BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

COLLABORATIVE DATA SHARING
IN A TIME-MANAGEMENT APPLICATION

KOLABORATIVNI SDILENi DAT V APLIKACI PRO SPRAVU CASU

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAN ZIMOLA
AUTOR PRACE
SUPERVISOR Ing. JIRi HYNEK, Ph.D.

VEDOUCI PRACE

BRNO 2025

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Master's Thesis Assignment i]I

Institut: Department of Information Systems (DIFS) 165062
Student: Zimola Jan, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Application Development

Title: Kolaborativni sdileni dat v aplikaci pro spravu ¢asu

Category: Mobile applications

Academic year: 2024/25

Assignment:

1. Study task planning and synchronization across devices and users, focusing on relevant
technologies and tools.

2. Investigate smartwatches, including their hardware, platforms, and development technologies.

3. Analyze the current state of the TimeNoder2 application, focusing on architecture and user
feedback. Evaluate the existing support of synchronization between devices and users. Take into
account the absence of support for smartwatches.

4. Based on the analysis, extend the existing TimeNoder2 mobile application to support
synchronization between devices and users, and design a variant of the smartwatch application.

5. Implement the proposed TimeNoder2 extensions.

6. Test the application in a real environment and propose possible extensions.

Literature:

» Google. (n.d.). Android developers. Android Developers. Retrieved September 30, 2024, from
https://developer.android.com

* Google. (n.d.). Flutter documentation. Flutter. Retrieved September 30, 2024, from
https://docs.flutter.dev

» Knott, D. (2015). Hands-On Mobile App Testing: A Guide for Mobile Testers and Anyone Involved in
the Mobile App Business. Pearson Education.

* Krug, S. (2013). Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability.
Pearson Education.

* Liu, R., & Lin, F. X. (2016, June). Understanding the Characteristics of Android Wear OS. In
Proceedings of the 14th annual international conference on mobile systems, applications, and
services (pp. 151-164).

Requirements for the semestral defence:
ltems 1 - 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Hynek Jiri, Ing., Ph.D.
Head of Department: Kolafr Dusan, doc. Dr. Ing.
Beginning of work: 1.11.2024

Submission deadline: 21.5.2025

Approval date: 22.10.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

Abstract

This thesis lays the groundwork for future cross-platform support and user collaboration
in TimeNoder2. It introduces two synchronization strategies: one for a single user across
multiple devices, based on the WatermelonDB protocol, and another for multi-user collab-
oration across devices, utilizing the existing PowerSync synchronization framework. A key
contribution is the implementation of shared documents with conflict resolution and full
offline capability, built upon the AppFlowy editor. The project also extends TimeNoder2
to WearOS using Flutter, resulting in a standalone smartwatch application with persistent
offline functionality. This design addresses several limitations found in existing smartwatch
apps, such as TickTick and Focus ToDo.

Abstrakt

Tato prace poklada zaklady pro budouci podporu riznych platforem a spolupraci uzivatelu
v TimeNoderu2. Zavadi dvé synchronizacni strategie: jednu pro jednoho uzivatele na vice
zalizenich, zaloZenou na protokolu WatermelonDB, a druhou pro spolupréci vice uzivatelt
na rtznych zafizenich, vyuzivajici stavajici synchroniza¢ni ramec PowerSync. Klicovym
piinosem je implementace sdilenych dokumentti s fesenim konfliktd a plnou moznosti prace
v rezimu offline, postavend na editoru AppFlowy. Projekt také rozsiruje TimeNoder2 o pod-
poru operacniho systému WearOS pomoci nastroje Flutter, coz vede k vytvoreni samostatné
aplikace pro chytré hodinky s trvalou offline funkci. Tento projekt resi nékolik omezeni,
kterd se vyskytuji ve stavajicich aplikacich pro chytré hodinky, jako jsou TickTick a Focus
ToDo.

Keywords

Synchronization protocols, conflict-free replicated data types, collaborative editing, smart-
watch applications, WearOS development, Flutter framework, offline-first design, Power-
Sync, WatermelonDB protocol

Klic¢ova slova

Synchroniza¢ni protokoly, bezkonfliktni replikované datové typy, spole¢né tpravy, aplikace
pro chytré hodinky, vyvoj WearOS, framework Flutter, offline-first design, PowerSync, pro-
tokol WatermelonDB

Reference

ZIMOLA, Jan. Collaborative Data Sharing
in a Time-Management Application. Brno, 2025. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Jiti Hynek, Ph.D.

Collaborative Data Sharing
in a Time-Management Application

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Jifi Hynek, Ph.D. I have cited all literary sources,
publications, and other resources from which I drew information. I declare that I used
GitHub Copilot and ChatGPT to assist with code generation, debugging, and exploring
implementation ideas, and Grammarly AT and Writefull to improve the clarity and phrasing
of the written text. All final decisions regarding content, structure, and implementation
were made by me.

Jan Zimola
May 21, 2025

Acknowledgements

I would like to express my heartfelt gratitude to my family for their unwavering support
in my pursuit of higher education. Their encouragement has allowed me the freedom to
explore my passions and develop my skills. I am also deeply thankful to my supervisor, Mr.
Ing. Jiti Hynek, Ph.D., for his remarkable patience and prompt assistance throughout this
journey.

Contents

1 Introduction

2 Task scheduling and synchronization
2.1 Distributed Systems Lo
2.2 Eventual Consistency e
2.3 Conflict-free replicated data types (CRDTs)

24

2.5

23.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6

State-based CRDTs
Operation-Based Commutative Replicated Data Type (CmRDT) . .
CRDT Set Types With Examples.
Simple CRDT implementation above SQL DB
Automerge
CRDT’s In Text Editing

Existing Time-Management Applications.

24.1
2.4.2

AnyType — Existing Time-Management Application
AppFlowy — Existing Time-Management Application

Existing Synchronization Libraries 0.

2.5.1
2.5.2

PowerSync
WatermelonDB

Smartwatch Operating Systems

3.1 Smartwatch Ul and Usability

3.1.1
3.1.2
3.1.3

WearOS e
Apple Watch
Examples of Applications in the Context of TimeNoder2

3.2 Communication Between a Phone and a Smartwatch

Analysis of TimeNoder2 Architecture and Synchronization Support

4.1 Overview of TimeNoder2
4.2 User Feedback and Requirements

4.3

4.2.1
4.2.2
4.2.3

Need for Cross-Platform Support
Other User Needs
Analyzing Discord Voting

Detailed Requirements

4.3.1
4.3.2
4.3.3
4.34
4.3.5

Account Management Requirements
Team Management Requirements
Basic Synchronization Requirements
Document Synchronization Requirements
Smartwatch Application Requirements

20
22
23
24
25
27

4.4 Current TimeNoder2 Architecture

Design of the Solution

5.1 Synchronzation Design Lo oo
5.1.1 Basic Data Synchronization
5.1.2 Document Synchronzation,

5.2 Smartwatch Application Design
52.1 Tasks Page
5.22 Timer Page
5.2.3 Habits and Schedule Page
5.2.4 Create Task and Settings Page

Implementation

6.1 Synchronization Implementation
6.1.1 One-User Multi-Device Synchronization
6.1.2 Multi-User Multi-Device Synchronization
6.1.3 Synchronization of Documents

6.2 Smartwatch Application Implementation
6.2.1 Communication Protocol
6.2.2 Local Database and Synchronization
6.2.3 App Design and Navigation
6.2.4 App Features

Testing

7.1 One-User Synchronization Demo

7.2 Multi-User Synchronization Demo

7.3 Smartwatch Application Testing
7.3.1 Scenario Focused on Functionality and Synchronization
7.3.2 User Experience Testing,

8 Conclusion
Bibliography

A Testing of Synchronization and Smartwatch Application

A.1 One-User Synchronization Scenario
A.1.1 Testing Preparation
A.1.2 Verifying Pre-Created Data
A13 Editingin Two Tabs L.

A.2 Multi-User Synchronization Scenario
A.2.1 Offline-Only Mode and Registration
A.2.2 Team Management and Document Editing

A.3 Smartwatch Application Scenario

36
36
36
42
43
43
44
45
45

46
46
47
49
51
o7
57
58
58
59

60
60
61
61
61
61

64

66

List of Figures

2.1

2.2
2.3

24

3.1
3.2
3.3

3.4

3.5

3.6
3.7
3.8
3.9

4.1

0.1
5.2
9.3

5.4
9.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13

Diagram showing that after clients exchange text-editing changes, it should
end up in the same state.
AppFlowy Domain-driven design (DDD) architecture diagram.
Diagram showing how AppFlowy handles communication between Rust and
Flutter. o
Watermelon DB synchronization diagram showing the protocol timeline. . .

Smartwatch shipment share in China for 2023 and 2024 [21].
Smartwatch shipment share outside China for 2023 and 2024 [21]..
Mustration of utilizing Google Maps on both a smartphone and a smart-
watch [16]..
Examples of complications show in various watch faces, such as walked a
number of steps, heart rate, actual date, or current temperature [4].

Tile examples concentrate on the primary, straightforward tasks that users
wish to accomplish [4].
Tile examples helping users get important information quickly [4].
Downloading a song in a music app [4].
Example of how an application can scale across surfaces [15].
Apple Watch foundational layouts [11].

Diagram of a simplified current database schema for TimeNoder2.

ER diagram for normalized storage of Projects and Sections.
ER diagram for normalized storing of Tasks.
ER diagram for normalized storing of Events and their connection to Tasks,
Projects, and Sections. Lo
ER diagram for storing Settings and Rewards.
ER diagram for team management table. 0000,
ER diagram of extra tables needed for defining Tasks in a multi-user envi-
ronment. oL e e e e
ER diagram of extra tables needed for defining Events in a multi-user envi-
ronment. . . .o L L e e e e
ER diagram of extra tables needed for defining Projects in a multi-user en-
vironment. Lo oL
ER diagram for storing document data in a multi-user environment.

Tasks page and Selectionpage.« . oo e e
Timer page with and without a tracking element.
Habits page and Schedulepage.
Create Task page and Settings page. o v oo

23

6.2

6.3
6.4

6.5
6.6

Server database schema utilized on the Supabase server for the one-user
synchronization demo. On the client, it uses the same schema except the
instance_id, server_created_at, and server_updated_at attributes. The
instance_id filters out real-time updates that the current client is causing
and limits the number of synchronization calls.
PowerSync Synchronization Architecture.
A demo ER diagram illustrates document sharing for both a single user and
several USers. e e
Reflecting user-created changes in the CRDT Document.
How updates from other devices are reflected in the editor.

Chapter 1

Introduction

In today’s digital age, technology is deeply integrated into our daily lives, offering tools
to manage increasingly complex schedules and demands. Effective time management is
critical, and mobile apps have become essential for organizing tasks, setting deadlines, and
tracking progress directly from our devices. Among these tools, TimeNoder2' has gained
attention but faces growing user demand for seamless cross-platform support and collabo-
rative features. By cross-platform support is meant both being able to open the application
on multiple platforms, but also to share data between them. At the same time, it is im-
portant to allow work on these platforms offline, which clearly indicates that these devices
need to synchronize.

This work aims to prepare TimeNoder2 to become a fully cross-platform application.
It looks at important challenges such as data synchronization and collaborative features.
The goal is to ensure that user data, organized like a database, remains consistent across all
devices. Additionally, the thesis explores how users can share content in text editors for real-
time collaboration, even offline. Another focus is on extending TimeNoder2 to WearOS”
using Flutter®, allowing the app to work independently from the mobile version. This
could solve issues seen in other apps like Focus Todo* and TickTick’. Instead of coming up
with completely new ideas, this thesis adapts existing synchronization methods and tools
to fit TimeNoder2’s needs. It uses known protocols to enhance the app’s functions and
better serve users. The result is a strong foundation for TimeNoder2 to become a flexible,
cross-platform tool that helps users stay organized across their devices.

The structure of the thesis is as follows: Chapter 2 discusses data synchronization
concepts and tools. Chapter 3 looks at smartwatches and how they fit into a cross-platform
system. Chapter 4 evaluates the current status of TimeNoder2 and user expectations
based on reviews and comments, focusing on cross-platform support. Chapter 5 describes
the design of the synchronization system and smartwatch application. Chapter 6 covers
synchronization implementation using tools like WatermelonDB® protocol, PowerSync’, and
CRDTs, along with the smartwatch app. Finally, Chapter 7 explains the testing process
to ensure synchronization and the smartwatch app’s reliability and performance.

"https://timenoder.com/
2https://wearos.google.com/
Shttps://flutter.dev/
‘https://www.focustodo.cn/
Shttps://ticktick.com/
Shttps://watermelondb.dev/docs/Sync/Backend
"https://www.powersync.com/

https://timenoder.com/
https://wearos.google.com/
https://flutter.dev/
https://www.focustodo.cn/
https://ticktick.com/
https://watermelondb.dev/docs/Sync/Backend
https://www.powersync.com/

Chapter 2

Task scheduling and
synchronization

Accessing the application from multiple devices is essential, as seen in other time-man-
agement applications like TickTick and Todoist' [46]. This includes web, mobile, and
smartwatches. Cross-platform functionality allows for convenient usage on desktop PCs,
which provide significantly more screen space. It also enables basic tasks to be performed
on smartwatches. Another vital aspect is collaborating on tasks with others. This can apply
to school projects, family organizations, or work-related activities. These methods are well
integrated into TickTick and Todoist based on PCMag”. The cross-platform support relies
on the synchronization of data across devices.

Data synchronization is the technique to ensure that data across multiple locations
remains consistent and harmonized as it changes. This practice is applied in various appli-
cations and involves specific algorithms designed for syncing files. In computer science, data
synchronization refers to the maintenance of data integrity and the coherence of multiple
copies of a dataset with each other [24].

When devices are offline, they record changes in their local database. Upon reconnect-
ing, they send these changes to the server, synchronizing them to the database [24].

2.1 Distributed Systems

Mobile applications that share data across multiple devices and server databases are exam-
ples of distributed systems [66, 57]. There are several definitions for distributed systems.
One such definition states: “A distributed system is a collection of autonomous computing
elements that presents itself to users as a single, coherent system [57].”

A distributed system consists of independent computing elements, called nodes, which
can be hardware devices or software processes. Users perceive these nodes as a single
system, requiring collaboration among them. Establishing this collaboration is essential for
developing distributed systems. There are no assumptions about the types of nodes, which
can range from mainframe computers to small sensor devices [57].

Nodes operate independently while working towards common goals by exchanging mes-
sages. Each node has its perception of time, as there is no global clock, which creates
challenges for synchronization and coordination in distributed systems. However, it is not

'https://todoist.com/
’https://www.pcmag.com/reviews/

https://todoist.com/
https://www.pcmag.com/reviews/

always necessary to work with real-time. What is usually only needed is the ordering
of events. This is why vector clocks or hyper logical clock (HLC [43]) are used [57].

A significant aspect of distributed systems involves laptops and mobile devices with
power and connectivity limitations. Companies that manufacture these devices are working
on ways to extend their operational time without requiring large batteries, which can impede
usability. Power efficiency can be achieved through effective software as well as efficient
hardware [67, 33].

To conserve energy, the device may temporarily terminate certain processes or disable
the network . Managing group membership within a distributed system is a complex task.
In traditional distributed systems, a loss of connection is typically viewed as a failure.
However, the necessity to conserve energy introduces additional challenges, as we need to
distinguish between planned, controlled disconnections and those that are forced. Further-
more, each communication session incurs a high start-up cost [66].

2.2 Eventual Consistency

Distributed systems are limited by the so-called CAP theorem, which states that it is
impossible to guarantee consistency, availability, and partial tolerance at the same time. It
is possible only to have two at the same time [48]:

o Consistency (C) — “All nodes share the same states, that is, they all have the same
data. In an informal manner, a system is consistent if a write is successful, all the
components of the system can read the new value.”

o Availability (A) — “The system remains operative to take care of every client request,
managing it and answering it. Furthermore, it also means that the system is still
awake even if a node fails (or crashes).”

o Partial Tolerance (P) — “The system keeps attending client requests even though it
has been divided into at least two different parts, also called partitions, that cannot
communicate with each other.”

In the case of time-management applications, we require high availability. This means
that we want users to be able to create tasks and perform other actions even while offline.
As a result, we need to sacrifice some consistency. This approach is known as the “opti-
mistic style”, which allows operations to be executed on the partition that holds the data
without limiting availability. However, this method may lead to global inconsistencies [22].
This approach is known as eventual consistency, in which changes made to one copy will
eventually propagate to all copies. If the update activity ceases, all copies will converge to
the same state after a certain period of time [35, 61].

Eventual consistency requires receiving the events in the same order on all nodes. This is
hard to guarantee. This is why special structures called Conflict-free replicated data types
(CRDTs) emerged that guarantee Strong Eventual Consistency. An object is considered
Strongly Eventually Consistent if it is both Eventually Consistent and Strongly Convergent,
meaning that correct replicas that have received the same updates will have equivalent
states [56].

Another approach is Operation Transformation (OT), which is used in applications like
Google Docs. However, OT is seen as outdated because many of its algorithms have been
found to have errors, and the ones that work need a centralized server. This dependency is

a major limitation, leading the community to focus on Conflict-free Replicated Data Types
(CRDTs) instead. As a result, there are many libraries available for CRDTs. Therefore,
this thesis will focus solely on CRDTs [41].

2.3 Conflict-free replicated data types (CRDTs)

In the eventual consistency model, replicas of data are allowed to diverge temporarily but
are expected to converge to the same value if no further changes occur. One way to achieve
eventual consistency is through the use of Conflict-free Replicated Data Types (CRDTs)
[56]. CRDTs can be classified into two categories: state-based and operation-based [47].

2.3.1 State-based CRDTs
The State-based Convergent Replicated Data Type (CvRDT) provides reliable convergence

in distributed systems by ensuring that all replicas ultimately agree on a single unified
state, regardless of the order or timing of updates. This is accomplished through the use of
a structure known as a join-semilattice [56].

Join-Semilattice

A join-semilattice is a mathematical structure that guarantees the existence of a way to
combine every pair of states into a single state using a Least Upper Bound (LUB)
operation. This LUB operation has several key properties [56]:

e Commutativity: t Uy =y Uz,
e Idempotence: z Ux = z,

o Associativity: (zUy)Uz=2U(yU z).

Monotonic Semilattice

A Monotonic Semilattice is an extension of Join-Semilattice that includes additional prop-
erties [56].

1. Merging: The merge operation combines two states s and s’ by computing their
LUB: s-m(s') =sUJs.

2. Monotonic Updates: States grow monotonically over time, meaning that updates
only add information and do not remove or modify it: s < s-u.

Example: Distributed To-Do List

To illustrate the concept of a CvRDT, consider a distributed to-do list shared across multiple
devices. Each device maintains its own copy of the list, and the goal is to ensure all devices
converge to the same state after synchronizing.

State Representation FEach device’s to-do list is represented as a set of tasks. For
example, one device may have the state S; = {Task A, Task B}, while another has Sy =
{Task B, Task C}.

Merge Operation When two devices synchronize, their states are merged using the union
operation, which is the LUB for sets:

S1U Sy = {Task A, Task B, Task C}.

The union operation satisfies:
e« Commutativity: The order of merging does not matter.
e Idempotence: Merging the same state twice has no effect.

e Associativity: Merging multiple states in different orders gives the same result.

Monotonic Updates The updates to the to-do list are monotonic, which means that
while new tasks can be added, existing tasks are neither removed nor changed.

Convergence Using the merge operation ensures that all replicas eventually converge to
the same state. If one device adds Task D while another adds Task E, their states will
merge into:

S = {Task A, Task B, Task C, Task D, Task E}.

2.3.2 Operation-Based Commutative Replicated Data Type (CmRDT)

An Operation-based Replicated Data Type (CmRDT) describes distributed objects where
updates are explicitly sent and applied at all replicas. Unlike state-based CRDTs, CmRDTs
split an update into two parts [56]:

1. Prepare-update (t): A side-effect-free operation performed locally at the source
replica.

2. Effect-update (u): The actual operation broadcasted to all replicas and applied
downstream.

Causality

In the following definitions, the definition of causality will be used. Causality determines
the sequence of events, with a cause always preceding its effect. In distributed systems, this
principle is evident as a chain of actions: one node reads data and writes a new value, which
another node later uses for its operation. These interconnected actions establish the causal
order, defining which events occurred before others [40].

