Value). The Shapley value is the value function ¢ : Gy — RV, which
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for every player i € N is given by

o) = Y 220

i
ieS

where A,(S) denotes the Harsanyi dividend of coalition S.

In contrast to the dividend-based formulation, the classical combinatorial form computes the
Shapley value directly from the characteristic function by averaging marginal contributions. This
representation is particularly useful for algorithmic and numerical computation.

Definition 4.19 (Shapley Value — Combinatorial Form). Let (N, v) be a TU-game with |[N| = n.
The Shapley value of player i € N is defined as:

= Y BEZBIZD 56 gy - os)),

SCN\(i} n!

Equivalently, the Shapley value can be expressed using binomial coefficients as:

o\ -1
JOEEDY 1-(" 1) (2(SU{i}) = o(S)),
s ™ VIS

The term 0(S U {i}) — v(S) represents the marginal contribution of player i to coalition S, and the
coefficient expresses the probability that S precedes i. The Shapley value can also be defined as a
function that uses only the marginal contributions of player i as the arguments.

Definition 4.20 (Shapley Value — Marginalist Form). Let (N, v) be a TU-game with |N| = n, and
let S, denote the set of all n! permutations of the player set N. For a given permutation o € S,,

let P7 be the set of players who precede player i in 0. Then the Shapley value of player i € N can
be defined as:

1 :
$i(0) = — > [o(B7 U (i) —o(PD)]
" o€s,
This definition reflects the average marginal contribution of player i when players join the coalition
in a random order.

4.6.1 Axiomatization of the Shapley Value

The Shapley value is uniquely characterized by four intuitive and independently necessary axioms.
These axioms capture desirable fairness principles and provide a strong foundation for justifying
the Shapley value as a solution concept for cooperative games. The formal axiomatization can be
stated as follows:

* Efficiency: The total value generated by the grand coalition is fully distributed among the
players:
D" ¢il0) = o(N).
ieEN
* Null-Player Property: If player i contributes nothing to any coalition, then their allocation

is zero:
o(SU{i}) =ou(S)foralSC N\ {i} = ¢i(v)=0.
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* Symmetry: If two players contribute equally to all coalitions, then they receive equal payoffs:

p(SU{i) =o(SU{j}) forallSC N\ {i,j} = ¢i(0)=g;(0).

* Additivity: The Shapley value is linear in the characteristic function. For any two games
v,w € Gn, and any player i € N, it holds that:

¢i(v +w) = ¢i(v) + ¢i(w).

Here, Gn denotes the set of all transferable utility (TU) games on the player set N, i.e., all
set functions v : 2¥ — R such that 0(0) = 0. The sum (v + w) is defined: (v + w)(S) =
0(S) + w(S) forall S C N.

The fundamental result establishing the Shapley value is the following:

Theorem 4.21. The Shapley value is the unique value function ¢ : Gy — RN that satisfies efficiency,
the null-player property, symmetry, and additivity.

A complete proof of this theorem can be found in [5] or [6].

In convex games, the Shapley value enjoys the additional property of always lying within the core,
which is, in convex games, always non-empty, making it a robust solution concept when both
fairness and stability are desired. While it is computationally feasible for small to medium-sized
games, the factorial number of permutations involved renders it intractable for large player sets.
In such cases, approximation algorithms or randomized sampling methods are often employed to
estimate the Shapley value efficiently.

Similar to the TSP, many solution concepts in cooperative game theory are known to be NP-hard,
NP-complete, or otherwise computationally intractable. For example, verifying whether a given
payoff vector belongs to the core can be done via linear programming, but constructing the full set of
core constraints involves an exponential number of coalitions, rendering general core computation
NP-hard. The nucleolus, which selects the most equitable allocation by lexicographically minimizing
the maximum excess among coalitions, is computationally even more demanding—it requires
solving a sequence of linear programs, each with exponentially many constraints, and is classified as
NP-hard in general cases. The Shapley value, while defined in closed form as an average of marginal
contributions over all player permutations, also suffers from NP-Hard due to the factorial number
of permutations or the exponential number of coalitions involved in its computation. However,
unlike the core and nucleolus, the Shapley value lends itself well to Monte Carlo approximation
techniques, which offer practical scalability and make it suitable for use in larger games where
exact methods are infeasible.
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5 Implementation of the Genetic Algorithm for TSP

This chapter presents a modular GA implementation in Python for solving the TSP. Designed for
flexibility and experimentation, the solver supports configurable operators, dynamic parameters,
and both serial and parallel execution via the multiprocessing module. A graphical interface built
with customtkinter enables user-friendly configuration and real-time visualization.

The algorithm serves as the computational backbone for Shapley value approximation in
cooperative games, discussed in the next chapter. Here, we detail its architecture, problem gener-
ation, operator logic, benchmarking setup, and key observations. For benchmarking purposes, we
compared the GA-generated solutions to optimal tour lengths computed using the Concorde TSP
Solver [9], with standard instances obtained from the TSPLIB library [10].

5.1 Software Architecture

The solver’s architecture emphasizes the separation of concerns. Its components handle problem
setup, configuration, evolutionary logic, and operator management independently, simplifying
testing and future integration.

Core modules include: TSPProblem for instance definition, GAConfig for algorithm parameters,
tsp_solver for execution logic (serial and parallel), and pop_manager and operators for genetic
operations. Operators are registered dynamically, and parallelism is applied to fitness and crossover
stages for scalability. The modular design facilitates reuse, including its role in cooperative game
solution algorithms.

The following subsections describe each module in detail.

5.1.1 TSPProblem module

The TSPProblem class encapsulates the definition of a TSP instance. It supports two modes of
problem specification: random generation of city coordinates within a bounded 2D grid, and
loading of predefined coordinates from external sources.

This class also provides utility methods for exporting problem instances to standard formats,
such as CSV and TSPLIB-compatible .tsp files. These features make it suitable for both internal
benchmarking and external validation using exact solvers like Concorde. The set of cities is
represented by integer indices, and the distance matrix is computed once and reused, ensuring
efficiency.

By centralizing problem handling, TSPProblem simplifies downstream components that rely on
consistent access to city coordinates and distances.

