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Abstract
This bachelor’s thesis confronts the challenge of secure data sharing within decentralized
peer-to-peer networks by proposing ScatterNet, a protocol engineered to ensure data con-
fidentiality, integrity, availability, and resilience. Core contributions include a robust data
serialization format and a minimal communication interface. The serialization format de-
fines the DataChunk, identified by a cryptographic Hash constructed from SHA-256 and
BLAKE3 outputs, PackedInt-encoded length, and Reed-Solomon parity. Data protection
employs Deflate compression, ChaCha20-Poly1305 AEAD encryption—keyed by a hash of
the serialized data with a key-derived nonce—and a custom Long Error Correction Code
(Long ECC) featuring a self-correcting header and interleaved Reed-Solomon protection
for the encrypted payload. A versatile HKey identifier facilitates data addressing. The
communication protocol, operating between Ed25519-identified peers, specifies FETCH and
PUT operations and incorporates a local reputation system. A modular Rust reference im-
plementation utilizing iroh for QUIC-based peer-to-peer communication demonstrates the
protocol’s viability, presenting a comprehensive solution for secure, resilient data exchange.

Abstrakt
Tato bakalářská práce řeší problematiku bezpečného sdílení dat v decentralizovaných peer-
to-peer sítích návrhem protokolu ScatterNet, vyvinutého k zajištění důvěrnosti, integrity,
dostupnosti a odolnosti dat. Klíčové přínosy zahrnují robustní formát serializace dat a min-
imální komunikační rozhraní. Serializační formát definuje DataChunk, identifikovaný kryp-
tografickým otiskem Hash konstruovaným z výstupů SHA-256 a BLAKE3, délky kódované
formátem PackedInt a Reed-Solomonovy parity. Ochrana dat využívá kompresi Deflate,
AEAD šifrování ChaCha20-Poly1305 – s klíčem odvozeným z hashe serializovaných dat
a nonce odvozenou z klíče – a vlastní schéma Long Error Correction Code (Long ECC) se
samoopravnou hlavičkou a prokládanou Reed-Solomonovou ochranou šifrovaného obsahu.
Univerzální identifikátor HKey umožňuje adresaci dat. Komunikační protokol, operující
mezi peery identifikovanými klíči Ed25519, specifikuje operace FETCH a PUT a zahrnuje
lokální systém reputace. Modulární referenční implementace v Rustu, využívající iroh pro
peer-to-peer komunikaci přes QUIC, demonstruje životaschopnost protokolu a prezentuje
komplexní řešení pro bezpečné a odolné sdílení dat.
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Rozšířený abstrakt
Decentralizované peer-to-peer sítě nabízí potenciál pro odolnější a svobodnější sdílení dat,
avšak jejich zabezpečení zůstává výzvou. Současné peer-to-peer systémy často upřednos-
tňují efektivní distribuci před komplexní ochranou citlivých informací. Tato bakalářská
práce představuje protokol ScatterNet – řešení zaměřené na bezpečné sdílení dat v peer-
to-peer prostředích. Cílem je vytvořit robustní formát pro serializaci dat a komunikační
rozhraní zajišťující důvěrnost, integritu, dostupnost a odolnost sdílených dat.

Východiskem práce je analýza existujících technologií pro šifrované ukládání (např.
LUKS), sdílení dat v sítích peer-to-peer (např. BitTorrent) a distribuované souborové sys-
témy (např. IPFS). Práce zkoumá také symetrické šifrovací algoritmy (AES, ChaCha20)
a schémata AEAD (AES-GCM, ChaCha20-Poly1305). Na základě této rešerše a analýzy
případů užití byly stanoveny klíčové požadavky pro protokol ScatterNet:
zajištění důvěrnosti, integrity, dostupnosti, odolnosti dat proti poškození a ztrátě, škálo-
vatelnost systému, efektivní využití zdrojů a snadná integrace pro vývojáře.

Bezpečný formát serializace tvoří jádro protokolu ScatterNet. Základní datovou jed-
notku představuje DataChunk – struktura obsahující surová data a jejich kryptografický
otisk Hash. Tento Hash je tvořen 64znakovým řetězcem v kódování Base64. Jeho 48baj-
tová binární podoba vzniká kombinací výstupů funkcí SHA-256 a BLAKE3 pomocí operace
XOR, ke kterým se připojí 2bajtová přibližná délka vstupu ve formátu PackedInt a následně
14 paritních bajtů Reed-Solomonova kódu RS(48,34) pro zvýšení odolnosti. Výsledný iden-
tifikátor Hash je vytvořen zakódováním této binární podoby pomocí Base64.

Ochrana dat začíná serializací struktury DataChunk (ve formátu Hash(data) || data)
a její kompresí algoritmem Deflate. Šifrovací klíč EncryptionKey je generován jako hod-
nota Hash z nekomprimované serializované podoby DataChunk. Komprimovaná data jsou
šifrována pomocí schématu ChaCha20-Poly1305, kde jako nonce slouží posledních 12 bajtů z
paritní části klíče EncryptionKey v binární podobě. Výsledný šifrovaný blok
ChaChaEncrypted je dále zabezpečen vlastním schématem pro korekci chyb Long Error
Correction Code (Long ECC). Toto schéma využívá 16bajtovou hlavičku LongEccHeader s
metadaty chráněnými kódem RS(16,12). Celý blok je navíc zabezpečen iterativním proklá-
daným Reed-Solomonovým kódováním s paritou připojenou na konec řetězce. Výsledkem
je plně zabezpečený datový blok EncryptedData.

Pro adresaci a verifikaci dat slouží univerzální identifikátor HKey. Jeho šifrovaná vari-
anta označená znakem ’E’ obsahuje hodnotu Hash vypočítanou z bloku EncryptedData a
původní klíč EncryptionKey. Existují také další varianty: přímé kódování malých dat (oz-
načeno ’B’), odkazy na nešifrovaná data (’D’), odkazy na seznamy identifikátorů HKey (’L’)
a varianty pro skládání dat z více zdrojů (’[’ pro sekvenční seznamy a ’{’ pro strukturované
objekty s rozsahy).

Protokol ScatterNet definuje způsob komunikace mezi peery, kde každý peer je iden-
tifikován pomocí veřejného klíče Ed25519. Jedná se o čistě logický protokol nezávislý
na konkrétním síťovém transportu či struktuře paketů. Základní komunikační rozhraní
obsahuje operaci FETCH hash pro získání dat EncryptedData a operaci PUT data pro je-
jich ukládání. Operace PUT primárně přijímá již zabezpečená data EncryptedData spolu
s identifikátorem HKey, přičemž úložiště ověřuje správnost hodnoty hash. Volitelně může
implementace podporovat i příjem nezpracovaných dat, která sama převede do zabezpečené
podoby a vrátí příslušný identifikátor HKey. Pro zajištění spravedlivého využívání zdrojů
byl navržen lokální systém reputace: úspěšné provedení operace FETCH zvyšuje reputaci
poskytovatele (+1 bod z pohledu klienta), úspěšné provedení operace PUT zvyšuje reputaci



úložiště (+3 body z pohledu klienta) a současně snižuje reputaci klienta (-1 bod z pohledu
úložiště). Při nízké reputaci může dojít k odmítnutí požadavků PUT.

Referenční implementace protokolu ScatterNet je vytvořena v jazyce Rust jako sada
modulárních knihoven pokrývajících jednotlivé funkce (Base64, PackedInt, Hash, HKey, De-
flate, ECC, DataChunk a šifrování). Hlavní aplikace pro komunikaci mezi peery s názvem
scatter-net integruje tyto moduly a pro zajištění komunikace peer-to-peer využívá kni-
hovnu iroh (spolu s QUIC a Tokio). Serializace paketů je implementována pomocí knihovny
bincode a komprese dat pomocí knihovny ps-deflate.

Tato práce představuje komplexní návrh protokolu pro bezpečné sdílení dat v prostředí
peer-to-peer. Návrh zahrnuje robustní formát serializace s důrazem na důvěrnost, integritu
a odolnost proti chybám, flexibilní systém identifikátorů HKey a minimalistické komunikační
rozhraní doplněné o systém reputace. Modulární implementace v jazyce Rust potvrzuje
praktickou realizovatelnost navrženého řešení, které vytváří solidní základ pro další rozvoj.
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Introduction

The proliferation of decentralized technologies has reignited interest in peer-to-peer systems
as a paradigm for data sharing and communication. Peer-to-peer architectures offer inherent
advantages over centralized models, including enhanced resilience against single points of
failure, improved censorship resistance, and greater user autonomy [36]. However, these
benefits are often accompanied by significant security challenges, particularly when the
data being shared is confidential or sensitive. Ensuring the privacy, integrity, and controlled
accessibility of data in an environment where trust is not inherent and participants can be
anonymous or ephemeral remains a complex undertaking.

Existing peer-to-peer data sharing solutions, while often excelling in content dissemi-
nation efficiency and scalability, frequently provide insufficient guarantees for secure data
exchange. Many protocols (e.g. BitTorrent) lack robust end-to-end encryption, secure
key management facilities, or fine-grained access control mechanisms, leaving data vulner-
able to unauthorized access, modification, or eavesdropping. Similarly, while distributed
filesystems offer powerful primitives for decentralized storage, their standard implementa-
tions may not seamlessly integrate the comprehensive security features required for private,
controlled data sharing among specific sets of peers. This gap highlights the need for
a specialized protocol designed explicitly for secure data sharing in peer-to-peer networks.

This thesis addresses these challenges by proposing ScatterNet, a novel protocol for se-
cure peer-to-peer data sharing. The primary objective of ScatterNet is to provide a robust
framework that ensures the confidentiality, integrity, availability, and long-term durability
of data exchanged among peers. To achieve this, the work encompasses several key contri-
butions:

• A detailed analysis of existing secure storage solutions, peer-to-peer systems, and
distributed filesystems, identifying their strengths and limitations in the context of
secure data sharing.

• A comparative review of symmetric encryption algorithms and authenticated encryp-
tion schemes to inform the selection of appropriate cryptographic primitives.

• The definition of key requirements for a secure peer-to-peer data sharing system,
derived from an analysis of relevant use cases.

• The design of a secure data serialization format that incorporates strong encryp-
tion (ChaCha20-Poly1305), robust content-addressable hashing (combining SHA-256,
BLAKE3, and Reed-Solomon parity), error correction codes (Reed-Solomon for both
hash identifiers and encrypted payloads), and a versatile data referencing mechanism
(HKey).
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• The specification of a minimalist peer-to-peer communication protocol defining core
data exchange operations (FETCH and PUT) and a local reputation system to foster
fair resource utilization.

• An overview of the reference implementation of ScatterNet in Rust, detailing its
modular architecture.

The ScatterNet protocol achieves its security goals through a general abstraction of an
arbitrary chunk of data, termed a DataChunk (detailed in Section 4.1). Persistent data, in
its protected form, is addressed by a unique identifier called an HKey (Section 4.5), which
encapsulates information necessary for retrieval and decryption.

This thesis is structured as follows: Chapter 1 reviews existing data storage and dis-
tribution solutions. Subsequently, Chapter 2 provides an analysis of symmetric encryption
algorithms and authenticated encryption. Use cases and key requirements for secure data
sharing are discussed in Chapter 3. The design of the ScatterNet secure data serialization
format is detailed in Chapter 4, while Chapter 5 specifies the peer-to-peer communication
protocol. The reference implementation of the proposed system is described in Chapter 6,
and its testing and evaluation are presented in Chapter 7.
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Chapter 1

Data Storage and Distribution
Solutions

Numerous protocols and applications partially address the objectives of this thesis. The pri-
mary focus of this work lies in the intersection of three domains: secure data storage, peer-
to-peer data sharing, and distributed filesystems. To provide a comprehensive overview,
this chapter examines existing implementations and solutions in each of these domains,
analyzing their approaches, strengths, and limitations.

The remainder of this chapter is structured as follows:

• Secure Data Storage: This section discusses secure data storage, as implemented
by the Linux Unified Key Setup (LUKS) system.

• Peer-to-Peer Data Sharing: Here, we delve into protocols and applications that
enable decentralized sharing of data among peers, focusing on scalability, reliability,
and performance.

• Distributed Filesystems: This section reviews distributed filesystem architectures,
with an emphasis on their design principles, data consistency models, and fault tol-
erance.

Each of these sections evaluates relevant existing works with an emphesis on what
they do not address. By synthesizing insights from these domains, the groundwork is laid
for the development of a novel solution that integrates the best practices and innovative
approaches from these fields.

1.1 Secure Data Storage
Protecting data confidentiality and integrity at rest is a fundamental requirement for many
systems, particularly those involving sensitive information or operating in untrusted envi-
ronments. Various mechanisms exist to achieve this, operating at different levels of the stor-
age stack, from entire disks to individual files. This section reviews prominent approaches,
analyzing their design, features, and inherent limitations. Special attention is paid to their
suitability for secure data sharing, or lack thereof.
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1.1.1 Disk and Partition Encryption

Full-Disk Encryption (FDE) and partition encryption aim to protect all data stored on a spe-
cific block device or partition. By encrypting the entire storage medium below the filesystem
layer, these methods provide comprehensive protection against unauthorized physical access
to the storage device [41].

Linux Unified Key Setup

LUKS is the standard for disk encryption within the Linux ecosystem [17]. It provides
a platform-independent specification for managing encryption keys and metadata. LUKS
itself does not perform the encryption; it acts as a wrapper around underlying kernel crypto
modules (like dm-crypt). Key features include:

• Metadata Header: Contains the encryption cipher, mode, key size, and multiple
key slots.

• Key Slots: Allows multiple passphrases or keys to decrypt the same master key,
facilitating key management and revocation without re-encrypting the entire volume.
LUKS2, the newer version, enhances flexibility and metadata resilience [17].

• Detached Headers: LUKS2 allows storing the header separately from the encrypted
data, potentially enhancing security or enabling specific use cases.

While LUKS provides robust protection for data at rest on a specific device, it is in-
herently tied to that block device. It does not directly address the secure sharing of data
between different systems or peers. Data must be decrypted before it can be accessed
or shared, requiring separate mechanisms to secure the data in transit or on the recipient’s
system.

Proprietary full-disk encryption options

Other notable disk encryption systems include BitLocker, integrated into Microsoft Win-
dows, and FileVault, used in Apple’s macOS. These systems offer similar FDE capabilities,
but are platform-specific, and often rely on hardware security modules like the Trusted
Platform Module (TPM) for key protection. Their proprietary nature alone renders their
consideration here unconscionable.

