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Abstract
An important part of code optimization is method calls. Each call of a method has an extra
computing overhead, which can be avoided by inlining, i.e., replacing the method call
with the method body. This thesis is focused on improving the heuristic used to inline
methods by the use of machine learning in Native Image, which is a part of the GraalVM
toolkit. To achieve this, it optimizes the intermediate representation of the code with
graph-based neural networks. To train these networks, we designed a pipeline inspired by
genetic algorithms. The pipeline deploys the models it has generated, evaluates them by
benchmarking them, and uses the best models as reference for future generations of models.
Two variants of model architectures are trained and tested, one is a traditional feedforward
neural network and one a convolutional graph network. For each type, we validate the
best performing network configurations on a different set of scenarios than the one used for
training.

Abstrakt
Důležitou součástí optimalizace kódu jsou volání metod. Každé volání metody má navíc
výpočetní režii, které se lze vyhnout inlinováním, tj. nahrazením volání metody tělem
metody. Tato práce se zaměřuje na vylepšení heuristiky používané k inlinování metod po-
mocí strojového učení v nástroji Native Image, který je součástí sady nástrojů GraalVM.
Za tímto účelem optimalizuje vnitřnou reprezentaci kódu pomocí neuronových sítí za-
ložených na grafu. K trénování těchto sítí jsme navrhli kódové řešení inspirované ge-
netickými algoritmy. Toto řešení nasazuje vygenerované modely, vyhodnocuje je pomocí
srovnávacího testu a nejlepší modely z aktuální generace používá jako referenční pro bu-
doucí generace modelů. Trénujeme a testujeme dvě varianty architektur modelů, jedna je
tradiční neuronová síť s dopředným posuvem a druhá je konvoluční grafová síť. Pro každý
typ ověřujeme nejlepší sítové konfigurace na nové sadě scénářů, než která byla použita
pro trénování.
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Rozšířený abstrakt
GraalVM je sada nástrojů, která umožňuje kompilovat, optimalizovat a spouštět programy
napsané v jazycích, jako jsou Java, Scala, JavaScript, Python nebo Ruby. Mezi jeho silné
stránky patří mimo jiné možnost generovat nativní spustitelné soubory pomocí nástroje Na-
tive Image. Programy jsou přeloženy do strojového kódu určeného pro konkrétní architek-
turu spolu s odlehčeným virtuálním prostředím, ve kterém se program spouští. Typická
virtuální prostředí interpretují bytecode a používají JIT (just-in-time) překladače, které
překládají pouze určité často volané funkce za běhu programu. Native Image umožňuje
předkompilovat celý program pomocí AOT (ahead-of-time) překladače, čímž ušetří čas
při spuštění programu a jeho následném běhu v systému.

Jedním z optimalizačních úkolů překladačů je hledání míst v programu, kde se vyplatí
nahradit volání metod jejich tělem (inlining). Tato optimalizace může size výrazně zrychlit
provádění programu, ale v jiných případech jej může i zpomalit. V případě překladačů
JIT probíhá překlad za běhu, takže výpočetní a časové možnosti překladače jsou omezené.
Překladače proto používají jednoduché a rychlé rozhodovací heuristiky s omezeným kon-
textem programu.

V rámci této práce se zaměřujeme na problém optimálního inlinování a využíváme
k tomu techniky strojového učení. V hlavní části práce se zabýváme tím, jak se ve strojovém
učení přistupuje k problematice vkládání kódu do překladače a jaké problémy komplikují
nalezení optimálního řešení. Z několika různých možností trénování modelu se nakonec
rozhodneme implementovat infrastrukturu pro generování inlinovacích modelů pomocí ge-
netických algoritmů, jejich nasazení na lokální REST API, vyhodnocování na základě počtu
dosažitelných metod po přeložení programu a náhodné vyhledávání budoucích možných kon-
figurací modelů, konkrétně s využitím knihovny implementující algoritmus NeuroEvolution
of Augmenting Topologies (NEAT).

Funkčnost tohoto prostředí zpočátku ověřujeme na jednoduché dopředné neuronové síti,
která pracuje jenom s několika základními atributy popisujícími volající a volané metody a
vrací překladači pravděpodobnost inlinovaní pro každého kandidáta na inlinování.

V další fázi přichází na řadu návrh konvoluční grafové neuronové sítě založené na kni-
hovnách PyTorch a PyTorch Geometric. Převádíme lokální okolí kódu volání metody a tělo
volané metody na grafovou reprezentaci, kterou posíláme do modelu. Parametry grafových
modelů opět trénujeme pomocí genetických algoritmů, ale dosud používaná implemen-
tace NEAT nemá podporu pro modely PyTorch. Vyvinuli jsme proto mezivrstvu, která
obě prostředí knihoven propojila a umožnila nám trénovat, nasazovat a ověřovat modely
grafového typu založené na tomto frameworku.

Jakmile jsou tyto modely natrénovány, jsou následně validovány na nových scénářích,
kde nejlepší modely, grafové i negrafové, fungují téměř identicky. Všechny konfigurace
modelu snížili počet dosažitelných metod o zhruba 21% pro každý testovaný scénář, ale
zvýšili velikost binárního souboru na dvojnásobek až trojnásobek původní velikosti.

Při vyhodnocení jsme zjistili, že ochranná omezení v překladači, která jsme dopro-
gramovali, aby modely usměrňovali během trénování, ve skutečnosti omezují jejich schop-
nost učit se rozlišovat škodlivá rozhodnutí. To vede k tomu, že trénované modely spoléhají
na tato omezení v kódu a provádějí agresivní inlinování, dokud je kompilátor nezastaví.
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Chapter 1

Introduction

The programming language Java has been around since 1995 [16]. In its long lifetime, it has
earned the trust of numerous software companies that have decided to build their services
on top of it. The concept of a virtual machine, in which the program code is executed, has
been providing a robust multiplatform environment and has been a factor in the success of
the programming language. With the evolution of personal computers and their scale, pro-
grams written in Java have started struggling with performance issues related to the startup
time of service instances, the memory they consume, or the unnecessary computing each of
these instances need to do during their run-time. These issues were eventually addressed
by GraalVM, which was developed with support for a range of programming languages, in-
cluding Java. The support for multiple programming languages is achieved through the use
of a standalone polyglot language run-time called Truffle [24].

GraalVM [13] has made it possible to save computing power, lower memory require-
ments, increase security, and speed up the start of services for Java applications. This is
achieved with the use of Native Image [23], which precompiles Java bytecode into a native
binary for the given architecture and operating system.