5.1.2 GAConfig module

The GAConfig class manages all parameters related to the GA run. It encapsulates configuration
for population sizing, genetic operators, and termination criteria.

Population size can be determined dynamically based on problem size using one of several
scaling modes: constant, linear, power, or factorial. Operator configuration includes the selection
method (e.g., tournament, SUS), crossover operator (e.g., OX, PMX), mutation strategy, and survivor
selection parameters. Termination conditions are set via maximum generation count and stagnation
tolerance.

GAConfig centralizes all GA-related parameters and provides methods for updating and in-
specting configurations. This design ensures consistency across modules and facilitates integration
with both the GUI and automated benchmarking routines.
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5.1.3 operators module

The operators module implements the core evolutionary operators used by the GA: selection,
crossover, and mutation. Each category includes multiple strategies suitable for permutation-based
representations of the TSP. The operators are implemented as standalone functions and registered
in dictionaries for dynamic selection based on the configuration.

Supported selection methods include tournament selection, SUS, and roulette wheel selection.
Crossover operators include OX, PMX, ERX, and CX. Mutation strategies include inversion, insertion,
swap, and scramble mutation.

This structure simplifies experimentation with different operator combinations and allows for
modular extension. Notably, an unintentionally modified version of OX used during early testing
was observed to outperform the standard version by introducing greater diversity, highlighting
the impact of operator behavior on search space exploration. Therefore all benchmarks will use
this modified version of OX, which is described in detail at the end of this chapter.

5.1.4 pop_manager module

The pop_manager module implements all core population-level operations in the GA, including
initialization, fitness evaluation, selection, crossover, mutation, and survivor filtering. It acts as an
interface layer between the configuration and operator logic, handling population flow across
generations.

Both serial and parallel versions of the main operations are provided. Parallelism is achieved
using Python’s multiprocessing module and a dynamic chunking strategy to distribute work
evenly across processes. Fitness evaluation and crossover are the primary targets for parallel
speedup, while other steps like selection remain serial due to their lower computational cost.

This separation of evolutionary flow into a dedicated module improves modularity and allows
high-level solver routines to remain focused on orchestration rather than low-level mechanics.

5.1.5 tsp_solver module

The tsp_solver module manages the execution of the GA. It provides two main functions:
solve_tsp_ga_serial and solve_tsp_ga_parallel, corresponding to sequential and parallel
execution modes. Both follow the same evolutionary loop structure—initialization, evaluation,
selection, crossover, mutation, survivor selection—guided by the configuration in GAConfig.

The parallel version uses a process pool and dynamic chunking to evaluate fitness and perform
crossover concurrently. In contrast, the serial version avoids overhead for smaller problems. For
very small instances, a brute-force exact solver based on permutations is used automatically.

This module serves as the central driver of the algorithm, coordinating the components defined
in other modules to execute a full TSP-solving run.

5.1.6 User interface, tspGUI module

The tspGUI module provides a graphical interface for configuring and running the TSP GA. Built
with customtkinter, it exposes all key parameters of the solver, including population size mode,
selection, crossover, mutation type, and their respective rates. These inputs are located in the left
configuration panel.

At the top, users can trigger key actions such as generating a random problem, loading a
problem from a file, starting the solver in serial or parallel mode, and exporting data. The central
area displays two real-time plots: the best tour found and the fitness progression across generations.
The bottom pane serves as a terminal for logs, feedback, and final results.
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This interface directly integrates with TSPProblem, GAConfig, and the solver routines. It improves
usability, enforces parameter bounds, and facilitates interactive experimentation.

Cities Random Problem Load Problem Start Serial Start Parallel Clear Log Export coordinates

BacwiE Fitness over Generations Best Tour
1000
No Improvement Limit
20
Mutation Rate
0.2

Elitism Rate

Distance

0.1

Selection Ratio
0.7

Size Parameter
10

Population Mode .2 0.4 0.6

1 Generation
linear

Crossover

Mutation
inversion
Selection

tournament

Figure 1: Graphical interface of the TSP Genetic Algorithm solver.

With the software architecture fully described, the next chapter evaluates its performance
across diverse TSP instances and parameter settings, highlighting effective configurations and key
observations.

5.2 Results and Benchmarking

This chapter presents a series of experiments designed to evaluate the performance and config-
urability of the implemented GA. The primary goals are to assess solution quality across diverse
problem instances, identify effective combinations of operators and parameters, and analyze
general trends in operator behavior.

Configurations are evaluated based on tour length, runtime, and deviation from known optima.
Results are reported for individual configurations to reveal the overall impact of operators and
tuning choices.

5.2.1 Experimental Setup

The solver was tested on two types of instances: randomly generated TSPs with 15 and 20 cities,
and benchmark problems from TSPLIB (eil51, ei176,and ei1101). The 15- and 20-city instances
were created using uniformly distributed integer coordinates, generated using a fixed random
seed (42); the code used for coordinate generation is shown below:

rng = Random(self.seed)
self.coordinates = [
(rng.randint (0, self.size * 2), rng.randint (0, self.size * 2))
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for _ in range(self.size)

Listing 1: Uniform random coordinate generation used for the 15- and 20-city instances.

Only five core parameters were systematically varied across all experiments: selection method,
selection ratio, crossover operator, mutation rate, and elitism rate. Other parameters, such as the
mutation operator, population size mode, and tournament group size, were held constant, as
preliminary testing showed their effect to be either negligible or detrimental to performance on
the tested problems. The following snippet shows the base configuration template used to generate
the full configuration space, with placeholders for parameters that were subject to testing:

BASE_CONFIG = {
"mode": "linear",
"size_parameter": 10.0,
"max_pop": 10000,

"selection_op": "---will be tested---",
"selection_ratio": "---will be tested---",
"tournament_k": 3,

"crossover_op": "---will be tested---",
"mutation_op": "inversion",
"mutation_rate": "---will be tested---",
"surv_strat": "elitism",

"elitism_rate": "---will be tested---",

"max_gen": 1000,
"no_improvement_limit": 20

Listing 2: Base configuration template with placeholders.