1.1.2 Filesystem-Level Encryption

Encryption can also be implemented at the filesystem level. Systems such as eCryptfs
[21] and the native encryption features in filesystems like ZFS [9] and ext4 (fscrypt)
[1] operate above the block layer but below the application layer. This enables finer con-
trol over encrypted data, such as assigning different keys to individual directories or files.
However, these systems are designed for single-host protection and lack support for secure
data exchange with external peers, including mechanisms for key distribution and integrity
in distributed peer-to-peer networks.

1.1.3 File-Level and Container Encryption

File-level encryption targets individual files, with standards like OpenPGP [10] enabling
encryption and signing via public-key cryptography, as seen in tools like GnuPG. This
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approach is suitable for isolated transfers, such as secure email, but it struggles with scal-
able key management in dynamic peer-to-peer environments. Container-based tools like
VeraCrypt [22] create encrypted containers that function as virtual volumes, providing
portability for stored data. However, these containers require full-file transfers and lack
built-in support for distributed key sharing and integrity verification, rendering them un-
suitable for secure peer-to-peer data exchange.

1.1.4 Applicability to Peer-to-Peer Networks

Existing mechanisms for secure data storage have limited applicability in decentralized
peer-to-peer networks, even though they are effective for protecting data at rest. The key
factors limiting their use are:

• Granularity and Efficiency: These systems often encrypt entire volumes or files,
which is inefficient for selective sharing of data blocks of arbitrary sizes, as required
by a general peer-to-peer data sharing protocol.

• Key Management: They do not provide scalable key distribution among untrusted
nodes, making them impractical for dynamic peer-to-peer environments.

• Portability and Interoperability: Platform-specific designs and the need for full-
file transfers hinder smooth operation in heterogeneous peer-to-peer networks.

• Access Control: There is a lack of fine-tuned access settings, which would be nec-
essary for scenarios where different nodes require varying levels of data access.

These limitations underscore the need for a specialized protocol optimized for data sharing
in peer-to-peer networks.

1.2 Peer-to-Peer Data Sharing Systems
Peer-to-peer data sharing systems enable decentralized distribution of data among nodes
without a central server. [36] These systems prioritize efficient content dissemination
and scalability, but often fall short of meeting comprehensive security requirements for
sensitive data. Specifically:

• Confidentiality and Integrity: They lack robust encryption for data in transit
or at rest on intermediate peers, making them susceptible to interception and eaves-
dropping. While systems like BitTorrent use cryptographic hashes to verify the in-
tegrity of data pieces against torrent metadata [11], thereby preventing corruption
or tampering, they do not provide end-to-end confidentiality for shared data.

• Key Management and Access Control: Secure key exchange mechanisms and fine-
grained access controls are generally absent, complicating trust management among
nodes and exposing data to unauthorized access or modification.

Consequently, these limitations underscore the need for a protocol specifically designed
to provide robust confidentiality, authenticated integrity, flexible key management, and gran-
ular data control in peer-to-peer environments.
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1.3 Distributed Filesystems
Distributed filesystems (DFS) aim to provide a unified view of data stored across multi-
ple network nodes, often employing techniques like content addressing for data retrieval
and deduplication. [43] A prominent example is the InterPlanetary File System (IPFS)
[4], which uses content identifiers (CIDs) based on cryptographic hashes to address data
immutably. While DFS architectures excel at data availability and censorship resistance,
their design isn’t suitable for secure, private data sharing among specific peers:

• Confidentiality by Default: Many DFS, including IPFS by default, focus on public
data accessibility. While data can be encrypted before being added, the systems
themselves do not typically mandate or seamlessly integrate end-to-end encryption
and key management for private peer-to-peer sharing use cases. Accessing private
data often requires separate, out-of-band key exchange mechanisms.

• Granular Access Control: Implementing fine-grained access control (e.g., granting
specific permissions to different users or groups for subsets of data) can be complex
or non-native in content-addressed systems designed primarily for immutable data
retrieval based on knowing the hash.

• Key Management Complexity: Securely managing and distributing cryptographic
keys for encrypted data shared among dynamic groups of peers remains a significant
challenge that is often outside the core scope of the DFS protocol itself.

• Metadata Privacy: Information about data access patterns or even the existence
of certain data (via CIDs) might be exposed to network participants, which can
be undesirable for sensitive information.

Therefore, while distributed filesystems offer powerful primitives for decentralized data stor-
age and retrieval, their standard implementations often lack the integrated confidentiality,
access control, and key management features required for a generalized, secure peer-to-peer
data sharing protocol.
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Chapter 2

Symmetric Encryption Algorithms
and Authenticated Encryption

This chapter delves into the domain of symmetric cryptography, a cornerstone for ensuring
data security in modern networked systems. It begins by establishing the core princi-
ples of symmetric encryption, differentiating between key cipher types, and underscoring
the critical need for authenticated encryption to achieve comprehensive data protection.
Subsequently, the chapter undertakes a detailed review of selected prominent algorithms
and authenticated encryption schemes, culminating in a comparative analysis of their per-
formance and security attributes. The overarching aim is to provide a foundational under-
standing of these cryptographic primitives, which are essential for the design and imple-
mentation of secure data sharing protocols.

2.0.1 Core Principles of Symmetric Encryption

Symmetric encryption, a foundational paradigm in modern cryptography, employs a single
secret key shared between communicating entities for both the encryption of plaintext
into ciphertext and the subsequent decryption of ciphertext back into plaintext [40, 26].
The principal objective of symmetric encryption is the provision of data confidentiality,
thereby precluding unauthorized access to sensitive information. This chapter presents
a comparative analysis of symmetric encryption algorithms, evaluating their performance
and security characteristics. The study commences with an examination of block ciphers,
a significant and historically foundational category within symmetric encryption.

2.0.2 Symmetric Cipher Types: Block and Stream Ciphers

Symmetric ciphers are primarily classified based on their method of processing plain-
text data into two principal types: block ciphers and stream ciphers [42, 37]. Block
ciphers operate on fixed-size groups of bits, termed blocks (e.g., 128 bits), transform-
ing an entire plaintext block into a ciphertext block of identical size using the secret
key. Since messages often exceed the length of a single block, modes of operation
are defined to specify how a block cipher’s core encryption function should be repeat-
edly and securely applied to encrypt sequences of blocks, often incorporating techniques
to ensure that identical plaintext blocks do not produce identical ciphertext blocks. Con-
versely, stream ciphers process plaintext in smaller, sequential units, typically bits or bytes.
This is achieved by generating a pseudorandom keystream from the secret key and a unique
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nonce (a number used once) or an initialization vector (IV); this keystream is then combined
(commonly via an XOR operation) with the plaintext units. This fundamental distinction
in operational methodology results in differing performance profiles and distinct areas of ap-
plicability for each cipher type.

2.0.3 The Imperative of Authenticated Encryption

While confidentiality, achieved through symmetric encryption, constitutes a primary secu-
rity objective, it is often insufficient in isolation to guarantee the comprehensive security
of data, whether in transit or at rest. Security properties of commensurate criticality
include data integrity, which ensures that data has not been illicitly altered, and data au-
thenticity, which verifies the data’s purported origin [16]. In the absence of robust integrity
and authenticity mechanisms, an adversary could potentially modify encrypted messages
without detection or inject maliciously crafted messages that appear legitimate, thereby
undermining the overall security goals.

Message Authentication Codes (MACs) are cryptographic primitives specifically engi-
neered to provide these vital assurances of data integrity and authenticity. [40] A MAC
algorithm, utilizing a shared secret key, processes a message to generate a short, fixed-
length tag. This tag enables a recipient who possesses the same secret key to verify that
the message has not been tampered with during transmission and that it originates from
a party privy to the key.

Although encryption and MACs can be applied as distinct cryptographic operations,
the secure composition of these primitives, for instance, through generic approaches such
as encrypt-then-MAC, demands meticulous design and analysis to preclude subtle yet crit-
ical vulnerabilities. Indeed, naive or improper combinations can lead to insecure schemes
despite the strength of the individual components [3]. To address these composition chal-
lenges and provide a more robust, integrated cryptographic solution, Authenticated En-
cryption with Associated Data (AEAD) schemes have been developed. AEAD schemes
are designed to holistically and securely integrate an encryption algorithm with an authen-
tication mechanism (typically MAC-based). This integration is engineered to concurrently
provide confidentiality, integrity, and authenticity for the encrypted data, as well as in-
tegrity and authenticity for any associated unencrypted data, thereby offering protection
against a broader spectrum of sophisticated attacks [15].

2.0.4 Scope of Algorithms Under Review

This chapter presents a detailed review of selected contemporary and secure symmetric
cryptographic primitives, focusing on options that represent realistic candidates for modern
secure protocols. The examination begins with prominent block ciphers: the Advanced En-
cryption Standard (AES), the prevailing global standard for symmetric encryption [33], will
be analyzed alongside Serpent, an algorithm recognized for its high security margin and con-
servative design principles stemming from the AES competition [2]. Subsequently, the
discussion will address ChaCha20, a high-performance stream cipher specifically optimized
for efficient software implementations across a variety of CPU architectures [7]. Recognizing
the paramount importance of ensuring both confidentiality and integrity, the analysis will
culminate with an investigation of leading Authenticated Encryption with Associated Data
(AEAD) schemes. Specifically, AES-GCM (Galois/Counter Mode), which combines AES
in Counter Mode with the GMAC authenticator [15], and ChaCha20-Poly1305, which pairs
the ChaCha20 stream cipher with the Poly1305 message authenticator [35], will be ex-
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amined. The selection of these particular algorithms and AEAD schemes is predicated
on their status as robust, contemporary cryptographic solutions, their well-established se-
curity credentials, and their collective utility in establishing a comprehensive comparative
basis for evaluating performance and security characteristics relevant to current system
design.

2.1 Foundational Symmetric Ciphers
This section provides a detailed examination of the core symmetric encryption algorithms
selected for review: the Advanced Encryption Standard (AES), Serpent, and ChaCha20.
Each algorithm is analyzed with respect to its historical context, underlying design prin-
ciples, and fundamental operational characteristics, thereby establishing a basis for subse-
quent comparative analysis.

2.1.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) represents a cornerstone of contemporary sym-
metric cryptography, having achieved widespread global adoption due to its robust secu-
rity and efficient performance. Its development through a public, competitive process set
a precedent for cryptographic standardization.

Algorithm Overview and Standardization

The genesis of AES lies in the U.S. National Institute of Standards and Technology (NIST)
initiative, formally announced in 1997, to identify a successor to the Data Encryption Stan-
dard (DES), which was becoming increasingly vulnerable due to its relatively small key size
[32]. This initiative invited submissions of candidate encryption algorithms from the inter-
national cryptographic community. The evaluation criteria emphasized not only security
against known attacks but also computational efficiency, memory footprint, and adaptabil-
ity across diverse hardware and software platforms [32]. Following an intensive multi-year
public review and analysis period, the Rijndael [12] algorithm, developed by Belgian cryp-
tographers Joan Daemen and Vincent Rijmen, was announced as the selected candidate
in October 2000 [33]. Subsequently, in November 2001, NIST formally adopted Rijndael
as the Advanced Encryption Standard, codifying it in Federal Information Processing Stan-
dards Publication (FIPS PUB) 197 [33]. AES has since been globally embraced, forming
an integral component of numerous international standards and a vast array of secure com-
munication protocols and commercial products.

Key Operational Characteristics

AES is a symmetric block cipher adhering to the Substitution-Permutation Network (SPN)
design paradigm. It operates on a fixed data block size of 128 bits and supports three
distinct cryptographic key lengths: 128 bits, 192 bits, and 256 bits [33]. The encryption
process involves a series of iterative rounds, the number of which is determined by the key
length: 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit
keys [13].

Each round, with the exception of the final round which has a slightly modified structure,
comprises four distinct byte-oriented transformations applied to an internal state, typically
represented as a 4× 4 matrix of bytes:
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• SubBytes: A non-linear byte substitution, where each byte of the state is inde-
pendently replaced with another byte according to a fixed substitution table, known
as the S-box. This transformation introduces confusion into the ciphertext.

• ShiftRows: A linear transposition step, where the bytes in the last three rows
of the state matrix are cyclically shifted by different offsets. This operation provides
diffusion by spreading byte influences across columns.

• MixColumns: A linear mixing operation that processes each column of the state in-
dependently. The four bytes of each column are treated as coefficients of a polynomial
over the finite field 𝐺𝐹 (28) and multiplied by a fixed polynomial. This transforma-
tion, along with ShiftRows, ensures strong diffusion over multiple rounds. (This step
is omitted in the final round).

• AddRoundKey: Each byte of the state is combined with a corresponding byte
of a round key using a bitwise XOR operation. The round keys are derived from
the primary cipher key through a key expansion algorithm (key schedule).

The structured, iterative application of these transformations ensures that the resultant
ciphertext is a highly complex, non-linear function of both the plaintext and the secret
key, thereby providing robust security against a wide range of cryptanalytic techniques,
including linear and differential cryptanalysis, when correctly implemented [13, 33].

2.1.2 Serpent

Serpent is a symmetric key block cipher, notable for being one of the five finalists in the Ad-
vanced Encryption Standard (AES) competition. It was designed by Ross Anderson,
Eli Biham, and Lars Knudsen [2]. Serpent’s design philosophy prioritized a high security
margin and a conservative approach, aiming for straightforward security analysis and ro-
bustness against then-known and anticipated cryptanalytic techniques.

Algorithm Overview and Design Rationale

The designers of Serpent explicitly aimed for a cipher that would be exceptionally se-
cure, even if this came at some cost to performance compared to other AES candidates
[2]. The core design principle was to use well-understood cryptographic components and
a structure that allowed for a relatively clear security analysis. Serpent operates on 128-bit
blocks of data and supports key sizes of 128, 192, or 256 bits, similar to AES. The algorithm
consists of 32 rounds, a significantly higher number than many contemporary block ciphers,
which contributes to its high security margin. Each round applies the same sequence of op-
erations, simplifying the design and analysis. A key feature of Serpent is its use of a series
of eight distinct 4-bit by 4-bit substitution boxes (S-boxes) per round. These S-boxes were
chosen based on their strong non-linearity and resistance to differential and linear crypt-
analysis. The operations within each round were designed to be efficiently implementable
using bit-slice techniques, allowing for parallel computation on modern processors, which
can mitigate some of the performance overhead from the high round count [2].
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Key Operational Characteristics

Serpent’s structure is a Substitution-Permutation Network (SPN), similar to AES.
The 32 rounds are a defining characteristic. In each round, the following operations are per-
formed:

• Key Mixing: The 128-bit round key (derived from the main key via a key schedule)
is XORed with the current state.