The bytecode of the compiled application is analyzed during the Native Image build
to find ways to improve performance at run-time. One of these steps is dedicated to
the identification of reachable code. As part of this process, some methods are inlined to
simplify the resulting graphs of internal program representations for the purpose of further
analyzing, optimizing, and performing even more inlining in the later stages of compilation
by different inlining models. The simple inliner responsible for the initial quick pass over
the graph is based on hardcoded metric thresholds. When fine-tuning these thresholds,
we have to always take into account the benchmark that is being used. Each benchmark
provides a unique program that uses specific algorithms, and the optimal thresholds for one
benchmark set do not provide optimal thresholds for a different benchmark set. In reality,
these thresholds will in some scenarios even worsen the performance [10]. The only way
to solve this without profile-guided optimizations (PGO) is to inline only when it is very
certain that the inlined version of the code will perform better in a broad range of scenarios.
We search not for the best static thresholds for each benchmark, but for a model that can
develop a transferable understanding of interactions between different attributes and still
provide an improvement in execution speed [10].

Inlining is a technique used to reduce the code execution overhead introduced by
a method call. It is achieved by copying the function code directly into the calling method.
The excessive use of it, however, increases the memory program code takes up, which leads
to longer execution time [10]. That is why it is desirable to find a good balance for when
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to use this technique. To do that, GraalVM uses a set of metrics calculated based on
the structure of the surrounding code for every method call that is being analyzed.

This thesis is dedicated to finding a better way to handle inlining, powered by machine
learning without manual thresholds set in the code. Instead of finding a universally appli-
cable threshold setting, we use a neural network to analyze our code and select the relevant
features on which to base the final decision. We used a training pipeline that utilizes ge-
netic algorithms to generate the parameters of neural networks, and we have tested two
variants of these networks: one less complex, traditional feedforward neural network and
one graph-based convolutional neural network.

The rest of the thesis is structured as follows. In Chapter 2, we describe the theory
around GraalVM, its alternatives, components, internal code representation, and techniques
used for optimization. In Chapter 3, we discuss options to improve the optimization heuris-
tics used by GraalVM. In Chapter 4, we introduce machine learning and the way in which
we collect training data, and in Chapter 5, we suggest a training pipeline and a simple
feedforward neural network that serves as a baseline for the more complicated graph-based
neural network proposed in Chapter 6. Both types of neural networks are evaluated in their
own respective Chapter 5 or 6. Finally, in Chapter 7 we draw the final conclusion for both
network architectures and results.
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Chapter 2

GraalVM

Programs written in Java need a special environment based on the principles defined by
the Java Virtual Machine (JVM) specification [15]. Such an environment typically also
contains standard libraries, and together they form the Java Runtime Environment (JRE).
JVM encompasses its own instruction set defined in the JVM standard.

Hotspot [18] is a JVM implementation originally developed by Sun Microsystems and
currently maintained by Oracle. In addition to interpreting bytecode, it also contains two
compilers, client-side C1 and server-side C2 [18]. They are used for JIT compilation of code
fragments that are ”hot“1 based on run-time statistics, with C1 being the faster, but less
effective optimizer and C2 being the slower, but more effective optimizer [4] [12].

GraalVM, which is the implementation upon which this thesis is built, is a complex
toolkit based on Hotspot. It uses its own toolkit to manage the downloading of dependen-
cies, building and benchmarking, called mx2. GraalVM supports languages such as Java,
JavaScript, Ruby, Python, and LLVM. It allows their mutual interoperability with minimal
overhead and compared with Hotspot uses its own just-in-time (JIT) and ahead-of-time
(AOT) compiler.

During code execution, the interpreter is going to encounter functions that are called
frequently. Such functions are candidates for compiling into native machine code to speed
up their execution. The process of compilation takes away performance from run-time code
execution and also takes up more space to save the compiled machine code in the virtual
machine’s cache. That is why the decision about compilation of these functions is a practical
trade-off that, in simplified terms, is mainly rewarded for functions frequently invoked [18].
The compiled functions are optimized, among other things, with standard compiler opti-
mization techniques such as loop unrolling, vectorization, constant folding, (partial) escape
analysis, inlining, peephole optimizations, dead code elimination, and more [19]. The AOT
compiler shares many of these ideas, except that it avoids the performance penalty of having
to compile individual functions during run-time interpretation and precompiles the entire
code into machine code at build time instead. This shifts the computation away from
run-time execution to build time, which reduces the startup time.

1Code that is deemed to be executed often and could benefit from being optimized for faster execution.
2You can download mx from github.com/graalvm/mx.
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2.1 Native Image
Native Image is an ahead-of-time compiler that can run a static analysis of the program and
perform optimization tasks based on this analysis, including preexecution. The resulting
artifact is compiled into a standalone executable, which means that subsequent launching of
program instances is less expensive and faster. The executable binary contains an embedded
SubstrateVM, which acts as a minimal runtime environment for the native program and
elimites the need to run any of the bytecode inside a standard JVM [1].

In a regular Java bytecode execution environment, there would be at least 4 different
types of components interacting with each other: Java Development Kit (JDK), virtual
machine (VM), application, and third-party libraries.

Every component from above exposes a standard interface for other components to
connect with. Native Image takes all these components, integrates them together into
a single bundle, runs optimizations to allow for the more effective use of this bundle as
a whole on the specified machine, and exports the resulting platform-specific code into
an executable file.

There are 3 main steps in this process that are repeated in cycles (as seen in Figure 2.1):

• Points-to analysis (Section 2.3): Builds the internal representation of program
and detects reachable code.

• Running initialization code (Section 2.4): Executes initializers in classes and
prepares heap memory into a state ready for snapshotting.

• Heap snapshotting (Section 2.5): Captures the state of heap memory after ini-
tialization and persists it in the generated native file.

Figure 2.1: Components of Native Image.

Such an approach allows us to assemble an ELF/MachO executable compiled for a spe-
cific machine. It contains the native machine code that runs directly on the operating
system level (hence the name Native Image). It also contains the heap image, which is
an artifact of the code that has been preexecuted during compilation and no longer needs
to run at run-time again. The resulting executable is smaller in memory, faster to start up,
and also faster to execute compared to bytecode running in a virtual environment.

In addition to all the advantages, there are also disadvantages to consider. By default,
there is no JIT compiler in SubstrateVM, so it is not possible to perform additional opti-
mizations once the AOT compilation is finished. Recompiling code into a native image is
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also not always possible without having to modify the code first. Even then, the behavior
of the program might still be different from what was originally intended.