For the 15-city, 20-city, and ei151 instances, a total of 432 unique configurations were tested.
These were generated as all combinations of the following parameter values:

CROSSOVERS = ["OX", "PMX", "CX"]

SELECTIONS = ["tournament", "sus", "roulette wheel"]
MUTATION_RATES = [0.1, 0.15, 0.2]

SELECTION_RATES = [0.5, 0.6, 0.7, 0.8]

ELITISM_RATES = [0.05, 0.1, 0.15, 0.2]

Listing 3: Parameter grid used for 15-city, 20-city, and eil51 instances.

Due to the increased runtime complexity of larger instances, only a subset of configurations was
evaluated on ei176 and ei1101. These were selected based on the best-performing combinations
observed on eil51, and included all 32 configurations of:

CROSSOVERS = ["0X"]

SELECTIONS = ["tournament"]
MUTATION_RATES = [0.15, 0.2]
SELECTION_RATES = [0.5, 0.6, 0.7, 0.8]
ELITISM_RATES = [0.05, 0.1, 0.15, 0.2]

Listing 4: Reduced configuration grid used for eil76 and ei1101 instances.

Each configuration was executed 100 times to account for stochastic variability. Metrics
collected were final tour length, and elapsed time. The following sections present and analyze the
results of these experiments.
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5.2.2 Top Configuration Performance results

This section presents the best-performing configurations identified across the three smaller problem
instances: the 15-city and 20-city randomly generated problems, and the TSPLIB benchmark
eil51. For each instance, all 432 configurations were evaluated, and the top 10 are shown based
on average tour length over multiple runs. These results highlight consistent trends in effective
operator combinations and parameter settings. Both the standard deviation and the percentage
above the optimum are calculated with respect to the mean tour length over 100 runs.

Table 3: Top 10 configurations for the 15-city problem. Optimal length = 99.6

Crossover Selection Mut. Sel. Elit. Mean Std % Above Time

Rate Rate Rate Length Length Opt. (s)
OX tournament 0.20 0.5 0.05 99.62 0.10 0.022 0.106
OX tournament 0.20 0.6 0.15 99.62 0.10 0.022 0.098
OX tournament 0.20 0.7 0.10 99.65 0.15 0.045 0.104
0);¢ tournament 0.15 0.8 0.05 99.65 0.22 0.047 0.112
OX tournament 0.20 0.7 0.05 99.65 0.16 0.051 0.113
(0),¢ tournament 0.15 0.5 0.15 99.66 0.21 0.056  0.092
OX tournament 0.20 0.7 0.15 99.66 0.23 0.059 0.099
PMX tournament 0.20 0.7 0.10 99.66 0.17 0.062  0.089
PMX tournament 0.20 0.5 0.20 99.66 0.17 0.062 0.110
OX tournament 0.20 0.8 0.05 99.66 0.24 0.065 0.109

Best Distance Over Generations Best tour found

Figure 2: Optimal tour for custom 15-city problem.



52 5 Implementation of the Genetic Algorithm for TSP

Table 4: Top 10 configurations for the 20-city problem. Optimal length = 148.63

Crossover Selection Mut. Sel. Elit. Mean Std % Above Time

Rate Rate Rate Length Length Opt. (s)
(0);4 tournament 0.20 0.7 0.15 149.22 1.53 0.82 0.210
00X tournament 0.20 0.8 0.15 149.34 2.13 0.90 0.209
OX tournament 0.20 0.7 0.10 149.35 1.59 0.91 0.219
OX tournament 0.20 0.8 0.10 149.41 1.64 0.95 0.230
00X tournament 0.20 0.6 0.10 14947 2.29 1.00 0.182
OX tournament 0.20 0.6 0.15 149.50 1.96 1.02 0.201
(0);4 tournament 0.20 0.8 0.05 149.60 2.05 1.08 0.230
OX tournament 0.15 0.7 0.05 149.61 2.19 1.09 0.230
PMX tournament 0.20 0.8 0.10 149.63 2.43 1.10 0.256
(0),¢ tournament 0.15 0.7 0.10 149.64 2.49 1.11 0.226

Best Distance Over Generations Best tour found

Figure 3: Optimal tour for custom 20-city problem.

While the 15- and 20-city problems are small enough that most top configurations reliably
reach or nearly reach the optimal solution, rerunning them a few times is often sufficient to obtain
the exact optimum. The algorithm’s behavior in these instances is, therefore, quite stable and
predictable.

The ei151 instance presents a significantly larger search space, where even strong configura-
tions show increased variability and average tour lengths that are around 6.5-7.5% above the
known optimum. The table below shows the best configurations found for this benchmark.
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Table 5: Top 10 configurations for ei151. Optimal length = 426.0

Crossover Selection Mut. Sel. Elit. Mean Std % Above Time

Rate Rate Rate Length Length Opt. (s)
(0),4 tournament 0.20 0.7 0.10 45444 9.96 6.68 2.48
(0),¢ tournament 0.20 0.8 0.15 455.76 9.98 6.99 2.31
OX tournament 0.15 0.7 0.05 455.95 10.33 7.03 2.68
OX tournament 0.20 0.6 0.20 455.97 941 7.03 2.26
(0),¢ tournament 0.20 0.5 0.05 456.02 9.94 7.05 2.62
OX tournament 0.20 0.6 0.05 456.24 9.80 7.10 2.59
OX tournament 0.20 0.7 0.15 456.29 10.15 7.11 2.37
OX tournament 0.20 0.7 0.05 456.42 9.66 7.14 2.60
OX tournament 0.20 0.6 0.10 456.52 10.18 7.16 2.23
(0),¢ tournament 0.20 0.7 0.20 456.53 10.71 7.17 2.29

Although the GA consistently finds high-quality tours for eil51, it does not guarantee conver-
gence to the global optimum. Across all tested configurations and repeated runs, the optimal tour
of length 426.0 was never reached. While structurally similar in some regions, the GA solutions
tend to include minor detours or suboptimal crossings that accumulate into measurable deviations
from the best-known path.

Best tour found

Best tour found by GA for eil51 Optimal tour for eil51
Tour length = 438.52 Tour length = 426.0

Figure 4: Comparison of the best GA solution and the optimal tour for eil51.