• S-box Application: The 128-bit state is passed through a layer of S-boxes. Specifi-
cally, the state is viewed as thirty-two 4-bit words, and each 4-bit word is substituted
using one of the eight S-boxes. The S-box used in a particular position changes from
round to round in a predefined sequence.

• Linear Transformation: After the S-box layer, a linear transformation is applied
to the entire 128-bit state. This transformation provides diffusion, ensuring that the
output of one S-box in a round affects the input of multiple S-boxes in the next round.
This transformation is fixed across all rounds.

An initial permutation (IP) is applied to the plaintext before the first round, and a final
permutation (FP) is applied after the 32nd round to produce the ciphertext. These permu-
tations are inverses of each other and are designed to simplify optimized implementations
rather than contributing directly to the cryptographic strength against standard attacks
[2]. While Serpent’s high number of rounds and conservative S-box design contribute to its
strong security reputation, they also generally result in lower software performance com-
pared to AES, particularly when dedicated hardware acceleration for AES is available.

2.1.3 ChaCha20

ChaCha20 is a stream cipher developed by Daniel J. Bernstein as a refinement of his earlier
Salsa20 algorithm [7]. Unlike block ciphers that encrypt fixed-size blocks of data, stream
ciphers generate a pseudorandom keystream which is then combined (typically via XOR)
with the plaintext to produce ciphertext. ChaCha20 has gained significant traction due
to its strong security profile, excellent performance in software implementations, and simple
design.

Algorithm Overview and Design Rationale

The primary design goal for ChaCha20 was to provide high security with exceptional speed
in software, particularly on general-purpose CPUs that may lack dedicated hardware sup-
port for cryptographic operations [7]. It aims to offer better diffusion per round compared
to Salsa20, thereby potentially achieving similar or greater security with fewer rounds,
although the standard ChaCha20 specification uses 20 rounds (or 8 or 12 for reduced-
round variants). The algorithm is designed to be resistant to timing attacks and other
software side-channel vulnerabilities due to its consistent, data-independent operational
flow. ChaCha20 operates with a 256-bit key and requires a 96-bit nonce (number used
once) and a 32-bit block counter for each invocation to generate a unique keystream block.
The uniqueness of the nonce is critical for its security [35].
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Key Operational Characteristics

ChaCha20 generates 512-bit (64-byte) blocks of keystream by iteratively applying a core
function to an internal state matrix. This state is initialized with constants, the 256-bit
key, the 32-bit counter, and the 96-bit nonce [35]. The internal state is a 4 × 4 matrix
of 32-bit words. The core of the ChaCha20 algorithm is the ”quarter-round“ operation,
which is applied repeatedly to the columns and diagonals of the state matrix. A quarter-
round takes four 32-bit words (a, b, c, d) and updates them as follows:

1. 𝑎← 𝑎 + 𝑏; 𝑑← 𝑑⊕ 𝑎; 𝑑← (𝑑 ≪ 16)

2. 𝑐← 𝑐+ 𝑑; 𝑏← 𝑏⊕ 𝑐; 𝑏← (𝑏 ≪ 12)

3. 𝑎← 𝑎 + 𝑏; 𝑑← 𝑑⊕ 𝑎; 𝑑← (𝑑 ≪ 8)

4. 𝑐← 𝑐+ 𝑑; 𝑏← 𝑏⊕ 𝑐; 𝑏← (𝑏 ≪ 7)

Where + denotes addition modulo 232, ⊕ denotes bitwise XOR, and ≪ 𝑛 denotes a left
rotation by 𝑛 bits. A full ChaCha20 round consists of applying the quarter-round op-
eration to each of the four columns and then to each of the four diagonals (sometimes
referred to as ”column rounds“ and ”diagonal rounds“). The standard ChaCha20 algo-
rithm performs 20 such rounds (or 10 iterations of column rounds and diagonal rounds).
After the rounds are completed, the resulting state matrix is added (word-wise) to the ini-
tial state matrix to produce the 512-bit keystream block. This keystream block is then
XORed with the corresponding block of plaintext to produce ciphertext, or with ciphertext
to produce plaintext. For subsequent blocks of a message, the block counter is incremented,
and the process is repeated to generate the next keystream block [35, 7].

2.2 Authenticated Encryption with Associated Data (AEAD)
Schemes

The provision of data confidentiality via symmetric encryption, as discussed in previous sec-
tions, is a primary security service. However, in many practical applications, confidentiality
alone is insufficient; assurances of data integrity (that data has not been modified) and data
authenticity (that data originates from the purported source) are equally critical. Authen-
ticated Encryption with Associated Data (AEAD) schemes are cryptographic constructions
designed to simultaneously provide these three security services: confidentiality, integrity,
and authenticity, for a given plaintext, and additionally to provide integrity and authenticity
for any associated data that is transmitted in the clear alongside the ciphertext [15].

2.2.1 Principles and Advantages of AEAD

Authenticated Encryption (AE) refers to a symmetric encryption scheme that transforms
a plaintext into a ciphertext such that the scheme provides both confidentiality for the plain-
text and a proof of its integrity and authenticity [39]. The extension to AEAD allows
for the inclusion of ”associated data“ (AD), also termed ”additional authenticated data“
(AAD). This AD is not encrypted but is protected against modification; common examples
include protocol headers or other contextual metadata that must remain unencrypted but
whose integrity is vital for the correct and secure processing of the encrypted payload [15].
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The development and adoption of AEAD schemes stem from several key advantages
over ad-hoc compositions of separate encryption and Message Authentication Code (MAC)
algorithms:

• Integrated Security Properties: AEAD schemes are designed as monolithic prim-
itives that bind confidentiality with integrity and authenticity. This integrated design
aims to prevent vulnerabilities that can arise from the improper or insecure composi-
tion of distinct encryption and MAC functions. While generic composition paradigms
(e.g., Encrypt-then-MAC) can achieve security, their correct implementation is subtle
and error-prone, with certain combinations known to be insecure [3, 28]. Dedicated
AEAD constructions are often accompanied by security proofs under standard cryp-
tographic assumptions.

• Simplified Cryptographic Interface: By providing a single interface for encryp-
tion and authentication (and their respective inverse operations), AEAD schemes re-
duce the complexity for application developers. This simplification minimizes the po-
tential for errors in cryptographic protocol design and implementation, such as in-
correct sequencing of operations or mishandling of intermediate values, which can
otherwise lead to security failures [18].

• Resistance to Chosen-Ciphertext Attacks: Many well-established AEAD schemes
are designed to be secure against adaptive chosen-ciphertext attacks (IND-CCA2).
This security notion implies that an adversary, even one capable of obtaining decryp-
tions of arbitrarily chosen ciphertexts (except the target ciphertext itself), cannot
gain information about the plaintext corresponding to a target ciphertext, nor can
they forge a valid ciphertext for a new message [26].

• Efficiency Considerations: Modern AEAD schemes are often engineered for high
performance. Algorithms such as AES-GCM can leverage hardware acceleration
for the underlying block cipher, while others like ChaCha20-Poly1305 are optimized
for fast software execution. In many instances, the computational overhead of the inte-
grated authentication is minimal compared to the encryption operation itself [15, 35].

Consequently, the use of AEAD schemes is widely recognized as a best practice in crypto-
graphic engineering for applications requiring robust protection of symmetric-key encrypted
data [16].

2.2.2 AES-GCM (Galois/Counter Mode)

AES-GCM is a widely adopted AEAD scheme standardized by NIST in Special Publica-
tion 800-38D [15]. It combines the AES block cipher operating in Counter (CTR) mode
for encryption with the Galois Message Authentication Code (GMAC) for authentication.

Construction and Operation

In AES-GCM, confidentiality is provided by AES-CTR mode. A unique nonce is used
to generate a sequence of counter blocks, which are then encrypted with AES to pro-
duce a keystream. This keystream is XORed with the plaintext to produce the cipher-
text. The same nonce and key must not be reused for different messages. Authentication
is provided by GMAC. Both the ciphertext and any associated data (AAD) are processed
by a universal hash function (GHASH), which is based on multiplication in the Galois Field
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𝐺𝐹 (2128). The result of this hashing process is then encrypted with AES (using a key de-
rived from the main encryption key and the nonce, typically by encrypting a block of all
zeros) to produce the authentication tag [31]. The GHASH function requires a secret hash
key 𝐻, which is derived by encrypting a 128-bit block of zeros with the AES key. The key
operational steps involve:

1. Encryption of the plaintext using AES-CTR mode.

2. Computation of the GMAC tag over the AAD and the ciphertext.

During decryption, the ciphertext is decrypted using AES-CTR, and the GMAC tag is re-
computed using the received AAD, the decrypted plaintext (or the received ciphertext, de-
pending on the specific GCM variant/implementation detail), and the same key and nonce.
If the computed tag matches the received tag, the decryption is considered valid,
and the plaintext is released; otherwise, both the plaintext and the tag are rejected, indi-
cating a potential integrity or authenticity failure [15].

Security and Performance Aspects

AES-GCM offers strong, provable security guarantees when the nonce is unique for every
encryption with a given key [15]. Nonce reuse can lead to catastrophic failures, potentially
compromising both confidentiality and authenticity. The security of GCM relies on the se-
curity of the underlying AES block cipher and the properties of the GHASH function.
Performance-wise, AES-GCM can be very efficient, especially on platforms with hardware
support for AES (e.g., AES-NI instruction sets) and carry-less multiplication (for GHASH,
e.g., PCLMULQDQ instruction). Its parallelizable nature for both encryption (CTR mode)
and authentication (GHASH processing) contributes to high throughput [20].

2.2.3 ChaCha20-Poly1305

ChaCha20-Poly1305 is another prominent AEAD scheme, standardized for IETF protocols
in RFC 8439 [35]. It combines the ChaCha20 stream cipher for encryption with the Poly1305
message authenticator.

Construction and Operation

In this construction, the ChaCha20 stream cipher is used to encrypt the plaintext.
A unique nonce and a block counter are used with the 256-bit key to generate the keystream,
which is XORed with the plaintext. The Poly1305 authenticator is then used to compute
a 128-bit tag over the associated data and the ciphertext. Poly1305 requires a 256-bit
one-time key: 128 bits for the Poly1305 function itself (often denoted as ‘r’ and ‘s’, with
clamping applied to ‘r’) and a 128-bit nonce for the final AES encryption in some older
Poly1305-AES variants, or more commonly in the ChaCha20-Poly1305 context, a one-time
key derived from the main key and nonce specifically for Poly1305. For the IETF ChaCha20-
Poly1305 AEAD, a special Poly1305 key is generated by encrypting a block of zeros (or the
first block of the ChaCha20 keystream, specifically the first 32 bytes from the ChaCha20
block function with block counter 0) using the ChaCha20 key and nonce [35]. The general
procedure is:

1. Generate the Poly1305 one-time key using ChaCha20 (with block counter 0).
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2. Encrypt the plaintext using ChaCha20 (with block counter starting from 1).

3. Compute the Poly1305 tag over the AAD, the ciphertext, and padding, followed
by the lengths of AAD and ciphertext.

During decryption, the ciphertext is decrypted, and the Poly1305 tag is recomputed.
If the tags match, the plaintext is considered authentic and confidential [35].

Security and Performance Aspects

ChaCha20-Poly1305 is designed for high security and performance, particularly in software
implementations where hardware AES acceleration may not be available [7, 6]. The security
relies on the underlying strength of ChaCha20 as a stream cipher and Poly1305 as a se-
cure MAC. Similar to AES-GCM, the uniqueness of the nonce per key is critical for secu-
rity. Nonce reuse can compromise both confidentiality and authenticity. ChaCha20 is fast
in software due to its simple arithmetic operations (additions, rotations, XORs) that map
well to general-purpose CPU instructions. Poly1305 is also exceptionally fast in software.
Consequently, the combined AEAD scheme offers excellent performance on a wide range
of devices, from high-end servers to resource-constrained mobile and embedded systems
[29].

2.3 Comparative Analysis: Performance and Security
The selection of an appropriate symmetric encryption algorithm or an Authenticated En-
cryption with Associated Data (AEAD) scheme for a given application necessitates a com-
parative evaluation of candidate primitives based on established research and performance
data. This section synthesizes existing knowledge to compare the previously discussed al-
gorithms, specifically AES, Serpent, and ChaCha20, and the AEAD schemes AES-GCM
and ChaCha20-Poly1305. The analysis focuses on their documented performance charac-
teristics in various environments, their established security profiles, and relevant imple-
mentation considerations, drawing upon published cryptographic studies and benchmark
results.

2.3.1 Performance

Computational performance is a critical factor in the practical deployment of cryptographic
algorithms. Key aspects include software implementation speed, the impact of hardware
acceleration, latency, key setup times, and resource utilization.

Software Implementation Speed

In software implementations, particularly on platforms lacking dedicated cryptographic
hardware, the architectural design of a cipher significantly influences its speed. ChaCha20
was specifically designed for high performance in software across a wide range of general-
purpose CPUs. Benchmarking results, such as those from the eBACS (ECRYPT Bench-
marking of Cryptographic Systems) project, consistently show ChaCha20 achieving ex-
cellent throughput, often outperforming software implementations of AES when AES-NI
hardware acceleration is not utilized [8]. For instance, on many common x86-64 architec-
tures, ChaCha20 can process data at several cycles per byte, making it highly competitive
[7].
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AES, while capable of high speeds, sees its software performance vary more significantly
depending on the implementation quality and CPU architecture. Without hardware sup-
port, its architectural reliance on S-box lookups and the MixColumns operation can lead
to relatively slower software implementations compared to the arithmetic-centric design
of ChaCha20, a performance difference often observed in benchmarks [13, 8]. Serpent, with
its 32 rounds and conservative design, generally exhibits lower software throughput com-
pared to both AES and ChaCha20, as its primary optimization was for security margin
rather than raw speed [2].

When comparing the AEAD schemes, ChaCha20-Poly1305 inherits the strong software
performance of its constituent parts. The Poly1305 authenticator is exceptionally fast
in software [6]. Consequently, ChaCha20-Poly1305 often demonstrates superior throughput
to AES-GCM in software-only environments, especially on platforms where AES hardware
acceleration is absent or on architectures (e.g., some ARM processors) where ChaCha20’s
operations are particularly well-suited [35, 8]. AES-GCM’s software performance is tied
to the software speed of AES and the GHASH computation; the latter can be a bottleneck
without specific hardware support for carry-less multiplication.