2.2 Internal Representation
When compilers start parsing code, they store the program in an internal representation
in their memory. GraalVM uses a directed graph-based structure for this purpose, which
is designed to make it easy to apply different transformations to the program during op-
timizations. As Duboscq et al. [4] describe in their paper, the node types are defined as
classes, with the edges between the nodes represented as fields of these classes. They are
annotated as @Input in the node on the incoming side of the edge. These edges are called
data flow edges.

In addition to data flow edges, there are also control flow edges. They are annotated as
@Successor on the outgoing side of the edge. Control flow graphs start with BeginNode,
StartNode (one per method), MergeNode or LoopBeginNode, and end with EndNode or
LoopEndNode. PhiNode is used to resolve the value of a variable in data flow in the event
that it can be assigned different values due to, for example, branching.

The nodes can be classified as floating or fixed based on their role in the control flow.
Fixed nodes provide constraints on the flow of the program execution, whereas floating
nodes are restricted only by data flow.

The nodes feature reverse edges in nodes on the unannotated side of the edge, which
are used for backlinking. Thanks to them, the compiler can also access predecessors and
outputs, which are the opposite of successors and inputs.

In Figure 2.2, we observe a visualization of the main function of a short HelloWorld pro-
gram. The graph starts with a StartNode and ends with an EndNode. Between them, a pub-
lic static field System.out (identifier 2 in the graph) is loaded, which is of type PrintStream.
The method println, which is defined in PrintStream, is invoked (identifier 7) for the loaded
field with an attribute ”Hello World“ (identifier 9). Then, println performs the process
of printing out a string to the standard output. An exception might be thrown in case
System.out is null and we attempt to call println anyway. The invoke node represents
a candidate for inlining.

2.3 Points-to Analysis
Using static analysis, the compiler optimizes the bytecode before it is run. During the anal-
ysis, Graal builds an intermediate representation (IR) of the reachable code to determine
the transitive reachability of methods, fields, and classes from a given set of root methods
(e.g. {main}) [23].

Using the IR graphs of so-far reachable methods, a second graph is incrementally built,
called the type-flow graph [9]. The graph uses directed edges to capture the relation between
a definition and its usages. Each node contains a list of possible types that is propagated to
the nodes that use the current node. This process happens iteratively, and every change in
the type list triggers a new propagation. The list of types eventually stops growing, leading
to the convergence of the final graph. This state in terms of the analysis is called a fixed
point.

Optimizations during AOT compilation are applied using the information gained in this
step, e.g., dead code elimination, loop unrolling, escape analysis for detecting the use of an
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Figure 2.2: Graal IR example for a Hello World native program.

object outside of the allocating method [19], or constant folding of fields that are only read
by the nodes using it and never written in by them.

2.4 Running Initialization Code
There are two kinds of class initializers in OOP: class and instance initializers. In program-
ming, we usually explicitly define instance initializers in the form of constructors, which
execute the code independently for every instance of the given class.

Class initializers, although less frequently mentioned, are important for initializing static
variables shared by all instances. The explicit definition of a static initializer is in the form
of a block of code (as seen in Listing 1). However, in practical scenarios, we often only
specify the values of static variables with their declaration. Some of these class initializers
can be executed upfront and do not require run-time state to be present for them to work
properly. Such cases are ideal subjects to be included in the image heap.
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public class Foo {
private static final UUID identifier = UUID.randomUUID();
private static final List<StorageBlock> sentences = new ArrayList<>();

private final Consumer<String> callback;

static {
String paragraph = """

This is an example paragraph.
It could have been an essay about Graal and Native Image,
but we choose to keep it short and simple instead.
Hope you enjoyed it!
""";

for (String s : paragraph.split("(?<=[.!?])\\s+")) {
sentences.add(new StorageBlock(s));

}
}

public Foo(Consumer<String> callback) {
this.callback = callback;

}
}

Listing 1: Different types of initializers in action. Static variables identifier and
sentences can be pre-computed and saved into the binary machine code. On the other
hand, callback is resolved for individual instances at runtime.

The decision about running the initialization of a class during image build is made
by an automatic analysis of dependencies. This works only in some cases; for everything
else, the developer has to manually flag the individual classes for build-time or run-time
initialization. This is done not directly through the code, but via console arguments of
the utility that builds the native image.

2.5 Heap Snapshotting
In this step, a heap object graph is built using the points-to analysis described in Section 2.3.
The image heap is a graph structure with nodes picked from those that have been marked as
read. The root nodes are static fields or methods that contain an embedded constant. All
other read nodes are processed as part of a depth-first search and connected to related roots
and their subnodes. Possible types of fields are collected and the object graph is pushed
back to points-to analysis to start a new cycle of all 3 steps again: points-to analysis,
initialization, and heap snapshotting.
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Every heap snapshot iteration always starts from an empty graph; it is not possible to
reuse graphs from previous iterations. Tracking changes between iterations and adding miss-
ing nodes would be much more expensive than recreating the entire graph from the start [23].

The three steps mentioned above are repeated until a final graph converges and points-
to analysis no longer produces a different result compared with the previous run. The heap
image is then saved in the native image and loaded into heap memory on every startup of
the program.
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Chapter 3

Inlining

The compiler during the compilation process decides, among other things, whether it is
beneficial to keep a method call as is or to copy the content of a method at the place where
it is called from. In case of a less complex function, that could lead to saving computing
capacity by relieving the processor of having to process the overhead of calling an inde-
pendent function. However, in exchange for that, the program may take up more space in
memory. That is because it is necessary to copy the method body and replace the origi-
nal method call with the entire code of the method. This may happen simultaneously in
multiple parts of the program, leading to duplicate code. The job of the compiler is to find
a good trade-off between these two properties of a program: the execution speed and space
that the code takes up in memory.

3.1 Reference Algorithm
The existing solution to the inlining problem is based on multiple different inliners across
the compilation pipeline. Our proposed inliners operate on top of the IR graph before static
analysis. The original inliner that is already present at this level works based on making
a conservative estimate. Its objective is to make a quick decision, which puts a restriction on
how precisely it can analyze the entirety of the program. Instead of analyzing the program,
it makes a decision based on a quick analysis of the body of the subject method. To
avoid accidental inlining caused by the lack of a better analysis, the algorithm uses a very
conservative setting that would rather not inline at all than to inline a method that is not
supposed to be inlined and cause performance problems.
There are four basic rules which all lead to the decision not to inline:

• Recursion in function: A function that calls itself.

• Function depth exceeds a specified threshold: Let us use an example to demon-
strate the depth attribute of a function: Function A contains an invocation of func-
tion B that contains an invocation of function C, which does not invoke any further
function. Function A has the depth of zero, function B has one, and function C has
two.