To evaluate the scalability of the GA, we tested it on two larger TSPLIB instances: eil76 and
e11101. These configurations were selected based on the best-performing parameter combinations
from the earlier experiments on eil51. The following tables show the top 10 configurations per
instance, all using modified OX crossover and tournament selection:
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Table 6: Top 10 configurations for ei176. Optimal length = 538.0

Mut. Sel. Elit. Mean Std % Above Time
Rate Rate Rate Length Length Opt. (s)

0.20 0.8 0.10 589.61 14.36 9.59 8.61
0.20 0.7 0.05 590.10 16.85 9.68 9.68
0.20 0.7 0.20 590.12 13.10 9.69 8.54
0.20 0.6 0.10 590.31 12.84 9.72 9.23
0.20 0.6 0.05 590.39 14.98 9.74 9.97
0.20 0.5 0.05 591.18 15.38 9.88 9.85
0.20 0.5 0.15 591.21 14.31 9.89 8.82
0.20 0.7 0.15 591.24 15.34 9.90 8.61
0.20 0.6 0.20 591.43 15.56 9.93 8.57
0.20 0.7 0.10 591.50 13.69 9.95 9.22

Best tour found

Best tour found by GA for €i176 Optimal tour for eil76
Tour length = 563.71 Tour length = 538.0

Figure 5: Comparison of the best GA solution and the optimal tour for eil76.

Table 7: Top 10 configurations for ei1101. Optimal length = 629.0

Mut. Sel. Elit. Mean Std % Above Time
Rate Rate Rate Length Length Opt. (s)

0.20 0.7 0.15 699.34 17.02 11.18 19.71
0.20 0.6 0.10 700.57 15.40 11.38  21.19
0.20 0.5 0.10 701.30 13.43 11.49  20.92
0.20 0.5 0.05 701.41 16.16 11.51  22.50
0.20 0.8 0.05 702.25 14.23 11.65 21.67
0.20 0.7 0.05 702.35 16.52 11.66  22.00
0.20 0.8 0.20 702.37 17.23 11.67 18.37
0.20 0.8 0.10 702.40 15.05 11.67 19.16
0.20 0.6 0.05 702.76 16.38 11.73  22.38
0.20 0.5 0.15 704.09 17.38 11.94 19.72




5 Implementation of the Genetic Algorithm for TSP 55

Best tour found

Optimal tour

Best tour found by GA for ei1101 Optimal tour for eil1101
Tour length = 661.3 Tour length = 629.0

Figure 6: Comparison of the best GA solution and the optimal tour for ei1101.

Beyond identifying strong parameter combinations, several key observations emerged during
the development and testing of the GA. Most notably, increasing population size beyond a linear
scaling showed no improvement in solution quality. A linear growth mode with a size parameter of
10 (e.g., population size 510 for ei151) was found to be both efficient and sufficient for producing
competitive results. Among the mutation operators, inversion mutation consistently outperformed
alternatives, reinforcing its suitability for permutation-based problems like the TSP. Additionally,
a termination condition based on 20 generations without improvement proved to be an effective
stopping criterion, and setting the tournament group size parameter k = 3 reliably produced
strong results across all instances.

The following subsection shifts focus from individual configurations to a broader examination
of operator and parameter performance. Using the same experimental data, we now analyze how
each genetic operator and key parameter influenced outcomes across all tested configurations.

5.2.3 Operator and Parameter Performance Analysis

While the previous sections focused on identifying the best-performing configurations, this part
analyzes the performance of individual operators and parameter values in aggregate. The goal is
to assess which operators consistently contributed to strong solutions regardless of their specific
configuration context.

For each selection method, crossover operator, mutation rate, selection ratio, and elitism rate,
we compute the average tour length and relative performance across all configurations in which
they appeared. This provides a more global view of operator effectiveness.
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Table 8: Operator and parameter performance ranking for the 15-city problem. Optimal length = 99.6

Rank Operator Mean Tour Length Std Dev % Above Opt. Time (s)
Crossover
1 (0);4 100.34 0.78 0.75 0.110
2 cX 100.64 0.73 1.04 0.101
3 PMX 100.64 0.85 1.05 0.134
Selection
1 tournament 100.06 0.38 0.46 0.102
2 sus 100.55 0.61 0.95 0.118
3 roulette wheel 101.02 0.97 1.43 0.125
Mutation Rate
1 0.2 100.22 0.63 0.62 0.116
2 0.15 100.43 0.70 0.83 0.115
3 0.1 100.98 0.85 1.38 0.114
Selection Rate
1 0.8 100.47 0.74 0.88 0.113
2 0.7 100.52 0.75 0.92 0.114
3 0.6 100.55 0.83 0.95 0.116
4 0.5 100.62 0.87 1.03 0.117
Elitism Rate
1 0.2 100.33 0.52 0.74 0.105
2 0.15 100.35 0.49 0.75 0.110
3 0.1 100.43 0.60 0.83 0.117
4 0.05 101.06 1.16 1.46 0.128

Table 9: Operator and parameter performance ranking for the 20-city problem. Optimal length = 148.63

Rank Operator Mean Tour Length Std Dev % Above Opt. Time (s)
Crossover
1 0).¢ 152.75 3.04 2.78 0.254
2 PMX 153.20 2.19 3.08 0.302
3 X 153.24 2.11 3.11 0.223
Selection
1 tournament 151.03 1.10 1.62 0.218
2 sus 153.24 1.55 3.11 0.270
3 roulette wheel 154.91 2.73 4.24 0.291
Mutation Rate
1 0.2 152.21 2.47 2.42 0.264
2 0.15 152.82 2.25 2.82 0.268
3 0.1 154.16 2.35 3.73 0.247
Selection Rate
1 0.8 152.92 2.48 2.89 0.261
2 0.7 152.94 2.37 2.91 0.257
3 0.6 153.11 2.43 3.02 0.258
4 0.5 153.28 2.69 3.14 0.262
Elitism Rate
1 0.2 152.33 1.43 2.50 0.237
2 0.15 152.40 1.59 2.54 0.249
3 0.1 152.86 1.96 2.85 0.263
4 0.05 154.66 3.60 4.07 0.290
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Table 10: Operator and parameter performance ranking for ei151. Optimal length = 426.0