Impact of Hardware Acceleration

The performance landscape of symmetric ciphers is dramatically altered by the availability
of dedicated hardware acceleration features in modern processors, particularly for block
ciphers like AES. The Advanced Encryption Standard New Instructions (AES-NI) are a set
of extensions to the x86 instruction set architecture, introduced by Intel and subsequently
adopted by AMD, specifically designed to accelerate AES encryption, decryption, and key
generation operations [19]. The utilization of AES-NI can result in a substantial increase
in AES throughput, often by an order of magnitude or more compared to purely software-
based implementations, thereby rendering AES exceptionally efficient on supporting hard-
ware platforms [19]. This acceleration extends to AEAD schemes based on AES, such
as AES-GCM. For AES-GCM, beyond AES-NI for the encryption component,
the PCLMULQDQ instruction (Carry-Less Multiplication) provides hardware support for ac-
celerating the GHASH polynomial multiplication in 𝐺𝐹 (2128), which is critical for the per-
formance of the authentication component [20].

In contrast, stream ciphers like ChaCha20, and consequently the AEAD scheme
ChaCha20-Poly1305, were primarily designed to achieve high performance in software with-
out reliance on specialized hardware instructions [7]. This design philosophy ensures con-
sistent and strong performance across a broad spectrum of CPU architectures, includ-
ing those that lack dedicated cryptographic accelerators (e.g., many ARM-based proces-
sors found in mobile and embedded devices, or older x86 systems). While ChaCha20
does not benefit from instruction sets tailored for AES, its arithmetic operations (addi-
tions, rotations, XORs) are generally well-suited to modern CPU pipelines. As a result,
in environments where AES-NI [19] and PCLMULQDQ [20] are available and effectively
leveraged by the cryptographic library, AES-GCM typically exhibits superior raw through-
put. However, on platforms devoid of such hardware support, ChaCha20-Poly1305 often
demonstrates a significant performance advantage due to its software-optimized nature [8].
The relative performance is therefore highly contingent on the target hardware capabilities.
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Latency, Key Setup, and Resource Usage

Beyond aggregate throughput, several other performance-related factors influence the suit-
ability of cryptographic algorithms for diverse application scenarios. Latency, which quan-
tifies the delay in processing a minimal data unit (e.g., a single block for block ciphers
or an initial data segment for stream ciphers), is of paramount importance for interactive
and real-time communication systems. Block ciphers such as AES and Serpent, when en-
crypting a single block, exhibit latency characteristics primarily dictated by their respective
round counts and the computational complexity of their round functions. Stream ciphers,
exemplified by ChaCha20, can offer exceptionally low latency for initiating data processing
once the keystream generation is underway, as the keystream can be XORed with plain-
text bytes immediately upon their availability [7]. For AEAD schemes, the overall latency
encompasses the time taken for both the encryption/decryption phase and the generation
or verification of the authentication tag.

The key setup time, representing the computational effort required to initialize a cipher
with a new cryptographic key (and, where applicable, a nonce or initialization vector), can
become a significant performance consideration in contexts involving frequent re-keying
or the processing of numerous small, independently keyed messages. The AES algorithm
incorporates a key schedule that can be relatively complex, particularly for 256-bit keys,
potentially contributing to a non-negligible setup time in certain implementations [13].
Serpent’s key schedule, while different, also involves a preparatory phase. In contrast,
ChaCha20 is distinguished by a notably simple and rapid key setup procedure, which largely
consists of arranging the key and nonce directly into its initial state matrix, a characteristic
that can be advantageous in environments with high session turnover or frequent context
switches [35].

Finally, resource utilization, which includes the code size of the implementation
and its operational memory footprint (e.g., for storing S-boxes, expanded round keys, or the
internal cipher state), is a critical determinant for deployment in resource-constrained envi-
ronments, such as embedded systems, Internet of Things (IoT) devices, or secure elements.
AES implementations, especially those that precompute S-box lookup tables and round
keys for performance, can have a moderate memory requirement. Serpent’s S-boxes can
either be generated algorithmically during its key schedule or precomputed, which affects
its memory demands [2]. ChaCha20, by virtue of its design which eschews large S-boxes
and maintains a straightforward internal state, is generally characterized by a compact code
size and minimal RAM requirements, rendering it highly suitable for such constrained plat-
forms [7]. The overall resource demands of AEAD schemes like AES-GCM and ChaCha20-
Poly1305 are predominantly influenced by the characteristics of their underlying cipher
and MAC components.

2.3.2 Security Profile and Considerations

Beyond computational performance, the paramount criterion for selecting cryptographic
primitives is their security. This involves an assessment of their theoretical strength against
known cryptanalytic attacks, the practical security offered by specific modes of operation
or constructions, and considerations related to their secure implementation and usage.
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Core Cipher Strength

The foundational security of an AEAD scheme is intrinsically linked to the cryptographic
strength of its underlying core cipher (block or stream cipher). The Advanced Encryption
Standard (AES) has undergone extensive public scrutiny for over two decades and is consid-
ered secure against all known practical cryptanalytic attacks when used with appropriate
key lengths (128, 192, or 256 bits) [33, 13]. Its security is founded upon the extensively
analyzed properties of Substitution-Permutation Networks and the demonstrable resistance
of its round structure to cryptanalysis.

Serpent, an AES finalist, was designed with an even more conservative approach, featur-
ing 32 rounds and S-boxes with strong mathematical properties intended to provide a very
high security margin against techniques like linear and differential cryptanalysis [2]. While
this conservative design generally leads to lower performance than AES, Serpent is widely
regarded as having a very strong theoretical security profile.

ChaCha20, a stream cipher, derives its security from the difficulty of distinguishing
its output keystream from a truly random stream, given the key and nonce. It is based
on the well-analyzed ARX (Add-Rotate-XOR) design principles. Extensive cryptanalysis
has not revealed practical weaknesses in the full 20-round ChaCha20, and it is considered
secure for its intended applications [7]. Its security is critically dependent on the uniqueness
of the nonce for each key.

AEAD Scheme Security

The security of an Authenticated Encryption with Associated Data (AEAD) scheme de-
pends not only on the strength of its underlying cipher and authenticator but also critically
on the secure composition of these components and the proper handling of operational
parameters such as nonces.

AES-GCM (Galois/Counter Mode) provides strong security guarantees, achieving confi-
dentiality through AES in Counter (CTR) mode and integrity/authenticity via the GMAC
algorithm [15]. Its security is proven under the assumption that AES is a secure pseudoran-
dom permutation (PRP) and that the GHASH function is a secure universal hash function
[31]. However, the security of AES-GCM is exceptionally sensitive to nonce reuse. If a nonce
is ever repeated with the same key for two different messages, an attacker can compromise
the confidentiality of both messages (due to the properties of CTR mode) and potentially
forge authentication tags [39, 15]. While AES-GCM is highly efficient, especially with hard-
ware support, this strict nonce uniqueness requirement necessitates careful implementation
and nonce management strategies.

ChaCha20-Poly1305 offers robust authenticated encryption by combining the ChaCha20
stream cipher with the Poly1305 message authenticator [35]. Its security relies on the pseu-
dorandomness of ChaCha20 and the unforgeability of Poly1305. Similar to AES-GCM,
the security of ChaCha20-Poly1305 is critically dependent on the uniqueness of the nonce
for each key; nonce reuse can lead to a loss of confidentiality and allow tag forgery [35].
From a side-channel resistance perspective, ChaCha20, being an ARX cipher with a data-
independent operational flow, can offer advantages in software implementations compared
to table-lookup-based ciphers like AES if not protected by constant-time implementations
or hardware support [7]. Poly1305 is also designed with consideration for side-channel re-
sistance [6]. The overall construction of ChaCha20-Poly1305 is considered state-of-the-art,
providing strong protection when nonces are handled correctly.
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Both AES-GCM and ChaCha20-Poly1305 are designed to protect against common at-
tacks on combined encryption and authentication, such as those exploiting weaknesses
in generic composition methods [3]. The choice between them often involves a trade-off
between hardware acceleration availability (favoring AES-GCM) and consistent software
performance with potentially better inherent side-channel resistance in software (favor-
ing ChaCha20-Poly1305), alongside considerations for nonce generation capabilities within
the target system.

Implementation

The theoretical security of a cryptographic algorithm provides a foundational assurance,
yet its practical security in deployed systems is profoundly influenced by the nuances
of its implementation and the maturity of its surrounding ecosystem. Complex algorithms
with strict operational requirements, such as stringent nonce management, can inadver-
tently increase the risk of implementation errors. Such errors, even if minor, can introduce
critical vulnerabilities, thereby undermining the algorithm’s intended security guarantees,
regardless of its theoretical robustness [18].

The Advanced Encryption Standard (AES), benefiting from its status as a global stan-
dard, is supported by an extensive ecosystem. A vast array of optimized and rigorously
vetted implementations is available across nearly all programming languages and hard-
ware platforms, with some even offering direct hardware acceleration [33]. Nevertheless,
achieving a secure AES implementation, particularly for its advanced modes of operation
like GCM, demands meticulous attention to detail. This includes robust nonce generation
strategies, and, in the absence of comprehensive hardware defenses, careful consideration
of side-channel attack vectors [15]. Serpent, while recognized for its formidable theoretical
security, is supported by a comparatively smaller ecosystem. Consequently, readily avail-
able, highly optimized libraries implementing it are less common, and its intricate structure,
characterized by 32 rounds and multiple distinct S-boxes, may present a greater challenge
for developers aiming for both efficient and verifiably secure custom implementations [2].

In contrast, ChaCha20 and Poly1305 were conceived with simplicity and the facilitation
of secure software implementation as primary design objectives [7, 6]. Their reliance on basic
arithmetic operations, which obviates the need for table lookups, can simplify the develop-
ment of constant-time code, which is a critical technique for mitigating timing-based side-
channel attacks [27]. The AEAD construction ChaCha20-Poly1305, standardized in RFC
8439, defines clear operational guidelines. High-quality implementations of this scheme
are increasingly prevalent in modern cryptographic libraries, especially those tailored for in-
ternet security protocols and mobile computing environments [35]. The inherent straight-
forwardness of its design, coupled with its strong software performance, fosters a continually
expanding and robust ecosystem.

In conclusion, the maturity, widespread availability, and trustworthiness of meticulously
tested library implementations are of paramount importance. Relying upon such established
libraries is strongly recommended in lieu of attempting bespoke cryptographic implementa-
tions. This preference is well-founded, as library maintainers typically possess specialized
expertise in cryptographic engineering, secure coding practices, and side-channel analy-
sis [16]. Consequently, the selection of a cryptographic algorithm is often pragmatically
governed by the quality, accessibility, and proven reliability of its implementations within
the specific development and deployment context.
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2.4 Conclusion
This chapter has presented a comparative analysis of selected symmetric encryption algo-
rithms and AEAD schemes. The review encompassed the Advanced Encryption Standard
(AES), Serpent, the stream cipher ChaCha20, and the AEAD constructions AES-GCM
and ChaCha20-Poly1305, evaluating their respective performance characteristics, security
profiles, and pertinent implementation aspects.

The analysis underscored the distinct characteristics and inherent trade-offs associated
with each cryptographic primitive. AES, as the prevailing global standard, offers a robust
combination of security and efficiency, particularly when its performance is helped by ded-
icated hardware acceleration such as AES-NI. Its extensive and mature ecosystem provides
considerable assurance. Serpent, while theoretically formidable due to its highly conserva-
tive design, typically incurs a notable software performance penalty when compared to AES.
ChaCha20, engineered for optimal software execution, excels in environments lacking spe-
cialized cryptographic hardware, offering strong security coupled with a simple design that
is well-suited for a diverse array of platforms.

In the domain of authenticated encryption, both AES-GCM and ChaCha20-Poly1305
are designed to deliver comprehensive security by synergistically integrating confidentiality
with data integrity and authenticity. AES-GCM’s performance is particularly compelling
with appropriate hardware support, though its security critically depends on rigorous nonce
management. ChaCha20-Poly1305 provides excellent software performance and benefits
from its simple design, while similarly mandating strict nonce discipline. It must be em-
phasized that the practical, achieved security of any chosen scheme is invariably linked
to its correct and secure implementation, underscoring the critical importance of utilizing
mature, well-vetted cryptographic libraries.

Ultimately, this comparative study underscores the principle that no single symmetric
cipher or AEAD scheme is universally superior across all possible applications. The optimal
selection of cryptographic primitives is intrinsically context-dependent, demanding a metic-
ulous evaluation of specific system requirements. Critical considerations include the target
operational environment (including the availability of hardware acceleration), explicit per-
formance expectations (regarding throughput, latency, and resource utilization), the desired
security posture against relevant threat models (encompassing resistance to side-channel at-
tacks), and the practical considerations for secure implementation and integration. The un-
derstanding gleaned from this analysis forms an indispensable foundation for making ju-
dicious cryptographic choices in the subsequent design of secure communication and data
protection protocols.
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Chapter 3

Use Cases and Key Requirements
for Secure Data Sharing

The proliferation of decentralized technologies and the increasing need for privacy-preserving
communication present a need for robust mechanisms to facilitate secure data sharing di-
rectly between peers. In contrast to centralized architectures, which inherently depend
on trusted intermediaries, peer-to-peer systems present potential advantages concerning
resilience, censorship resistance, and user autonomy. [36] Nevertheless, the realization
of these benefits is frequently accompanied by significant security challenges, particularly
when the data being shared is confidential or of a sensitive nature. This chapter under-
takes an analysis of illustrative use cases for secure peer-to-peer data sharing to elucidate
their diverse needs and underlying motivations. Subsequently, based upon this analysis,
a set of fundamental requirements will be systematically derived. Any protocol engineered
for secure peer-to-peer data sharing must address these requirements to be deemed effective
and trustworthy; they will therefore inform the foundational design considerations for such
a system.

3.1 Use Cases
To delineate the foundational requirements of a secure peer-to-peer data sharing system,
it is helpful to examine several illustrative practical scenarios.1 While not exhaustive,
the following examples are presented to highlight common contexts in which such a system
offers distinct advantages. This examination will subsequently inform the derivation of key
system prerequisites.

3.1.1 Secure Collaboration for Dispersed Teams

A common scenario involves teams whose members are geographically distributed yet need
to collaborate on projects involving highly sensitive information. For instance, consider
multi-institutional healthcare research consortia analyzing anonymized but still sen-
sitive patient data for medical advancements, or legal teams from different offices
jointly preparing a complex case involving confidential client information and privileged
documents. Such teams require a private and secure method for sharing data, managing

1The general use cases described form the motivations for this thesis. The specific examples mentioned
in subsection 1 are hypothetical.
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document versions, and ensuring that only authorized individuals can access the shared
information. Crucially, this method should ideally avoid reliance on centralized third-party
services, which can present risks such as data breaches, service outages, or external control
over the data.