Principle

o At the source replica, when an operation is invoked, the prepare-update (t) is
executed to determine the effect-update (u). For example, when a replica performs
an increment operation on a counter, (t) determines how the counter’s state changes,
while (u) defines the specific change, such as incrementing the counter by 1.

o At downstream replicas the effect update (u) is communicated to all replicas using
a reliable communication protocol, such as causal broadcast. Each replica applies (u)
in the same order to ensure consistency.

Causal History

The causal history tracks the sequence of operations at each replica to ensure causality
between updates. It ensures that prepare-updates (t) and effect-updates (u) are causally
ordered, such that u only applies if all prior updates in the causal chain have been delivered.

Commutativity

A CmRDT requires that all concurrent operations satisfy commutativity. That is:

o For any two updates (¢,u) and (¢, u’), applying them in any order results in the same
state. This ensures that replicas converge even when operations are delivered in
different orders.

o If operations are not commutative, they need to be causally ordered.

Example: CmRDT Counter

Consider a distributed counter replicated across devices. Let t be the prepare-update that
increments the counter locally, and u = incrementByOne be the effect-update broadcasted
to all replicas. When a user increments the counter:

1. At the source replica:

e t updates the local counter.

e u = incremenetByOne is generated and sent to other replicas.
2. At downstream replicas:
e u is applied, ensuring the counter increases by 1.

Because incrementByOne can be applied in any order, all replicas converge to the same
counter value.

2.3.3 CRDT Set Types With Examples

Concrete examples of CRDT types can be implemented using either state-based or operation-
based approaches [56]:

e G-Set (Grow-Only Set),

o 2P-Set (Two-Phase Set),

o LWW-Set (Last Writer Wins Set),
o PN-Set (Positive-Negative Set),

o OR-Set (Observed-Remove Set).

10

1. G-Set (Grow-Only Set)

A G-Set allows only additions of elements. Once an element is added, it cannot be
removed [56, 47].

Example:
o At Replicay: add(a), add(b)
o At Replicay: add(c)
The states at the replicas are:
State of Replica; = {a,b},

State of Replicas = {c}.

When merged:
Merged State = {a, b, c}.

2. 2P-Set (Two-Phase Set)

A 2P-Set allows elements to be added and removed, but once removed, an element can
never be added again. It uses two sets [56, 47]:

o A: Tracks added elements.

e R: Tracks removed elements.

Example:
o At Replicay: add(a), remove(a)
o At Replicay: add(a), add(b)
The states at the replicas are:
State of Replica; : Ay = {a}, R1 = {a},

State of Replicag : Ay = {a,b}, Ry = ().
When merged:
Amerged = {aa b}’ Rmerged = {a}
The resulting set is:
Ame'rged \ Rmerged = {b}
3. LWW-Set (Last Writer Wins Set)

In the Last Writer Wins Set, each element has a timestamp and a visibility flag.
The most recent update (based on timestamp t) determines the element’s state [56, 47].

Example:

o At Replicay: add(a,ty), where t; =1

11

o At Replicay: remove(a,ty), where ty = 2
The states at the replicas are:
State of Replica; : {(a,t1,true)},

State of Replicas : {(a,t2, false)}.

When merged:
{(a, to, false)}.
The final state removes a, since to > t1.

4. PN-Set (Positive-Negative Set)

A PN-Set uses counters to track adding (P) and removing (N). An element is in the set
if P> N [56, 47].

Example:
o At Ry: add(a), remove(a)
o At Ro: add(a), add(a), add(b)
The counters at the replicas are:
State of Replica; : Py = {a: 1}, Ny ={a: 1},
State of Replicas : P, ={a:2,b:1}, No = 0.
When merged:
Prierged = {a :2,b: 1}, Nypergea = {a : 1}.
The resulting set is:
{a, b}, where P > N.

5. OR-Set (Observed-Remove Set)

An OR-Set uses unique tags to track adding and removing for each element. An element
is in the set if it has tags that have not been removed [56, 47].

o T: Set of tags added.

e R: Set of tags removed.

Example:
o At Replicay: add(a,t1), add(b,t2), remove(a,t1)
o At Replicay: add(a,ts), add(c,ty)
The states at the replicas are:
State of Replicay : Th = {a: {t1},b: {ta}}, R1 ={a: {t:1}},
State of Replicay : To = {a : {t3},c: {ta}}, R2 = 0.
When merged:
Tmerged = {a: {t1,t3},b: {ta}, c: {ta}}, Rmergea = {a: {t1}}.

The resulting set is:
{a,b,c}, where TN R = 0.

12

2.3.4 Simple CRDT implementation above SQL DB

The G-Set and LWW-Map structures, which are minor modifications of the LWW-Set 2.3.3,
can be utilized to synchronize data across different devices. Consequently, the table will
function as a G-Set of LWW-Maps. To manage deletions, it is essential to introduce a specific
attribute, such as tombstone, to indicate that an element has been deleted. Each update
will result in multiple entries in the table (Table 2.1); for instance, changing a name and type
will generate two separate records in the table [44]. Based on these concepts, several libraries
have been developed, including Evolu® and crdt®. Since this was considered an elegant idea,
it was included in the thesis. However, the next part will focus on Automerge’, which is
unrelated to this concept.

id | timestamp | dataset row__id column value
1 accounts | €29d69a6-148e-... name S:Checking
2 accounts | €29d69a6-148e-... type S:checking
3 accounts | €29d69a6-148e-... | offbudget N:0
4 accounts | €29d69a6-148e-... closed N:0
5 payees 503189fc-efcl-... name S:
6 payees 503189fc-efcl-... | transfer a | S:¢29d69a6

Table 2.1: Hlustration of a simple CRDT table used in a SQL database for a money tracking
application. The dataset indicates which table the update refers to. The combination of
row_id, column, and value specifies the exact cell that was modified and its new value.
The timestamp shows when the update occurred, which is crucial for accurately merging
different updates.

2.3.5 Automerge

Automerge is a library that implements complex CRDT types. Some of its authors proved
eventual consistency for some CRDTs [28]. This library shows basic principles of how com-
plex data can be shared. For example, for the action in Listing 2.1, Automerge will generate
these logs in Listing 2.2 that will be synchronized to achieve the CRDT attributes [41].

state = Automerge.change(state, "Add todo item",
(doc) => {
doc.todos.push({
title: "Buy milk",
done: false
b
)

Listing 2.1: Example of adding a todo item in Automerge.

*https://github.com/evoluhq/evolu
‘https://pub.dev/packages/crdt
Shttps://github.com/automerge/automerge
Shttps://github.com/automerge/automerge

13

https://github.com/evoluhq/evolu
https://pub.dev/packages/crdt
https://github.com/automerge/automerge
https://github.com/automerge/automerge

{action: "makeMap", obj: idi}

{action: "set", obj: idl, key: "title", value: "Buy milk"}
{action: "set", obj: idl, key: "done", value: false}
{action: "ins", obj: todosID, key: prevID, elem: 15}
{action: "link", obj: todosID, key: elemlb5, value: id1}

Listing 2.2: Change log for adding a todo item that is then synced across clients to achieve
eventual consistency.

2.3.6 CRDT’s In Text Editing

A good example of text editing is Google Docs. In Google Docs, users edit the same
document in real time and even offline. When user changes are merged, we want to keep
both user changes (Figure 2.1). The important thing is that this insertion does not depend
on the actual position index but rather on the relative position to other elements. It can
also handle inserting at the same position from multiple clients. It then uses its indexes to
merge it automatically to be the same on all clients [41]. The correctness of this algorithm
was formally proved for Automerge [28].

Another popular library is Yjs” which is used for apps such as: Evernote®, AppFlowy”,
GitBook'’, Amazon SageMaker''. Yijs is also used as one of the storage formats for the very
popular text editor library TipTap'?, which can be combined with PowerSync'® to have a
collaborative editor on the web [53].

() ,Hello JHello World!« Hello World! :-)

O Hello! Hello! :-)¢ Hello World! :-)

\
7
time

Figure 2.1: Diagram showing that after clients exchange text-editing changes, it should end
up in the same state.

2.4 Existing Time-Management Applications

The production apps keep their synchronization implementation details private. So the
best real-world inspirations are open-source time-management apps such as AnyType'? or

"https://github.com/yjs/yjs

8https://evernote.com/

Shttps://github.com/AppFlowy-I0/AppFlowy
YOhttps://www.gitbook.com/
Uhttps://aws.amazon.com/sagemaker/
2https://github.com/ueberdosis/tiptap
Bhttps://www.powersync.com/
Yhttps://anytype.io/

14

https://github.com/yjs/yjs
https://evernote.com/
https://github.com/AppFlowy-IO/AppFlowy
https://www.gitbook.com/
https://aws.amazon.com/sagemaker/
https://github.com/ueberdosis/tiptap
https://www.powersync.com/
https://anytype.io/

AppFlowy'®. They allow you to share complex data across multiple users. Complex data
is meant by the content of text editors, where it is crucial to combine inputs from multiple
users in a predictive way. Good examples are conflict-free replicated data types (CRDTs)
mentioned in Section 2.2, designed to help solve these problems.

2.4.1 AnyType — Existing Time-Management Application

AnyType uses its own synchronization mechanism called any-sync [5]. This system is
designed to work by default without needing an external server, allowing for peer-to-peer
communication over a local network. It also employs Conflict-free Replicated Data Types
(CRDTs) to ensure that data is synchronized consistently. However, any-sync is only
utilized in their open-source project'®. AnyType’s primary goal is to offer software that
operates with “no one in between.” In practice, though, for data to be synchronized across
multiple devices that are not open at the same time, a synchronization server is still required.
In AnyType’s case, this can be a server provided by AnyType or a self-hosted server'”.

Media files are not automatically downloaded during synchronization to conserve band-
width. Instead, they are streamed from a backup node or other devices on the network
when requested. For example, images download immediately upon being opened, while
videos or audio files start downloading as they are played. Additionally, AnyType features
a deduplication process that helps minimize storage usage [6]. For instance, if the same
image is uploaded multiple times, only one copy is stored, which saves space.

2.4.2 AppFlowy — Existing Time-Management Application

AppFlowy is an excellent case study for exploration because it is developed using Flutter and
Rust for the front end, which aligns with the TimeNoder2 implementation. Its development
began in 2021, a time when Flutter was relatively new, making the combination of Flutter
and Rust a safer and more modular approach to building the app. This way, even if Flutter
were to become outdated, a significant amount of the code could still be reused [10].

AppFlowy follows domain-driven design (DDD) architecture for app development, which
includes four layers: presentation, application, domain, and infrastructure, as shown in Fig-
ure 2.2 [37]. In AppFlowy, the infrastructure layer is built with Rust, while the other layers
use Flutter [10]. The use of Rust for the infrastructure layer allowed AppFlowy to later
incorporate a front-end Tauri'® implementation to enhance the desktop user experience'”.
For back-end synchronization, users can utilize AppFlowy Cloud®’, or they have the option
to self-host it using Supabase?’.

In the front-end Rust component, AppFlowy utilizes Diesel*® Rust DB to manage user
data [9]. The Rust side of AppFlowy communicates with Flutter through the FFI* package
designed for Flutter. This communication is achieved using interfaces defined in Flutter
and implemented in Rust, as illustrated in Figure 2.3.

122

https://github.com/AppFlowy-I0/AppFlowy
https://github.com/anyproto/any-sync/network/dependents
"https://tech.anytype.io/how-to/self-hosting
Bhttps://github.com/tauri-apps/tauri
Yhttps://github.com/AppFlowy-I0/AppFlowy/discussions/1746
Onttps://github.com/AppFlowy-I0/AppFlowy-Cloud
2https://supabase.com/
nttps://github.com/diesel-rs/diesel
Zhttps://dart.dev/interop/c-interop

15

https://github.com/AppFlowy-IO/AppFlowy
https://github.com/anyproto/any-sync/network/dependents
https://tech.anytype.io/how-to/self-hosting
https://github.com/tauri-apps/tauri
https://github.com/AppFlowy-IO/AppFlowy/discussions/1746
https://github.com/AppFlowy-IO/AppFlowy-Cloud
https://supabase.com/
https://github.com/diesel-rs/diesel
https://dart.dev/interop/c-interop

Presentation

Ul component Application Flutter

Domain

pata component [l insucure NS

Figure 2.2: AppFlowy Domain-driven design (DDD) architecture diagram.

To clarify this concept, consider the following example. When a user makes changes to
a document, such as adding new text, the text editor creates a transaction in Flutter. This
transaction captures the details of the changes made to the document. The application
then invokes a function in Flutter’s interface, which may be termed as applyChangesOnDoc-
ument(documentld, transaction). This function subsequently calls a corresponding function
on the Rust side, which applies the changes to the local Diesel’* database. The data is en-
coded using yrs?’, a library for Conflict-free Replicated Data Types (CRDTs), enabling it
to be shared among multiple devices [7].

Interface - Dart Implementation - Rust

iOS/Android

Event
Web STy dartffi <o :

Desktop [- |

void helloWorld() >func hello_world()

Figure 2.3: Diagram showing how AppFlowy handles communication between Rust and
Flutter.

When a user chooses to sync AppFlowy with a self-hosted Supabase, the application
utilizes Supabase’s real-time functionality through Flutter to listen for changes in the back-
end [8]. When updates occur in the database, the system notifies the Rust front-end to

nttps://diesel.rs/
Zhttps://github.com/y-crdt/y-crdt

16

https://diesel.rs/
https://github.com/y-crdt/y-crdt

prompt an update. The Rust component then uses the supabase-rs?® library to commu-
nicate with Supabase and retrieve the latest changes”’.

2.5 Existing Synchronization Libraries

Synchronization has been a long-standing issue, leading to the development of various
solutions. Some solutions are tailored specifically for Flutter and can be integrated directly,
while others are geared towards web applications and can serve as creative inspirations.
The solutions discussed here do not utilize CRDT (Conflict-free Replicated Data Types)
principles; instead, they focus on tracking changes. Most of these solutions rely on SQL
databases for storage and address conflicts at the level of table rows [64, 54]. This method
differs from CRDTs, which enable conflict resolution at the individual value level [56].

Nevertheless, it is feasible to integrate CRDTs into these systems. For example, CRDT
types can be converted into a binary format and stored as an attribute in a table. This
binary data can be transformed back into CRDT format on the client side. By merging
these methods, it becomes possible to develop a collaborative text editor [53]. This same
approach is also utilized in AppFlowy, as previously mentioned [7].

2.5.1 PowerSync

PowerSync?® has recently become a popular choice for synchronization solutions. Although
it is a paid service, a self-hosted version is also available with some limitations. Power-
Sync provides software development kits (SDKs) for several platforms, including Flutter,
React Native, Web, Kotlin, and Swift’?. To set up PowerSync, a PostgreSQL database,
a PowerSync server, and a local device that connects to the server are required. Data from
PostgreSQL is synced to the user’s device based on defined sync rules®’. PowerSync is
capable of synchronizing data for individual users (Listing 1) as well as for teams (List-
ing 2). Additionally, it supports the creation of a client-side schema that is customized for
a specific SDK according to these sync rules (Listing 3).

bucket:
user_data:
(request.user_id() comes from the JWT token)
parameters: SELECT request.user_id() AS user_id
data:
- SELECT * FROM lists WHERE owner_id = bucket.user_id

Listing 1: By adding a user_id attribute to each record that uniquely identifies a user,
similar synchronization rules can be applied, as shown in the example, to ensure that user
data is consistent across devices.

2nttps://github.com/supabase-community/postgrest-rs
™https://github.com/supabase-community/postgrest-rs/network/dependents?dependents_after=
MzE4NTE2Mjk30TI
Zhttps:
ps://www.powersync.com/
https://docs.powersync.com/intro/powersync-overview
30https://docs.powersync.com/usage/sync-rules

17

https://github.com/supabase-community/postgrest-rs
https://github.com/supabase-community/postgrest-rs/network/dependents?dependents_after=MzE4NTE2Mjk3OTI
https://github.com/supabase-community/postgrest-rs/network/dependents?dependents_after=MzE4NTE2Mjk3OTI
https://www.powersync.com/
https://docs.powersync.com/intro/powersync-overview
https://docs.powersync.com/usage/sync-rules

bucket:
team_data:

request.user_id() comes from the JWT token

parameters:
SELECT account_id FROM basejump.account_user
WHERE user_id = request.user_id()

data:
- SELECT * FROM project

WHERE account_id = bucket.account_id

Listing 2: Rules for synchronizing user and team interactions with the Supabase backend,
based on the Basejump Supabase template’'.

const schema = Schema([
Table('todos', [
Column.text('list_id'),
Column.text('created _at'),
Column.text('description'),
Column.integer('completed')
D
DK

Listing 3: Example of a Flutter client-side schema generated by PowerSync for a todo
application.

2.5.2 WatermelonDB

WatermelonDB?? is a local database designed for React Native, which means it cannot be
used directly with Flutter. However, it serves as a useful example for implementing syn-
chronization between the backend and frontend. WatermelonDB has established a protocol
for synchronizing the local database with a server that follows this protocol [62]. This syn-
chronization process requires the server to implement two functions: push and pull. Each
synchronization step involves the client first calling pull to retrieve data from the server,
followed by calling push to send updated data back to the server as seen in the Figure 2.4.

e The pull function sends a last_pulled_at timestamp to the server, which then re-
sponds with the changes that have occurred since that last_pulled_at time.

e The push function sends also a last_pulled_at time, but this time referring to
the start of the synchronization. It is sent along with changes from the local database
that are newer than the server’s. The server checks for any changes that happened
since that last_pulled_at time. If there are any changes detected between the push
and pull, the push will be stopped, and an error will be sent back to the client. This
error notifies the synchronization application to attempt the synchronization process
again. If no differences are found between the push and pull actions, the changes will
be successfully added to the database.

32https://github.com/Nozbe/WatermelonDB

18

https://github.com/Nozbe/WatermelonDB

2. Return changes after lastPulledAtTime changes: {
[table_name]: { created [], updated [], deleted [] }

}

5. Apply received changes to the server DB

—>

Server
1. Pull remote changes after lastPulledAt time

T 3. Apply remote changes where changes are newer
4. Push local changes -> changes: {
[table_name]: { created [], updated [], deleted [] }

SQL DB

Figure 2.4: Watermelon DB synchronization diagram showing the protocol timeline.

There is a good example of how to implement this using Supabase, a popular Backend-
as-a-Service (BaaS) platform. BaaS provides essential features such as authentication,
database management, and file storage, allowing developers to use it in place of traditional
backend servers [23]. This example includes two Supabase database functions, push and
pull, which operate within a transaction. These functions can interact directly with specified
tables and their attributes [49], or they can be designed to be generic [20]. The benefit of
the generic approach is that adding a new table to the database does not require changes
to the push and pull code on the backend.

The implementation necessitates the storage of additional attributes [49]. The attributes
updated_at and created_at are utilized by WatermelonDB to identify what needs to be
sent to the backend for synchronization. In addition to these attributes, WatermelonDB
tracks deleted items using the somePost.markAsDeleted() function [63], which determines
which ids of deleted items will be included in changes. On the server side, attributes
such as deleted_at, server_created_at, and last_modified_at are employed to identify
what should be sent back to the client via the pull function and what updates should be
made to the backend database within the push function. The specific attributes used
for synchronization on the server may vary according to the chosen implementation of
the database functions, although they will generally resemble those previously mentioned.

19

Chapter 3

Smartwatch Operating Systems

While the Apple Watch maintains its lead, HarmonyOS and WearOS are witnessing growth.
In China, HarmonyOS’s share in the smartwatch market (Figure 3.1) is projected to hit
61%, driven by the widespread use of Huawei’s 5G smartphones. The global smartwatch
market is also on the rise, with a surge in basic models that run proprietary operating
systems, featuring fundamental functions and applications. It is important to differentiate
smartwatches with high-level operating systems (HLOS), primarily produced by Apple and
Samsung. The market is anticipated to grow by 14% in 2024, largely due to the expansion
of WearOS and HarmonyOS devices. Furthermore, companies like OnePlus, OPPO, and
Xiaomi are increasingly focusing on launching WearOS watches outside China at appealing
premium price points (Figure 3.2) [21].

In China
2023 2024

B HarmonyOS

" O Others

B HarmonyOS
O watchOS

1 O watchOS
O Others
Figure 3.1: Smartwatch shipment share in China for 2023 and 2024 [21].
Outside China
B watchOS B watchOS
B WearOS 8 WearOS
' [Others O Others

2023 2024

Figure 3.2: Smartwatch shipment share outside China for 2023 and 2024 [21].