Rank Operator Mean Tour Length Std Dev % Above Opt. Time (s)
Crossover
1 CX 473.78 11.24 11.22 3.10
2 PMX 485.04 35.35 13.86 4.65
3 (0), 4 496.41 65.11 16.53 3.37
Selection
1 tournament 461.42 3.73 8.31 2.69
2 sus 474.73 8.49 11.44 4.06
3 roulette wheel 519.09 62.86 21.85 4.37
Mutation Rate
1 0.15 483.20 42.95 13.43 3.74
2 0.2 485.24 52.11 13.91 3.64
3 0.1 486.79 36.16 14.27 3.74
Selection Rate
1 0.7 483.46 41.78 13.49 3.69
2 0.8 484.36 44.26 13.70 3.65
3 0.6 485.77 45.67 14.03 3.73
4 0.5 486.73 45.31 14.25 3.76
Elitism Rate
1 0.2 473.41 13.52 11.13 3.39
2 0.15 475.26 16.81 11.56 3.58
3 0.1 479.84 23.63 12.64 3.83
4 0.05 511.81 76.44 20.14 4.02

While Order Crossover (OX) performed best on smaller instances, its ranking dropped signif-
icantly in the eil51 operator analysis. This lower ranking is not necessarily indicative of poor
overall performance, but rather a consequence of its broad variance: OX was used in a large num-
ber of both top- and bottom-performing configurations. As a result, its average performance was
diluted by many poorly tuned combinations. In contrast, Cycle Crossover (CX), though generally
weaker, appeared more consistently in mid-range configurations, avoiding extreme outliers. This
centralized clustering led to a better average tour length, placing it at the top of the operator
rankings for ei151 despite its inferior best-case performance.

Table 11: Operator performance ranking for ei176. Optimal length = 538.0

Rank Operator Mean Tour Length Std Dev % Above Opt. Time (s)
Mutation Rate

1 0.2 591.29 1.01 9.91 9.00
2 0.15 595.06 1.69 10.61 8.89
Selection Rate
1 0.8 592.76 1.72 10.18 8.98
2 0.6 592.81 2.54 10.19 8.98
3 0.7 593.39 2.96 10.30 9.01
4 0.5 593.75 2.37 10.36 8.81
Elitism Rate
1 0.05 592.40 1.99 10.11 9.72
2 0.1 592.76 2.02 10.18 9.04
3 0.15 593.46 2.35 10.31 8.66
4 0.2 594.08 3.01 10.42 8.36
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Table 12: Operator performance ranking for e11101. Optimal length = 629.0

Rank Operator Mean Tour Length Std Dev % Above Opt. Time (s)
Mutation Rate

1 0.2 703.05 1.87 11.77 20.23
2 0.15 706.81 1.59 12.37 20.20
Selection Rate
1 0.6 704.47 1.96 12.00 20.34
2 0.5 704.80 2.59 12.05 20.37
3 0.8 705.10 2.72 12.10 19.93
4 0.7 705.33 3.25 12.13 20.24
Elitism Rate
1 0.1 703.84 2.14 11.90 20.45
2 0.05 704.47 2.59 12.00 21.93
3 0.2 705.52 1.94 12.17 18.98
4 0.15 705.87 3.31 12.22 19.51

Based on the results of both ranking-based and aggregated operator performance tables, several
consistent patterns emerged. Across all tested instances, the modified OX operator, tournament
selection, and a mutation rate of 0.2 repeatedly demonstrated superior performance, making
them the most robust choices among the configurations tested. For selection rate, higher values
generally correlated with better outcomes. As for the elitism rate, a value of 0.2 appeared to be
optimal for smaller instances (up to eil51). However, on larger problems like e1176 and e11101,
lower elitism rates began to outperform this setting, possibly highlighting a broader trend.

5.3 Additional observations

Although the ERX operator exhibited interesting structural preservation properties, it was excluded
from the benchmark due to its significantly slower performance and unnoticeable advantage in
solution quality. This was primarily caused by the overhead of maintaining an edge table during
execution and its design, which limits it to producing only a single offspring per application,
making it inefficient for even small populations compared to other crossover operators.

Interestingly, a performance improvement was also observed in a modified version of the OX
operator that emerged unintentionally. Instead of filling the remaining positions in the offspring
starting from the second cut-off point, as specified in the standard OX procedure, the implemen-
tation mistakenly began inserting from the first available position in the child. This deviation
increased the structural distance between offspring and parents, likely enhancing the exploration
of the search space and resulting in consistently better performance across multiple instances.

(1] [2] [3] [a] [5] [e] [7] [&] [9]
(o] [s] [7] [e] [2] [¢] [8] [0] [4]

Standard OX procedure
1] [2] [3] [2] [5] [e] [7] [&] [9]
[o] [s] [7] [e] [2] [¢] [8] [1] [4]

A modified OX procedure

—— (8] [2] [1] [4] [5] [e] [7] [9] [3]

— o] [3] [8] [4] [5] [e] [7] [2] [1]
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6 Implementation of the Shapley Value Solver for TSP

This chapter presents the implementation of a Shapley value solver as an extension of the previously
developed GA framework for the TSP. The Shapley value, a central concept in cooperative game
theory, offers a principled method for allocating the total tour cost among cities based on their
marginal contributions to different coalitions [11, 12].

Due to the combinatorial explosion associated with enumerating all player orderings, the solver
employs a Monte Carlo sampling approach, which estimates expected marginal contributions
using randomly generated permutations and marginal formula 4.20. This estimator possesses key
statistical properties: it is unbiased, consistent, and—by the Central Limit Theorem—asymptotically
normal, given that marginal contributions are finite and independently sampled. These properties
were verified through empirical testing, confirming the statistical validity of the estimation method
used.

The approximation is seamlessly integrated into the GA infrastructure, reusing the same
evaluation and configuration components. A GUI structurally similar to that of the TSP solver
enables interactive configuration and execution of the Shapley computation. The remainder of the
chapter details the architectural structure of the module, presents performance benchmarks, and
concludes with a discussion of observed limitations and directions for further improvement.

6.1 Software Architecture

The Shapley value solver is implemented as a compact extension module built atop the TSP solver.
Its core logic builds directly upon the existing problem configuration and evaluation mechanisms,
focusing primarily on sampling and coalition evaluation.