3.1.2 Private Content Distribution

Individuals or creators often need to share digital content, such as exclusive artistic works,
journalistic information, or personal photographs and videos, directly with a specific au-
dience, but may not wish to use public platforms. For these users, the primary objective
is to ensure that only the intended recipients can access the content and that the sharing
process itself maintains the privacy of all participants.

3.1.3 Decentralized and Resilient Data Backup

Protecting sensitive data through backups is crucial. Instead of entrusting data to a single
commercial provider, users might prefer to create encrypted backups, break them into
fragments, and distribute these fragments across a network of trusted peers or their own
devices in different locations. This approach primarily aims to enhance data durability
against loss.

3.1.4 Ad-hoc Sharing of Personal Files

Users frequently have personal digital files, for instance, group photographs from an event,
family videos, or personal documents, that they wish to share quickly and privately with
specific individuals or a small group of trusted contacts. In such scenarios, the primary need
is a straightforward and secure mechanism to select specific files or directories from one’s
personal collection and transmit them directly only to the intended recipients, ensuring
that others cannot access the shared content.

3.1.5 Blob Storage for Applications

Applications often store blobs, such as images, documents, etc., in various centralized storage
backends, or even simply in the local filesystem of their host machine. Using a decentralized
data sharing system as a storage backend would allow them to benefit from its built-in
redundancy and high availability, thus drastically reducing the cost of creating backups.

3.2 Key Requirements
Based on the aforementioned illustrative use cases, a set of fundamental requirements can
be delineated for any protocol aiming to facilitate secure data sharing. These requirements
serve as essential criteria for the design and evaluation of such a system, ensuring it is robust,
trustworthy, and fit for purpose:

3.2.1 Confidentiality

The protocol must ensure that shared data is accessible only to authorized participants.
Data, whether in transit across the network or at rest on participating peers (includ-
ing in termediate storage nodes, if any), must be protected from unauthorized disclosure
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through strong cryptographic mechanisms. [42] This implies that individuals or entities not
explicitly granted access by the data owner or an authorized party cannot decipher or view
its contents.

3.2.2 Integrity

The protocol must guarantee that data remains unaltered during transmission and storage.
Participants need assurance that the data they receive or retrieve is identical to the data
originally sent or stored by the legitimate source.

3.2.3 Availability

The protocol must ensure that shared data is accessible to authorized users when they re-
quest it. In a peer-to-peer network, where nodes can be transient and network conditions
may vary, maintaining high availability is a significant challenge. [43] The system should
employ strategies to mitigate the impact of individual node unavailability, aiming to provide
consistent access to data for legitimate participants despite the dynamic nature of the net-
work. This implies that data should not become entirely inaccessible if a large subset
of nodes becomes unreachable.

3.2.4 Durability

Beyond immediate availability, the protocol must ensure the long-term persistence of shared
data, protecting it against loss due to node failures, departures from the network, or data
corruption. Durability implies that data, once committed to the system by an authorized
party, should remain intact and retrievable over extended periods, even in the face of ad-
versarial conditions and the natural churn of participating peers. Mechanisms such as data
redundancy, replication across multiple nodes, or error-corection coding (ECC) are typically
essential for achieving robust data durability in a decentralized environment.

3.2.5 Scalability

The protocol must be designed to scale effectively with an exponentially increasing num-
ber of participants, an ever-growing aggregate of shared data, and rising network traffic.
Scalability in a peer-to-peer context implies that the system’s performance (e.g., data re-
trieval times, discovery latency, overall throughput) should not degrade disproportionately
as the network expands. [43] The design should avoid centralized bottlenecks and distribute
load in a manner that accommodates growth. For a data sharing protocol, this means effi-
ciently dividing the body of data among all peers in a manner that prevents any one peer
from being overloaded.

3.2.6 Efficiency

The protocol should operate efficiently to minimize resource consumption. This encom-
passes several aspects:

• Computational Efficiency: Cryptographic operations, data processing, and proto-
col logic should be designed to minimize CPU load, enabling participation from a wide
range of devices, including those with limited processing power.
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• Bandwidth Efficiency: The protocol should minimize the amount of data trans-
mitted over the network. This includes optimizing the size of protocol messages,
avoiding unnecessary data transfers, and potentially employing techniques for data
compression or differential updates where applicable.

• Storage Efficiency: For peers contributing storage, the protocol should aim to mini-
mize the storage overhead associated with metadata, redundancy schemes, or indexing
structures, while still meeting durability requirements.

Overall efficiency is crucial for user adoption, particularly in resource-constrained environ-
ments or for large-scale data sharing, as excessive resource demands can deter participation
and degrade system performance.

3.2.7 Developer Usability and Ease of Integration

For the protocol to achieve widespread adoption and be correctly implemented in diverse
applications, it must be designed with developer usability in mind. This implies several
considerations:

• Clear Specification: The protocol specifications should be comprehensive, unam-
biguous, and easy to understand.

• Simple Application Programming Interfaces (APIs): APIs should be intuitive,
well-documented, and designed to minimize the likelihood of common security pitfalls
or misuse by application developers [18].

• Modularity and Extensibility: A modular design can simplify integration with ex-
isting systems and allow for future extensions or adaptations without requiring a com-
plete overhaul.

• Availability of Reference Implementations or Libraries: The existence of well-
maintained reference implementations or robust software development kits (SDKs)
can significantly lower the barrier to entry for developers and promote consistent,
secure usage.

Ultimately, a protocol that is difficult to integrate or prone to misconfiguration by develop-
ers is less likely to be adopted and used securely, regardless of its theoretical strengths.

3.3 Conclusion
This chapter has explored illustrative use cases for secure peer-to-peer data sharing, provid-
ing a context for understanding the diverse needs and motivations that drive the demand
for such systems. Based on this exploration and fundamental principles of secure system
design, a core set of requirements has been delineated. These essential requirements include
ensuring robust data confidentiality (3.2.1) to protect information from unauthorized ac-
cess, and guaranteeing data integrity (3.2.2) to prevent illicit modifications.

Furthermore, the system must provide high availability (3.2.3), ensuring data is acces-
sible to authorized users when needed, and durability (3.2.4), safeguarding data against
loss over time despite node failures. The protocol must also be designed for scalabil-
ity (3.2.5), allowing it to perform effectively as the network of participants and the vol-
ume of data grow. Efficiency (3.2.6) in terms of computational, bandwidth, and stor-
age resources is crucial for practical adoption. Finally, developer usability and ease
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of integration (3.2.7) are paramount to facilitate correct and widespread implementation
in various applications.

These identified requirements collectively form a foundational framework. They will
serve as guiding principles and critical benchmarks for the design and subsequent evalu-
ation of the secure peer-to-peer data sharing protocol detailed in the following chapters
of this thesis. Adherence to these requirements is vital for creating a system that is not
only secure and functional but also practical and trustworthy for its users.
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Chapter 4

Secure Data Serialization Format

This chapter specifies the ScatterNet secure data serialization format, and defines its pre-
cise structure and cryptographic transformations applied to data units, thus forming the foun-
dation for secure data exchange within the protocol.

4.1 The DataChunk: Fundamental Unit of Data
The DataChunk is the foundational unit of data in ScatterNet. It consists of arbitrary
byte sequence data and its cryptographic hash, which facilitates secure handling and ad-
dressing.

4.1.1 Conceptual Definition and Purpose

A DataChunk conceptually represents any discrete piece of data that users wish to securely
store or exchange through the ScatterNet system. The purpose of the DataChunk abstrac-
tion is to provide a uniform mechanism for protecting, addressing, and verifying arbitrary
data units regardless of their content or significance.

4.1.2 Logical Composition

For any raw input data 𝐷, the system calculates 𝐻(𝐷) using the hash function defined
in Section 4.2, producing a 64-character1 hash value. This hash serves multiple critical
purposes:

• It functions as the symmetric encryption key when encryption is applied.

• It forms part of the HKey (Section 4.5) used for addressing.

• It enables content verification after decryption.

The hash computation establishes the cryptographic foundation for all subsequent op-
erations on the data.

1Hash is composed of 64 Base64 characters, see Section 4.2.
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4.1.3 Serialized Form of a DataChunk

The serialized form of a DataChunk consists of the concatenation of its hash and data:

SerializedDataChunk = H(data) || data

where 𝐻(𝑑𝑎𝑡𝑎) is the 64-byte ASCII representation of the 64-character Base64 string
of the data’s hash (as defined in Section 4.2), and || denotes concatenation. The first
64 bytes of the serialized form are therefore a Base64 string.

4.2 The Hash: a Universal Reference
The Hash identifier is a critical component in ScatterNet, providing a unique, verifiable,
and robust fingerprint for data. It is a 64-character Base64 string derived from a combi-
nation of cryptographic hashes, the data’s length, and Reed-Solomon parity, ensuring both
content integrity and resilience against corruption of the identifier itself.

4.2.1 Choice of Algorithms: SHA-256 and BLAKE3

The core of the Hash construction employs two distinct cryptographic hash functions:
SHA-256 and BLAKE3.

• SHA-256: A member of the SHA-2 family, SHA-256 is a widely adopted
and well-analyzed algorithm, standardized by NIST. [34] Its established security
and broad acceptance make it a conservative choice for ensuring data integrity. It pro-
duces a 256-bit (32-byte) hash value.

• BLAKE3: A modern cryptographic hash function designed for high performance,
strong security, and parallelizability. It offers significant speed advantages on contem-
porary hardware while maintaining a high security margin. It also produces a 256-bit,
32-byte output.

The combination of these two distinct algorithms provides defense in depth: should a cryp-
tographic weakness be discovered in one, the other is intended to maintain the overall
security of the combined hash.

4.2.2 Composition and Structure

The Hash identifier in its binary form is a 48-byte sequence constructed as follows:

Core Hash: SHA-256 ⊕ BLAKE3

The initial 32-byte segment is generated by computing the SHA-256 hash of the input
data, 𝐷, and the BLAKE3 hash of the same data. The 32-byte output from the BLAKE3
algorithm is then bitwise XORed with the 32-byte SHA-256 hash:

CoreHash = SHA256(𝐷)⊕ BLAKE3(𝐷) (4.1)

This results in a 32-byte combined cryptographic digest.
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Appending Length Information

Following the CoreHash, a 2-byte representation of the original data’s approximate length
is appended. This length information is encoded using the PackedInt format (see Section
4.2.4).

BinaryHashpartial = CoreHash || PackedInt(len(𝐷)) (4.2)

At this stage, the binary hash is 34 bytes long.

Appending Reed-Solomon Parity

To enhance the robustness of the hash identifier against corruption, Reed-Solomon error
correction is applied. A Reed-Solomon code RS(48, 34) is used, generating 14 bytes of parity
data. These parity bytes are calculated over the 34-byte sequence from the previous steps
and then appended to form the complete 48-byte binary hash:

BinaryHashcomplete = CoreHash || PackedInt(len(𝐷)) || ReedSolomonParity (4.3)

This Reed-Solomon configuration can correct up to 7 corrupted bytes within the 48-byte
structure. Further details on the Reed-Solomon codes are provided in Section 4.3.

Base64 Encoding to Hash Value

The complete 48-byte binary hash is transformed into its final form through Base64 encod-
ing. This encoding process converts the 384 bits (48 bytes × 8 bits/byte) of binary data
into a 64-character ASCII string, with each character representing 6 bits of the original
data. The encoding uses the encoding variant described in Section 4.2.3.

Hash = Base64Encode(BinaryHashcomplete) (4.4)

This 64-character string constitutes the final Hash value that serves as the canonical
identifier throughout the ScatterNet system.

4.2.3 Custom Base64 Encoding Scheme

The ScatterNet Hash utilizes a custom Base64 encoding scheme to transform its 48-byte
binary form into a 64-character ASCII string. Base64 encoding, in general, is a method
for representing binary data in an ASCII string format by translating it into a radix-64 rep-
resentation, where each character represents 6 bits of the original data. The specific variant
used in ScatterNet is designed with considerations for URL safety, character properties,
and compatibility.

Rationale for Custom Alphabet Selection

The 64 characters constituting the ScatterNet Base64 alphabet are selected based upon
a systematic application of criteria designed to ensure URL safety and define a consistent
character set. The process is as follows:

1. Initial Character Pool – URL Unreserved Characters: The foundation
for the alphabet is the set of ”unreserved characters“ defined in RFC 3986 [5].
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This set comprises uppercase letters (A-Z), lowercase letters (a-z), digits (0-9), hy-
phen (-), period (. ), underscore (_), and tilde (˜). These characters are generally
not subject to percent-encoding in URIs.

2. ASCII Value Constraint: A filter is applied to this initial pool: only characters
whose 8-bit ASCII value is greater than or equal to the ASCII value of the character
‘0’ (decimal 48) are retained. This constraint results in the following 64-character
set:

• Digits: 0-9

• Uppercase letters: A-Z

• Underscore: _

• Lowercase letters: a-z

• Tilde: ˜

3. Alphabet Ordering for Mapping: The specific sequence in which these 64 se-
lected characters are arranged defines the mapping from 6-bit input values (0-63)
to their character representations. The alphabet order is chosen to align with the al-
phanumeric sequence common to standard Base64 [25] and Base64url [25], with tilde
and underscore appended to complete the set.

Alphabet Definition and Mapping

Based on the aforementioned rationale, the ScatterNet Base64 alphabet is defined by the fol-
lowing 64 characters, ordered to map to input values 0 through 63:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~_

This specific ordering dictates the mapping: the first 6-bit value (0) maps to A, the sec-
ond (1) to B, and so on, with the 62nd value mapping to 9, the 63rd value mapping
to ˜, and the 64th value mapping to _.

Padding Character Omission

Standard Base64 encoding may append one or two padding characters (=) at the end
of the encoded string if the number of input bytes is not a multiple of three. The Im-
plementation shall not print padding characters, and shall ignore them during decoding.

4.2.4 PackedInt Encoding Format

The PackedInt format is a compact, 16-bit (2-byte) scheme used within ScatterNet
for representing non-negative integer values, primarily for encoding approximate lengths.
It consists of an 8-bit exponent byte (𝐸) followed by an 8-bit mantissa byte (𝑀), forming
the structure: (𝐸 || 𝑀).

The value represented by a PackedInt is decoded as follows:

• If the exponent byte 𝐸 < 2: The value is given by Value = (𝐸 ≪ 8)+𝑀 . This directly
covers integers from 0 (represented as 0x0000) up to 511 (represented as 0x01FF).
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• If the exponent byte 𝐸 ≥ 2: The value is calculated as Value = 2(𝐸+7) + (𝑀 × 2).
For example, the value 512 is represented as 0x0200. Subsequent values are repre-
sented with a step of 2 for each increment of the mantissa 𝑀 .