• Function size exceeds a specified threshold: The number of memory blocks that
the definition of the function occupies.

• Inlining is set as forbidden: Inlining of a function can be prevented by the pro-
grammer via annotations like @NeverInline.
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3.2 Link-Time Optimization
A counter-argument against the use of local conservative inliners is a complex analysis of
the IR that processes the entirety of code at once, predicting the places where inlining is
desirable. The inliner has access to the entire code structure and provides the best informed
decision based on that. That provides an opportunity to inline in a smarter way by taking
into account a more global perspective at the IR of the program. A more complex analysis
is used as part of Link-Time Optimization (LTO) in GCC1.

During the initial compilation of a module, the compiler does not see all of the modules
at once, and therefore does not know which functions of a module are used externally by
other modules. It can see the external functions, but it does not know anything about
them. In this phase, the code is parsed into an internal representation (IR) in the form
of a GIMPLE bytecode (three-address code) that is gradually optimized down to a set of
machine code, a symbol table, relocations, and optionally debug symbols. They are all
stored as an .o object file. If the compiler is run with a special flag -flto, it dumps GIMPLE
into the file.

Once all modules are linked to each other by the linker, a global call graph is constructed
that encompasses all modules with their function invocations and function definitions. If
the previously generated object files contain the GIMPLE IR, the LTO is performed [5].
As part of that, inlinings are performed to further optimize the graph. Information such as
function code size, estimated time speed-up, and number of calls is taken into account to
calculate the badness of a function. Functions are picked for inlining based on their badness
until certain limits are hit.

LLVM also has a link-time optimizer in a shared library called libLTO, which is called
by the linker [11]. The linker first reads both native object files (regular object files) and
LLVM bitcode files (object files with serialized LLVM IR) and builds a global symbol
table. The information from LLVM files is extracted using libLTO. In the next phase,
link-time optimization is performed on top of LLVM bitcode files, which are merged and
optimized into a single native object file. During optimization, inlining occurs as part of
one of the steps. The inliner uses metrics like function code size, call frequency, instruction
costs, function arguments, return value of the function, or profiling data. Different inlining
thresholds are applied depending on the frequency of calls to the function (sourced from
profiling data) or the presence of an inlining hint for a function [21]. Once optimization is
done, only regular object files remain and they are all linked together.

Although GCC’s and LLVM’s LTO architecture is different from GraalVM Native Im-
age, we will draw inspiration from it when designing our approach tailored to the Graal
compilation process.

3.3 Analysis of Surrounding
To achieve better scaling capabilities, only analysis of a certain surrounding of the inlined
invoke might be preferable. On one hand, we lose information about past inlinings or
the global vision of the entirety of the IR graph. On the other hand, we collect context
information faster for the method call that is being inlined, and it can generalize even
for previously unseen inlining scenarios, since the surroundings of the method call capture
less detail than the complex analysis presented in Section 3.2. A smaller scope means

1GCC is a compiler for a set of GNU languages, see gcc.gnu.org/
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that the limited local information we provide to the inliner will be generic enough to map
the unseen scenario to a scenario the inliner knows how to solve correctly, assuming that
the captured scope itself contains enough information to decide about the meaningfulness
of the inlining in the first place. If not, the resulting model will not generalize well for
previously unseen programs. The definition of the scope is arbitrary and that is why
it is necessary to run experiments in multiple configurations to get an intuition for how
the behavior of inlining models changes with different scopes of available information.
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Chapter 4

Machine Learning and Datasets

Thanks to large language models and deep learning, the discipline of machine learning
has gained widely recognized popularity among the general public. In the last couple of
decades, we have been accustomed to building complex conditional rules in our algorithms
that work in deterministic, explainable ways to provide a reliable answer to our input.
With the inception of neural networks, this programming paradigm has slowly started to
change. In the second half of the 20th century, there were multiple periods of excitement
and disappoitment that followed each other in a cyclical way [20], advancing the brand new
field mostly among the scientific community. Today, it is adopted by software companies
across all domains of everyday life.

Previously, software engineers spent a lot of time perfecting thresholds in their fine-
tuned algorithms. These algorithms would become more complex as the number of inputs
grew and presented a maintenance challenge to preserve their relevance and accuracy. With
neural networks, it is now possible to capture complex non-linear relations between param-
eters and predict the result more accurately with less manual thresholds set by the pro-
grammers [10]. Instead, the thresholds are calculated during the training phase of building
the model, where the developer provides the training pipeline with sample inputs and de-
sired outputs, with the training algorithm adjusting the internal values used for calculating
the output prediction. The technical challenge has shifted from manual parameter fine-
tuning in conditions to designing a good neural network architecture for a specific task
and collecting high-quality data for training purposes in high quantity. Inlining in Graal
presents an opportunity to test this new approach in practice.

4.1 Traditional Machine Learning
Most of the problems solved with machine learning have a similar sequence of steps that
one needs to take to design a model. One of the first questions you need to answer is what
kind of model you are designing. Are you predicting a numerical value? How many values
are being predicted? Are you performing classification? How many possible classes are
there? What kind of information do you have available that you can feed into your future
model? Inputs and outputs put constraints on the designs and architectures with which we
can experiment.

Our use case assumes models making inlining decisions for each invoke found in the in-
ternal graph representation of the code. The output is thus a boolean decision, we want
to either inline or not to inline. In terms of machine learning, this task is a subcategory of
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classification. Our network outputs a single number in the range of 0.0 (0%) to 1.0 (100%)
based on how confident the model is that we need to inline. The certainty returned to our
inlining API maps to True if the confidence exceeds 0.5, otherwise it is False.

For inputs, we need to collect all the relevant numerical or categorical data about
the invocation context that might help the network to make a decision. These data are
then multiplied and summed with different biases, passed down the neural network node-
to-node with further multiplications and sums taking place at each layer of neurons. After
each layer, an activation function such as softmax or sigmoid is applied to the values before
they are passed further. In the final layer, the activation function normalizes the value to
fit in the range <0.0,1.0>.

Once the final activation is performed during training, we can compute the error between
the predicted output of the network and the annotated training data and use backpropaga-
tion to adjust the parameters of the network, so that the error decreases for future network
predictions. If we have a diverse training set of inputs and outputs, the model will learn to
generalize and recognize patterns in input data.

This has been a general approach to solving similar machine learning problems in other
domains. As we are about to learn, in our case, it is going to be more complicated.

4.2 Programs for Analysis
For any neural network by design, it is not possible to prepare a model without a sufficient
amount of training data. That is why, before we train our network, we collect data and
prepare a dataset.