Smartwatches are used mainly in fitness and health tracking. The Apple Watch is
a promising wearable device for health monitoring, particularly in mental health. It effec-

20

tively tracks physiological parameters and wellness. Research indicates that metrics such
as heart rate variability (HRV) correlate with changes in emotional and physical states.
By integrating data from various sensors on activity and sleep, along with user inputs,
the device helps to monitor and potentially diagnose mental health disorders [45].

This is supported by another study that created its own prediction models based on Ap-
ple Watch ECG sensor data [58]. But is important to say that the studies in this area are
also done on other devices (Android based, custom build, etc.) [39]. However, for more
complex Al models, selecting the appropriate architecture is crucial, as executing these pre-
dictions on smartwatches may result in high memory usage, while cloud-based computations
could be hindered by internet connectivity issues [65].

A significant case [31] highlighting the role of Apple Watches involved a 56-year-old
individual. Although asymptomatic at first, he detected an unusually elevated heart rate via
his Apple Watch, corresponding to palpitations. Four days afterward, an electrocardiogram
(ECG) validated a diagnosis of Atrial Flutter. He subsequently received anticoagulation
therapy and underwent electrical cardioversion.

A substantial study with 419,297 participants evaluated the Apple Watch’s effectiveness
in detecting atrial fibrillation (AF) over eight months. Results showed that 0.5% of par-
ticipants had an AF episode over 30 seconds, with the incidence rising to 3.2% in those 65
years and older. Additionally, compared to ECG patch assessments, the watch exhibited
a positive predictive value of 0.84, highlighting its potential benefits in medical practice [51].
Certain limitations must nonetheless be acknowledged. Firstly, the potential overdiagnosis
of AF poses a concern, as it may lead to undue anxiety [31].

For middle-aged and older patients, the use of activity monitors increased the effective-
ness of weight loss programs [18]. For older adults, falls are a leading cause of injuries,
so recognizing these events is vital. Smartwatches have the capability to aid in identify-
ing such occurrences [59]. The Apple Watch 6 struggles with accurate oxygen saturation
readings compared to medical pulse oximeters, with many failures, especially in children
due to movement [50]. The accuracy of step count and heart rate measurements was evalu-
ated, and the results were found to be approximately correct, even for watches from around
2017 [12]. Another study supports the good accuracy of the step count measurement [17].

Smartwatches can also be used in education. In a study that combined English lessons
with exercise, students performed better on tasks and developed positive feelings toward
both the class and the devices [55]. Another study explores using smartwatches to help pri-
mary school students reflect on their science learning. Using smartwatches, students could
think about what they learned in real-world situations. This method helped improve their
confidence in performing science tasks, making them feel more capable and motivated [27].

Construction projects expose workers to hazardous environments, making the construc-
tion sector one of the highest-risk industries in the USA. It accounts for 21.4% of fatalities
across all industries. Additionally, the construction sector has the second-highest number
of work-related severe injuries, accounting for 19% of hospitalizations and 10% of ampu-
tations. Smartwatches can assist in improving safety by monitoring physiological data for
emotional and stress assessment [2]. This is supported by another study [1].

Wearable technology for health monitoring raises ethical issues, particularly regard-
ing privacy. The data, useful for medical purposes, can also be exploited for marketing.
Data brokers make money by selling personal health information collected from apps and
wearables, which track real-time locations, activities, and behaviors. Many health apps
or devices, especially free or low-cost ones, use a business model that relies on selling user
data [26].

21

3.1 Smartwatch UI and Usability

Understanding the user’s needs is crucial to ensure that an app works effectively. The strat-
egy may vary significantly depending on the platform, making it essential to become familiar
with the best UI/UX practices for each platform [42]. This section will explore expert advice
on UI/UX when designing smartwatch applications.

Smartwatches are often used alongside other devices, so they need to function well
together. This raises a significant question: Which device is best for specific tasks, and
how can they enhance each other’s performance? Using smartwatches differs from using
other devices. For example, scheduling applications such as Google Calendar on desktops
provide extensive control and information, making them suitable for complex tasks. This is
generally true for desktop applications [34]. Research [32] indicates that while people spend
less time on desktops, they engage in longer sessions compared to mobile apps, which tend
to be used more frequently but for shorter tasks. A similar relationship can be observed
between mobile apps and smartwatches, as illustrated in Figure 3.3 [19, 15, 15].

_ Sonrch horo

e T SHETFTET
B Tokeout 6% Delivery W) Ges ¥ Grod

Ligh Lino). Q work

Rubin Mugoum of Art

Y Myess of Keswicl

3 i § F Do)
z Dumuno 0 & i O S
8 : .
The Spotied Pig 2 I I | I

21st street

Explore Chelsea >

“Spanisk
\rostaefents

Figure 3.3: Illustration of utilizing Google Maps on both a smartphone and a smart-
watch [16].

Smartwatch interactions usually take about 5 seconds [14] compared to 3 minutes and 52
seconds on the phone [60]. But people check their watches over 150 times a day [4]. Because
of this, smartwatch apps should focus on being quick and easy to use, such as showing what
is coming up next on a calendar. Google recommends a three-layer pyramid design for
smartwatch use: wear as the base, glance in the middle, and interact on top [15].

Since watches are mostly worn, it is important to add value through features that don’t
need interaction, like tracking your heart rate. The glance layer is great for quickly helping

22

users. People look at their watches briefly to track fitness or see notifications, so this
layer should show important information at the right time, allowing users to quickly decide
whether to act or wait, while keeping distractions to a minimum. The interaction layer is
for less frequent and longer use. When people use this layer, it should be easy to reach
their goals with a few taps, swipes, or button presses [15].

3.1.1 WearOS

WearOS has different ways to improve how users interact, such as using apps, tiles, no-
tifications, and complications. The watch face is central to the experience and can be
personalized to match the user’s style. It can include complications for quick data access,
such as steps walked or heart rate, as shown in Figure 3.4. Tiles are interactive options
users can reach by swiping to the sides from the watch face. They provide easy access
to important information and actions as illustrated in Figure 3.5. Users can choose and
arrange the tiles they want in a carousel. Notifications give quick alerts, helping users get
important information quickly. They should be short and well organized for easy reading,
as shown in Figure 3.6 [15].

Wed, Feb 3
Partly Cloudy, 72°

Figure 3.4: Examples of complications show in various watch faces, such as walked a number
of steps, heart rate, actual date, or current temperature [4].

6:30 - 7:30 PM

Morning pilates with
Christina Lloyd at the
Yoga Studio on 8th St...

216 Market Street
Clean all

Figure 3.5: Tile examples concentrate on the primary, straightforward tasks that users wish
to accomplish [4].

party next
weekend at Dave's...
. Security 12m
Motion in driveway \

A 12m
® p 12m | Jessica Gonzalez
Missed call

Jessica Gonzalez X
Mobile

Missed call

R4 Call back

Figure 3.6: Tile examples helping users get important information quickly [4].

23

Apps allow users to do more complicated tasks that require additional actions, such as
tapping and scrolling as depicted in Figure 3.7. Users can access these apps directly from
the watch face, tiles, notifications, or the app launcher. Some apps, like those used for
tracking workouts, need to run all the time, which is called ongoing activities. WearOS
makes these activities easy to reach by offering entry points on the main interfaces such as
the watch face, tiles, and launcher. In addition, the content, such as weather information in
WearOS is flexible and can appear in different places, such as complications, tiles, or apps,
as shown in Figure 3.8 [15].

eli] 9:30

Entity Page Download to watch Entity Page

This download used 6%
\i, of your walch’s slorage X

N Song Name @ Song Name
Artist Meme Ba% of 4.1 1B

Manchester

» 10° 7

Cloudy

(a) Complication (b) Tile (c) App

Figure 3.8: Example of how an application can scale across surfaces [15].

When creating apps for WearOS, it is important to focus on just a couple of important
things users need, not the whole app. Design for the wrist so tasks are fast and easy
and do not tire the user’s arm because a user is expected to be ‘somewhat strongly’ tired
after only 3 minutes of use of the smartwatch in a standing pose, and 4 minutes of use
when sitting [38]. Ensure the interface is simple and works well with different watch faces
and complications. Let the smartwatch be easily connected to phones and other devices,
deciding which tasks are best for each. Also, add offline features so users can still do things
without always needing a phone connection [15].

3.1.2 Apple Watch

When developing for the Apple Watch, the process is somewhat similar to that of WearOS,
but there are some key differences. Apple emphasizes a more cohesive design system that
is focused on consistency in its applications. To help developers create great apps, Apple
provides ready-made templates that they can easily use, as illustrated in Figure 3.9 [11].

24

Developing for the Apple Watch involves thoroughly understanding these design prin-
ciples and the tools available. However, a detailed exploration of these principles and tools
will not be included in this thesis, as the goal of this thesis is to target WearOS.

Molly Wiebe, Aar... 5
Team Dinner

Alan Dye, Chris ~,

\ watch0s 10
i ‘

Figure 3.9: Apple Watch foundational layouts [11].

3.1.3 Examples of Applications in the Context of TimeNoder2

Based on research and earlier studies, this work examines the smartwatch applications of
Todoist and Focus Todo [69].

Focus Todo

Focus Todo is an app that combines a to-do list with the Pomodoro technique [69]. They
can track or complete tasks and check the time they have tracked for the day. The smart-
watch must stay connected to the phone for the app to work properly. For example, if
the smartwatch disconnects from the phone, all changes made on the smartwatch will not
be saved. A similar problem can be found in the TickTick smartwatch app. The Focus
Todo smartwatch app also does not allow users to add tasks.

Please select

project ccccee @

Today

24:49

£ Tomorrow

This Week
(a) Today’s tasks: the user can (b) View for selecting a (¢) Pomodoro tracking of
track or complete them. time-based or classic project. work-time.

25

Focus Time Today

Stop This Pomodoro?

0.5.

CANCEL

(a) Pomodoro tracking of (b) Dialog to confirm (c¢) Pomodoro tracking
work-time in ambient mode. cancellation of tracking. statistics for the current day.

(a) Pomodoro tracking of (b) Tile for entering pomodoro
break-time. tracking.

Todoist

Todoist aims to provide an effective to-do list solution. The smartwatch app allows users
to view their tasks, mark them as complete, adjust task deadlines, and add sub-tasks.
A significant advantage of this application is that users do not need to be connected to
their phones for it to function correctly.

14:19

Add task

+ Add task 2 Task name

2 Description

(a) The home screen shows (b) Creating a task dialog with (c) Task details part 1:
time-based and classic projects. options to select name, etc. complete task or change date.

26

Today

Sub-tasks (0/1) Day progress

o

+ Add sub-task

(a) Task details part 2: add (b) Tile showing the number of
subtask, complete subtask. completed tasks today.

3.2 Communication Between a Phone and a Smartwatch

Smartwatches primarily use Bluetooth to communicate with smartphones. This connection
enables them to transfer data efficiently, relying on the phone for internet access. When
a smartwatch is not connected to a phone, it can use direct Wi-Fi access to connect to the
internet. However, switching between Bluetooth and direct WiFi is key for smooth opera-
tion. There are challenges with Bluetooth, such as connection issues and delays that arise
from relying on a paired phone. This can negatively impact the user experience. Therefore,
choosing the right connection, Bluetooth or WiFi, is really important. A poor choice can
lead to performance problems, and switching between the two can disrupt activities [68].

Wearable devices, such as smartwatches and fitness trackers, also share sensitive health
information with smartphones via Bluetooth. Research indicates that even when these
data are encrypted, they can still be at risk from eavesdroppers. These individuals may be
able to identify which devices are being used and monitor user activities, such as noting
an insulin injection. This presents serious privacy issues. Common security measures,
like introducing delays or using fake data, have not been very effective and can slow down
performance. Thus, there is a clear need for better methods to protect sensitive information
and limit unnecessary data sharing in wearables, ensuring both user privacy and a smooth
experience [13].

Networking and sending information on WearOS smartwatches can quickly drain their
smaller batteries [36]. To help, avoid using the internet for non-essential tasks unless the
watch is charging. Instead, let your mobile device handle more intensive data tasks, such
as synchronization, when possible. In this way, the smartwatch can be updated when
connected to Wi-Fi and charging, helping to conserve battery life while still maintaining
functionality [3].

Sharing of Data Between WearOS Smartwatches and Phones

Operating systems provide native synchronization mechanisms to facilitate communica-
tion between smartwatches and smartphones. For Android devices, the Data Layer API
represents the primary and recommended method for data exchange between a WearOS ap-
plication and its companion Android application [30]. This API, integrated within Google
Play services, enables various communication patterns, such as message transmission and
asset transfer (including images and other files).

27

It is important to note that this communication paradigm has specific requirements.
First, communication is limited to Android phones; this mechanism does not support iOS
devices. Second, both the WearOS application and its companion phone application must
share identical bundle identifiers and signature keys to establish a secure connection [25].

After fulfilling these prerequisites and establishing a Bluetooth connection between
the smartphone and the WearOS device, the Data Layer API enables bi-directional com-
munication. For Flutter developers, the watch_connectivity plugin offers a convenient
wrapper around these native APIs, as demonstrated in Listing 4. This abstraction simpli-
fies the implementation of cross-device communications. It is also important to account for
the underlying constraint that individual messages cannot exceed 100KB in size [29].

// Send data from phone to watch or vice versa
watch.sendMessage({'data': 'Hello'});

// Listen for imcoming messages
watch.messageStream.listen((message) {...});

Listing 4: The watch_connectivity plugin provides methods for bidirectional commu-
nication between WearOS smartwatch applications and their companion Android phone
applications built using Flutter.

An alternative synchronization approach leverages the smartwatch’s direct internet
connectivity capabilities, either through Wi-Fi or cellular connections, or via Bluetooth-
tethered connectivity to the paired phone. This strategy allows WearOS applications de-
veloped in Flutter to implement identical synchronization mechanisms as those used in other
platforms of cross-platform applications. This approach offers significant advantages, par-
ticularly the ability for smartwatches to synchronize with cloud services independently,
without requiring a constant connection to their companion phones. For instance, in ap-
plications using synchronization frameworks like PowerSync (discussed in section 2.5), de-
velopers can reuse the same synchronization code across all platforms, including WearOS
smartwatches, resulting in more consistent behavior and simplified maintenance.

28

Chapter 4

Analysis of TimeNoder2
Architecture and Synchronization
Support

4.1 Overview of TimeNoder2

TimeNoder2 builds on the groundwork laid in the bachelor’s thesis, during which the prelim-
inary version, TimeNoderl, was created [69]. This chapter delves into the app’s progression,
existing functionalities, and avenues for improvement. The bachelor’s thesis introduced
TimeNoderl as a holistic time management solution, drawing on thorough theoretical in-
sights from time management theory. It combined multiple time management techniques
within one app. Feedback from both the thesis opponent and initial users revealed that,
although feature-rich, TimeNoderl compromised usability.

New users struggled with the interface due to layered nesting, complex hierarchy, and
multi-step processes for straightforward tasks, which led to a higher cognitive load. As
a result, the application was completely restructured. This revised application underwent
validation by the thesis opponent. Due to the limited user base at that stage, cross-platform
compatibility was not prioritized. The following highlights the key differences between
TimeNoderl and TimeNoder2.

Features Added in TimeNoder2:

o Enhanced UI/UX.

e Option to share app data copies across devices.

e New features including the Eisenhower Matrix, rewards, and habits.
o Android task widget.

o Broad customization options (sounds, themes).

o Ability to link multiple tasks and projects to events.

29

Features Removed in TimeNoder2:
e Synchronization across devices for individual users.

e Complex planning features, which previously complicated and slowed the app.

These modifications have driven TimeNoder2’s growing popularity, evidenced by the fol-
lowing metrics:

e Downloads: 9,590,
o User Ratings: 4.728 average, based on 261 reviews, 148 with comments,

e Community Articles: Widespread discussions on platforms like Reddit reflect
strong engagement:

— Apps of 2023: What are your best and worst discoveries of 2023%",

— TN2: TimeNoder2: Machtige, kostenlose Produktivitits-App fiir Android und
i0S?,
— TimeNoder2: une puissante application de productivité gratuite pour 10S et An-

droid®.
e Stores: Android?, iOS”,
« TimeNoder2 Discord Server: 284 members’,
« YouTube Tutorial’.

The redesign tackled TimeNoderl’s deep nesting by simplifying the data model and
flattening navigation, while retaining Material Design principles to ensure a consistent user
experience.

4.2 User Feedback and Requirements

The TimeNoder2 app has been reviewed 261 times on Google Play, and 148 reviews in-
clude comments. Although brief remarks like “Great app!” or “Top!” provide limited
insight, more elaborate responses have been collected for analysis. Users consistently praise
the app’s extensive features and intuitive design (UI/UX), which is mentioned in 32 reviews.
The application’s customizability is valued in 11 instances, while calendar integration and
developer responsiveness are noted 4 times each. Users also commend specific techniques —
such as timeboxing (10 mentions), Pomodoro (4 mentions), as well as the Eisenhower Matrix
(3 mentions) and reminders (3 mentions). Suggested improvements include localization
(13 mentions), cross-platform support or syncing (10 mentions), and enhanced widgets

"https://www.reddit.com/r/androidapps/comments/18ptmdb/apps_of_2023_what_are_your_best_and_worst/

2h‘ctps ://stadt-bremerhaven.de/tn2-timenoder2-maechtige-kostenlose-produktivitaets—-app-
fuer-android-und-ios/

3https://infoidevice.fr/timenoder2-application-productivite-ios-android/

‘https://play.google.com/store/apps/details?id=com.janzimola.goal_venture2&hl=en

Shttps://apps.apple.com/us/app/timenoder2-timeboxing-master/id6468406842

Shttps://discord.gg/e8b47EvCeq

"https://youtu.be/psB7zrakK1447si=KJbDBcOr72euRHji

30

https://www.reddit.com/r/androidapps/comments/18ptm4b/apps_of_2023_what_are_your_best_and_worst/
https://stadt-bremerhaven.de/tn2-timenoder2-maechtige-kostenlose-produktivitaets-app-fuer-android-und-ios/
https://stadt-bremerhaven.de/tn2-timenoder2-maechtige-kostenlose-produktivitaets-app-fuer-android-und-ios/
https://infoidevice.fr/timenoder2-application-productivite-ios-android/
https://play.google.com/store/apps/details?id=com.janzimola.goal_venture2&hl=en
https://apps.apple.com/us/app/timenoder2-timeboxing-master/id6468406842
https://discord.gg/e8b47EvCeq
https://youtu.be/psB7zraKl44?si=KJbDBc0r72euRHji

(3 mentions). Problems reported involve notifications (5 mentions), crashes (4 mentions),
timer tracking and widget functionality. The complexity arising from an abundance of fea-
tures is highlighted in 5 reviews. Comparisons with competitors like TickTick (4 mentions),
Amazing Marvin, Todoist, Focus Todo, and Engrow (1 mention each) are common.

4.2.1 Need for Cross-Platform Support

While many users appreciate that TimeNoder2 is both free and devoid of ads, there is
a notable interest in paying for enhanced features. On the Discord server, the request
for cross-platform compatibility supported by a subscription option is the second-highest
demand, receiving 15 endorsements of “definitely for it.” However, this feedback reflects
only part of the interest, as not all users participate on Discord. A Reddit post celebrating
TimeNoder2 as a standout in 2023 earned 403 upvotes, with the app receiving 119. Ad-
ditionally, a comment highlighting the absence of cross-platform support as a barrier for
those considering a switch from TickTick earned eight upvotes, indicating potential for user
conversion. The enthusiasm for this feature and willingness to pay suggest that offering
it at a competitive price could set TimeNoder2 apart from established competitors like
TickTick.

4.2.2 Other User Needs

Localization tops feature requests, with volunteers offering translation help. Bug fixes
for widgets, notifications, and timers are urgent. Although there are plenty of feature
suggestions, managing complexity is vital to retain users, as some reviews call the app
powerful yet complex. Material Design’s success in UI/UX feedback suggests no need for
a design overhaul.