This encoding allows PackedInt to represent a wide range of magnitudes. For values
less than 512, it provides exact representation with a precision of 1. For values greater
than or equal to 512 (i.e., when 𝐸 ≥ 2), the precision becomes 2, meaning only even
integers can be represented, aligning with its use for indicating approximate lengths where
exact precision for very large numbers is not critical.

4.3 Reed-Solomon Codes for Error Correction
Reed-Solomon (RS) codes are a class of non-binary cyclic error-correcting codes renowned
for their ability to correct multiple symbol errors. [38] An RS code is typically defined
by parameters (N,K), where K is the number of data symbols and N is the total number
of symbols in an encoded block (codeword), with N-K parity symbols appended. Such
a code can correct up to (𝑡 = ⌊(𝑁 − 𝐾)/2⌋) erroneous symbols [30]. This section de-
tails how ScatterNet utilizes Reed-Solomon codes in two distinct ways: a direct appli-
cation for protecting the Hash identifier, and a more complex scheme, termed Long Er-
ror Correction Code (Long ECC), for ensuring the resilience of encrypted DataChunks.

ScatterNet uses RS codes in GF(28) with a symbol size of 1 byte.

4.3.1 Direct RS Application to Hashes

To protect the integrity of Hashes, ScatterNet employs a direct application of the Reed-
Solomon code RS(48, 34). [4.2.2]

• The message for this code consists of the first 34 bytes of the hash in binary form.

• From this 34-byte message, 14 parity bytes are generated.

• These 14 parity bytes are appended to the 34-byte message, forming the complete
48-byte BinaryHash_complete with the structure: Message (34B) || Parity (14B).

• Within the Reed-Solomon codeword itself, however, the 14 parity symbols correspond
to symbols 0–13, while the 34 message symbols follow.

This configuration, operating over GF(28) where each byte is a symbol, allows for the cor-
rection of up to 7 byte errors within the 48-byte binary hash.

4.3.2 Advanced Application: Long ECC for DataChunk Payload

For the protection of the encrypted DataChunks, ScatterNet implements a custom Long
Error Correction Code (Long ECC) scheme. This scheme is built upon Reed-Solomon
coding principles and incorporates a self-correcting header to manage the error correction
process for the main data.
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The LongEccHeader and its Self-Correction

The Long ECC scheme is managed by a 16-byte LongEccHeader. To ensure the reliability
of its critical parameters, the descriptive fields within this header are themselves protected
by a Reed-Solomon code. The 16-byte header is structured with its descriptive fields first,
followed by their parity symbols:

• Header Fields (12 bytes): The initial 12 bytes contain the LongEccHeader de-
scriptive fields:

– full_length: u32 (Total length of the codeword)
– message_length: u32 (Length of the encrypted_payload)
– parity: u8 (The maximum number of correctable mistakes in a segment)
– segment_length: u8

– segment_distance: u8

– last_segment_length: u8

• Header Parity (4 bytes): The subsequent 4 bytes are Reed-Solomon parity symbols
calculated over the preceding 12 bytes of header fields.

This header structure utilizes an RS(16, 12) code, where the 12 bytes of header fields
constitute the message, and the 4 appended parity symbols protect these fields. This al-
lows for the correction of up to 𝑡 = (16 − 12)/2 = 2 byte errors. The overall structure
is HeaderFields (12B) || HeaderParity (4B).

Interleaved Parity Scheme for Payload Data

The encrypted_payload (which follows the 16-byte LongEccHeader) is protected by an in-
terleaved Reed-Solomon parity scheme, governed by the parameters within the LongEccHeader.
Parity symbols are generated for segments of the data to be protected
(i.e., the encrypted_payload, and potentially the LongEccHeader fields themselves if they
are also included in this stage of protection).

The conceptual process for generating the main payload parity is as follows:

1. The data to be protected is processed in segments. The first segment starts at the first
byte of the header.

2. For each segment of segment_length (or last_segment_length for the final seg-
ment), Reed-Solomon parity symbols are calculated. The number of parity symbols
per segment is 2 * 𝑝𝑎𝑟𝑖𝑡𝑦, where 𝑝𝑎𝑟𝑖𝑡𝑦 is the value of the parity field in the header.

3. These generated parity symbols are appended to the codeword.

4. The starting point for the next segment is determined by advancing the current po-
sition by segment_distance.

This iterative process continues until the entire codeword has been processed.
The final structure of the Long ECC codeword is:

Codeword = LongEccHeader (16B) || encrypted_payload || parity bytes (4.5)

The full_length field in the header specifies the total length of this EncryptedData.
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4.3.3 Configuration Summary

The Reed-Solomon error correction configurations employed within the ScatterNet seri-
alization format are summarized below. All RS codes operate over GF(28), treating each
byte as a symbol.

• Hash Identifier Protection (Direct RS Application):

– Code: RS(48, 34).
– Message Length: 34 bytes (comprising the 32-byte CoreHash and 2-byte

PackedInt length).
– Parity Length: 14 bytes.
– Codeword Structure (Binary Hash Form): Systematic, Message (34B)

|| Parity (14B).
– RS Codeword Symbol Order: Parity symbols occupy positions 0–13, fol-

lowed by message symbols.
– Error Correction Capability: Up to 7 byte errors within the 48-byte binary

hash.

• Encrypted DataChunk Protection (Long ECC Scheme):

– LongEccHeader Self-Correction:
∗ Code: RS(16, 12).
∗ Message Fields Length: 12 bytes (the descriptive fields of the LongEccHeader).
∗ Parity Length: 4 bytes.
∗ Header Structure: HeaderFields (12B) || HeaderParity (4B).
∗ Error Correction Capability: Up to 2 byte errors within the 12-byte

header fields.

– Overall Data Protection (Iterative Interleaved RS for Long ECC):
∗ Process Overview: The AppendedInterleavedParity is generated via

an iterative, interleaved Reed-Solomon process, governed by parameters
in the LongEccHeader.

∗ Segment Data Source: For each iteration, a data segment is processed.
This segment is drawn from a conceptual ”current codeword“ which consists
of the initial LongEccHeader, the ChaChaEncrypted payload, and all Reed-
Solomon parity symbols generated and appended from *prior* segments
in the iteration.

∗ Parity Generation per Segment: RS parity is calculated for the cur-
rent segment. These newly generated parity symbols are then appended,
extending the ”current codeword“ for subsequent iterations.

∗ Non-Recursive Termination: The parity symbols generated for the final
data segment processed in the iteration are not themselves included as input
into any subsequent parity calculation step within this scheme.

∗ Final Parity Block: The AppendedInterleavedParity is the total col-
lection of all parity symbols generated throughout this iterative process.
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∗ Final Long ECC Codeword Structure: LongEccHeader (16B)
|| ChaChaEncrypted || AppendedInterleavedParity. This entire struc-
ture constitutes the EncryptedData payload.

∗ Error Correction Capability: Determined by the LongEccHeader.parity
field (defining parity symbols per segment) and the RS parameters applied
to each segment.

These configurations provide layered error correction for different components
of the ScatterNet data structures, with the Long ECC employing an iterative method
to protect the combined header, payload, and incrementally generated parity.

4.4 DataChunk Encryption and Integrity
To ensure the confidentiality and integrity of shared data, ScatterNet employs an authenti-
cated encryption scheme. This section details the process of transforming
a SerializedDataChunk into a protected, encrypted form, suitable for storage and trans-
mission within the peer-to-peer network. The overall encryption pipeline is illustrated in
Figure 4.1.

4.4.1 Overview of the Encryption Process

The encryption process takes a SerializedDataChunk (as defined in Section 4.1.3), com-
presses it, and then encrypts the compressed data using the ChaCha20-Poly1305 AEAD
scheme. The encryption key is deterministically derived from the uncompressed
SerializedDataChunk itself. The resulting encrypted data, along with this key, forms
the basis for the HKey (detailed in Section 4.5), which is used for addressing and retrieving
the encrypted content.

4.4.2 Data Pre-processing for Encryption

Before encryption, the SerializedDataChunk undergoes a compression step.

Initial Data Form: The SerializedDataChunk

The input to the encryption pipeline is the SerializedDataChunk, which, as defined in Sec-
tion 4.1.3, consists of the concatenation of the Hash of the original raw data and the raw
data itself:

SerializedDataChunk = 𝐻(raw_data) || raw_data (4.6)

Compression

The SerializedDataChunk is compressed using the Deflate algorithm [14].

DeflatedChunk = Deflate(SerializedDataChunk) (4.7)

Compression is applied prior to encryption to reduce the overall size of the data to be en-
crypted and subsequently stored or transmitted. This improves storage efficiency and re-
duces bandwidth consumption.
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Figure 4.1: ScatterNet DataChunk Encryption Scheme.
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4.4.3 Encryption Key Derivation

The symmetric encryption key for the AEAD scheme is derived by computing the Hash
(as defined in Section 4.2) of the original, uncompressed SerializedDataChunk:

EncryptionKey = 𝐻(SerializedDataChunk) (4.8)

This ensures that the key is deterministically tied to the specific content
of the SerializedDataChunk (which includes both the raw data and its own hash).
ThisEncryptionKey is one of the two components of the HKey.

4.4.4 AEAD Encryption

ScatterNet utilizes the ChaCha20-Poly1305 algorithm as its Authenticated Encryption
with Associated Data (AEAD) scheme.

Selected Scheme: ChaCha20-Poly1305

ChaCha20-Poly1305 was selected for its strong security profile and excellent performance
in software implementations, particularly on a wide range of CPU architectures, as discussed
in Section 2.3. It provides both confidentiality for the data through ChaCha20 encryption
and integrity and authenticity through the Poly1305 message authentication code.

Encryption Operation

The encryption operation proceeds as follows:

• Plaintext: The DeflatedChunk is used as the plaintext input.

• Key: The EncryptionKey (which is 𝐻(SerializedDataChunk), as derived in Section
4.4.3) is used as the 256-bit key for ChaCha20-Poly1305.

• Nonce: A 96-bit (12-byte) nonce is required. This nonce is derived from
the EncryptionKey. Specifically, the EncryptionKey is a Hash whose 48-byte bi-
nary form consists of a 32-byte CoreHash, a 2-byte PackedInt length, and 14 bytes
of Reed-Solomon parity (as laid out in detail in Section 4.2.2). The last 12 bytes
of this 14-byte Reed-Solomon parity portion of the EncryptionKey’s
binary form are used as the nonce for the ChaCha20-Poly1305 operation. This de-
terministic derivation ensures the nonce is tied to the key, while the properties of the
hash construction aim to provide sufficient variability.

• Associated Data (AAD): No Associated Data is utilized; the AAD input
to ChaCha20-Poly1305 is empty. The integrity protection is focused on the ciphertext
itself.

The output of the AEAD encryption is a buffer containing the ciphertext and the Poly1305
authentication tag:

ChaChaEncrypted = ChaCha20Poly1305(𝑘𝑙𝑖𝑐, 𝑛𝑜𝑛𝑐𝑒, 𝜀,𝐷𝑒𝑓𝑙𝑎𝑡𝑒𝑑𝐶ℎ𝑢𝑛𝑘) (4.9)
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4.4.5 Application of Long Error Correction Code

The ChaChaEncrypted buffer, produced by the ChaCha20-Poly1305 AEAD scheme,
is then further processed by the Long Error Correction Code (Long ECC) scheme detailed
in Section 4.3.2.

EncryptedData = LongECCEncode(ChaChaEncrypted) (4.10)
This step adds a layer of resilience against physical data corruption to the already

encrypted and authenticated data. The EncryptedData is the data’s final form: in this form
it shall be both stored and transmitted.

4.5 The HKey: Universal Data Identifier and Access Key
The HKey (HashKey) is a universal identifier within ScatterNet used to address, retrieve,
and facilitate the verification or decryption of various forms of data. It provides a stan-
dardized string representation that encapsulates not only the identity of a piece of data
but often also the means to access its content, whether it be raw, encrypted, or a complex
aggregation of other data units.

4.5.1 Definition and General Structure

An HKey is a string composed of a single-character prefix indicating its type, followed
by type-specific data. This prefix allows ScatterNet peers to correctly parse the HKey
and understand the nature of the data it references. The general structure is:

HKey = PrefixCharacter || TypeSpecificData (4.11)
The following subsections detail the defined HKey variants. The term Hash used in these

definitions refers to the 64-character Base64 string produced by the ScatterNet hash func-
tion (Section 4.2), and Key typically refers to an EncryptionKey (also a Hash) as derived
in Section 4.4.3.

4.5.2 HKey Variants

ScatterNet defines several HKey variants to accommodate different data types and storage
strategies:

Base64 Variant (‘B’ prefix)

This variant is designed for embedding very small pieces of raw, unencrypted data directly
within the HKey string itself.

• Structure: ‘B’ || Base64(rawData)

• Components:

– ‘B’: The single-character prefix.
– Base64(rawData): The Base64 encoding (Section 4.2.3) of the rawData.

• Purpose: To efficiently represent and transmit small data segments without requiring
a separate data retrieval step.
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• Constraint: This variant may be used for rawData up to 46 bytes in length. This en-
sures that the resulting Base64 encoded string is at most 62 characters, leading to a to-
tal HKey length of 63 characters, to prevent representation collisions with Hashes.

Direct Variant (‘D’ prefix)

This variant directly references an unencrypted DataChunk (or more precisely, its raw data
component) using its Hash.

• Structure: ‘D’ || HashOfRawData

• Components:

– ‘D’: The single-character prefix.
– HashOfRawData: The Hash calculated directly over the unencrypted raw data

(i.e., 𝐻(raw_data) as per Section 4.1.2).

• Purpose: To address and retrieve data that is stored in its raw, unencrypted form
within the ScatterNet system. The referenced data is expected to be the raw_data
part of a SerializedDataChunk whose prefix matches HashOfRawData.

• This variant’s prefix is Optional. This means every Hash is a valid HKey.

Encrypted Variant (‘E’ prefix)

This is the default variant for referencing an encrypted DataChunk payload, as processed
by the encryption pipeline detailed in Section 4.4.

• Structure: ‘E’ || HashOfEncrypted || EncryptionKey

• Components:

– ‘E’: The single-character prefix.
– HashOfEncrypted: The Hash of the final EncryptedData (see Section 4.4.5).

This EncryptedData is the output of the Long ECC scheme applied
to the AEAD-encrypted data.

– EncryptionKey: The Hash used as the key for the AEAD encryption
(i.e., 𝐻(SerializedDataChunk) as per Section 4.4.3).