Based on experiments with example programs in the GraalVM demo repository1, we
have learned that even with very small example projects in Java, thousands of inlining
decisions are being made at compile time. That means that we do not necessarily need
complex projects for our training dataset to teach the model the logic behind optimal
inlining.

In Table 4.1 we can see the approximate time it takes for an inlining decision to be
made using the original reference algorithm described in Section 3.1.

Avg time taken
Inlined Not inlined [ms/decision]

hello-world 72724 1084 5.0
add-jfr 77336 1100 8.5
add-logger 72755 1084 6.2

Table 4.1: Inlining statistics for the reference algorithm. Examples from
the GraalVM demo repository were compiled to test its capabilities.

Our custom inliner is not going to replace the reference inliner, instead it is going to
complement it and decide about the inlinings of previously uninlined invocations. That is
why, although Table 4.1 gives us a perspective into the performance of the existing inliner,
its speed and inlining scenarios it performs are not comparable to the inlinings our proposed
inliner performs.

The models we train are deployed outside of Graal’s codebase, which means that on
top of the delay introduced by the original inliner, we get an extra delay caused by REST

1GraalVM demo repository can be found at github.com/graalvm/graalvm-demos
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overhead and the calculations inside of the model itself. The resulting speed of inlining
decision-making is therefore expected to drop significantly at compile time. Once a specific
model configuration is found, the model inference could be moved to Graal to eliminate
the overhead. This aspect is beyond the scope of this thesis, and our goal remains to explore
the applicability of machine learning models for inlining.

Based on the observations above, we can choose to use small programs to gather data for
training. Knowing this, we can turn to open-source datasets used to benchmark different
JVMs. One of such data sets is Renaissance2. It contains programs used to solve a wide
range of complicated problems, providing different algorithmic ways to approach the same
problem and write the code that solves it. The proof of this is that it contains much more
hot code (frequently executed segments of code) and hot methods than its benchmarking
peers [17]. Hot method invocations are ideal for learning to inline, because they are executed
frequently and create a lot of overhead while jumping in program code, hence making
the perfect dilemma for whether to inline or not. Mastering such scenarios should give us a
good chance that whatever kind of codebase our model is deployed into to do inlining, the
model should already be familiar with similar code patterns and decide accordingly.

4.3 Annotating Inlining Decision
Sample program source codes are not enough, a mechanism is needed that will decide
whether the inlining in a specific place is desirable. Remember, the reference algorithm is
conservative and does not inline unless its strict, yet information-wise shallow conditions
are met.

Unlike the graph analysis in the reference code, where there is no place for lengthy
operations and decision making cannot be thorough by design, during the training we have
an unlimited time per each decision to make the right choice. That is why we are allowed
to perform more static analysis on top of the method, including even dynamic checks.
An example of that would be the comparison of the runs of an inlined variant of a function
and an uninlined variant. Thanks to this, we are able to explore the effect of riskier inlinings
that would be refused by the original algorithm. During inference, we can put the learned
knowledge to good use and make a better informed estimate that will lead to faster code
execution on the virtual machine.

We have our program dataset that we will use as input for our training. What we do
not have are the desired inlining decisions we want to teach our network. As it turns out, if
we want to propose a deterministic way to make yes/no inlining decisions for our dataset,
then we would end up writing some kind of hardcoded heuristic similar to what the baseline
is, except that ours would inline more aggressively. We would then test the performance
and expect it to perform better than the baseline.

The natural way to approach this issue is to make a version of the graph where the node
is inlined and another graph where the node is not inlined, test the performance of both
versions, and choose the better performing decision. Repeat this for every decision in a pro-
gram, and we have our training annotation for a single graph. Repeat for every program,
and we have our training annotation for the entire dataset. The problem that Kulkarni
et al. [10] have found out about is that an individual inlining decision has too insignifi-
cant an impact individually, but might affect any subsequent inlinings elsewhere. We have
learned from Table 4.1 that even in small programs consisting of a few lines, there are

2Renaissance dataset is available at renaissance.dev
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thousands of inlinings to be made during compilation thanks to the programs using parts
of the standard library and including the runtime environment. Testing individual inlin-
ings thus does not provide enough information. The solution to this problem proposed in
the study is to use an algorithm called Neuroevolution of Augmenting Topologies (NEAT) [6].
It is a form of genetic algorithm that is used to construct a neural network for a specific
task by evolution.

Cooper et al. [2] managed to prove that it is possible to find an optimal inlining heuristic
for every piece of code, although it is computationally expensive. What we are trying to do
here is something slightly different. All mentioned papers describe an exploratory approach
to heuristic parameters. In our case, we are trying to explore different inlining combinations
in a random way. We can gather a collection of optimal inlinings for our dataset and
use them to train our network. Since our network is designed to understand the code
dependencies, it might be able to learn a general explanation of why certain inlinings work
and why some do not, which cannot be captured with hardcoded local method heuristics
that are being used now.

The other option is to generate model configurations that capture random logic and try
to identify the configuration that captures an existing real pattern.

There are 3 general approaches to building a model to solve inlining:
1. Try every inlining individually, measure its effect on performance, label the training

dataset with optimal decisions, and learn to imitate such decisions.

2. Use genetic algorithms to find a near-optimal solution.

(a) Generate models, create solutions, measure performance, keep the best perform-
ing one.

(b) Generate solutions, measure performance, train a model to imitate the best one.

The approach 1 is the only one that would deterministically find the optimal solution
in an isolated environment, unfortunately, for reasons described in Section 4.3, inlining is
not performed in such an environment.

An alternative to a deterministic approach is to use genetic algorithms (discussed in
detail in Section 4.5). Genetic algorithms are a family of solutions that are designed to
generate different configurations by random mutations, crossovers of existing configurations;
and finding the one configuration that makes the best decisions in a real-life scenario. This
is beneficial in scenarios where it would be difficult to directly arrive at the objectively best
decisions in an analytical way, which is the case here. However, even if we make the decision
to use genetic algorithms (GA), there is still a decision to be made about which problem
we are solving with GA.

All GA papers mentioned so far unanimously implement approach 2a. The fact that
they managed to find success and achieve a speed-up of 11% [10] means that this path has
already proven to be promising.

There is also the approach 2b. It has not been mentioned in any of these studies and is
probably due to the fact that it could suffer from issues similar to approach 1. We attempt
to design the approach 2b to find out more about why this could be the case.