4.2.3 Analyzing Discord Voting

Members of the app’s Discord server vote for features in a special channel. They can choose
ratings from 1 (not wanted) to 5 (very important). Prioritizing 5 and 4 ratings avoids skew
from older, less visible options. The item notation consists of a feature name — a short
description, and feature ratings. Feature ratings are a list of pairs, where the first item of
the pair is the number of times the rating occurred, and the second is the rating on the scale
of 1 to 5. The notation of the rating is defined by a list of (number of times it occurred,
rating from 1 to 5). Top features include:

o Goal Tracking — Daily, weekly, and monthly tracking [(16, 5)],
o Web Support | One-Account Sync — No task sharing, reasonable fee [(15, 5)],

o Automatic Task Scheduling — Time slot organization by due dates [(13, 5)],

o Unlimited Completion Tasks — For ongoing rewards [(9, 5), (2, 3)),
» Repeating Event Tasks — Flexible task assignment to events [(8, 5), (1, 3)],
e Routines — Multiple projects after each other [(5, 5), (4, 4), (3, 3)],
o Task Templates [(7, 5)],
e Rewards System Customization [(6, 5)],

31

o Search Functionality — Across events, projects (7, 3), (2, 5)].

The main aim for advancing TimeNoder2 is to enhance cross-platform compatibility. To
accomplish this, introducing cross-platform functionalities and synchronization via Flut-
ter is essential, with a focus on supporting Windows, macOS, and Linux, much like apps
such as AnyType and AppFlowy. By implementing task-sharing features, it is possible to
incorporate game-like elements for multiple users, which could potentially increase engage-
ment in a domain known for high user dropout rates. Prioritizing synchronization through
sharing might improve users’ willingness to pay and drive growth. Furthermore, Flutter fa-
cilitates the development of a WearOS app for on-the-go tracking, which could be designed
to function independently from a phone, unlike the Focus Todo smartwatch app. Other key
tasks involve addressing bugs, enhancing localization, and improving widgets. Suggestions
from Discord highlight new feature ideas, necessitating an assessment of the development
requirements and the complexities they may introduce.

4.3 Detailed Requirements

User feedback highlights the need for cross-platform functionality and collaboration, necessi-
tating robust account and team management features alongside an efficient synchronization
system. This section specifies these requirements, laying the groundwork for subsequent
design and implementation.

4.3.1 Account Management Requirements

Users require a secure and straightforward way to register and access the application. They
must be able to:

e Sign up using an email address and password.
e Log in with their credentials securely.

e Recover a forgotten password via an email containing a reset link, redirecting them
to the app or a web interface to set a new password.

e Begin using the application without the need for logging in.

4.3.2 Team Management Requirements

To support collaborative work, the application must enable team-based interactions. Key
requirements include:

o Users can create a team, become its owner, and assign it a name.

e Team owners can generate invitation tokens to share with others, configurable as
single-use or valid for a limited period (for example, 24 hours) to allow multiple users
to join.

o Users can join a team by entering the token within the app.
e Team owners can remove members, and members can leave voluntarily.

e Owners can rename or delete the team, with deletion erasing all associated team data.

32

e Users can participate in multiple teams simultaneously.

e Teams have shared data accessible and editable by all members, while users can
maintain private data not shared with a team.

4.3.3 Basic Synchronization Requirements

The synchronization system must efficiently manage a complex data model with numerous
tables. It should:

o Handle a large number of database tables in a scalable way.

o Transition to a relational database to ensure data consistency and integrity.

4.3.4 Document Synchronization Requirements

Synchronizing documents presents unique challenges. The system must:
e Implement a merging strategy to combine edits from multiple users intelligently.
e Move beyond simplistic “last-writer-wins” conflict resolution approaches.

e Preserve the document’s structure and intent.

4.3.5 Smartwatch Application Requirements

The smartwatch application aims to deliver a simplified yet functional extension of Time-
Noder2 on WearOS, leveraging the existing Flutter-based mobile application. It must:

e Reuse the mobile app’s database and repositories, adapting them for WearOS con-
straints.

e Adapt existing Ul components to ensure usability on a small wearable screen.

e Enable users to view and track tasks associated with projects or specific categories
(for example, pinned, today).

e Share timer status with the mobile app for a cohesive experience.
o Allow viewing and completing the current day’s schedule, including recurring events.
o Allow completion of daily habits.

o Facilitate quick task creation directly from the wearable device.

4.4 Current TimeNoder2 Architecture

TimeNoder2 is presently an offline-only application, crafted using the Flutter framework.
It adheres to an MVC architecture where Flutter is responsible for the view layer, Riverpod
supervises the controller layer, and Isar DB underpins the model layer. The app was de-
veloped incrementally, incorporating features based on user responses. Employing Isar DB
facilitated this process, as introducing new attributes or objects to existing entities typically
sufficed to deploy new functionality. This strategy enables TimeNoder2 to provide a broad

33

spectrum of features: task management, scheduling, the Eisenhower matrix, a planning
reward system, two-way synchronization with local calendars, highly customizable notifica-
tions, habit tracking, and detailed statistics.

Many of these features are deeply interconnected. This incremental development and
the core features’ extensive inter-connectivity resulted in a heavily denormalized database
(Figure 4.1). This poses challenges for device synchronization, as it often requires a highly
normalized database. Modifying the current database schema to a normalized format could
substantially increase the number of tables, and adding multi-user synchronization would
further complicate the schema. When database models are used directly in the view layer
for ease of use, substantial alterations to these models can significantly affect the entire
application.

A possible strategy is to align the restructured new database models, designed for single-
user and multi-user synchronization, with the current models as closely as possible. This
strategy helps to mitigate the potential side effects of the transition. Furthermore, it is
noteworthy that employing Isar DB offers a significant advantage over traditional SQL
databases. Isar DB allows most of the application to use synchronous code for accessing
data. Combined with the database containing only a handful of object types, this greatly
streamlines the data retrieval process. In contrast, local SQLite databases require asyn-
chronous code due to their longer data retrieval times [69]. Additionally, in a normalized
database, data is distributed across multiple tables, complicating data retrieval and storage
compared to the current setup. All these factors suggest that the proposed modification
would significantly affect the current architecture, which was not designed to accommo-
date such changes. This calls for a thorough exploration of design to determine a concrete
solution.

Figure 4.1 shows a simplified current database schema for the TimeNoder2 application.
The Event object is employed for specific occurrences within a time span, allowing a single
Event to be linked with up to seven Tasks and up to five Projects or Sections. Events
can also recur. Another significant entity is the Task, which can also recur. Tasks can
optionally be associated with a Project or Section. The Project object directly contains
Sections designated in the app using a Project.id combined with a Section.id, ensuring
uniqueness within a Project. The attributes eventId and calendarId present on both
Task and Event are crucial for synchronizing events within the local calendar and linking
to a singular local event. The createdInstances[] attribute is used to denote created
recurring Event instances, triggered either by creating a new event instance or by dynamic
scheduling of notifications several days in advance. Events and tasks include notifications
implemented with the same class, yet they function differently. Default notifications for
tasks and events are stored in the settings, accommodating various options related to timers,
notifications, etc. Additionally, Settings include FavouriteQuotes. Finally, two objects
are connected to the rewards system: PointRecord, which records points earned for task
completion, tracking, and planning, as well as expenses for purchased rewards.

34

PointRecord

linked to

linked to

linked to
\/0.41

Event

isRepeatingData?
start | end
eventld | calendarld

linked to
¢0..7
X Task
Settings 0..
—~
isRepeatingData?
contains timerPrefs p‘ g linked to
O deadline?
notificationPrefs
eventld | calendarld
contains contains _contains linked to linked to
0.t ¢ o0 0.5
X
Notification 0. FavQuote Project
v linked to

Section

l

contains

Figure 4.1: Diagram of a simplified current database schema for TimeNoder?2.

Upon evaluating user needs, it becomes clear that there is significant demand for com-
patibility across different platforms (Section 4.2.1). Examining the existing architecture
reveals ambiguity surrounding whether synchronization should target individual users or
support multiple users. Moreover, the complexity involved in achieving synchronization
poses a challenge, as it is just one aspect of building a cross-platform application. Conse-
quently, the subsequent steps should meticulously focus on crafting synchronization mech-
anisms designed for single-user and multiple-user interactions. This design should also in-
clude the development of a smartwatch application to ensure its smooth integration within

the overall system’s synchronization framework.

35

Chapter 5

Design of the Solution

This chapter details the proposed database design for TimeNoder2, which shifts from a non-
relational Isar DB to a relational database format to accommodate synchronization for
single-user and multi-user environments. It explains the relational schema, includes Entity-
Relationship Diagrams (ERDs) for single-user and multi-user contexts, and discusses docu-
ment synchronization and smartwatch application design. The database design emphasizes
a high degree of normalization to meet synchronization algorithms’ demands and ensure
efficient synchronization and a consistent database state.

5.1 Synchronzation Design

This section details the database schema design required for single-user and multi-user
synchronization, including document synchronization. It also highlights crucial aspects
related to implementation.

5.1.1 Basic Data Synchronization

This section will elaborate on the needed database design changes to allow one user to syn-
chronize their data between multiple devices. This design will be later expanded to allow
multi-user synchronization. It is vital that in the design, it is assumed that the synchro-
nization will use the “last-writer-wins” conflict resolution strategy at the level of individual
records. Significant effort is dedicated to ensuring that new models can be reasonably
adapted to align with the current models, as these existing models are extensively em-
ployed throughout the application; thus, it is crucial to convert data to fit these models as
much as possible.

The synchronization operates persistently in the background, either when the client
possesses new data to sync or when notified by the server of changes that the client can
access. Alternatively, polling can be used to check for updates regularly. Synchronization
must also consider the internet connection status and the device’s state. Essentially, it
should initiate synchronization when the internet connection is re-established and when
the application transitions from closed or in the background to active.

The synchronization must encompass all the tables listed below for single-user and multi-
user use cases. Attempts to optimize this process are generally unnecessary, since the data
is typically required in its entirety. For instance, displaying the tasks page necessitates
access to all Tasks, Events, Projects, and Sections, as these are essential for presenting
estimates and task details, effectively involving nearly the entire database (Figure 4.1).

36

This principle applies to other pages too. In the schemas presented below, the database
undergoes normalization, but maintains a high level of connectivity that renders questions
about which tables to synchronize and when unnecessary. All user-accessible data should
remain consistently synchronized without any disruptions.

One-User Multi-Device Synchronization

As described in Section 4.4 on the TimeNoder2 architecture, the core models are intricately
linked. To enable synchronization and enhance data integrity, the database must be re-
structured into a highly normalized format. The comprehensive ER diagram is divided into
sub-diagrams and explained individually. Initially, one must recognize that this diagram
presupposes a users table, which signifies distinct registered users. Within the subsequent
schemas, each row’s ownership is identified by user_id, linking it to the specific user asso-
ciated with the record. The actual data are subsequently separated into multiple tables.
Data for projects and sections is stored in distinct tables (Figure 5.1). The tasks
table includes two nullable references to the sections and projects tables. This design is
implemented because a task can exist independently of any project. However, when a section
reference is given, a project reference is also included to facilitate an easier transformation

back to the original data model.

id 2 uuid ﬁ id® uuid
*
project_id uuid name text NN

*
section_id uuid color_value integer NN
user_id uuid NN is_starred bool NN
matrix_type_override MatrixType E sort_order float NN
is_archived bool NN
o— ido uuid
user_id uuid NN
name text NN
habit_sort_order float NN
sort_order float NN
o habit_completions_per_day int NN
project_id uuid NN >—mono--/
scheduling_duration int
created_at timestamptz NN

tracking_duration int
user_id uuid NN

Figure 5.1: ER diagram for normalized storage of Projects and Sections.

The task data is organized into several tables (Figure 5.2): the tasks table, which
holds fundamental task information, and the repeating_task table, which contains data
specifying the task repetition rules and is consistently linked to a specific task. Upon
task completion or skipping, if there is a subsequent task as per the recurrence rule,
a new entry in the tasks table is generated, and repeating task.latest_instance
is updated to reference the upcoming task, thus maintaining its status as a repeating
task. However, even when tasks cease to be repetitive, they remain connected to the re-
peating task by repeating_task record to facilitate tracking of the completion history.
The task_notifications table is responsible for holding both pre-existing and user-
generated task notification types, which can then be suggested, utilized by the user, and

37

associated with specific tasks via the task_notifications_tasks table. Additionally,
subtasks are stored separately to enhance modification efficiency and allow for the addition
and alteration of new subtasks from various devices. This configuration mitigates the risk of
row-level “last-writer-wins” conflict resolution strategy override that might happen if both
primary task attributes and task subtasks are modified simultaneously on various devices.

It is essential to clarify the difference in notifications for tasks and events. In Time-
Noder2, tasks trigger notifications before their deadlines, while events generate alerts both
before they start and before they end. Tasks usually deal with longer-term deadlines, thus
requiring distinct notifications compared to events, which tend to demand less advanced
notifications but can also notify before concluding. These distinctions mean they are struc-
turally different and thus utilize separate tables.

A
O—

id ® uvid Lol ido uuid ido uuid
*
created_at timestamptz NN month_day smallint task_id uuid NN
*
deadline_with_time timestamptz every smallint NN task_notification_id uuid NN
deadline_date date until date user_id uuid NN
name text NN is_monday boolean
task_notifications
is_completed boolean NN is_tuesday boolean 1
id® uuid
project_id uuid is_wednesday boolean
value_type ValueType E NN
section_id uuid is_thursday boolean
value smallint ‘NN
sort_order float NN is_friday boolean
o is_wake_up_screen boolean NN
task_repeating_id uuid >——- is_saturday boolean
is_alarm boolean NN
user_id uuid NN is_sunday boolean
is_read_aloud boolean NN
priority Priority E ‘NN type RepetitionType E NN
* nag_me boolean NN
estimate_base smallint —< latest_instance uuid NN
user_id uuid ‘NN
estimated_times smallint user_id uuid NN
extra_estimate_factor ExtraEstimateFactor E m
completed_at timestamptz
p L f id® uuid
difficulty_type DifficultyType E NN
YA YR name text NN
custom_value smallint .
is_completed bool NN
is_pinned bool NN *
L \—< task_id uuid NN
matrix_type_override MatrixType E
s Y sort_order float NN
created_at timestamptz NN
user_id uuid NN

Figure 5.2: ER diagram for normalized storing of Tasks.

Data for events is arranged across various tables (Figure 5.3): the events table caters
to both single and recurring events that have been accepted. The repeating_events table
specifically manages repeating events by directly storing all essential details required to de-
fine them. Introduced is the unified_events table, which allows for the unique identifica-
tion of events through an id, facilitating use in the user interface and assigning notifications,
tasks, projects, and sections. The event_notifications table manages both predefined
and user-generated notification types, which users can adopt and link to particular events
via the unified_events_notifications table. The uniqued_events_tasks table is ded-
icated to assigning tasks to events, while the unique_events_projects_sections table is

38

tasked with associating projects and sections to events. These relationships are kept dis-
tinct since an event may only have a project assigned without any tasks, or it might include
a task unrelated to a project, and hence, no projects. It is critical to remember that linking
tasks, projects, and optional sections to events is interconnected; for instance, when Task
A related to Project A is assigned, Project A should be automatically assigned to the event
in the application. The table missed_repeating_instances is used for marking repeating
events as missed.

(repeating_events unified_events_notifications
missed_repeating_instances 0.1 0..1
id® uuid . *
start_time timetz NN unified_event_id uuid NN >—
date date NN . o
. end_time timetz NN event_notification_id uuid NN >
event_repeating_id uuid NN
2 ke start_date date NN user_id uuid ‘NN
user_id uuid NN
- month_day smallint
P events
1 . Ao— ido uuid
= id o uuid until date
start timestamptz NN
value_type ValueType E NN is_monday boolean
. end timestamptz NN
value smallint NN is_tuesday boolean
description text NN
before_type EventNotificationBeforeType E ‘NN is_wednesday boolean P
. is_tracked boolean NN
is_wake_up_screen boolean NN is_thursday boolean
- *
repeating_event_parent_id uuid
is_alarm boolean NN is_friday boolean s = = -
. is_completed boolean NN
is_read_aloud boolean NN is_saturday boolean
. . repeating_date date
is_nag_me boolean ‘NN is_sunday boolean
. user_id uuid ‘NN
user_id uuid ‘NN type RepetitionType [E NN
unified_events_tasks
id» uuid
; 0.1 unified_events !
R . 1 —< unified_event_id uuid NN
unified_event_id uuid NN ido uuid
. &2 project_id uuid NN
task_id uuid NN event id uuid -
section_id uuid
sort_order float ‘NN repeating_event_id uuid -
sort_order float NN
created_at timestamptz NN user_id uuid (NN -
created_at timestamptz NN
user id uuid [N difficulty_type DifficultyType E NN - P
user_id uuid NN
custom_value smallint

Figure 5.3: ER diagram for normalized storing of Events and their connection to Tasks,
Projects, and Sections.

The logic for rewards has undergone significant changes from the original design to
accommodate important user requests for better rewards customizability. This is accom-
plished through three tables associated with rewards (Figure 5.4). The rewards table
comprises both predefined and user-generated rewards. The reward_buys table records re-
ward purchases. The reward_settings table includes real-time calculation rules, enabling
future and retrospective reward adjustments. Reward settings are stored in a JSON format,
a deliberate compromise due to the uncertainty regarding user preferences for customizing
the reward system, and to allow schema flexibility. Given the row “last-writer-wins” con-
flict resolution approach, this decision is reasonable as the settings pertain to a single user.
The settings are stored in a similar manner and for comparable reasons, though they
anticipate a greater degree of modification and change. The quotes table stores quotes

39

separately, which streamlines the database, enhances efficiency, and lays a better founda-
tion for future quote-related features, such as sharing.

reward_settings reward_buys

id® uuid id® uuid

user_id uuid NN created_at timestamptz NN

reward_settings_json jsonb reward_id uuid NN S
user_id uuid NN

id® uuid
name text NN

1

author text NN id»® uuid

points smallint NN
is_favourite bool user_id uuid NN

icon_id smallint NN
user_id uuid ‘NN settings_json jsonb

user_id uuid NN

Figure 5.4: ER diagram for storing Settings and Rewards.

In a single-user context, it is important to recognize that the user has access only to the
changes they have personally initiated. This implies that previously hidden information
remains inaccessible to them. This feature is noteworthy as it allows timestamps to be
effectively used for synchronization purposes. Nevertheless, this does not negate the value of
more advanced strategies that do not require extra timestamp attributes. It simply suggests
that in a single-user scenario, depending on timestamps is both practical and beneficial for
maintaining control over the system instead of relying on complex third-party solutions.
Consequently, the approach should focus on utilizing timestamps and avoiding third-party
dependencies. The specific data schema and architecture remain closely integrated, thereby
being left to the implementation’s discretion.

Multi-User Multi-Device Synchronization

When the one-user database schema is extended to allow multi-user sharing, it consists
of one fundamental change. For multi-user, the account management is expanded by
a accounts table for personal and team accounts. All records were linked to a specific
user using user_id in a one-user design. In multi-user design, the potentially shared el-
ements are connected to a specific personal account or team account, using account_id
(Figure 5.5). User-specific elements are still linked using user_id and enable users to define
or override user-specific settings on a task, event, and project (Figures 5.6, 5.7, 5.8). For
both tasks and events, there are also *_assigns tables that allow it to specify what should
be seen by individual members of a team account in the Ul In cases of personal accounts,
these tables would be empty.

The accounts are both personal and team-based (Figure 5.5). Personal accounts are al-
ways linked to one user using primary_owner_user_id, and relationships in account_user
are expected to be empty. The invitations table stores invitations with all necessary de-

tails stemming from requirements.

40

id® uuid

+ ide

1
uuid account_role account_role E NN
* *
primary_owner_user_id uuid NN —— account_id uuid NN
name text token text NN
*
personal_account boolean NN invited_by_user_id uuid NN

account_name text

* invitation_type invatition_type E NN
user_id & uuid . S8t
*
account_role account_role E NN] id ® uuid 1.

Figure 5.5: ER diagram for team management table.

In a team scenario, some of the previous attributes defined directly on the tasks ta-
ble need to be moved to separate tables as they are specific to each user (Figure 5.6). On the
client, all of these related tables: task_difficulty, task_estimate_base_user_overrides,
task_is_pinned will be fetched together and combined with tasks table details, with
some of these attributes missing, and combined to the same state as in a one-user scenario.
The task_assigns allows for specifying who should see which tasks in a team.

task_difficulty task_matrix_type_overrides

id»® uuid id® uuid
difficulty_type DifficultyType [E ‘NN task_id uuid NN
custom_value smallint matrix_type MatrixType E NN
task_id uuid ‘NN user_id uuid NN
user_id uuid NN

task_estimate_base_user_overrides task_assigns

id » uuid id»® uuid
estimate_base int NN task_id uuid NN
task_id uuid NN assigned_to_account_id uuid NN
user_id uuid NN account_id uuid NN

task_is_pinned

id » uuid
task_id uuid NN
user_id uuid NN

Figure 5.6: ER diagram of extra tables needed for defining Tasks in a multi-user environ-
ment.