This section outlines the structure of the module. We begin with the sampling strategy imple-
mented via the generate_samples() and generate_all_permutations() functions. We then
describe the serial Shapley computation, including the solve_Shapley () method and the auxiliary
caching function get_or_compute_tsp(). Finally, we examine the solve_Shapley_prl() func-
tion, which provides a parallelized wrapper around the core computation, significantly accelerating
large-scale approximations.

6.1.1 Sampling Methods

Due to the factorial growth of possible orderings, the implementation supports two sampling
approaches: a Monte Carlo sampling method for approximation and an exhaustive enumeration
method for small instances where exact computation is feasible.

The primary approach used for approximating the Shapley value is random sampling of
permutations. This method fixes the first city (typically city 0) and randomly permutes the
remaining cities. The number of samples is limited both by the user’s specification and a hard cap
to avoid excessive memory usage.

def generate_samples(size: int, num_samples: int, fixed_first: int = 0):
base_elements = tuple(i for i in range(size) if i != fixed_first)
num_samples = min(num_samples, min(factorial(size - 1), 10000))
samples = set ()
while len(samples) < num_samples:

perm = (fixed_first,) + tuple(sample(base_elements, len(

base_elements)))
samples.add(perm)
return samples
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Listing 5: Monte Carlo sampling of city permutations

Since the set of permutations is randomly generated, results are subject to stochastic variability,
which decreases with increasing sample size.

For small problem instances or benchmarking, it is possible to compute the exact Shapley value by
enumerating all permutations of the cities. The method below uses Python’s itertools.permutations
to generate all possible orderings with the first city fixed.

from itertools import permutations

def generate_all_permutations(size: int, fixed_first: int = 0):
base_elements = [i for i in range(size) if i != fixed_first]
all_perms = [(fixed_first,) + p for p in permutations(base_elements)]
return all_perms

Listing 6: Full permutation generation for exact computation

This approach is computationally feasible only for small values of n, as the number of permu-
tations grows as (n — 1)!. It is primarily used for benchmarking and verifying the accuracy of the
Monte Carlo method.

6.1.2 Shapley Solver

Initialization Before the Core Loop: The function solve_Shapley begins by preparing the
data structures required for marginal contribution tracking, permutation sampling, and coalition
cost caching. It also computes the tour length of the grand coalition:

marginalContributions = {i: [] for i in range(l, problem.size)}

samples = generate_samples(problem.size, num_samples)

stored_tours = {}

grand_set = [i for i in range(problem.size)]

key = frozenset(grand_set)

tsplLen, tspTour, _ = solve_tsp_ga_serial(problem, config, grand_set, False)
stored_tours [key] = tsplen

Listing 7: Initialization phase of solve_Shapley

Core Computation Loop: The core logic of Shapley value estimation is shown below. Each
permutation is interpreted as a sequence of coalition building, and the cost increase when each
city joins is recorded as its marginal contribution.

for sample in samples:

cost_without = 0.0

for i in range(l, problem.size):
cost_with = get_or_compute_tsp(problem, config, list(sample[:i+1]),

stored_tours, store_limit)

marginal_contribution = cost_with - cost_without
cost_without = cost_with
marginalContributions [sample[i]] . append(marginal_contribution)

shapley_values = {
key: round(sum(marginalContributions[key]) / len(samples), 3)
for key in marginalContributions}

Listing 8: Main computation loop in solve_Shapley
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To avoid redundant computations of tour costs, the implementation relies on a caching mecha-
nism managed by the auxiliary function get_or_compute_tsp(), which either retrieves a stored
tour length for a coalition or computes it if it has not been previously evaluated.

Caching Coalition Costs: The following auxiliary function manages caching of previously
computed TSP tour lengths for specific coalitions, reducing the overall number of TSP evaluations
and improving performance.

def get_or_compute_tsp(problem, config, subset_with, stored_tours,
store_limit):
key = frozenset (subset_with)
if key in stored_tours:
return stored_tours [key]

tsplen, _, _ = solve_tsp_ga_serial(problem, config, subset_with, False)
if len(subset_with) >= 9 and len(stored_tours) < store_limit:
stored_tours[key] = tsplen

return tsplLen

Listing 9: Caching previously evaluated coalition costs

The cache is indexed using frozenset representations of the coalitions and is size-limited to
manage memory usage. Coalitions of size nine or greater are stored, as these tend to be more
computationally expensive to evaluate.

6.1.3 Parallel Computation Wrapper

To accelerate the approximation of Shapley values, especially for larger TSP instances or higher
sample counts, a parallel wrapper solve_Shapley_prl () is provided. This function distributes
the sampling workload across multiple CPU cores using Python’s multiprocessing module. Each
process runs an independent instance of the serial solver and returns partial Shapley estimates,
which are then aggregated.

num_processes = max(l, cpu_count() - 1)
with Pool(processes=num_processes) as pool:
args = [(problem, config, num_samples, store_limit, i==num_processes-1)
for i in range(num_processes)]
results = pool.starmap(solve_Shapley, args)

Listing 10: Structure of solve_Shapley_prl

Each process computes Shapley values independently using a disjoint set of random samples.
When all processes are complete, their outputs are combined and averaged:

combined_shapley_values = {
key: round(sum(values) / num_processes, 3)
for key, values in extract_by_key.items ()

Listing 11: Combining results from all threads

The averaged Shapley values are scaled to match the length of the shortest grand tour found
among all threads. This ensures that their sum corresponds exactly to the best solution discovered
during parallel computation, preserving proportional cost allocation relative to the most accurate
tour available.
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adjusted_shapley_values = {
key: round ((combined_shapley_values[key] / average_grand_tour_length)
* shortest_grand_tour_length, 3)
for key in combined_shapley_values

Listing 12: Final adjustment of averaged Shapley values

6.2 Results and Benchmarking

This chapter benchmarks the implemented Shapley value solver on two TSP-based test cases. The
first uses a fully exact setup on a 9-city problem to evaluate two estimation methods against a
ground truth. The second leverages a near-exact combinatorial Shapley computation on a 15-
city instance—made possible by the high accuracy of our GA-based TSP solver—to evaluate the
performance of the permutation-based Shapley approximation.