4.4 Naive Approach to Optimal Inlinings
First, we export our current inlining decisions for each method call. That is done by logging
every inlining made during the building of the native image for a selected program. Every
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analyzed method call can be identified by the parent method, where the method call resides,
and the index of the currently parsed bytecode instruction in the parent method. After
that, we can set up a genetic algorithm to generate mutations of these combinations of
inlining decisions.

Once that is done, we can benchmark these solutions. For that, we export our mutated
solutions, which Graal is going to read during the next run of the same benchmark. This
time, it will not be inlined based on reference heuristics, but it is going to decode the mu-
tated solution and find the correct method call identifier and the inlining decision generated
by the genetic algorithm. This step is repeated for every inlining decision in the code.

After that, the benchmark is run, the performance of every solution is measured using
the same test suite, and we pick the best solution for each code.

This approach assumes the reproducibility of each sequence of inlinings. However, this
is not the case. Each compilation introduces a randomness factor that leads to a slightly
different number of inlining decisions being made in a different order on a different subset
of invokes. The randomness aspect is further explored in Section 5.4. It discouraged me
from continuing with this approach and instead made me implement the safer variant of
approach 2a.

Unlike replicating pre-generated inlinings, using a random model to predict multiple
inlinings is less prone to break the compilation of a program in case some previously unex-
pected inlining decisions appear in the current instance. In case of replicating inlinings, you
need to make an uninformed guess about each individual inlining, whereas in a model-based
solution, with each call to the same model you make a similar inlining decision as the one
you have probably already made elsewhere in the code for a different invoke with similar
characteristics.

4.5 Pipeline with Genetic Algorithms
Our approach consists of building up a training architecture based on the NEAT algo-
rithm [6]. We will adapt a traditional flow of tasks used by genetic algorithms to our use
case, which repeats a set of steps:

1. Initialization: The initial random population of a specified size is created.

2. Fitness Function: Genomes in the population are individually evaluated using a sin-
gle numerical metric that we want to minimize or maximize.

3. Selection: Genomes with the best fitness form the parent pool for future new
genomes.

4. Crossover: Random parents are chosen to create their offspring genome, which is
a combination of their parents.

5. Mutation: The offspring is further modified using a random uniform distribution to
create a unique genome for the next generation.

6. New Generation: Population for the next iteration is made up of the best perform-
ing genomes from the previous generation, plus the newly generated offsprings.

In the context of genetic algorithms, we use the term population to describe a set of
genomes, where each genome is a potential solution. As mentioned previously, we are using
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the NEAT algorithm to find a neural network configuration, so each genome in our case
stands for a standalone combination of biases and weights of a neural network. In each
iteration, we generate a population of a specified fixed size and group genomes into species
based on the similarity of the genomes. The similarity is evaluated using a distance metric,
which needs to be lower than a configurable threshold. We evaluate each genome using
a fitness function, preserve the best performing genome from each species (the behavior is
called elitism), and complement them with newly created genomes until we reach the desired
population size for the next generation.

The new genome is created by sorting the previous generation by their descending
fitness, picking n best genomes (survival threshold), selecting two random parents from
the best genomes, and creating a new genome by combining the parents into one. Further
random mutations of the parameters take place to ensure that we do not run out of unique
parent genomes in later generations. These mutations include adding and removing nodes
in the neural network, adding and removing edges between nodes, and also modifications
to the weights of edges and the biases of nodes. All these mutations are controlled by
a uniform distributional random generator, and the chances of each kind of mutation are
modifiable by setting the thresholds in our configuration file.

Figure 4.1: Steps during the training with Genetic Algorithms.

Although each step presents a generic set of challenges, there is one that is unique to
the inlining domain. Genetic algorithms always need a fitness function to tell which solution
is better and which is worse. We have already established that we want to use benchmarks
to evaluate solutions, as it is not possible to tell if an individual inlining is right or wrong
in the context of all other inlining decisions that have been made, so it is desirable to
incorporate their results into the fitness function. How do we do that?

We draw a line between two distinct services. The first one is responsible for running
the NEAT algorithm to find the right neural network. The second one runs the benchmark.
We connect them by replacing the fitness function in the training service with a func-
tion that first opens up an API endpoint with the currently examined network, then runs
the benchmark in a subprocess. The benchmark will first run a modified version of Na-
tive Image compiler that, instead of running just the original heuristics for inlining, makes
an additional pass over the invokes in the IR and make an API call to the endpoint we
have previously opened for each of them. After the compilation, the benchmark tool tests
the performance of the binary produced by the compiler. Once the benchmark is finished,
its output is captured and the performance metrics are parsed back into the training service,
where they are used as the fitness function.
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Figure 4.2: Sequence diagram of the evaluation pipeline.

Genomes with the best fitness are selected to succeed peers from their generation.
Choosing what numerical metric to use as fitness is not straightforward. We have the option
to focus on the time it takes to execute the binary. However, a quickly executed binary will
not be helpful if the resulting binary takes up too much space in memory. Another metric
tracks the number of reachable methods left in our IR after optimizations. Intuitively, fewer
methods should mean faster execution and more space taken up. However, in the same way
as the bigger binary does not necessarily have the faster execution time on a machine, lesser
reachable methods in an IR do not necessarily imply either of the other two metrics. Using
either of the metrics as the fitness function has direct consequences that lead to different
results. We will revisit this topic in depth in Section 5.4.
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Chapter 5

Implementation

In this chapter, we dive into the implementation details of the architecture described in the
previous chapter. We describe the implementation of the individual nodes needed for our
pipeline based on the proposed architecture in Section 5.1. For the NEAT client, we have
implemented a Python service that utilizes the NEAT library to run model training. NEAT
takes care of the control loop that generates individual populations for each generation, picks
the best individual genomes from each, and performs mutations that make it into the next
generation.

Each evaluation of a genome is handled by a custom callback that deploys a neural
network with weights and biases loaded up from the generated genome to a REST endpoint
on the local host. It launches a benchmark subprocess that compiles programs using our
newly deployed endpoint, measures metrics of the compiled binaries and parses the bench-
mark statistics back into the evaluation callback, inside of the NEAT client service. These
statistics are used as the fitness function, which is returned to NEAT’s control schema.
The endpoint is built on top of FastAPI 1, Asyncio2 and Hypercorn3 libraries. Asyncio is
used to schedule the API-deployment thread (running in parallel to the master thread),
where Hypercorn starts a FastAPI endpoint that exposes models to other applications on
the local host.

The reference environment used in this thesis is powered by Graal JDK Community
Edition 21, Python 3.11, and Conda. For the exact list of libraries and their versions used
to carry out experiments, refer to file requirements.txt from Appendix D.