The unified_events_difficulty enables users to define a reward for an event (Fig-
ure 5.7). The unified_event_assigns allows for specifying who should see which events
in a team. Tables project_is_starred, project_is_habit, project_trackings and
project_is_archived enable users to specify user specific project attributes (Figure 5.8).

41

unified_events_schedule_assigns unified_events_difficulty

id» uuid id ® uuid
unified_event_id uuid NN difficulty_type DifficultyType [E NN
assigned_to_account_id uuid NN custom_value smallint
account_id uuid NN unified_event_id uuid NN

user_id uuid NN

Figure 5.7: ER diagram of extra tables needed for defining Events in a multi-user environ-
ment.

project_is_starred project_is_archived

id® uuid id® uuid
project_id uuid NN project_id uuid NN
sort_order float NN user_id uuid NN
user_id uuid NN

project_is_habits project_trackings

id® uuid id»® uuid
sort_order float NN scheduling_duration int
project_id uuid NN tracking_duration int
completions_per_day int NN project_id uuid NN
user_id uuid NN user_id uuid NN

Figure 5.8: ER diagram of extra tables needed for defining Projects in a multi-user envi-
ronment.

When data access is shared among multiple users, it presents synchronization difficulties
absent in single-user contexts. This situation occurs when a user interacts with data gen-
erated before their most recent server sync, such as upon joining a team. This complicates
dependence on timestamps. Algorithms relying on timestamps must be adapted to track
when users access new data and notify them that a complete synchronization is necessary.
In such situations, employing advanced solutions that leverage intermediaries instead of
relying solely on timestamps becomes more practical. Consequently, the approach should
focus on utilizing more sophisticated solutions. The specific data schema and architecture
remain closely integrated, leaving it up for implementation.

5.1.2 Document Synchronzation

The previous design intentionally omitted the aspect of document sharing, which will now
be addressed, building on the foundational synchronization for single and multiple user
scenarios. Document sharing is presently managed by storing the document’s state as
markdown text, an effective solution for offline-only situations. However, for sharing doc-
ument states across devices, it is crucial to enable partial updates synchronization. This
approach conserves bandwidth and allows for integrating changes from various devices or
users into a document.

42

Synchronization should utilize CRDTs (Section 2.2), which are particularly suited for
such scenarios. The document will be transformed into a CRDT structure and represented
in the database as a list of updates (Figure 5.9). Client-side, these updates can be merged to
establish a CRDT structure that guarantees consistent results for all clients with identical
updates. This structure can consequently be converted into a document state, which can be
used to mirror both local and remote modifications within the text editor for the document.

The database implementation is nearly identical for both single-user and multi-user
scenarios. A document serves as an element of task data, providing users the means to
define a detailed description, and is thereby associated with it through task_id. In multi-
user settings, the connection is made through account_id, which may refer to an individual
or a team account. At the same time, in a single-user scenario, it relates to one particular
user.

The document storage schema (Figure 5.9) is simple, consisting only of document up-
dates stored in a document_data linked to a specific task. The created_at attribute is
useful for filtering updates to apply to the CRDT structure.

id® ! id®
L.
account_id NN task_id NN

created_at NN

account_id NN

Figure 5.9: ER diagram for storing document data in a multi-user environment.

The particular approach for executing document synchronization relies on the available
libraries and tools, and consequently must be tackled during the implementation phase.

5.2 Smartwatch Application Design

The smartwatch application should be developed using Flutter, enabling significant code
reuse but restricting the app to WearOS. The application should provide a simplified version
of the mobile app with full offline support, allowing features like the timer to function in-
dependently of the phone. Synchronization between WearOS smartwatches and associated
devices should be established through the basic synchronization mechanism previously de-
scribed. Since smartwatches can access the internet, this method is convenient and does not
require extra implementation. The application should comprise six pages: Tasks, Timer,
Schedule, Habits, Create Task, and Settings. Kach page is designed for simplicity to
ensure usability on the watch’s small screen.

5.2.1 Tasks Page

The Tasks page is the initial screen, displaying today’s tasks while providing access to
tasks from other options and projects (Figure 5.10a). A button at the top shows the current
selection, defaulting to today. Tapping this button navigates to the Selection page (Figure
5.10b), where users choose options such as pinned, previous, today, tomorrow, future, or
projects. The Tasks page updates to display tasks relevant to the selected option. Below
the button, a scrollable list of task tiles appears. Each tile includes a checkbox on the left,

43

the task name, additional details below, and a tracking button on the right. Tapping the
tracking button initiates task tracking and navigates to the Timer page.

) Wireframe of Tasks page with selection) Wireframe of Selection page. Tapping
button and list of task tiles. a tlle selects the option.

Figure 5.10: Tasks page and Selection page.

5.2.2 Timer Page

The Timer page appears when a user starts tracking a task or navigates directly to it.
A description at the top indicates the timer’s status, such as “Work — Round 1 / 4.
The current timer duration is shown below. If a tracking element is selected, it appears
beneath the timer (Figure 5.11a). If no element is selected, an option to choose a task is
displayed (Figure 5.11b). Tapping this option redirects to the Tasks page for task selection.
Another option allows choosing a project, leading to the Selection page to pick a project
or section. Below the tracking element, two buttons are present: a start or pause button,
depending on the timer’s state, and a skip button to bypass the current timer phase.

) Wireframe of Timer page with a tracked Wireframe of Timer page without
task project, or section, highlighted in or- a trackmg element. Selection options are
ange. highlighted in orange.

Figure 5.11: Timer page with and without a tracking element.

44

5.2.3 Habits and Schedule Page

The Habits page (Figure 5.12a) presents a list of habit tiles. Each tile starts with a habit
label, followed by the habit’s name and a compact completion button. This design allows
users to track daily habit progress and mark completions directly on the watch.

The Schedule page (Figure 5.12b) offers a streamlined version of the mobile app’s
schedule, displaying the current day’s events. Each event spans the full width, listing
the time range, labels for projects, completion buttons for marking recurring events as
done or missed, and the event’s current progress.

=E

) Wireframe of Habits page.) Wireframe of Schedule page.

Figure 5.12: Habits page and Schedule page.

5.2.4 Create Task and Settings Page

The Create Task page (Figure 5.13a) includes a text input for the task name and an option
to select a project. The deadline defaults to the current day. Users can add additional details
on the phone later if needed.

The Settings page (Figure 5.13b) simplifies the configuration options of the mobile
app, allowing users to customize the timer settings and watch notifications. Vibration
alerts are given priority, as many users prefer them to audible sounds from the watch.
Users can personalize the app using toggle switches or options that cycle through various
choices. The settings are organized into distinct groups for easier navigation.

e O

a) Wireframe of Create Task page.) Wireframe of Settings page.

Figure 5.13: Create Task page and Settings page.

45

Chapter 6

Implementation

The preceding chapter provided a comprehensive design overview for both data synchro-
nization and the smartwatch application for TimeNoder2. Upon assessing the complexity
involved in implementing single-user and multi-user synchronization, document synchro-
nization, and the smartwatch extension, it became clear that such extensive modifications
to the existing architecture go beyond the scope of this thesis. Converting TimeNoder2 to
a fully normalized and synchronizable architecture would require a near-complete rewrite
of the current application, affecting most source code files — many of which would need to
be rewritten from scratch. This can be seen from ER diagrams presented in the previous
chapter, where the original 6 models that contained data became 35 normalized tables, and
this number can be even higher in production. The problem is that these models were used
throughout the application, and the changes to the original models would break a lot of
the original code.

Incorporating additional changes to the user interface to support desktop platforms and
collaborative features, while maintaining usability, would further increase the complexity.
Therefore, this thesis addresses core synchronization principles that are broadly applicable
and beneficial to the application regardless of its final form. These principles also serve as
a foundation for extending similar strategies to other systems in the future.

The first section focuses on the implementation of single-user and multi-user synchro-
nization. These are demonstrated through prototype implementations that illustrate key
foundational concepts, which can later be applied to TimeNoder2’s data synchronization.
These prototypes also cover document synchronization using CRDTs (Section 2.2), which
will be elaborated on in the following sections. The second section is dedicated to the smart-
watch application, addressing synchronization-related challenges and detailing the develop-
ment process.

6.1 Synchronization Implementation

This section covers synchronization implementations for one-user and multi-user scenar-
ios. Later, it adds an implementation for synchronization of documents. All these things
are demonstrated in a separate demos that provide a good base for future TimeNoder2
development.

46

6.1.1 Omne-User Multi-Device Synchronization

One effective approach for basic data synchronization is inspired by the WatermelonDB
protocol (Section 2.5.1). In single-user situations, the approach relies on the principle
that these users cannot access previously concealed data, thus allowing the utilization of
timestamps. It includes three key components: a local Drift SQL database', Supabase as
a Backend-as-a-Service” (that can be easily replaced by a backend with access to SQL DB),
and CRDT (Section 2.2) document synchronization. The local database is designed to save
user modifications and send these changes to the server.

The specific process of synchronizing documents will be developed in a later section, but
it is based on the principle described in Section 5.1.2. In summary, document changes will
be saved in a database in the form of records and distributed across devices using the basic
synchronization protocol. The architecture of this system is illustrated in Figure 6.1.

Sync (Push / Pull) + Realtime

Rust Flutter

CRDT

Document SQL DB

CRDT Document Update

Figure 6.1: Functions push and pull refer to the WatermelonDB protocol functions. The
real-time function corresponds to Supabase Realtime®, which can be substituted with an
equivalent service or with polling. The server can be anything that has access to a SQL
database, and so it can run push and pull database functions.

Server Functions

The pull and push server operations adhere to the principles described in Section 2.5.1.
They filter data accessible to the user through specific timestamp attributes and the user_id.
Rather than relying solely on user id checks, Row-Level-Security (RLS)* rules can be uti-
lized to automatically restrict data access within database functions. The server uses key
timestamp attributes to manage this: server_created_at tracks when a record is created
on the server, server_updated_at logs when a record gets updated, and deleted_at marks
when a record is deleted.

"https://pub.dev/packages/drifts
’https://supabase.com/
‘https://www.postgresql.org/docs/current/ddl-rowsecurity.html

47

https://pub.dev/packages/drifts
https://supabase.com/
https://www.postgresql.org/docs/current/ddl-rowsecurity.html

The core aspect of the push and pull functions lies in their generic nature. Thus, these
functions operate effectively by focusing on the presence of additional timestamp attributes
in synchronized tables. Moreover, they utilize the changes map, which organizes tables
according to their dependencies. In the context of a todo list application, it is essential to
structure the collection in the following order: Project, Task, and Event (which includes
tasks). This dependency order ensures that all related elements are processed correctly.

Client-Side Synchronization

On the client, the changes are tracked using created_at, updated_at, and deleted_at
timestamps as stems from the WatermelonDB protocol (Section 2.5.1). The important part
of the implementation was that by a little bit of annotation on the used Drift DB database
schema, it was possible to automate a big part of the protocol using code-generation (List-
ing 5).

// 1. Annotate Drift tables with @customSync
Q@customSync
class Project {
// 2. Specify serverTableName
serverTableName => "public.project"

// 3. Add isRemote attribute
isRemote => withDefault(false);

3

// 4. Specify classes in the order of their dependencies
@SyncManager(classes: [Project, Task, Docup])
class SyncClass {}

Listing 5: An illustration of pseudocode demonstrating the addition of essential annotations
to the Drift DB schema for code generation.

After the code generation is run, it generates a SyncManager class with methods that
are utilized in the main synchronization function using the WatermelonDB protocol:

e syncedTables() — Returns a list of table names in order of their dependencies.

o sync(changes) — Accepts changes object and applies the changes from the server to
the local DB.

o getChanges(lastPulledAt, db) — Returns all changes that the server does not know
about since lastPulledAt time.

One-User Multi-Device Demo

Demo” for one-user synchronization uses the previously defined synchronization mechanism.
On the server, it defined tables with additional attributes (Figure 6.2) on which the algo-
rithm relies. It allows for creating projects and tasks where each task contains a document,
showcasing both one-user synchronization and synchronization of documents.

Shttps://habitmaster-e52e9.web.app/

48

https://habitmaster-e52e9.web.app/

I CEE I

. . 1 . 1 .
id»® uuid —— id®o uuid — id2 uuid
created_at timestamptz created_at timestamptz created_at timestamptz
updated_at timestamptz updated_at timestamptz updated_at timestamptz
deleted_at timestamptz deleted_at timestamptz deleted_at timestamptz
data_b64 text name text name text
*
user_id uuid project_id uuid NN > user_id uuid
server_created_at timestamptz user_id uuid server_created_at timestamptz
server_updated_at timestamptz server_created_at timestamptz server_updated_at timestamptz
instance_id uuid server_updated_at timestamptz instance_id uuid
*
task_id uuid NN >— instance_id uuid

Figure 6.2: Server database schema utilized on the Supabase server for the one-user syn-
chronization demo. On the client, it uses the same schema except the instance_id,
server_created_at, and server_updated_at attributes. The instance_id filters out
real-time updates that the current client is causing and limits the number of synchroniza-
tion calls.

6.1.2 Multi-User Multi-Device Synchronization

As discussed in Section 5.1.1 regarding multi-user synchronization design, adding synchro-
nization for multiple users introduces complexity due to scenarios where one user might
access previously restricted resources. It must also address situations where multiple users
attempt simultaneous insertions onto the server, potentially leading to conflicts, particularly
with numerous changes occurring rapidly.

To tackle these challenges, the PowerSync synchronization framework, as detailed in
Section 2.5, is employed, offering a robust synchronization solution. PowerSync’s signifi-
cant benefits include its independence from timestamps and its high-quality Flutter inte-
gration®. With the capability to self-host PowerSync’ alongside Supabase using solutions
like Coolify®, it emerges as a feasible option for TimeNoder2 in the context of multi-user
synchronization.

The architecture is similar to the one-user synchronization architecture, but instead
of push and pull functions, PowerSync middleware monitors database changes using sync
rules and forwards updates to clients (Figure 6.3). These sync rules enable the generation
of client schemas for Flutter. From these schemas, a Drift ORM schema can be created,
which provides an ORM layer on top of the Flutter PowerSync database’.

Shttps://github.com/powersync-ja/powersync.dart/tree/main
"https://docs.powersync.com/self-hosting/getting-started
8https://docs.powersync.com/integration-guides/coolify
“https://pub.dev/packages/drift_sqlite_async

49

https://github.com/powersync-ja/powersync.dart/tree/main
https://docs.powersync.com/self-hosting/getting-started
https://docs.powersync.com/integration-guides/coolify
https://pub.dev/packages/drift_sqlite_async

Powersync protocol Middleware

Powersync

Server
Supabase

SupabaseConnector

Rust

Flutter

$Powersync protocol
CRDT
Document SQL DB
Drift

Yrs

CRDT Document Update:

Figure 6.3: PowerSync Synchronization Architecture.

Client Implementation

Drift DB can be used on the client side without any modifications. Behind the scenes,
it interfaces with PowerSync, logging changes in an update queue through three main
operations: the PUT operation, derived from INSERT statements, creates a new row with
values for all non-null columns; the PATCH operation, driven by UPDATE statements, modifies
an existing row by applying changes identified by row id and updated column values; and
the DELETE operation, executed via DELETE statements, eliminates a row specified by its
row id [52]. These updates must subsequently be propagated to the server.

The task is accomplished by extending PowerSyncBackendConnector and implement-
ing three essential functions: fetchCredentials() is responsible for retrieving authentication
tokens, invalidateCredentials() manages authentication errors, and uploadData() transmits
previously queued updates to the server as CRUD operations. For backend operations
with Supabase, an existing template that processes CRUD updates sequentially is avail-
able. However, performance and consistency enhancements can be achieved using database
functions'’ if necessary, as it allows sending a whole transaction at once.

Multi-User Multi-Device Demo

A demo was created to showcase the core multi-user, multi-device synchronization to lay
a solid foundation for future work. The demo consists of sharing documents as personal
documents as well as documents that are part of a team. It builds upon the multi-user multi-
device synchronization schema defined in Section 5.1.1. The server uses Supabase with the
Basejump template'' for team management that largely resembles the previous design.
An additional user account access table enables team members to see other members’
account details (Figure 6.4).

Ohttps://supabase.com/docs/guides/database/functions
"https://usebasejump.com/

50

https://supabase.com/docs/guides/database/functions
https://usebasejump.com/

This table is automatically maintained by triggers and represents a view of the ac-
count__user table. This is necessary because PowerSync only supports simple queries in
synchronization rules. Without this, it would not be possible to synchronize the personal
accounts of users connected through a team. An essential feature is that it permits users to
handle documents without being logged in, while allowing synchronization with additional
devices at a later stage.

docume“tS_data m

id® uuid A id® uuid
J

document_id uuid NN name text NN

created_at timestamptz NN account_id uuid NN

created_at timestamptz NN
user_account_access

user_id £ uuid NN
account_id 2 uuid NN
created_at timestamptz

Figure 6.4: A demo ER diagram illustrates document sharing for both a single user and
several users.

6.1.3 Synchronization of Documents

Basic synchronization techniques are not sufficient for document synchronization, as up-
dates from various devices need to be integrated. The conventional "lastwriter-wins"
technique falls short because it replaces changes rather than integrates them. The objective
is to consolidate edits from multiple devices so that all devices eventually display the same
final version of the document according to previously established criteria (Section 5.1.2).
The proposed solution will be grounded in the earlier design (Section 5.1.2) and transform
document changes into a series of updates that can be subsequently synchronized using
base synchronization methods. This should clarify how document synchronization operates
in the previously mentioned demonstrations for single-user (Section 6.1.1) and multi-user
(Section 6.1.2) scenarios.

After evaluating a range of options, the yrs'? library developed in Rust emerges as
the most effective solution. This library features CRDTs (Section 2.2), making it well-
suited for synchronizing modifications within a distributed context. Appflowy'? follows
a comparable methodology by utilizing appflowy_editor. To streamline implementation,
the application should transition from super editor to appflowy_editor due to superior
support and maintenance, and a more appropriate API for synchronization processes. It
also has markdown import capability that eases the transition. Moreover, super editor
faces financial constraints'* and has an unstable API, further justifying the change.

Structure of the appflowy_editor Document Format

To synchronize documents using CRDTs effectively, it is essential to comprehend the un-
derlying structure. The appflowy_editor document format is arranged as a hierarchical

2https://github.com/y-crdt/y-crdt
Bhttps://github.com/appflowy-io/appflowy
Yhttps://github.com/superlistapp/super_editor/issues/2270

51

https://github.com/y-crdt/y-crdt
https://github.com/appflowy-io/appflowy
https://github.com/superlistapp/super_editor/issues/2270

JSON object that depicts a rich text document. At the highest level, the document includes
a root block featuring a type field designated as "page" and a children array. Within
this array, each item is a block representing a distinct type of content, such as a paragraph,
heading, list, image, or other block component. Every block is comprised of these elements:

o type — Defines the category of the block (such as "paragraph" or "heading").

e data — Contains properties specific to the block type. This generally includes a delta
array for most text-related blocks, utilizing the Quill Delta format'”. The delta
array comprises a sequence of insert operations representing text segments, which
may feature formatting attributes such as bold, italic, and underline. Other
stored properties include, for example, align for text alignment or level for heading
depth.

e children — An array consisting of block identifiers representing the sequence of
a block’s children.

In the CRDT Document, the design will be depicted as a Blocks map of type YMap, where
attributes are saved as strings, except for the delta attribute, which will be stored as YText,
a special type for text operations. Contrary to some expectations, the final structure will
solely employ Blocks map and not utilize a YMap of YArray to manage the order of children
blocks within each parent block. A detailed explanation for this decision is provided in the
following synchronization workflow.

This workflow consists of two parts: reflecting user-created changes in the CRDT Document,
and reacting to changes from outside the current device by merging them into the current
CRDT Document and reflecting these changes in the text editor.

Reflecting User-Created Changes in the CRDT Document

Reflecting user-created changes in the CRDT document is handled in 4 stages (Figure 6.5).

—

1. On user change generates Transaction : { Operation [] }

Editor

Adapter

l 2. converts to BlockActionDoc []

3. Applies actions on the CRDT doc
based on type:insert, delete, move, update

CRDT Document 1

DocService

¢ 4. Encode update using CRDT and save to DB

SQL DB

Figure 6.5: Reflecting user-created changes in the CRDT Document.