• Purpose: To address, retrieve, and provide the decryption key for an encrypted
DataChunk payload. This is the standard HKey form resulting from the full data
protection pipeline.

List Reference Variant (‘L’ prefix)

This variant provides an indirect reference to an encrypted DataChunk that itself contains
the textual representation of a List Variant HKey (Section 4.5.2) or a Long Variant HKey
(Section 4.5.2).

• Structure: ‘L’ || Hash || Key (see Section 4.5.2)

• Components:
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– ‘L’: The single-character prefix.
– Hash: The Hash of the encrypted representation of a string that defines a List

or Long HKey.
– Key: The Hash used as the key to decrypt the aforementioned string.

• Purpose: To efficiently reference potentially large or complex List or Long HKey
definitions that are stored as encrypted DataChunks within ScatterNet. This avoids
embedding very long strings directly into other HKeys or metadata. Upon retrieval
and decryption, the content is parsed as a List or Long HKey.

List Variant (‘[’ prefix)

This variant defines a logical data object composed of the concatenation of data referenced
by a sequence of other HKeys.

• Structure: ‘[’ || HKey1 || ‘,’ || HKey2 || ... || ‘,’ || HKey𝑛 || ‘]’

• Components:

– ‘[’ and ‘]’: Delimiting characters.
– HKey𝑖: A comma-separated sequence of one or more valid HKey strings (which

can be of any variant, including other List or Long variants, allowing for nesting).

• Purpose: To represent a data object formed by sequentially concatenating the com-
plete data content referenced by each constituent HKey. For example, if HKey1 refer-
ences data 𝐷1 and HKey2 references data 𝐷2, this List Variant represents 𝐷1||𝐷2.

Long Variant (‘{’ prefix)

This variant defines a logical data object assembled from potentially partial segments of data
referenced by other HKeys, allowing for the construction of larger logical files from smaller,
possibly non-contiguous, pieces.

• Structure:
‘{’ || segment1 || ‘,’ || segment2 || ... || ‘,’ || segment𝑛 || ‘}’

• Components:

– ‘{’ and ‘}’: Delimiting characters.
– segment𝑖: A comma-separated sequence of segment definitions. Each segment

can be of two forms:
1. An HKey string: This implies the entire data content referenced by this HKey

forms a contiguous segment in the logical object.
2. A range-specified HKey: startByte-endByte:HKeyString. This specifies

that the segment consists of the byte range from startByte to endByte
(inclusive) of the data referenced by HKeyString.

• Purpose: To define large or complex data structures by aggregating entire data
chunks or specific byte ranges from various constituent data chunks. For exam-
ple, {0-4095:HKeyA,HKeyB,8192-12287:HKeyC} would construct a logical file where
the first 4096 bytes are from HKeyA, followed by the entire content of HKeyB, followed
by bytes 8192 through 12287 from HKeyC.
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Chapter 5

Communication Protocol

This chapter specifies the peer-to-peer communication protocol for the ScatterNet sys-
tem. Building upon the secure data serialization format defined in Chapter 4, this protocol
outlines the fundamental interactions required for participants to securely store and re-
trieve data chunks. The primary goal is to define a clear, minimal, and robust interface
that enables decentralized data sharing while abstracting away the complexities of under-
lying network transport mechanisms. This chapter will detail participant identification,
the core operational interface, and the expected semantics of message exchanges.

5.1 Core Protocol Principles
The ScatterNet protocol is designed with several core principles to ensure security, inter-
operability, and clarity of scope.

5.1.1 Participant Identification

Each participant (peer) in the ScatterNet network is uniquely identified
by their Ed25519 public key [24]. Ed25519, an Edwards-curve Digital Signature Algo-
rithm (EdDSA) scheme using Curve25519, is chosen for its strong security properties, high
performance, resistance to many side-channel attacks, and compact key and signature sizes.
The public key serves as the persistent identifier for a peer, while the corresponding pri-
vate key enables the peer to authenticate its actions, such as signing messages or proving
ownership of stored data, should higher-level protocol extensions require such features.
For the basic interface defined herein, the public key primarily serves as an addressable
identity.

5.1.2 Protocol Layering and Scope

The ScatterNet protocol defined in this chapter specifies a logical communication interface
and the semantics of operations between peers. It intentionally does not dictate the specifics
of:

• Network Transport: Peers are free to implement the defined interface over any
suitable network transport layer (e.g., TCP/IP, UDP, QUIC, or other peer-to-peer
overlay networks).
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• Packet Structure: The on-the-wire format of packets used to convey protocol mes-
sages is considered an implementation detail. Implementations must agree on a com-
mon packet structure if they are to interoperate, but this is not part of the core
ScatterNet protocol specification itself.

• Peer Discovery and Routing: Mechanisms for discovering other peers or routing
requests through the network are considered separate concerns, potentially handled
by an underlying P2P library or a dedicated overlay network.

This layered approach allows for flexibility and adaptability, enabling ScatterNet to be de-
ployed in diverse network environments. The focus of this specification is the application-
level interface for data interaction.

5.2 Interface Definition
Each participant in the ScatterNet network must implement a minimal, well-defined in-
terface to enable the fundamental operations of data storage and retrieval. This interface
consists of two primary operations: FETCH and PUT.

5.2.1 FETCH Operation

Purpose

The FETCH operation is used by a requesting peer (client) to retrieve a protected data
payload from a responding peer (storer) that is presumed to hold it.

Parameters

• Input:

– hash: A Hash (as defined in Section 4.2). This hash corresponds to the HashOfEncrypted
component of an HKey (see Section 4.5.2), which is 𝐻(EncryptedData).

Return Values

• Output (on success):

– EncryptedData: The requested data payload, which is the EncryptedData
(as defined in Section 4.4.5). This payload includes the LongEccHeader,
the AEAD-encrypted data (ChaChaEncrypted), and the AppendedInterleavedParity.

• Output (on failure):

– NotFound: Indicates that the responding peer does not have data corresponding
to the provided hash.

– Error: Indicates a general error occurred during the processing of the request
on the responding peer’s side (e.g., internal storage error, temporary unavail-
ability).
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Semantics

Upon receiving a FETCH request, the responding peer attempts to locate the EncryptedData
payload associated with the provided hash. If found, the peer transmits this payload back
to the client. The client is then responsible for performing the necessary steps to verify
and decrypt the payload using the full HKey (which it must possess independently), including
Long ECC decoding and AEAD decryption. If the data is not found, or an error occurs,
an appropriate status is returned.

5.2.2 PUT Operation

Purpose

The PUT operation is used by a client peer to request that a responding peer (storer) store
a data payload. The primary mode of operation involves the client providing an already
processed and protected data payload along with its corresponding HKey. Implementations
may optionally also support a mode where raw data is provided, and the storer performs
the full data protection pipeline.

Parameters (Primary Mode)

• Input:

– EncryptedData: The fully processed and protected data payload, which is the EncryptedData
(as defined in Section 4.4.5). This payload includes the LongEccHeader,
the AEAD-encrypted data (ChaChaEncrypted), and the AppendedInterleavedParity.

Return Values

• Output (on success):

– Success returns an HKey referring to the submitted data

• Output (on failure):

– LimitExceeded: Indicates that the responding peer refused to store the data.
See Section 5.3.

– Error: Indicates a general error occurred during the storage of the data on the re-
sponding peer’s side (e.g., storage failure).

Optional Raw Data Handling

Implementations of the PUT operation may also support an alternative input mode where
the client provides:

• Input (Optional Mode):

– rawDataChunk: An arbitrary byte sequence representing the raw data to be stored.

In this optional mode, the responding (storing) peer would perform the complete ScatterNet
data protection pipeline as detailed in Chapter 4. If this optional mode is supported and suc-
cessful, the return value is the HKey. Failure conditions (LimitExceeded, Error) remain
applicable. The availability of this raw data handling mode is implementation-dependent.
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5.3 Fair Use Policy and Reputation System
To promote equitable resource utilization and discourage abusive behavior within the ScatterNet
network, participants (peers) shall implement a Fair Use Policy (FUP). This policy is en-
forced through a locally managed, subjective reputation system. While specific penalty
magnitudes for certain actions and enforcement thresholds are implementation-dependent,
the core mechanics of score adjustment are defined herein.

5.3.1 Reputation Score Mechanics

Each peer shall maintain its own independent reputation score for every other peer with
which it has interacted. This score is a local assessment, reflecting the history of interactions
from the perspective of the peer maintaining the score.

• Initial Score: When a peer (Peer X) interacts for the first time with another peer
(Peer Y), Peer X shall assign Peer Y an initial reputation score of 0 in its local records.

• Score Adjustments for FETCH Operations:

– When Peer A (client) successfully fetches a chunk from Peer B (storer), Peer A
shall increment its locally stored reputation score for Peer B by +1.

• Score Adjustments for PUT Operations:

– When Peer A (client) successfully requests Peer B (storer) to store a chunk,
and Peer B accepts and stores the data (returning an HKey):

∗ Peer A (client) shall increment its locally stored reputation score for Peer B
(storer) by +3.

∗ Peer B (storer) shall decrement its locally stored reputation score for Peer A
(client) by -1.

• Score Adjustments for Invalid Packets:

– If Peer X receives an invalid packet from Peer Y (e.g., malformed, violating proto-
col semantics beyond errors handled by defined operation return values), Peer X
shall decrement its locally stored reputation score for Peer Y by an implementation-
defined amount. This amount must be configurable and should be chosen to ef-
fectively discourage such behavior.

5.3.2 Enforcement of Storage Limits via Reputation

The primary mechanism for enforcing storage limits under the FUP is tied to reputation
scores.

• Each peer implementation shall define a configurable negative reputation score thresh-
old. A recommended default value is -2000, but peer operators must be able to adjust
this.

• If a peer (storer) receives a PUT request (either primary mode or optional raw data
mode) from another peer (client) whose reputation score, as maintained by the storer,
is at or below this defined threshold, the storer shall refuse to store the data and shall
return a LimitExceeded error.
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This mechanism allows peers to protect their resources from disproportionate consumption
by other peers.

5.3.3 Subjectivity and Scope of Reputation

The ScatterNet reputation system is designed with the following characteristics:

• Local and Subjective: All reputation scores are maintained locally by each peer
and reflect that peer’s direct interaction history and assessment of others. There is no
central reputation authority or global score.

• Implementation-Defined Parameters: While the events triggering score changes
are defined, the specific magnitude of decrement for ”invalid packets“ and the exact

”negative reputation score threshold“ for PUT refusal are implementation-dependent.

This design provides individual peers with a mechanism to manage resource usage and mit-
igate abuse based on direct interactions, without introducing the complexities of a global
system.
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Chapter 6

Implementation

This chapter details the reference implementation of the ScatterNet protocol and its con-
stituent components. The implementation is realized as a collection of modular Rust crates,
each responsible for a specific aspect of the system, from low-level data encoding and cryp-
tographic primitives to the high-level peer logic. Rust was chosen as the implementation
language for its strong emphasis on memory safety, performance, and concurrency, which
are critical attributes for robust and efficient peer-to-peer systems. The following sections
describe the key modules developed for ScatterNet, providing links to their documentation
and source code repositories.

6.1 Core Library Crates
The foundational functionalities of ScatterNet, including data serialization, cryptography,
and error correction, are encapsulated in a set of distinct Rust crates. This modular design
promotes code reusability, maintainability, and testability.

6.1.1 ps-base64: Base64 Encoding

The ps-base64 crate provides the custom Base64 encoding and decoding functionality uti-
lized by ScatterNet, particularly for the generation of Hash identifiers. It implements
the specific alphabet and padding rules detailed in Section 4.2.3. See the API documenta-
tion1 and source code2 for more.

6.1.2 ps-pint16: PackedInt Implementation

The ps-pint16 crate implements the PackedInt 16-bit encoding scheme, as described
in Section 4.2.4. This format is used for compactly representing approximate lengths within
the Hash structure. See the API documentation3 and source code4 for more.

6.1.3 ps-hash: Cryptographic Hash Implementation

The ps-hash crate is responsible for generating the ScatterNet Hash identifiers. It im-
plements the combined hashing scheme involving SHA-256 and BLAKE3, as in 6.1, length

1https://docs.rs/ps-base64
2https://github.com/prokopschield/ps-base64
3https://docs.rs/ps-pint16
4https://github.com/prokopschield/ps-pint16
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encoding using ps-pint16, Reed-Solomon parity generation (leveraging ps-ecc), and the
final Base64 encoding (using ps-base64), as specified in Section 4.2.

The hash algorithms for BLAKE3 and SHA-256 are imported from the well-known
crates (libraries) blake3 and sha2.

// The hash function (simplified) looks like this:
pub fn hash(data: &[u8]) -> Result<Hash, Error> {

let mut buffer = Buffer::with_capacity(HASH_SIZE)?;

buffer.extend_from_slice(sha256(data))?;
buffer ^= &blake3(data).as_bytes()[..];
buffer.extend_from_slice(PackedInt::from_usize(data.len()).to_16_bits())?;
buffer.extend_from_slice(RS.generate_parity(&buffer)?)?;

let hash = Self {
inner: sized_encode::<HASH_SIZE>(&buffer),

};

Ok(hash)
}

Listing 6.1: Hash function implementation

See the API documentation5 and source code6 for more.

6.1.4 ps-deflate: Compression Utilities

The ps-deflate crate serves as a convenience wrapper around the libdeflater library,
providing Deflate compression and decompression services. This is utilized in the data
pre-processing stage before encryption, as outlined in Section 4.4.2. See the API documen-
tation7 and source code8 for more.

6.1.5 ps-ecc: Error Correction Codes

The ps-ecc crate implements the Reed-Solomon error correction codes used in ScatterNet.
This includes the RS(48, 34) code for Hash parity and the more complex Long Error Correc-
tion Code (Long ECC) scheme, including its self-correcting header and interleaved parity
for DataChunk payloads, as detailed in Section 4.3. See the API documentation9 and source
code10 for more.

6.1.6 ps-datachunk: DataChunk Representation

The ps-datachunk crate defines the DataChunk structure, which is the fundamental unit of
data in ScatterNet (Section 4.1). It handles the logical composition of a DataChunk from
raw data and its hash, as well as its serialized form.

5https://docs.rs/ps-hash
6https://github.com/prokopschield/ps-hash
7https://docs.rs/ps-deflate
8https://github.com/prokopschield/ps-deflate
9https://docs.rs/ps-ecc

10https://github.com/prokopschield/ps-ecc
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DataChunk is defined as a trait11, which directly offers methoods for serialization (serialize)
and encryption (encrypt, decrypt). Structs built around specific underlying container
types (e.g. OwnedDataChunk, BorrowedDataChunk, SerializedDataChunk) are also pro-
vided. See the API documentation12 and source code13 for more.