5.1 Pipeline Prototype
The proposed approach encapsulates two separate issues:

• Modifying Graal to call a model deployed to an endpoint when inlining. Encoding
the internal representation of code inside Graal into a format that can be used as
input for the neural network.

• Writing a pipeline that controls generation of neural network configurations using
genetic algorithms, their deployment, and the launch of a benchmarking tool that
measures the inlining performance of the modified Graal inliner.

1The FastAPI repository can be found at github.com/fastapi/fastapi.
2The documentation of Asyncio can be found at docs.python.org/3/library/asyncio.html.
3The documentation of Hypercorn can be found at hypercorn.readthedocs.io/en/latest/.
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To build our solution in an iterative way, we first build a pipeline for training simple
feedforward neural networks and evaluating their performance. The models produced by
this prototype use the numerical metrics for their input that Graal already uses in its
original inliner, described in Section 3.1. Since we are using the same input data for
making decisions as before, intuitively, we do not expect to make much better decisions
than the original inliner that is based on individual static thresholds for each of the metrics.

By replacing thresholds with a model and thus obfuscating the decision-making process,
we might be able to learn more complex patterns than a human-readable set of rules can
achieve.

The input contains 4 values, with two different origins of information:

• invocation node metadata: estNodeCycles, estNodeSize

• invoked method: codeSize (size of bytecode in bytes), maxStackSize (stack slots
used in bytecode)

The invocation node metadata come from the annotation that is manually assigned to
each node type and is determined by invocation type. Its value is determined on the basis
of domain knowledge and previous optimizations performed on Graal.

Data about the invoked method are calculated based on the internal representation of
the method. It clarifies the nature of the inlined content, while the type of invocation node
determines the way it is used in the parent context.

To retrieve information about the invoked method, we generate the method’s Graal
IR before deciding whether to inline the method in the place of its invocation. During
IR generation, inlining is performed on the underlying method. This underlying method
may also contain invocations of different methods that need to be processed before inlining.
This implies that the deepest, lowest-level invocations are processed first, with the analysis
making its way up the tree structure until it finally emerges in the highest-level graph. As
we will learn in Section 5.2, we need to establish certain hand-crafted limits on the inlinings
to spread their localities throughout all node trees and avoid their concentration on certain
types of low-level methods and their Graal IR.

The model used for our prototype is a feedforward model bundled within the NEAT
framework. In the framework example configuration, it was initially used to solve a XOR
circuit simulation problem. For the original configuration, refer to the file config-xor from
Appendix D. It offers customizations via its configuration file, which we adjust to support
our use case. For our metrics, we need the input vector to be of length 4. The single
output is the probability of inlining in the range <0.0,1.0>. The feedforward model offers
an option to use one level of a hidden layer with a configurable number of nodes. This
increases the complexity of relations between the inputs and outputs that the model ar-
chitecture can encapsulate. However, it also increases the number of optimal parameters
we generate for these nodes; with 1 extra bias per each hidden node and 1 edge weight for
every combination of input node and hidden node, and hidden node and output node. For
the purposes of a prototype solution, we set the hidden layer to use 3 nodes. The modified
network architecture looks as shown in Figure 5.1. The population size for each generation
is 10, with two genomes with the best fitness of their generation being transferred into
the next generation. The other 8 genomes are a result of the two elite genomes mating with
each other. An additional random mutation is applied to their offspring, which involves
changes to the weights of their edges and the biases of their nodes. The probabilities of
these mutations are the same as in the original XOR feedforward configuration, with the
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exception of the removal of any direct edges between the input and output nodes by setting
the initial state to full_nodirect. The input nodes are only connected to the hidden
nodes, and the hidden nodes are only connected to the output nodes. This places more
emphasis on the hidden layers and the patterns they can learn with the limited training
opportunities we have - we only run our benchmarks for 5 generations due to restricted
computing resources. For a complete configuration, refer to the file config-feedforward
from Appendix D located in the root folder of the provided NEAT pipeline codebase.

Figure 5.1: Architecture of the prototype model. Inputs are a collection of invocation
metadata and data about the target method’s IR graph.

As proposed in Figure 4.2, our pipeline will be controlled by a Python instance that will
implement training and evaluation data. For training, we are using the NEAT framework.
It contains many sample configuration files to set up the desired specifications of the models
that should be produced by the framework.

In our case with the feedforward model, we have four input values and a single output
that contains the inlining decision. A hidden layer has been added to add complexity
to the way information from 4 inputs is combined into a single output. Since inlining is
a boolean decision, we use a sigmoid activation function in the final layer. The resulting
value is in the range of 0 to 1, which is transformed into a boolean with 0.0-0.49 being
mapped to false (no inlining) and 0.5-1.0 to true (inlining).

The chosen fitness function is the number of reachable methods as determined by the
static analysis, which we aim to minimize. We switch the fitness criterion to minimization
and remove any fitness threshold. Manual safeguards have been put in place for the kind
of functions and invokes that can be inlined, since their inlining may lead to the program
crashing during execution. These safeguards involve checks for the current size of IR graphs
or to check that the inlined function is not tagged as native.

Despite that, it is possible that the model might learn to inline different invokes that
have not been expected and masked out before, which is why there is also an automatic
error feedback mechanism implemented. In case benchmarking fails, the reported fitness
is a disproportionately high number, to discourage the model from learning to inline such
methods.
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5.2 Inlining Safeguards
As mentioned in Section 5.1, several safeguards have been implemented to minimize the like-
lihood that inlining causes a compilation or run-time crash. The checks are as follows:

• Current IR graph consists of less than 4500 nodes.

• The invoke of the method is direct.

• The invoke of the method is flagged to use for inlining.

• The target method does not have a @NeverInline annotation.

• The target method is not native.

• The target method is not excluded from inlining and has associated bytecode.

• Our inlining model returns true for its inlining.

If any of these checks fail, the inlining is denied without calling the model for a predic-
tion.

5.3 Model Deployment and Benchmarking
To test the performance of every model, we use the benchmarking functionality of the mx tool
built for the purpose of developing Graal. From the master pipeline process, a subprocess is
launched that changes its working directory to graal/vm and runs the following command
from there:

mx --env ni-ce benchmark "renaissance-native-image:akka-uct"

Listing 2: Running a benchmark for akka-uct in the environment of Native Image.

The benchmarking is run for every selected training scenario separately. Only a subset
of scenarios is used for training, as the training runs on a personal computer with limited
compute: akka-uct, db-shootout and dotty. For every scenario, Native Image builds an op-
timized native code for the program that needs to be compiled. During one of the first
phases of optimization, inlining decisions are made.