Bhttps://docs.yjs.dev/api/delta-format

52

https://docs.yjs.dev/api/delta-format

1. Transaction Generation
The process begins when the editor generates a Transaction capturing document
changes. Each Transaction consists of a list of Operations that can be applied to
the Ul or sent to the backend for storage and transformation.

2. Adapting Transaction
The Transaction is transformed into a list of BlockActionDoc, where each contains
data from a Operation, but also includes extra information needed to reflect changes
in the CRDT Document. Besides the actual node data and type, it includes:

e prevId — Points to the previous block on the same level or null if there is no
previous block.

e nextId — Points to the next block on the same level or null if there is no next
block.
e parentId — Points to the parent block or null if it is a root block.
o Extra data attributes added to the data attribute:
— deviceId — Corresponds to the id assigned to the device for one synchro-
nization session.

— timestamp — Corresponds to the local datetime when the block was last
updated.

These attributes are reflected in the CRDT Document and used when extracting data
from the CRDT Document.

3. Reflecting Adapted Transaction in a CRDT Document
Based on the BlockActionDoc, it reflects changes in the CRDT Document in the fol-
lowing ways:

o Updates the block data and type, together with additional attributes deviceId
and timestamp.
e Updates the parentId chain.
o Updates the prevId chain.
4. Computing difference
After changes are applied to the CRDT Document in the current transaction, a binary-

encoded CRDT update is computed (Listing 6). This update is then returned to
the Flutter side.

before_state = txn.before_state();
update = txn.encode_diff (before_state);

Listing 6: By comparing a transaction’s starting and ending states, yrs generates a binary
encoded CRDT update corresponding to applied changes.

53

5. Saving Into DB
On the Flutter side, this update is saved as a binary or base64 encoded binary update
(as tools such as PowerSync'® do not support binary data) and then synchronized
between devices using the basic synchronization protocol.

Reflecting Remote Changes Within the Editor

This workflow involves receiving updates from the database, originating either from the cur-
rent device or others, and integrating them into a CRDT Document. This document is then
compared with the existing editor state, allowing the differences to be applied to the text
editor, thereby synchronizing their states. The procedure is divided into six steps (Fig-
ure 6.6):

4. Convert CRDT data to a linked list of converted Nodes
5. Compute diffNodes between current and converted Nodes
6. Apply difference in Operation [] into the current editor with remote source

<«

Editor

Adapter

T 3. Return CRDT Doc data

2. Applies updates on the CRDT Doc

<«
CRDT Document DocService

T 1. Get CRDT updates

SQL DB

Figure 6.6: How updates from other devices are reflected in the editor.

1. Sending CRDT document updates to DocumentService
2. Applying updates to the current CRDT document

3. Returning the CRDT document to Flutter for comparison

The resulting document is sorted before it is returned. The sorting algorithm is
implemented in Rust and uses multiple criteria:

e First groups blocks by parentId.
e Within each parent group, sorts blocks by deviceId.

Follows prevId chains to preserve intended ordering.

Uses timestamps to resolve conflicts when multiple blocks have the same prevId.

https://docs.powersync.com/usage/sync-rules/types

54

https://docs.powersync.com/usage/sync-rules/types

e Ensures devices’ contributions stay grouped.

This sorting algorithm is crucial for maintaining user expectations when merging
concurrent document changes. An important consideration: the Appflowy implemen-
tation does not rely on prevId and nextId pointers like this implementation does.
It uses an extra Yrs map called children_map where each parent has a list of chil-
dren’s ids stored in a Yrs array. While more straightforward, the problem appears
when multiple devices edit offline and then synchronize their changes. Consider this
example:

User A (Offline)

- 111 - User A
- 222 - User A
- 333 - User A

User B (Offline)

- 111 - User B
- 222 - User
- 333 - User B

w

When both devices synchronize, a naive CRDT merge with blocks and children maps
might produce an interleaved result that is not user-friendly:

- 111 - User A
- 111 - User B
- 222 - User A
- 333 - User A

Using the system described above, the plugin sorts blocks to produce an expected
merge, where changes made on one device are grouped together:

- 111 - User A
- 222 - User A
- 333 - User A
- 111 - User B
- 222 - User B
- 333 - User B

Alternatively, depending on the sorting criteria, the result could be:

55

- 111 - User B
- 222 - User B
- 333 - User B
- 111 - User A
- 222 - User A
- 333 - User A

While it is important not to undermine Appflowy, which has functional collaborative
software, the architecture of their system remains a mystery in this thesis.

4. Converting the CRDT document into an Editor Structure
The document is converted into a linked list of Nodes, a structure that appflowy-
_editor understands.

5. Computing the Difference
The current editor’s Nodes linked list and the previously transformed linked list un-
dergo a diffing algorithm. The original diff method provided by appflowy_editor
produced incorrect results with improper ordering of DeleteOperations. Instead,
a custom diff WithDocument method compares the two documents and returns a list
of Operations that appflowy_editor can process.

6. Applying operations to the current editor
This step reflects remote changes in the editor using apply(diff, remote: true) API
that apflowy_editor provides.

Currently, remote updates are applied with a longer debounce delay (syncDebounceDe-
lay, default 1500ms) because all combined changes are used for comparison. This includes
updates stored in the database and updates returned after applying changes to the CRDT
Document but not yet saved. Doing this too often would result in junk in the UI. Also,
local updates are not saved directly to the DB as it would create a large number of records.
Instead, local changes are batched together with updatesBatcherDebounceDuration (default
500ms), merged using yrs, and then saved to the database. Both debounce attributes can
be customized.

Another challenge that this implementation needed to address was the potential for
entering an invalid state while navigating within the editor. This issue was reported, but
no response has been received yet'!”. Ultimately, the solution is integrated into the syn-
chronization protocol, which validates the current state of the editor. When changes like
this occur, the protocol ensures that they are corrected.

Document Synchronization Plugin API

The earlier described algorithm for document synchronization has been converted into a li-
brary called appflowy_editor_sync_plugin'®, which is now available for other developers
to utilize. The appflowy_editor GitHub repository'’ features a demonstration of how this
plugin can be used.

https://github.com/AppFlowy-I0/appflowy-editor/issues/1083
Bhttps://github.com/Musta-Pollo/appflowy_editor_sync_plugin
Yhttps://github.com/AppFlowy-10/appflowy-editor

56

https://github.com/AppFlowy-IO/appflowy-editor/issues/1083
https://github.com/Musta-Pollo/appflowy_editor_sync_plugin
https://github.com/AppFlowy-IO/appflowy-editor

The synchronization system provides an API that developers can adopt with mini-
mal setup. The EditorStateSync Wrapper.init() function generates the EditorState object,
which is used by appflowy_editor to manage state. Developers only need to define three
methods on the SyncAttributes class for the document synchronization to work (List-
ing 7).

editorState = EditorStateSyncWrapper (
syncAttributes: SyncAttributes(
/// Get initial document state
getInitialUpdates: () {},

/// Stream of all saved updates for the document
getUpdatesStream: () => db.documentUpdatesStream

/// Save local update to the database
saveUpdate: (update) {},
D¢
).init Q) ;

Listing 7: Developer API pseudocode for document synchronization using created
appflowy_editor_sync_pluginm.

In summary, by using the yrs library for CRDTs and the API provided by appflowy_-
editor, changes from multiple devices can be reliably merged. This ensures that all devices
eventually display the same document state with user-expected ordering, overcoming the
limitations of traditional synchronization methods that rely on a “last-writer-wins” conflict
resolution strategy.

6.2 Smartwatch Application Implementation

For the smartwatch application implementation, it is essential to understand that the orig-
inal design (Section 3.2) cannot be fulfilled as the synchronization between devices was not
added to TimeNoder2. Because of this, the synchronization relies on the native API between
the phone and its companion smartwatch application. The WearOS app communicates ex-
clusively with Android phones, as stems from prior research (Section 3.2). Communication
between the smartwatch and phone utilizes the watch_connectivity plugin for Flutter,
which provides an API for data exchange.

This section describes the implementation of a WearOS smartwatch application devel-
oped using Flutter. The application works alongside a companion mobile app on a con-
nected smartphone, with both sharing the same bundle identifier for seamless communica-
tion. Using Flutter enables significant code reuse across platforms, particularly for database
logic, timer services, and some user interface components.

6.2.1 Communication Protocol

Communication between devices uses the watch_connectivity plugin. Because message
delivery between watches and phones can be unreliable and bandwidth is limited, a custom

57

protocol was developed to ensure data consistency. This protocol includes five message
types:

1. Heart__beat: Sent periodically to verify that the other device is connected and
working.

2. Sync__suggest: Sent when local changes are detected to prompt the other device to
start synchronization.

3. Sync__init(lastCompletedAt): Request changes that occurred after the specified
lastCompletedAt timestamp.

4. Sync__data(inserted__data, deleted__data): Contains actual data changes, in-
cluding new and deleted items.

5. Sync__completed(startSynchronization): Notifies that synchronization has fin-
ished, including changes up to the startSynchronization timestamp.

To handle unreliable message delivery, the protocol includes a confirmation system
implemented through the ConfirmableWatchMessageHandler class. Each message waits
for acknowledgment before proceeding, which simplifies synchronization logic and reduces
communication overhead. After initial synchronization, later synchronizations typically
need only a single message exchange, as the sync_data and sync_completed messages can
be combined when possible to save bandwidth.

6.2.2 Local Database and Synchronization

A critical aspect of this implementation is the integration of a local database directly
onto the smartwatch. Unlike other solutions such as Focus To-Do that rely on a constant
connection to a smartphone, this strategy ensures that all modifications are recorded locally.
This functionality safeguards against data loss from connectivity problems between a watch
and a phone. Once the connection is restored, synchronization is triggered, allowing both
devices to refresh each other with any updates, thus improving reliability and supporting
offline app usage. Synchronization is executed using the protocol described previously,
utilizing the existing database architecture with Isar. In addition to the data types being
synchronized between the smartwatch and mobile app, two new attributes were introduced:

e a timestamp attribute, updated_at, indicating when the record was last modified,

e a boolean attribute, synced, indicating if this record got to the current device by
synchronzation.

These new attributes facilitate the identification of records requiring synchronization.
Furthermore, an additional record type for deleted entries was introduced to ensure that
deletions are also synchronized.

6.2.3 App Design and Navigation

Designing for WearOS required careful consideration of platform-specific constraints. A sig-
nificant challenge was that the default leftward swipe gesture exits the application, which
made conventional navigation patterns like page views (used in apps like Focus To-Do) im-
possible. To solve this problem, a global menu bar button was integrated into the interface.
This button is designed to be noticeable but not intrusive, and when activated, it displays
an overlay with navigation options to other pages.

58

6.2.4 App Features

The smartwatch app consists of several core pages, each representing a streamlined ver-
sion of the mobile app’s features. These pages were developed as outlined in the previous
chapter, including a Create Task page. The Create Task page functioned properly on
a physical device used during development; however, text input issues arose on the emu-
lator and during the Google Play review process, leading to its removal. Apart from this,
all the remaining pages have been created. These pages emphasize simplicity and user-
friendliness, tailored to the restricted watch display. To maintain consistency and reduce
development time, fundamental interface elements like buttons and labels are adapted from
the mobile application.

59

Chapter 7

Testing

This chapter presents the testing of the implemented synchronization and the smartwatch
application. Synchronization was tested in two previously presented demos, one of which
demonstrates the basic synchronization mechanism using the WatermelonDB protocol along
with document synchronization (Section 6.1.1), and another demo focuses on team man-
agement and document sharing, while being directly integrated into TimeNoder2 (Sec-
tion 6.1.2).

7.1 Omne-User Synchronization Demo

This demo tests both WatermelonDB synchronization and document synchronization. The
test involved five different testing scenarios, all completed successfully. The basic synchro-
nization focuses on sharing tasks and projects between devices. Document synchronization
testing focuses on concurrent editing, insertions, text operations, deletions, move opera-
tions, and offline editing. One testing recording scenario is available on the demo GitHub
repository’. One of the testing scenarios is described in detail in the Appendix A.1 to allow
replication.

Note that WatermelonDB synchronization is more suited for native platforms. On
the Web, it is used primarily to demonstrate synchronization of basic data and documents
without requiring installation. Currently, each tab needs to create a new local database
file and synchronize changes to it. This is due to a known issue with Drift when two tabs
attempt to write to the same database file simultaneously?.

During testing, some things were identified that are not considered issues themselves,
but rather stem from the used strategy. It is when two users edit the same line, and the de-
bounce durations are higher in the code. Users can then write new lines of text without
seeing each other’s changes. If both edit the same line and create children under the same
line, users could view the behavior after the merge as unexpected. The recommendation is to
use, in addition to the current method, the method provided by Appflowy for real-time col-
laboration that consists of directly sharing transactions produced by the appflowy_editor
in real-time.

"https://github.com/Musta-Pollo/custom_supabase_drift_doc_sync/tree/main
’https://github.com/simolus3/sqlite3.dart/issues/240

60

https://github.com/Musta-Pollo/custom_supabase_drift_doc_sync/tree/main
https://github.com/simolus3/sqlite3.dart/issues/240

7.2 Multi-User Synchronization Demo

The testing consisted of a single testing scenario, as document synchronization was already
thoroughly tested in the previous section, and PowerSync is a widely adopted commercial
product that does not require extensive testing here. The primary goal of this demo is
to showcase the fundamental synchronization principles used when creating a collaborative
cross-platform application. Testing was performed on a physical Android phone and an iOS
emulator. The testing scenario is available in the Appendix A.2.

A few features regarding team management suggested in the analysis phase are not
shown here, as they follow the same principles as the current implementation. The current
implementation uses the Basejump template for team management, which supports creat-
ing teams, inviting members, etc. These Basejump-managed tables are synchronized using
PowerSync. For example, removing a team member would involve calling the database func-
tion: remove__account_member®. This change would then be synchronized across devices
via PowerSync.

For deleting a team account, there is no built-in API in Basejump template. In
such cases, a custom database function must be defined in Supabase’, or the deletion
must be handled locally and synced through the SupabaseConnector. With the current
SupabaseConnector implementation and proper foreign key relationships (with cascading
deletes), deleting a team account — assuming the user has permissions as enforced by Post-
greSQL RLS — would also remove related documents and document updates. All changes
would then be synchronized to the related devices.

7.3 Smartwatch Application Testing

The smartwatch testing includes a testing scenario to verify functionality and synchroniza-
tion, and user testing to evaluate experience and satisfaction.

7.3.1 Scenario Focused on Functionality and Synchronization

The process begins with initializing the mobile device, which will be less detailed than pre-
viously, as it is not the core focus of this thesis. The sole aim here is to produce test data
for demonstration purposes. Following this, the smartwatch application testing examines
the synchronization of tasks, events, projects, and the timer status. It comprehensively eval-
uates the timer’s functionality concerning data persistence, adherence to WearOS guidelines
for required functionalities’, and reliability. Finally, it verifies that users can perform basic
operations in the smartwatch application. The assessment was carried out using a physical
Android smartphone and a connected physical WearOS smartwatch. The detailed testing
scenario for verifying smartwatch functionality and synchronization is in the Appendix A.3.

7.3.2 User Experience Testing

The user experience testing of the smartwatch app helps evaluate the application’s user
experience. It is important to note that TimeNoder2 was based on user reviews, often
marked as an application that offers a lot of techniques and tools. From this naturally

3https://usebasejump.com/docs/team-members#remove-team-member
‘https://github.com/usebase jump/basejump/issues/87
Shttps://developer.android.com/distribute/best-practices/launch/distribute-wear

61

https://usebasejump.com/docs/team-members#remove-team-member
https://github.com/usebasejump/basejump/issues/87
https://developer.android.com/distribute/best-practices/launch/distribute-wear

steps complexity, which is confirmed by the user reviews on Google Play, but also by
the messages that users share on the app’s Discord server.

As of the day this is written, the application has not successfully passed the Google
Play review to be published in the production track, and so the testing cannot be done
with actual users. As the watch application cannot be shared differently than by directly
installing it using adb’, it was required to share a personal phone and a smartwatch to carry
out the tests on them. Because of this, the testing focuses mainly on understandability and
whether users can achieve various tasks.

At the beginning, the users were in approximately 5 minutes introduced to TimeNoder?2.
After that, the application on the phone and the smartwatch application were reset to
the default state, and the actual testing began. The testing consisted of:

e User-data Preparation — Preparing data in the mobile application, crucial for
following smartwatch application testing.

e Smartwatch Application Testing — Testing focused on navigating and executing
basic actions in the smartwatch application.

User-data Preparation

1. Open the mobile app, and create projects called “Math”, “Fitness”.

2. Create two tasks: “homework math” for “Math” project with a deadline tomorrow,
and for today, “evening run” for “Fitness” project.

3. Make a “Fitness” project a habit.

4. Go to the Schedule page and create an event from 17:00 to 17:30 with the “evening
run” task assigned.

Smartwatch Application Testing

1. Open the smartwatch application and view your daily plan.

2. Complete the “evening run” task.

3. Verify that your daily habit of “Fitness” is completed.

4. Look at what tasks you have for tomorrow.

5. Track the “homework math” task for 1 minute. Close the application on the watch.
6. After 1 minute, stop the task tracking.

7. Change the application settings so that the timer is not using 24-hour notation, but
rather 12-hour notation.

8. Verify that it did what was desired on the Schedule page.

Shttps://developer.android.com/tools/adb

62

https://developer.android.com/tools/adb

The user testing involved three participants: one with minimal prior experience with
TimeNoder2 and the other two completely new to it. This lack of previous experience
greatly affected the results of the tests. The main challenge was effectively demonstrating
the application to testers, highlighting key features but omitting many details. Testers
certainly required more than five minutes to thoroughly understand TimeNoder2, which
would significantly enhance the application’s relevance on a smartwatch. After completing
the introduction and setting up default tasks, participants transitioned to the smartwatch
application. All testers observed longer loading times, but then all quickly located the nav-
igation menu, denoted by the hamburger menu icon, and accessed the Schedule page.
With more experience, this process would have felt intuitive. When asked to complete
the “evening run” task, two participants did so directly on the Schedule page. The third
navigated back to the Tasks page to finish the task. Familiarity with the mobile app would
have helped all testers recognize the Schedule page’s layout and complete the task there.

Upon reaching the Tasks page, which they quickly adapted to, testers easily found
the button at the top. Though somewhat uncertain if they made the correct choice, they
selected “tomorrow” and viewed the task list for the following day. Since this test was pre-
structured, they were unsure if they were on the task list for tomorrow. This issue would
be resolved with their actual data. For tracking, participants easily identified the tracking
button on the task tile. However, all three users were unsure if they had started the timer,
and the third paused it because of confusion. This stems from the timer operating as
a Foreground Service, which requires a moment to activate. Phones, with superior perfor-
mance, exhibit this delay less noticeably. This behavior should be carefully monitored and
addressed as necessary.

After closing the app and waiting, all users hesitated on the empty home screen before
scrolling to the notification list, as they were not using their personal smartwatches. Upon
locating the timer notification, two participants first paused the timer and, after encour-
agement, ended it. The third participant directly ended the timer. When asked to adjust
settings, users swiftly tapped the navigation button and selected settings. They easily
enabled the first option, which was the disabled 12-hour mode.

In conclusion, the smartwatch application’s navigation and user elements were gener-
ally easy to understand. It was notably more accessible to grasp than the mobile version.
The most significant issues identified were the initial confusion with the timer, which re-
mained in the starting state for a significant time before transitioning to the running state,
and the longer loading time. An additional familiarity with the mobile application would
resolve other uncertainties and hesitations.

63

Chapter 8

Conclusion

This thesis emerged from the increasing popularity of the author’s application, Time-
Noder2', as many users requested a cross-platform version and were willing to pay for
it. This interest led naturally to the undertaking of transforming TimeNoder2 into a
cross-platform application that supports collaboration, a project that aligned well with
the master’s thesis requirements. The journey led to exploring what it truly entails to
make TimeNoder2 both cross-platform and collaborative, addressing the challenges within.
Ultimately, it became apparent that TimeNoder2 was not equipped for this transition.
Hence, the thesis concentrated on fulfilling its objectives by delving into core synchroniza-
tion issues, such as data exchange between multiple users, sharing collaborative documents,
and designing a smartwatch integration.