6.2.1 Experimental Setup

To evaluate the performance and accuracy of the Shapley value solver, two benchmark problems
were used: a fully exact 9-city instance and a larger 15-city instance evaluated via a near-exact
combinatorial method. Both problems were generated using:

rng = Random(self.seed)

self.coordinates = [
(rng.randint (0, self.size * 2), rng.randint (0, self.size * 2))
for _ in range(self.size)

Listing 13: Uniform random coordinate generation used for the 9- and 15-city instances.

9-City Benchmark (Exact Computation)
In the first benchmark, a custom instance with nine cities was created. One city was fixed as
a depot, and the remaining eight cities were used to compute the Shapley value, reducing the
permutation space from 9! to 8!.

The following three estimation methods were evaluated:

* Exact solution — full enumeration of the Shapley formula using 8! permutations, with
coalition costs computed using exact TSP solutions.

* Subset-based approximation — 100 random permutations, with exact TSP costs computed
for each sampled coalition.

* GA-based approximation — 100 permutations, with coalition costs approximated using a
genetic algorithm.

Each approximate method was repeated 100 times to evaluate consistency and compute statistical
error metrics.

15-City Benchmark (Near-Exact Computation)
The second benchmark used a 15-city TSP problem to assess the scalability of Shapley value
computation based on the combinatorial formula from definition 4.19.

As in the previous case, one city was fixed as the depot, reducing the effective set of players
from 15 to 14. The characteristic function was evaluated over all 2'# subsets, with TSP costs for
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each coalition computed using a genetic algorithm. This provides a near-exact Shapley vector,
serving as a practical reference solution given the solver’s observed high accuracy on problems
with 20 or fewer cities, as demonstrated in the previous chapter.

However, this approach does not scale well to larger instances due to exponential memory
and disk requirements associated with storing coalition tour costs. In contrast, the approximation
algorithm based on permutation sampling enables efficient control over memory usage by limiting
the number of cached tours per thread. In the extreme case, no intermediate results need to be
stored at all, allowing for scalable, low-footprint execution.

6.2.2 Evaluation Metrics

To evaluate the quality of Shapley value approximations, each estimated vector was compared
to the ground truth using standard vector-based error metrics, as inspired by [11]. Let ¢* =
(¢%, 4%, ..., $%) denote the exact Shapley value vector, and let ¢() = (gzggr), Aér), ..., 3\7y denote
the approximation obtained in the r-th run. The following error metrics were computed for each
run:

* Mean Absolute Error (MAE):

1|, \
MAE?) = - 3[4 g,
i=1

* Mean Squared Error (MSE):

15 (209 2
T (r *
MSE(”:;E (¢i _¢,i)
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* Root Mean Squared Error (RMSE):
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¢ Maximum Absolute Error (Max Error):
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* Mean Relative Error (Percent Error):
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For each method, its mean and standard deviation across all runs were computed to assess
both accuracy and consistency.

- 100

6.2.3 Experimental Results

The following section presents the results of the Shapley value solver benchmarks, based on the two
test cases introduced earlier, where a parallel wrapper was used for testing. This wrapper executed
11 independent single-threaded solver instances in parallel—corresponding to the number of
available CPU cores—and merged their outputs into a single Shapley value estimate using the
aggregation method described in the previous section. This process was repeated 30 times for
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each estimation method and problem instance, resulting in a total of 30 parallel estimates and
330 single-threaded solutions per method. Each individual thread used a sample size of 100
permutations. Therefore, each parallel estimate was based on a combined total of 1100 sampled
permutations. This setup allowed us to evaluate both the consistency of single-threaded runs and
the quality of the final aggregated result while maintaining tractable runtime.

For the 9-city instance, the total tour length was 59.62 and the resulting Shapley values are
shown under Figure 7. For the 15-city instance, the tour length was 99.60 and the resulting
Shapley values are shown under Figure 8.

Both Tables 13 and 14 show that the parallel version significantly improves accuracy and
reduces variability compared to the single-threaded approach. The elapsed time in the Single-
thread column is not reported, as parallel computation does not provide timing for individual
threads. While exact TSP evaluation yields the lowest error overall, the genetic algorithm achieves
comparable accuracy.

Best tour found

Figure 7: 9-city problem instance
Shapley values: 1: 4.058, 2:2.937, 3:12.129, 4: 14.332,
5:6.779, 6:3.303, 7:3.378, 8:12.701

Table 13: Results for 9-city Shapley approximation using the exhaustive TSP evaluation.

Metric Single-thread Parallel
Mean Std Dev | Mean Std Dev
MAE 0.5580 0.1905 | 0.1525 0.0494
MSE 0.6006 0.4580 | 0.0430 0.0333
RMSE 0.7253 0.2730 | 0.1949 0.0708
Max Error 1.4095 0.5974 | 0.3755 0.1512
Percent Error 8.2% 2.3% 2.4% 0.6%
Elapsed Time (s) — — 5.077 0.314
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Best tour found

Figure 8: 15-city problem instance
Shapley values: 1: 13.518, 2: 3.986, 3:4.477, 4:2.987, 5:8.272, 6:9.818, 7: 7.404,
8:3.057, 9:14.319, 10: 4.451, 11:5.130, 12: 8.257, 13: 7.270, 14: 6.659

Table 14: Results for the 9-city Shapley approximation using genetic algorithm to estimate TSP costs.

Metric Single-thread Parallel
Mean Std Dev | Mean Std Dev
MAE 0.5449 0.2033 | 0.1595 0.0543
MSE 0.5808 0.5199 | 0.0446 0.0306
RMSE 0.7048 0.2900 | 0.1994 0.0694
Max Error 1.3555 0.6306 | 0.3725 0.1379
Percent Error 8.1% 2.5% 2.5% 0.7%
Elapsed Time (s) — — 9.352 0.890

Table 15 confirms that even for the more complex 15-city instance, the parallel implementation
maintains reasonable accuracy (3.3% error) with low variance, making it suitable for scalable
Shapley value estimation.