6.1.7 ps-cypher: Encryption Scheme Implementation

The ps-cypher crate implements the DataChunk encryption and integrity protection mecha-
nisms detailed in Section 4.4. This includes key derivation from the SerializedDataChunk,
AEAD encryption using ChaCha20-Poly1305 (using the chacha20poly1305 crate), nonce
management, and the application of the Long ECC scheme (via ps-ecc) to the encrypted
output. See the API documentation14 and source code15 for more.

6.1.8 ps-hkey: HKey Processing and Data Access Abstraction

The ps-hkey crate defines the HKey structure (Section 4.5) and provides generic interfaces
for its parsing, validation, and resolution. A key feature of this crate is its abstraction over
the underlying data storage and retrieval mechanisms. Its methods accept closures that
define how to fetch data given a Hash (e.g., Fn(&Hash) -> Result<DataChunk, Error>)
or how to store data and obtain its Hash (e.g., Fn(&[u8]) -> Result<Hash, Error>).
This design renders the HKey operations agnostic to the specific storage backend, allowing
seamless interaction with diverse data sources such as local filesystem storage (e.g., via
ps-datalake, Section 6.1.9) or remote network peers (e.g., via the FETCH and PUT operations
defined in Section 5.2). Furthermore, ps-hkey implements the logic for resolving complex
HKey variants, such as the List and Long variants, including capabilities for efficiently
retrieving partial slices of the underlying data referenced by these composite structures.
This crate is therefore central to interpreting HKeys and accessing the data they represent
in a uniform manner. See the API documentation16 and source code17 for more.

6.1.9 ps-datalake: Filesystem Storage for DataChunks

The ps-datalake crate provides an interface for storing encrypted DataChunks into the
local file systems, or directly onto memory media. It uses memory-mapped hash tables for
organizing the data stored.

To calculate the ideal hash table index size, the crate uses a prime sieve that was adapted
from Dave Plummer’s Drag Race18.

See the API documentation19 and source code20 for more.
11Traits are generic interfaces in the Rust programming language.
12https://docs.rs/ps-datachunk
13https://github.com/prokopschield/ps-datachunk
14https://docs.rs/ps-cypher
15https://github.com/prokopschield/ps-cypher
16https://docs.rs/ps-hkey
17https://github.com/prokopschield/ps-hkey
18https://github.com/PlummersSoftwareLLC/Primes/blob/drag-race/PrimeRust/solution_2/src/

prime_object.rs
19https://docs.rs/ps-datalake
20https://github.com/prokopschield/ps-datalake
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6.2 scatter-net: Peer Implementation and Application
The scatter-net crate serves as the reference implementation of a ScatterNet peer, pro-
viding both a library for programmatic integration and a standalone executable application.
This crate orchestrates the functionalities of all the core library modules (detailed in Section
6.1) to realize the complete ScatterNet protocol specified in Chapter 5.

A key architectural choice in scatter-net is the utilization of the iroh peer-to-peer
networking library for establishing and managing communication channels between peers.
Iroh was selected for its design emphasis on simplicity and ease of use, coupled with its
robust reliability and innovative approach to decentralized networking. It provides QUIC-
based connections [23], offering secure, multiplexed, and low-latency transport suitable for
ScatterNet’s interactive data exchange operations. The adoption of iroh also influences
the asynchronous runtime environment; scatter-net employs the Tokio runtime, as it
is the runtime utilized by iroh, ensuring seamless integration and efficient asynchronous
operation.

Internally, scatter-net manages peer identity using Ed25519 keys and implements the
server-side logic for the FETCH and PUT operations. This involves interaction with local stor-
age abstractions (provided by ps-datalake) and, when acting as a storer in the optional
raw data PUT mode, coordinating the full data protection pipeline. For the transmission
of protocol messages over iroh’s QUIC connections, scatter-net employs bincode for effi-
cient binary serialization and deserialization of packet data, further optimized by applying
compression using the ps-deflate crate. The crate also implements the client-side logic
for initiating requests to other peers and manages the local reputation system as outlined
in Section 5.3.

It is important to note that, in its current iteration, peer discovery mechanisms are not
implemented within scatter-net; peers must be configured with the identifiers (public
keys) of other known participants. The scatter-net implementation is envisioned as an
evolving project, with plans for iterative enhancements and feature additions in the future
to further expand its capabilities and robustness within the peer-to-peer ecosystem.

See the documentation21 and the full source code22 for more.

21https://docs.rs/scatter-net
22https://github.com/prokopschield/scatter-net
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Chapter 7

Testing and Evaluation

7.1 Introduction
This chapter presents the testing and evaluation undertaken for the ScatterNet implemen-
tation. The primary objectives of this phase were to verify the functional correctness of the
core components, assess the performance characteristics of data transfer operations, and
conduct a qualitative evaluation of the system’s security posture based on its design and
the cryptographic primitives employed. Due to the scope of a Bachelor’s thesis, exhaus-
tive large-scale network testing and formal security audits were not performed; however,
the conducted tests provide initial insights into the system’s behavior and adherence to its
design goals.

7.2 Functional Testing and Unit Tests
A suite of unit tests was developed to verify the correctness of individual modules within
the ScatterNet implementation. These tests focused on the core library crates responsible
for data processing and cryptographic operations, including:

• ps-hash: Verification of correct Hash generation according to the specified algorithm
(SHA-256 ⊕ BLAKE3, PackedInt length, Reed-Solomon parity, and Base64 encod-
ing).

• ps-pint16 and ps-base64: Correctness of encoding and decoding for PackedInt
and the custom Base64 scheme.

• ps-ecc: Validation of Reed-Solomon encoding and decoding capabilities for both the
Hash parity and the Long ECC scheme’s header and payload protection, including
simulated error injection and correction.

• ps-datachunk and ps-cypher: Correct serialization, compression, AEAD encryp-
tion/decryption, and Long ECC application/removal for DataChunks. This included
verifying that data encrypted and then decrypted yielded the original plaintext and
that authentication tags were correctly generated and verified.

• ps-hkey: Correct parsing and resolution of different HKey variants.

While these unit tests cover critical functionalities within each module, comprehensive
coverage of all edge cases and complex interactions across the entire system remains an
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area for future work. The successful execution of these unit tests provided a foundational
level of confidence in the correctness of the core data manipulation and protection logic.

7.3 Performance Evaluation
A qualitative performance evaluation was conducted by testing the transfer of files of various
sizes between two ScatterNet peer instances running on a local network. The primary focus
was on the end-to-end throughput of the PUT and FETCH operations.

7.3.1 Methodology

Two peer instances, implemented using the scatter-net crate, were run on separate ma-
chines connected via a Gigabit Ethernet local area network. Files ranging from a few
kilobytes to several megabytes were transferred using the PUT operation from a client peer
to a storing peer, and subsequently retrieved using the FETCH operation. The time taken
for these operations was observed.

7.3.2 Observations and Discussion

In the conducted tests, the transfer of files via ScatterNet’s PUT and FETCH operations
appeared to be primarily limited by the available network bandwidth between the two test
nodes. Data transfers were observed to proceed rapidly, effectively saturating the network
link capacity. This observation suggests that the overhead introduced by ScatterNet’s data
processing pipeline (serialization, compression, hashing, encryption, error correction) is not
a significant bottleneck for point-to-point transfers under these local network conditions.

While these initial observations are positive, indicating efficient data handling, they
do not constitute a rigorous quantitative performance benchmark. A more comprehensive
performance analysis would require:

• Testing across wider area networks with varying latency and bandwidth characteris-
tics.

• Measuring CPU and memory utilization on peers during data processing and transfer.

• Evaluating performance with a larger number of concurrent peers and operations.

• Profiling individual components (e.g., encryption, ECC encoding/decoding) to iden-
tify specific performance contributions.

Such extensive benchmarking was beyond the scope of this work but is recommended for
future development to fully characterize the system’s performance envelope and identify
potential areas for optimization, especially for resource-constrained devices or large-scale
deployments.

7.4 Security Evaluation
A formal security audit or penetration testing of the ScatterNet implementation was not
conducted as part of this thesis. The security evaluation is therefore primarily based on a
qualitative assessment of the design and the cryptographic primitives employed.
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7.4.1 Design-Level Security

ScatterNet’s security model relies on established cryptographic components and principles:

• Confidentiality and Integrity: Achieved through the use of the ChaCha20-Poly1305
AEAD scheme for encrypting DataChunk payloads. This provides strong, authenti-
cated encryption, protecting data from unauthorized disclosure and modification. The
security of this scheme is well-regarded in the cryptographic community [35].

• Key Management: The encryption key for a DataChunk is derived deterministically
from the SerializedDataChunk itself (𝐻(SerializedDataChunk)). This approach en-
sures that the key is intrinsically linked to the data it protects. The HKey then securely
bundles the identifier for the encrypted data with this encryption key.

• Data Integrity of Identifiers: The Hash identifiers incorporate Reed-Solomon error
correction, providing resilience against accidental corruption. The cryptographic hash
functions (SHA-256 and BLAKE3) ensure the uniqueness and unforgeability of these
identifiers under standard cryptographic assumptions.

• Resilience to Data Corruption: The Long ECC scheme applied to encrypted
payloads provides an additional layer of protection against physical data corruption
during storage or transit.

• Participant Identification: The use of Ed25519 public keys provides a strong
cryptographic basis for peer identification, although the current protocol specifica-
tion primarily uses these for addressing rather than explicit message authentication
between peers.

7.4.2 Limitations and Future Work

While the design incorporates strong cryptographic primitives, the overall security of a
deployed ScatterNet system would also depend on:

• Secure Implementation: Correct and secure implementation of all cryptographic
operations and protocol logic is paramount. Vulnerabilities can arise from implemen-
tation errors even if the underlying cryptographic components are sound. The use of
Rust and established cryptographic libraries aims to mitigate some of these risks.

• Nonce Management: The security of ChaCha20-Poly1305 critically depends on the
uniqueness of nonces for each key. The deterministic derivation of the nonce from the
encryption key’s parity bits is a specific design choice that requires careful analysis
to ensure sufficient entropy and non-collision properties in practice.

• Transport Layer Security: As ScatterNet defines a logical interface, the security
of data in transit between peers (e.g., protection against active network attackers)
relies on the security of the underlying transport mechanism (e.g., QUIC provided by
iroh, or TLS if used with TCP).

• Peer Discovery and Trust Management: Mechanisms for secure peer discov-
ery and establishing trust between peers are not part of the current core protocol
specification and would need to be addressed in a complete system deployment.
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• Fair Use Policy Robustness: The effectiveness of the reputation-based FUP
against sophisticated or colluding malicious actors would require further analysis and
potentially more advanced mechanisms in a production environment.

A comprehensive security audit by independent experts would be a necessary step before
any production deployment of ScatterNet.

7.5 Conclusion
The testing and evaluation conducted for this thesis provide initial positive indications
regarding the functional correctness and performance potential of the ScatterNet imple-
mentation. Unit tests confirmed the behavior of core data processing and cryptographic
modules. Qualitative performance observations suggest that the protocol can efficiently
utilize available network bandwidth for data transfers between two peers. The security of
the system is founded on the use of strong, well-established cryptographic primitives and
a design that emphasizes data confidentiality, integrity, and resilience.

However, the evaluation also highlights areas for future work. More extensive perfor-
mance benchmarking across diverse network conditions and scales is required for a complete
performance profile. Similarly, while the design incorporates robust security principles,
a formal security audit and further analysis of specific aspects, such as nonce generation
and the FUP’s resilience, would be essential for a production-ready system. The current
implementation serves as a solid foundation for these future endeavors.
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Conclusion

This bachelor’s thesis set out to address the challenges of secure data sharing in decen-
tralized peer-to-peer (P2P) networks. Recognizing the limitations of existing solutions
in providing comprehensive end-to-end security, the primary objective was to design and
specify ScatterNet, a novel protocol tailored for such environments. The work successfully
achieved this aim by delivering a multi-faceted solution encompassing a robust data serial-
ization format, a secure encryption pipeline, a versatile data addressing mechanism, and a
foundational communication interface.

The core contributions of this thesis are centered around the meticulous design of these
components. A secure data serialization format was developed, starting with the DataChunk
as the fundamental unit. This format incorporates a sophisticated, content-addressable
Hash identifier, which combines the strengths of SHA-256 and BLAKE3, includes data
length information via a custom PackedInt scheme, and is fortified with Reed-Solomon
error correction parity for enhanced robustness. The data protection pipeline ensures con-
fidentiality and integrity through Deflate compression followed by ChaCha20-Poly1305 au-
thenticated encryption. The encryption key is deterministically derived from the data itself,
and the nonce is carefully constructed from components of this key. Furthermore, a cus-
tom Long Error Correction Code (Long ECC) scheme, featuring a self-correcting header
and iterative interleaved Reed-Solomon parity, provides an additional layer of resilience
against physical data corruption for the encrypted payloads. Addressing and referencing
these protected data units are managed by a flexible HKey system, supporting various data
representations from directly embedded small data to complex, aggregated structures.

Building upon this secure data foundation, a minimalist peer-to-peer communication
protocol was specified. Participants are identified by Ed25519 public keys, and the protocol
defines core FETCH and PUT operations for data exchange. This interface is designed to be
transport-agnostic, allowing for implementation over diverse network layers. To promote
equitable resource usage, a local, subjective reputation system was introduced, enabling
peers to manage interactions based on observed behavior.

The reference implementation of ScatterNet, realized as a collection of modular Rust
crates, demonstrates the practical viability of the proposed design. Key architectural
choices, such as the use of the iroh library for QUIC-based peer-to-peer communication
and the Tokio asynchronous runtime, were made to leverage modern, efficient, and secure
technologies. While the current implementation provides a solid foundation, areas such as
automated peer discovery and advanced trust management mechanisms remain avenues for
future development.

The largest contribution of this thesis, second only to the serialization format’s design,
is undoubtedly the array of Rust modules (crates) listen in Section 6.1. None of these are
inherently tied to the ScatterNet project and therefore have the potential to be indepen-
dently useful.
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In conclusion, this thesis has presented a comprehensive design for the ScatterNet pro-
tocol, offering a significant step towards enabling truly secure, resilient, and user-centric
data sharing in decentralized peer-to-peer networks. The detailed specification of its data
formats and communication interface, coupled with the insights from its initial implementa-
tion, provides a valuable contribution to the field and a robust platform for future research
and extension.
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