Initially, existing synchronization solutions were examined for both basic relational data
and collaborative documents synchronization. Conflict-free replicated data types (CRDTs)
were thoroughly investigated because they provide a dependable framework for simulta-
neous collaborative editing by multiple users. A substantial part of the thesis focused on
enhancing TimeNoder2 to support smartwatches running on WearOS. Given that Flutter
supports deployment to WearOS, much of the existing codebase was utilized, easing the
development process. The research further delved into the reasons behind smartwatch pur-
chases, primary consumer interests, and relevant scientific insights regarding their advan-
tages. Subsequently, the design and functionality of smartwatch applications were reviewed
to enhance the adaptation of TimeNoder2 for this platform.

An in-depth examination of the current TimeNoder2 application was carried out, in-
corporating user feedback to understand user expectations and necessities better. Subse-
quently, two synchronization methods were introduced. The initial solution relied on the
WatermelonDB protocol but was modified to utilize the Drift database, a widely respected
SQLite Flutter database. While it currently operates assuming a PostgreSQL backend
database, it can be modified for other relational databases. The setup employs client-side
code generation along with universal logic on the server side, facilitating ease of extension
— developers merely need to set up tables with the appropriate structure on both local
and server databases, with the rest being managed automatically. This approach was ac-
knowledged by the Drift creator, who listed it among notable synchronization strategies®.
It is also user-friendly for customization and adjustment. This solution was presented in a
functional demo that included document synchronization®.

https://play.google.com/store/apps/details?id=com.janzimola.goal_venture2&hl=en&gl=US
2https://drift.simonbinder.eu/examples/server_sync/#manual
Shttps://habitmaster-e52e9.web.app/

64

https://play.google.com/store/apps/details?id=com.janzimola.goal_venture2&hl=en&gl=US
https://drift.simonbinder.eu/examples/server_sync/#manual
https://habitmaster-e52e9.web.app/

The second approach utilized the PowerSync synchronization engine alongside the Base-
jump template for Supabase. This demonstration illustrated a potential vision for Time-
Noder2 as a fully cross-platform collaborative application, encompassing basic data and
document synchronization features. Furthermore, a smartwatch edition of TimeNoder2
was developed. According to user feedback, the app was user-friendly, with minor concerns
about loading times and timer initiation. It presented a streamlined version of TimeNoder2,
adhering to WearOS design principles, while enabling users to manage tasks while on the
move. One significant drawback was the lack of capability to generate tasks directly on
the watch. The interface allowing this feature was omitted as the text input field, though
operational during development, resulted in crashes, which prevented the app from suc-
cessfully completing Google Play’s review process. Despite a few setbacks and challenges
during publishing, the app was ultimately published successfully.

Additional emphasis was placed on the collaborative sharing of documents. The ap-
proach incorporates CRDTs for their advantageous characteristics. Even though these
CRDT map and array structures are specifically tailored for document editing, issues were
encountered during prototyping, particularly when merging CRDT arrays after offline ed-
its, as the results were not as expected. Ultimately, CRDTs serve to synchronize document
states among connected devices. Furthermore, a custom sorting algorithm, complemented
by additional attributes, maintains the user’s intent. This functionality was packed into a
plugin that is designed for the appflowy_editor library, which was selected as the best
text editor option for collaborative editing in this thesis. The plugin was acknowledged by
the appflowy_editor library, which also valued its contribution, and currently features a
demo of this synchronization plugin in its showcase.

In conclusion, this thesis presents various insightful strategies for creating cross-platform
and collaborative applications with Flutter, including those for smartwatches. These in-
sights remain significant regardless of whether TimeNoder2 eventually evolves into a col-
laborative tool. While synchronization constitutes just a piece of the puzzle, this research
lays a robust foundation for future development endeavors.

65

Bibliography

1]

[10]

[11]

ABUWARDA, Z.; MOSTAFA, K.; OETOMO, A.; HEGAZY, T. and MORITA, P. Wearable
devices: Cross benefits from healthcare to construction. Automation in Construction.
Elsevier, 2022, vol. 142, p. 104501.

AHN, C. R.; LEE, S.; SUN, C.; JEBELLI, H.; YANG, K. et al. Wearable sensing
technology applications in construction safety and health. Journal of Construction

Engineering and Management. American Society of Civil Engineers, 2019, vol. 145,
no. 11, p. 03119007.

ANDROID DEVELOPERS. Conserve power and battery
https://developer.android.com/training/wearables/apps/power. 2024.
Accessed: 2024-06-17.

ANDROID DEVELOPERS. Wear OS Design and Development Guide
https://developer.android.com/design/ui/wear/guides/. 2024. Accessed:
2024-12-15.

ANYTYPE TEAM. Any-Sync Protocol Overview. 2024. Available at:
https://tech.anytype.io/any-sync/overview. Accessed: 2024-11-25.

ANYTYPE TEAM. Data Storage and Deletion. 2024. Available at: https:

//doc.anytype.io/anytype-docs/data-and-security/data-storage-and-deletion.
Accessed: 2024-11-25.

AprpFLOWY-10. AppFlowy-Collab. 2024. Available at:
https://github.com/AppFlowy-I10/AppFlowy-Collab. Accessed: 2024-11-25.

AppFLOWY TEAM. Database Monitoring With Realtim. 2023. Available at:
https://docs.appflowy.io/docs/guides/appflowy/self-hosting-appflowy-using-
supabase#database-monitoring-with-realtime. Accessed: 2024-11-25.

APPFLOWY TEAM. Database. 2024. Available at: https://docs.appflowy.io/docs/
documentation/software-contributions/architecture/backend/database. Accessed:

2024-11-25.

AprpFLOWY TEAM. How we built Appflowy with Flutter and Rust. November 2024.
Available at: https://appflowy.io/blog/tech-design-flutter-rust. Accessed:
2024-11-25.

AprpPLE DEVELOPER. WWDC23: Design and build apps for watchOS 10
https://www.youtube.com/watch?v=BPJZ6A_brSw. 2024. Presented by Jennifer
Patton (Apple Design Team) and Matthew Koonce (SwiftUI Team for watchOS),
Published on May 3, 2024.

66

https://developer.android.com/training/wearables/apps/power
https://developer.android.com/design/ui/wear/guides/
https://tech.anytype.io/any-sync/overview
https://doc.anytype.io/anytype-docs/data-and-security/data-storage-and-deletion
https://doc.anytype.io/anytype-docs/data-and-security/data-storage-and-deletion
https://github.com/AppFlowy-IO/AppFlowy-Collab
https://docs.appflowy.io/docs/guides/appflowy/self-hosting-appflowy-using-supabase#database-monitoring-with-realtime
https://docs.appflowy.io/docs/guides/appflowy/self-hosting-appflowy-using-supabase#database-monitoring-with-realtime
https://docs.appflowy.io/docs/documentation/software-contributions/architecture/backend/database
https://docs.appflowy.io/docs/documentation/software-contributions/architecture/backend/database
https://appflowy.io/blog/tech-design-flutter-rust
https://www.youtube.com/watch?v=BPJZ6A_brSw

[12]

[17]

22]

[23]

Bar, Y.; TomPKINS, C.; GELL, N.; DIONE, D.; ZHANG, T. et al. Comprehensive
comparison of Apple Watch and Fitbit monitors in a free-living setting. PLoS One.
Public Library of Science San Francisco, CA USA, 2021, vol. 16, no. 5, p. e0251975.

BARMAN, L.; DUMUR, A.; PYRGELIS, A. and HUBAUX, J.-P. Every byte matters:
Traffic analysis of bluetooth wearable devices. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies. ACM New York, NY,
USA, 2021, vol. 5, no. 2, p. 1-45.

BLASCHECK, T.; BESANCON, L.; BEZERIANOS, A.; LEE, B. and ISENBERG, P.
Glanceable visualization: Studies of data comparison performance on smartwatches.
IEEFE transactions on visualization and computer graphics. IEEE, 2018, vol. 25,

no. 1, p. 630-640.

BURNHAM, J. and DELLERA, S. Introduction to UX Design on Wear OS YouTube
video. 22. May 2023. Available at: https://www.youtube.com/watch?v=fZpVlbzlvuy.
Presenters: Josef Burnham, UX Designer; Sofia Dellera, UX Designer.

CARROLL, M. and PATEMAN, M. Introduction to UX Research & Product Inclusion
on Wear OS YouTube video. 22. May 2023. Available at:
https://youtu.be/puGn72d86qw?si=MYjDImW_idEHJHjf&t=44. Presenters: Mallory
Carroll, UX Researcher; Matthew Pateman, UX Researcher.

CasAccia, S.; REVEL, G. M.; SCALISE, L.; CuccHIERI, G. and RossI, L.
Smartwatches selection: market analysis and metrological characterization on the
measurement of number of steps. In: IEEE. 2021 IEEE International Symposium on
Medical Measurements and Applications (MeMeA). 2021, p. 1-5.

CHEATHAM, S. W.; STULL, K. R.; FANTIGRASSI, M. and MOTEL, I. The efficacy of
wearable activity tracking technology as part of a weight loss program: a systematic
review. J Sports Med Phys Fitness, 2018, vol. 58, no. 4, p. 534-548.

CHEN, X.; CHEN, W.; Liu, K.; CHEN, C. and L1, L. A comparative study of
smartphone and smartwatch apps. In: Proceedings of the 36th Annual ACM
Symposium on Applied Computing. 2021, p. 1484-1493.

CooK, J. YouTube Video: Unknown Title. February 2023. Available at:
https://www.youtube.com/watch?v=kU1t27KmHDc. Accessed: 2024-11-25.

COUNTERPOINT TECHNOLOGY MARKET RESEARCH. Global Smartwatch Market
Forecast: 2024 and Beyond https:
//www.counterpointresearch.com/insights/global-smartwatch-market-2024/.
2024. Accessed: 2024-12-11.

Davipson, S. B.; GArciA MoLINA, H. and SKEEN, D. Consistency in a partitioned
network: a survey. ACM Computing Surveys (CSUR). ACM New York, NY, USA,
1985, vol. 17, no. 3, p. 341-370.

DupJAK, M. and MARTINOVIC, G. An API-first methodology for designing a

microservice-based Backend as a Service platform. Information Technology and
Control, 2020, vol. 49, no. 2, p. 206-223.

67

https://www.youtube.com/watch?v=fZpVlbzlvuY
https://youtu.be/puGn72d86qw?si=MYjDImW_idEHJHjf&t=44
https://www.youtube.com/watch?v=kUlt27KmHDc
https://www.counterpointresearch.com/insights/global-smartwatch-market-2024/
https://www.counterpointresearch.com/insights/global-smartwatch-market-2024/

[24]

[25]

[26]

[27]

33]

[34]

[37]

Faiz, M. and SHANKER, U. Data synchronization in distributed client-server
applications. In: IEEE. 2016 IEEE International Conference on Engineering and
Technology (ICETECH). 2016, p. 611-616.

FLUuTTER COMMUNITY. Watch__connectivity: Flutter plugin for communication
between watch and phone. 2025. Available at:
https://pub.dev/packages/watch_connectivity. Accessed: 2025-05-02.

FosTER, K. R. and ToroUS, J. The opportunity and obstacles for smartwatches and
wearable sensors. IEEFE pulse. IEEE, 2019, vol. 10, no. 1, p. 22-25.

GARCIA, B.; CHU, S. L.; NAM, B. and BANIGAN, C. Wearables for learning;:
examining the smartwatch as a tool for situated science reflection. In: Proceedings of
the 2018 CHI conference on human factors in computing systems. 2018, p. 1-13.

GOMES, V. B.; KLEPPMANN, M.; MULLIGAN, D. P. and BERESFORD, A. R. Verifying

strong eventual consistency in distributed systems. Proceedings of the ACM on
Programming Languages. ACM New York, NY, USA, 2017, vol. 1, OOPSLA, p. 1-28.

GOOGLE DEVELOPERS. Send and receive messages on Wear. 2025. Available at:
https://developer.android.com/training/wearables/data/messages. Accessed:

2025-05-02.

GOOGLE DEVELOPERS. Sync Data. 2025. Available at:
https://developer.android.com/training/wearables/data/data-layer. Accessed:
2025-05-02.

IoaNnNiDIS, D. C.; KAPASOURI, E. M. and VASSILIOU, V. S. Wearable devices:
monitoring the future? Oxford University Press, 2019.

JIANG, T.; YANG, J.; YU, C. and SANG, Y. A clickstream data analysis of the
differences between visiting behaviors of desktop and mobile users. Data and
Information Management. Elsevier, 2018, vol. 2, no. 3, p. 130-140.

KaAASHOEK, F.; L1, K.; MARSH, B. and TAUBER, J. A. Storage alternatives for

mobile computers. In: Symposium on Operating Systems Design and Implementation
(Monterey CA) pages. P. 25-39.

Kass, T.; COFFEY, J. and KAss, S. Bridging the Gap Between Desktop and Mobile
Devices. In: Springer. HCI International 2020-Late Breaking Posters: 22nd
International Conference, HCII 2020, Copenhagen, Denmark, July 19-24, 2020,
Proceedings, Part I 22. 2020, p. 134-141.

KAWELL JR, L.; BECKHARDT, S.; HALVORSEN, T.; OzzIE, R. and GREIF, 1.
Replicated document management in a group communication system. In: Proceedings
of the 1988 ACM conference on Computer-supported cooperative work. 1988, p. 395.

KENG, J. C. J.; JIANG, L.; BALAN, R. K.; LEE, Y. and MiISRA, A. Profiling power
utilization behaviours of smartwatch applications. In: Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services Companion.
2016, p. 96-96.

Kuaononov, V. Learning Domain-Driven Design. ,, O’Reilly Media, Inc.”, 2021.

68

https://pub.dev/packages/watch_connectivity
https://developer.android.com/training/wearables/data/messages
https://developer.android.com/training/wearables/data/data-layer

[38] KHURANA, R.; BANOvIC, N. and Lyons, K. In only 3 minutes: perceived exertion
limits of smartwatch use. In: Proceedings of the 2018 ACM International Symposium
on Wearable Computers. 2018, p. 208-211.

[39] KING, C. E. and SARRAFZADEH, M. A survey of smartwatches in remote health
monitoring. Journal of healthcare informatics research. Springer, 2018, vol. 2, p. 1-24.

[40] KLEPPMANN, M. Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. ,, O’Reilly Media, Inc.“, 2017.

[41] KLEPPMANN, M. CRDTs and the Quest for Distributed Consistency YouTube video.
InfoQ, 2. October 2018. Available at: https://youtu.be/B5NULPSi0Gw. Accessed:
2024-11-22.

[42] KruG, S. Don’t make me think!: a common sense approach to Web usability. Pearson
Education India, 2000.

[43] KULKARNI, S. S.; DEMIRBAS, M.; MADAPPA, D.; AvvA, B. and LEONE, M. Logical
physical clocks. In: Springer. Principles of Distributed Systems: 18th International
Conference, OPODIS 201/, Cortina d’Ampezzo, Italy, December 16-19, 2014.
Proceedings 18. 2014, p. 17-32.

[44] LoNg, J. DotJS 2019 - James Long - CRDTs for Mortals
https://youtu.be/DEcwa68f-jY?si=DLgadz4cx6LFJL1v. 2019. Conference video.
Accessed: 2024-11-17.

[45] Lui, G. Y.; LOUGHNANE, D.; POLLEY, C.; JAYARATHNA, T. and BREEN, P. P. The
apple watch for monitoring mental health-related physiological symptoms: Literature
review. JMIR Mental Health. JMIR Publications Inc., Toronto, Canada, 2022, vol. 9,
no. 9, p. e37354.

[46] MAHAR, K. The Best To-Do List App. 2024. Available at:
https://www.nytimes.com/wirecutter/reviews/best-to-do-list-app/. Accessed:
2024-11-25.

[47] MARTIN, S.; AHMED NACER, M. and URsO, P. Abstract unordered and ordered trees
CRDT. ArXiv preprint arXiv:1201.1784, 2012.

[48] MiIRrET, L. P. Consistency models in modern distributed systems. an approach to
eventual consistency. Master. MA thesis. Universitat Politecnica de Valencia, Spain,
2014.

[49] MULLER, B. Offline-First React Native Apps with Expo, WatermelonDB, and
Supabase. 2023. Available at:
https://supabase.com/blog/react-native-offline-first-watermelon-db. Accessed:
2024-11-25.

[50] PATz, C.; MICHAELIS, A.; MARKEL, F.; LOFFELBEIN, F.; DAHNERT, I. et al.
Accuracy of the Apple Watch oxygen saturation measurement in adults and children
with congenital heart disease. Pediatric Cardiology. Springer, 2023, vol. 44, no. 2,

p. 333-343.

69

https://youtu.be/B5NULPSiOGw
https://youtu.be/DEcwa68f-jY?si=DLqadz4cx6LFJL1v
https://www.nytimes.com/wirecutter/reviews/best-to-do-list-app/
https://supabase.com/blog/react-native-offline-first-watermelon-db

[51]

[56]

[57]

[58]

[61]

[62]

PEREZ, M. V.; MAHAFFEY, K. W.; HEDLIN, H.; RUMSFELD, J. S.; GARCIA, A. et al.

Large-scale assessment of a smartwatch to identify atrial fibrillation. New England
Journal of Medicine. Mass Medical Soc, 2019, vol. 381, no. 20, p. 1909-1917.

POwERSYNC. Writing Client Changes. Available at: https:
//docs.powersync.com/installation/app-backend-setup/writing-client-changes.

Accessed: 2025-05-10.

POWERSYNC TEAM. Postgres and Yjs CRDT: Collaborative Text Editing Using
PowerSync. 2024. Available at: https://www.powersync.com/blog/postgres-and-yjs-
crdt-collaborative-text-editing-using-powersync. Accessed: 2024-11-25.

POWERSYNC TEAM. PowerSync Sync Rules. 2024. Available at:
https://github.com/powersync-ja/powersync-service/blob/main/packages/sync-
rules/README.md. Accessed: 2024-11-25.

SHADIEV, R.; HWANG, W.-Y. and Liu, T.-Y. Investigating the effectiveness of a
learning activity supported by a mobile multimedia learning system to enhance
autonomous EFL learning in authentic contexts. Fducational Technology Research
and Development. Springer, 2018, vol. 66, p. 893-912.

SHAPIRO, M.; PREGUICA, N.; BAQUERO, C. and ZAWIRSKI, M. Conflict-free
replicated data types. In: Springer. Stabilization, Safety, and Security of Distributed
Systems: 13th International Symposium, SSS 2011, Grenoble, France, October 10-12,
2011. Proceedings 13. 2011, p. 386—400.

VAN STEEN, M. and TANENBAUM, A. S. Distributed systems. Maarten van Steen
Leiden, The Netherlands, 2017.

VELMOVITSKY, P. E.; ALENCAR, P.; LEATHERDALE, S. T.; COwWAN, D. and MORITA,
P. P. Using apple watch ECG data for heart rate variability monitoring and stress
prediction: A pilot study. Frontiers in Digital Health. Frontiers Media SA, 2022,

vol. 4, p. 1058826.

VILARINHO, T.; FARSHCHIAN, B.; BAJER, D. G.; DaHL, O. H.; EGGE, I. et al. A
combined smartphone and smartwatch fall detection system. In: IEEE. 2015 IEEE
international conference on computer and information technology; ubiquitous
computing and communications; dependable, autonomic and secure computing;
pervasive intelligence and computing. 2015, p. 1443-1448.

VISURI, A.; SARSENBAYEVA, Z.; VAN BERKEL, N.; GONCALVES, J.; RAWASSIZADEH,
R. et al. Quantifying sources and types of smartwatch usage sessions. In: Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. 2017,

p- 3569-3581.

VocGELS, W. Eventually Consistent: Building reliable distributed systems at a
worldwide scale demands trade-offs? between consistency and availability. Queue.
ACM New York, NY, USA, 2008, vol. 6, no. 6, p. 14-19.

WATERMELONDB DEVELOPERS. Backend. 2024. Available at:
https://watermelondb.dev/docs/Sync/Backend. Accessed: 2024-11-25.

70

https://docs.powersync.com/installation/app-backend-setup/writing-client-changes
https://docs.powersync.com/installation/app-backend-setup/writing-client-changes
https://www.powersync.com/blog/postgres-and-yjs-crdt-collaborative-text-editing-using-powersync
https://www.powersync.com/blog/postgres-and-yjs-crdt-collaborative-text-editing-using-powersync
https://github.com/powersync-ja/powersync-service/blob/main/packages/sync-rules/README.md
https://github.com/powersync-ja/powersync-service/blob/main/packages/sync-rules/README.md
https://watermelondb.dev/docs/Sync/Backend

[63] WATERMELONDB DEVELOPERS. Backend. 2024. Available at:
https://watermelondb.dev/docs/CRUD. Accessed: 2024-11-25.