Table 15: Results for the 15-city Shapley approximation using genetic algorithm to estimate TSP costs

Metric Single-thread Parallel
Mean Std Dev | Mean Std Dev
MAE 0.7257 0.1650 | 0.2210 0.0496
MSE 0.9422 0.4317 | 0.0868 0.0386
RMSE 0.9458 0.2180 | 0.2878 0.0632
Max Error 2.1298 0.6488 | 0.6552 0.1819
Percent 10.9% 2.4% 3.3% 0.7%
Elapsed Time (s) — — 32.438 1.380
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It is important to note, that the Shapley values shown in Figures 7 and 8 represent each
city’s average marginal contribution to the total tour length across all sampled permutations.
These values are expressed in raw distance units (e.g., kilometers), rather than monetary costs.
In practice, the cost attributable to each city can be directly obtained by multiplying its Shapley
value by a given unit cost per kilometer. This allows the distance-based allocation to be easily
converted into a monetary cost-sharing scheme, assuming uniform travel costs per distance.

Computational remarks. When executed on a single thread, the permutation-based Shapley
estimation for a 20-city problem using 1000 sampled permutations completes in approximately
7 to 8 minutes. For a 30-city problem under the same configuration, the runtime increases to
around 40 minutes due to the growing complexity of evaluating longer TSP tours. In contrast,
the parallel version—designed to run multiple independent threads with the same per-thread
sample size—enables substantial scalability. The final estimate is aggregated across all threads,
allowing users to improve solution quality proportionally with the number of processor cores.
Although parallelization introduces some overhead, total runtime typically remains about twice
that of a single-threaded run, regardless of the number of threads. This modest trade-off provides a
predictable and flexible framework where accuracy scales with hardware resources. This behavior
highlights the practicality of the parallel approach for large-scale problems, offering fine-grained
control over the balance between runtime, memory usage, and approximation quality.

6.2.4 Correlation Analysis between Shapley Values and Cities Geometry

In addition to evaluating numerical accuracy, we investigated whether the computed Shapley values
reflect geometric patterns of randomly generated instances. Since the Shapley value accounts for
each city’s marginal contribution to coalition costs, we hypothesized that cities located farther
from the depot or more geographically isolated would tend to receive higher values.

To explore this hypothesis, we performed a correlation analysis between the Shapley value of
each city and two geometric characteristics:

* Euclidean distance from the depot (City_0),
* Average distance to all other cities, including the depot.

To reduce variance and ensure robustness, the values were averaged across 30 independent
runs of the parallel solver. Since the Shapley values obtained through Monte Carlo estimation were
shown to be approximately normally distributed, the use of both Spearman’s rank correlation (for
monotonic trends) and Pearson’s correlation coefficient (for linear relationships) is statistically
justified.

As shown in Tables 16 and 17, we observe statistically significant correlations between the
geometric properties of cities and their assigned Shapley values. In both the 9-city and 15-city
instances, cities located farther from the depot tend to receive higher allocations, which supports
the intuitive notion that more remote cities contribute more to the total cost of coalition tours.

Table 16: Correlation between Shapley values and city distances in the 9-city instance (GA computation).

Metric Spearman p p-value Pearsonr p-value
Distance from Depot 0.9524 0.00026  0.9378  0.00057
Average Distance to Others 0.8571 0.00653  0.9255  0.00098
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Table 17: Correlation between Shapley values and geometric city properties in the 15-city instance.

Metric Spearman p p-value Pearsonr p-value
Distance from Depot 0.8009 0.0006 0.7305 0.0030
Average Distance to Others 0.5473 0.0428 0.6022 0.0227

A similar trend is observed for the average distance to all other cities: cities that are more
isolated from the rest of the network also tend to receive higher Shapley values. These correlations
suggest that geometric remoteness—whether from the depot or the network as a whole—is a
meaningful indicator of marginal contribution in TSP-based cooperative games.

The effect is especially strong in the 9-city instance, where both Shapley values and TSP costs
are computed exactly. In contrast, the 15-city instance shows weaker correlations. This difference
is likely due to two factors: the increased complexity of the coalition interaction in larger problems,
and the use of approximated TSP costs via a genetic algorithm, which introduces estimation noise.
Despite this, the correlations in the 15-city case remain statistically significant, indicating that
geometric features retain explanatory value, especially in smaller or more structured instances
where coalition cost evaluations are more stable.
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7 Conclusion

This thesis explored the integration of genetic algorithms and cooperative game theory to address
fair cost allocation in routing problems, with a specific focus on the Traveling Salesman Problem.
A flexible and modular genetic algorithm solver was implemented in Python, supporting config-
urable operators, GUI interaction, and parallel processing. The solver was further extended to
estimate Shapley values using a sampling-based approach, enabling scalable approximation of
marginal contributions in cost-sharing scenarios. Moreover, the correlation analysis demonstrated
meaningful relationships between spatial structure and Shapley values.

In terms of practical extensibility, several improvements can be made to enhance the usability
and robustness of the solver. One such improvement is the ability to load problem instances
directly from a distance matrix, allowing support for non-Euclidean TSP variants or real-world
datasets. Additionally, the current export functionality could be expanded to include not only
city coordinates but also derived data such as tour sequences, final tour lengths, and convergence
statistics. Further code refactorization would also help simplify integration with other tools and
ensure a more modular and seamless implementation. To improve performance in larger problem
instances, performance-critical components or the entire solver could be reimplemented in C or
C++, allowing for significant speedups compared to Python.

On the algorithmic side, several promising directions remain open. The use of advanced fitness-
scaling techniques, such as windowing or sigma scaling, could be implemented and dynamically
activated based on population diversity or convergence stagnation. To further improve solution
quality, especially in the later stages of evolution, hybridization with local search methods such as
2-opt or 3-opt could be introduced to refine solutions beyond what the genetic operators alone
can achieve. Finally, incorporating more advanced crossover techniques, such as the EAX, which is
considered state-of-the-art for TSP problems, could significantly enhance the algorithm’s ability to
preserve and recombine high-quality structures during reproduction.

Future improvements to the Shapley value solver could focus on modularizing the code-
base—separating core logic, sampling methods, and cost evaluation—to simplify experimentation
with alternative techniques. Unifying the solver’s GUI with the TSP interface would streamline
configuration and use. Adding built-in tools for error analysis, summary reporting, and correlation
diagnostics would further enhance usability, reproducibility, and analytical depth.
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