[64) WATERMELONDB DEVELOPERS. Synchronization. 2024. Available at:
https://watermelondb.dev/docs/Sync/Intro. Accessed: 2024-11-25.

[65] YAsMIN, A.; MAHMUD, T.; DEBNATH, M. and NGu, A. H. An Empirical Study on
Al-Powered Edge Computing Architectures for Real-Time IoT Applications. In:
IEEE. 2024 IEEFE 48th Annual Computers, Software, and Applications Conference
(COMPSAC). 2024, p. 1422-1431.

[66] ZASLAVSKY, A. and TARI, Z. Mobile computing: Overview and current status.

Journal of Research and Practice in Information Technology, 1998, vol. 30, no. 2,
p. 42-52.

[67] ZHOU, X.; ZASLAVSKY, A.; RASHEED, A. and PRICE, R. Efficient object-oriented
query optimisation in mobile computing environment. Journal of Research and
Practice in Information Technology, 1998, vol. 30, no. 2, p. 65-76.

[68] ZHu, X.; GUO, Y. E.; NIKRAVESH, A.; QIAN, F. and MAO, Z. M. Understanding the
networking performance of wear OS. Proceedings of the ACM on Measurement and
Analysis of Computing Systems. ACM New York, NY, USA, 2019, vol. 3, no. 1,

p. 1-25.

[69] ZMOLA, J. Smart Task Planner: Inteligentni Planovac Ukolii. Brno, Czech Republic,
2023. Bachelor’s Thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor ING. JIRf HYNEK, P.

71

https://watermelondb.dev/docs/CRUD
https://watermelondb.dev/docs/Sync/Intro

Appendix A

Testing of Synchronization and
Smartwatch Application

For document testing, the markdown syntax supported by appflowy_editor is used. For
example, when the text says: “Tabl writes a heading 'Heading’ on the first line”, it means
that the raw input was “# Heading”. For a bullet-list item, it would be written as “- [list
item content]”. For special types, such as a checkbox, type “/” and choose an appropriate
element from the context menu. This simplification is important for document-related
testing and is used to make the steps easier to follow.

A.1 One-User Synchronization Scenario

Testing scenario of basic synchronization using WatermelonDB protocol, including synchro-
nization of documents. It consists of:

Testing Preparation — That prepares initial data that is used to test that, before
stored data is loaded on login.

Verifying Pre-Created Data — Verification that data stored in the previous phase
is loaded on login.

Editing in Two Tabs — Simultaneous editing in two tabs, performing operations
such as inserting, updating, deleting, moving, and offline editing.

A.1.1 Testing Preparation

1.

2.

Open a new browser window and go to the demo website: Demo'.

Log in using the demo credentials provided on the login page.

. Create a new project called “Before Demo”, open the created project tab, and create

a new task: “Before demo task”.

. Open the document editor for the task: “demo task” Enter a heading: “# Heading”

and add three bullet points: “point 17, “point 2”7, “point 3”. Then wait about 10
seconds, and then close the browser window.

https://habitmaster-e52e9.web.app

72

https://habitmaster-e52e9.web.app/
https://habitmaster-e52e9.web.app

A.1.2 Verifying Pre-Created Data

1

2.

. Open a new browser window and go to the demo website: Demo?.
Log in using the provided demo credentials.

. Open the demo website in a second tab and place both tabs side by side. In both
tabs, you should see the “Before Testing Project”.

. Open “Before Testing Project” in both tabs — the task “Before Testing task” should
appear in each.

. Open the “Before Testing task” and then its document in both tabs. The document
editors should show the previously entered heading and bullet points. Go back to the
home page in both tabs.

A.1.3 Editing in Two Tabs

1.

10.

11.

12.

In tab 1, create a project named “Demo Thesis Project”. After synchronization, the
project should be visible in both tabs.

. In tab 2, open the project page for “Demo Thesis Project” and create a task named
“Demo task”.

. In tab 1, open the same project — the task “Demo task” should now be visible in both
tabs. Open “Demo task” in tab 1, and then open the task’s document editor.

. Do the same in tab 2 — at this point, both editors should show an empty document.

. In tab 1, add a heading “Heading” on the first line by writing “Heading”. After
synchronization, the heading should appear in both tabs.

. In tab 2, modify the heading by appending “a” to make it “Headinga”. After syn-
chronization, both tabs should show “Headinga”. Cursor positions should remain
preserved (tab 1’s cursor after “g”, tab 2’s cursor after “a”).

In tab 1, delete the last three letters and replace them with “xxx” — should now be
“Headixxx”. Synchronization should reflect this change everywhere.

. In tab 2, select “xxx” and make it italic via context menu. After synchronization,
both tabs should show “xxx” in italic.

. In tab 1, add a bullet point below the heading and name it: “point 1”.

In tab 2, add two more bullet points: “point2”, “point3”, then insert a horizontal
separator by typing three times “-”, and finally add another heading: “New Heading”.
After synchronization, it should show the same structure in both tabs.

In tab 1, delete the “Headingxxx” line and the three bullet points below it. Both
tabs should now show an empty heading line, the horizontal separator, and the “New
Heading”.

In tab 1, create a bullet point under “New Heading” called “point with tasks”.

2

https://habitmaster-e52e9.web.app

73

https://habitmaster-e52e9.web.app/
https://habitmaster-e52e9.web.app

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In tab 2, create a task under “point with tasks” by turning the bullet into a checkbox
named “task 1”7, then add “task 1.1” nested under it, and “task 1.1.1” nested under
that.

Still in tab 2, add a regular bullet point below: “point without tasks”.

Move “task 1” to be under “point with tasks” After synchronization, both editors
should reflect this structure correctly.

Under “task 17, add another task: “task 2”. Now the structure should be task 1 —
task 2 — task 1.1.

In tab 1, delete “task 2”. The remaining structure: task 1 — task 1.1 — task 1.1.1
should be visible in both tabs.

Move “task 1”7 above “point with tasks”. After synchronization, “point with tasks”
will have only task 1.1 nested under it, task 1 above.

Lock the device and come back after 15 minutes.
In tab 1, insert a new heading “First line heading” at the top.

In tab 2, delete everything. After synchronization, both editors should show an empty
document.

In tab 1, write a heading: “Now testing offline sync”. Wait 10 seconds and turn off
the internet.

Put both cursors at the end of “Now testing offline sync”. Create a new line in each
tab.

In tab 1, write a heading “Heading Tab 1”7 with two bullet points “point tab 1 17,
“point tab 1 2”7, followed by a horizontal separator.

In tab 2, do the same — but replace “tab 1”7 with “tab 2”.

In tab 2, under the separator, add “Exchanging sides Tab 2” with checkboxes: “check-
box tab 2 17, “checkbox tab 2 2”.

In tab 1, do the same as above but with “tab 1” instead. Turn the internet back on.
After synchronization, both editors should show the same structure: “Heading Tab
17, “Exchanging Tab 17, “Heading Tab 2”7, “Exchanging Tab 2”. Sometimes, tab 2
content may come first, but the important part is that changes from tab 1 and tab 2
are not mixed.

In tab 1, delete: “tab 1 1”7, “Heading Tab 2”7, “checkbox tab 2 2”.

In tab 2, delete the heading: “Now testing offline sync” and leave a blank line at the
top.

In tab 1, remove the initial character from “Heading Tab 1” or “Heading Tab 27,
based on the content of the second line. Subsequently, remove the entire first line.

74

31.

32.
33.

A.2

In tab 2, insert a new heading above “Heading Tab 1”: “First spot heading”. Swap
bullet point “point tab 1.17 with “point tab 1.2”. Eventually, both editors should
show the same final state. Close tab 1.

In tab 2, add a bullet point “tab 2 2” at the end of the document.

Open tab 3, go to the same task editor, and confirm that the documents match.

Multi-User Synchronization Scenario

Testing scenario of team synchronization using the PowerSync framework, including syn-
chronization of documents. It consists of:

Offline-Only Mode and Registration — Verification that offline-only mode is sup-
ported and that users can create accounts.

Team Management and Document Editing — Verification that users can do
basic team management and collaborate on shared documents.

A.2.1 Offline-Only Mode and Registration

1.

2.

10.

11.

12.

13.

Delete application data on both Android and iOS.

Open the app on both devices.

. Walk through the introduction screens without creating demo data.

Allow notification permissions to simplify testing.

On device A (Android phone), open the drawer and create a new personal document
by clicking: “Add personal document”. Name it “device A personal document”.

. On device B (i0S emulator), repeat the same process and create “device B personal

document”.

At this point, device A sees “device A personal document”, and device B sees “device
B personal document”.

. Open the document on device A and add the heading: “Device A personal heading”.

. Do the same on device B, adding: “Device B personal heading”.

Close the editor on both devices by clicking the checkmark in a circle.

Reopen the personal documents on both devices to verify that the content matches
the previously entered. Close the editors again.

Sign up on device A using a new account. After entering the email and password,
an invitation code is sent to the email. Enter the code in the app on the email
verification page. After verification, the app does not yet navigate to the login page
— this is expected behavior.

Repeat the sign-up process on device B using a different new account.

75

A.2.2 Team Management and Document Editing

1.

10.

11.

12.

13.

14.

15.

16.

Navigate to the home page and open the drawer. Verify there is no “Login” button
in the drawer, confirming that the user is logged in. Do this on both devices.

. Open previously created personal documents on both devices and verify that the

content remains unchanged. This demonstrates that users can start using the app
without logging in and later transition to a synchronized state.

. On device A, open the drawer, go to “Teams” at the bottom, and click “Add team”.

In the dialog, enter “Demo team” and confirm. After a short synchronization, the
Demo team appears above the “Add team” button.

. Open the Demo team on device A. It shows no documents yet, and one member — the

owner (the account signed up on device A). There are no invitations.

. On device A, click “Invite member”, choose “One-Time invitation”, and click “Save”.

Copy the generated code and transfer it to device B.

. On device B, open the drawer, go to the Teams page, and click “Join Team” in the

top-right corner. Enter the code in the bottom sheet and submit. A toast confirms
that the team was joined successfully. The “Demo team” now appears on device B.

Open the Demo team on device B. It shows no documents, two members, and no
active invitations.

. On device A, create another one-time invite. This should now appear in the invite

list on both devices.

. On device B, create a new document in the Demo team called “First team doc”.

Device B displays the document, marked as last edited by the device B account, with
one edit recorded — this corresponds to initialization required by appflowy_editor_-
sync_plugin.

On device A, the “First team doc” appears. Due to a Ul update issue, you may need
to close and reopen the Demo team for the document details to be displayed correctly.

Open “First team doc” on both devices via the drawer. Initially, both documents
appear empty.

On device A, add a heading: “Team doc heading”.

On device B, after synchronization, add three bullet points below the heading: “Point
17, “Point 2”7, “Point 3”.

After a short synchronization delay, both devices show the same content with heading
and bullet points.

Close the editor on both devices using the checkmark and reopen the document.
Check if the content was persisted.

On device A, create a new personal document: “device A personal document 2.
Repeat the process on device B.

76

17.
18.

19.

20.

21.

22.
23.

Each device now sees two personal documents tied to its respective user.

On device B, delete “First team doc” using the three-dot menu in the drawer. After
synchronization, both devices show no team documents.

On device B, add a new team document by clicking “Add team document” in the
drawer. Name it “Second team doc”, choose Demo team, and submit. After synchro-
nization, both devices show “Second team doc” in the drawer.

Open “Second team doc” on device A and insert a heading: “Second team doc head-

ing”.
Open the document on device B. Both devices display identical content with the
heading.

Close the editors using the checkmark on both devices.

Navigate to the Demo team page via the drawer. Both devices display one document,
the same last editor, and the same number of edits. These edits reflect batched editor
changes saved to the database, as explained at the end of Section 6.1.3. The team
page also shows two members and one remaining invite.

A.3 Smartwatch Application Scenario

Testing scenario of watch functionality and its synchronization with a mobile device using
an Android phone and a connected WearOS smartwatch. It consists of:

o Initialization of User Data on the Mobile Device — Creation of data on mobile

device that will be then used to test the smartwatch application and its synchroniza-
tion with an Android phone.

e Smartwatch Functionality and Synchronization — Testing the functionality of

the smartwatch application to manage tasks, track, view schedule, and complete
habits. It also tests its synchronization with a mobile device.

Initialization of User Data on the Mobile Device

1.

TimeNoder2 is installed on a physical Android mobile device and a physical WearOS
smartwatch. All data for each app is cleared.

. On the mobile device, walk through the introduction and create three tasks: One

called “Read Harry Potter 1 book” for the project “Reading” with a deadline in a
month. Another task: “Write a thesis” for the project “School” with a deadline set
to yesterday. And finally, “Morning meditation” for the project “Meditation” with a
deadline today at 8 AM.

. On the mobile, navigate to the schedule page and, after the “Morning meditation”

task event, add another event. Create a new event in the 9:00-14:00 range with the
“School” project assigned and set it to repeat daily.

On the mobile, navigate to the habits page by opening the drawer and selecting
“Habits.” At the top of the page, click on “Select Projects” and mark “School,”
“Meditation,” “Reading,” and “Training” as habits, then confirm.

77

o.

Click the check button and mark “Training” as completed for today.

Smartwatch Functionality and Synchronization

1.

2.

10.

11.

12.

13.

14.

Keep the mobile app open and navigate back to the tasks page.

Turn on Bluetooth on the mobile and ensure that the smartwatch is connected.

. Open the TimeNoder2 app on the smartwatch and wait for it to load. Keep the app

open and wait for about 15 seconds. You should see the “Morning meditation” task
listed under today’s tasks.

. Tap “Today” at the top and select “Previous” on the selection page. You should see

the task “Write a thesis,” which had a deadline yesterday.

. Now navigate to future tasks in the same way. You should see “Read Harry Potter

1.” task instead.

. Tap the play button on the right side of the “Read Harry Potter 1” task tile.

After a moment, you should be navigated to the timer page, and the timer should
be running, tracking the “Read Harry Potter 1” task. The current status should be
“Work — Round 1/4” Wait until the timer runs for more than a minute, then tap
the skip button at the bottom. The timer should switch to the “Break — Round 1/4”
state, showing a 5b-minute break. The task is still being tracked.

. On the mobile device, check the current timer status at the top of the tasks page. It

should also show 5 minutes. This verifies that the timer state was successfully synced.

. On the mobile device, go to the schedule page. You should see a tracking record for

the “Reading” project and the “Read Harry Potter 1 book” task. This confirms that
the timer on the watch created the event and that it synced successfully to the mobile.

On the watch, tap the hamburger icon and navigate to the schedule page. You should
see a similar representation of the schedule page.

On the watch, go back to the timer page and start the timer again. Now close the
app by swiping to the right. Go to the watch home screen. You should see an activity
indicator for the app at the bottom. Opening the notification panel should show the
current timer status. This verifies that the timer runs independently of the app, even
when it is killed by the OS — unlike apps like TickTick or Focus To-Do.

On the watch, open recent apps and verify that the current timer status is visible
there too.

In the watch’s notification panel, tap the timer notification and press the skip button.
Then return to the home screen and verify that the ongoing activity disappeared. In
recent apps, confirm that the timer status is no longer shown in the app tile.

Open the timer notification again and start the timer. Verify that the ongoing activity
appears again and that recent apps show the correct status. This confirms that the
smartwatch can control the timer from the notification, allowing long tracking without
keeping the app open.

78

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

On the phone, check the timer status. It will still show the old state, because the
smartwatch app was not opened to allow synchronization.

On the watch, open the TimeNoder2 app and go to the timer page. It should show
the same state as in the notification. This confirms that tracking transitions smoothly
into the app Ul

On the phone, it should show the timer in the same state as on the watch, but in the
“start” state and not running. This is intentional, as the running state only lives in
one device.

Wait until the timer runs for more than a minute and then tap the close button on
the currently tracked task tile. The timer keeps running, but no task is selected.

On the phone, verify that a new tracking event is created on the schedule page for
the “Reading” project and “Read Harry Potter 1 book” task.

On the watch, dismiss the app (do not close it entirely) and verify that the ongoing
activity and timer notification remain correct. The notification should not show a
tracked task.

Close both the mobile and watch apps.
Reopen both apps.

On the mobile app, go to the timer page and press “Stop” to reset the timer to the
default state.

On the watch, open the timer page and verify that the state matches.

On the watch’s timer page, tap on “Project” and select the “Meditation” project, and
wait.

After a moment, verify that “Meditation” is selected on both devices.

On the watch, go to the habits page and check the status of the “Meditation” habit.
It should not be completed for today.

Return to the timer page and track “Meditation” for over one minute. Then stop the
tracking by tapping the close icon on the project tile.

Go to the habits page and confirm that “Meditation” is marked as completed.

On both the watch and phone, go to the schedule page. There should be 5 events in
total, with the latest one assigned to the “Meditation” project.

On the mobile app, go to the habits page via the drawer and verify that the “School”
habit is not yet completed.

On the watch, scroll to the event with the “School” project and mark it as done.

On the phone, verify that the “School” habit is now marked as completed. Confirm
the same thing on the watch’s habits page.

On both devices, navigate to the tasks page.

79

35.
36.

37.

38.

39.

40.

41.

42.

On the watch, go to previous tasks by tapping “Today” and selecting “Previous.”

Mark “Write a thesis” as completed on the watch by tapping the circle on the task
tile.

On the phone, check that it is also marked as completed under today’s completed
section.

On the watch, go back to today’s tasks and start tracking “Morning Meditation.”
Then navigate to the settings page and enable strong timer vibrations.

Let the timer run, close the app, and verify that the timer vibrates at the end and
switches to a paused state showing “05:00.” The ongoing activity icon should disap-
pear.

On the phone, go to the timer page. Tap the three-dot menu at the top right, select
“Tracking mode,” change it to “Until stopped,” and confirm.

On the watch, stop the “Morning Meditation” tracking and start tracking the “Train-
ing” project. Verify that the ongoing activity icon appears on the home screen. Let it
run, close the app, and after around two hours, check that the timer is still running
and the activity is visible. Then open the timer notification and tap “End.”

Ensure the phone is connected to the watch. On the phone, go to the schedule page
and verify that tracking for the “Training” project has been recorded.

80

	Introduction
	Task scheduling and synchronization
	Distributed Systems
	Eventual Consistency
	Conflict-free replicated data types (CRDTs)
	State-based CRDTs
	Operation-Based Commutative Replicated Data Type (CmRDT)
	CRDT Set Types With Examples
	Simple CRDT implementation above SQL DB
	Automerge
	CRDT's In Text Editing

	Existing Time-Management Applications
	AnyType – Existing Time-Management Application
	AppFlowy – Existing Time-Management Application

	Existing Synchronization Libraries
	PowerSync
	WatermelonDB

	Smartwatch Operating Systems
	Smartwatch UI and Usability
	WearOS
	Apple Watch
	Examples of Applications in the Context of TimeNoder2

	Communication Between a Phone and a Smartwatch

	Analysis of TimeNoder2 Architecture and Synchronization Support
	Overview of TimeNoder2
	User Feedback and Requirements
	Need for Cross-Platform Support
	Other User Needs
	Analyzing Discord Voting

	Detailed Requirements
	Account Management Requirements
	Team Management Requirements
	Basic Synchronization Requirements
	Document Synchronization Requirements
	Smartwatch Application Requirements

	Current TimeNoder2 Architecture

	Design of the Solution
	Synchronzation Design
	Basic Data Synchronization
	Document Synchronzation

	Smartwatch Application Design
	Tasks Page
	Timer Page
	Habits and Schedule Page
	Create Task and Settings Page

	Implementation
	Synchronization Implementation
	One-User Multi-Device Synchronization
	Multi-User Multi-Device Synchronization
	Synchronization of Documents

	Smartwatch Application Implementation
	Communication Protocol
	Local Database and Synchronization
	App Design and Navigation
	App Features

	Testing
	One-User Synchronization Demo
	Multi-User Synchronization Demo
	Smartwatch Application Testing
	Scenario Focused on Functionality and Synchronization
	User Experience Testing

	Conclusion
	Bibliography
	Testing of Synchronization and Smartwatch Application
	One-User Synchronization Scenario
	Testing Preparation
	Verifying Pre-Created Data
	Editing in Two Tabs

	Multi-User Synchronization Scenario
	Offline-Only Mode and Registration
	Team Management and Document Editing

	Smartwatch Application Scenario