The class responsible for this decision is InlineBeforeAnalysis from Appendix D.
With every call to the method shouldInlineInvoke, an HTTP POST request is made
to a port on localhost, where our model is deployed. After modifying Graal like this, we
rebuild it by calling mx build as in Listing 3. Note how we are building the source code into
environment ni-ce, which is the same environment as the one used to run the benchmark
in Listing 2. It stands for the Community Edition of Native Image.

This introduces the issue of artificial delays caused by making a REST round trip
mentioned in Section 4.2 during the compilation of a program. Based on the measurements
made using an example request in Listing 4, REST alone can account for around 4̃2 ms of
a delay for each inlining decision made. As we have learned, an entire inlining decision in
Graal can be made in 5 ms, presenting a significant performance setback.
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mx --env ni-ce build

Listing 3: Building Graal Native Image from source.

{
"estNodeSize": 2
"codeSize" : 2,
"maxStackSize" : 5,
"estNodeCycles": 2

}

Listing 4: An example of a payload sent to the model from Graal during the compilation.

However, there is a reason the model needs to be kept outside of Graal. We generate
individual models through our pipeline client and once it is deployed, we launch the bench-
mark without recompiling the Graal compiler’s internal source code. Once the optimal
model is identified, there is no practical reason to keep it outside the compiler’s original
codebase. At that point, the REST overhead disappears.

Once inlinings are performed and all other optimization passes are finished, the bench-
marking tool runs a performance test of the generated native code and stores the measured
metrics in bench-results.json.

5.4 Fitness Function
The pipeline waits for the benchmarking subprocess to finish and loads the metrics collected
from bench-results.json. We have handpicked four important metrics: binary size,
max-rss4, number of reachable methods, and execution time.

Each of them represents a different way of measuring the performance of the inlinings
made, and we are looking for a specific subset of them with a formula, how to combine
them into a single number to score the quality of a model. In our prototype, we will only
use the count of reachable methods.

The reason for choosing this metric instead of the execution speed of the native im-
age or binary size in memory is that there are two inlining stages in the pipeline during
optimization. The first one, which we are modifying, is supposed to reduce the size of
the analyzed internal graph before the actual analysis and optimization takes place. In
the second inlining stage, a more aggressive inliner takes over. This inliner has a larger
impact on the execution speed of the final binary program.

We have observed that even when no inlinings were performed by our model, the final
execution speed, size of maximum resident set, size of binary and to a lesser degree count
of reachable methods vary between different runs of the same program. There is a sense of
nondeterminism that causes inlinings to happen in different order, which originates before
compilation makes a pass through our inlining layer. Because of that, even if our model
denies every inlining opportunity, the actual number of inlining decisions the model makes

4en.wikipedia.org/wiki/Resident_set_size
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is different with each run. Assuming that we are building a single executable file out of
akka-uct and the model refuses every inlining opportunity, our model is asked about inlining
approximately 556300 times, as demonstrated by our tests in Figure 5.1. Each run differs by
a couple of tens of model invocations. The following introduction of minor changes between
IRs explain the differences between the metrics, despite our model behaving the same in
each instance. The same can be observed with a model that always inlines for as long as is
allowed in Figure 5.2.

Run # of refused inlinings
#1 556296
#2 556305
#3 556306
#4 556322
#5 556284

Table 5.1: Decisions made for benchmark akka-uct by a model that refuses each inlining.

Run # of accepted inlinings
#1 606864
#2 606831
#3 609464
#4 606811
#5 606950

Table 5.2: Decisions made for benchmark akka-uct by a model that allows each inlining.

After running the training for 5 generations, 10 different genomed models each, for
the benchmark akka-uct from the Renaissance Benchmark Suite, we can observe a contin-
uous improvement in the fitness score of the best performing neural network configuration
from each generation.

Solution Binary size [MB]↓ Max-RSS [MB]↓ Reach. methods↓ Execution [s]↓
Reference 28.897 2,737 35,386 30,619.179
Model 91.563 3,010 27,779 29,499.999

Table 5.3: Metrics comparison for reference (the original approach) and the best feedforward
model after 5 generations of training on benchmark akka-uct.

Based on Figure 5.3, we demonstrate that the pipeline produces better neural network
configurations as training progresses, we must solve another problem. Every performance
test of a neural network is done over a benchmark suite containing a set of problems, and
while one network might perform better for one specific benchmark, it can underperform for
others. A method to combine multiple benchmark scores into one is needed. For simplicity,
the prototype will use a relative improvement of a single selected metric over the baseline
solution. We also implement fitness caching for network configurations that make it into
the next generation without a change in their parameters. When the parameters do not
change, it does not make sense to run benchmarks for training scenarios again, despite
the possibility of getting slightly different metrics due to the randomness issue discussed
in this section. After running the benchmarks for a genome, its fitness value is persisted
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in the object instance of the genome. When the same instance of a genome appears in
the next population, the pipeline notes that the genome already has a fitness set and skips
the deployment of the network configuration, launch of the benchmarks, and calculation of
the total fitness. Since two out of ten genomes that move into the next generation, from
the second generation onward, two of the ten genomes that form the current population
are instantly evaluated by the use of caching.

5.5 Evaluation of Non-Graph Model
In this section, we evaluate the metrics collected during training between different network
configurations. In Section 5.5.1, we compare the number of reachable methods (the fitness
function) for each network and benchmarking scenario. We do the same for the binary size
in Section 5.5.2. In Section 5.5.3, we validate the best performing models from training
using these two metrics again, but this time for previously unseen benchmark scenarios.

5.5.1 Fitness Progression

Our simple fitness function has been the number of reachable methods. Based on how
genetic algorithms evolve the network configuration in the direction that allows for lower
fitness, it should not come as a surprise that our final generation of networks have, in
fact, lower total fitness than the networks from the first generation. As for akka-uct and
db-shootout, we found networks that inline aggressively in the first generation already.
The problem is that the third benchmarking scenario, dotty crashes for almost all of these
aggressive models.

In Section 5.1, we have mentioned that we have limited the number of nodes in a single
IR graph. When a graph exceeds a certain number of nodes, further inlinings are no
longer made by our model for the current graph. This limit has been fine-tuned by testing
the akka-uct scenario with different numerical limits until we found a value that allows to
inline as much as possible without crashing the program. This limit safeguarded the stability
for db-shootout without us explicitly tuning the value for this benchmark. That is not
the case for dotty, which is a Scala program with much more complexity than the other
two scenarios.

As we can see, the green column for dotty fitness is completely missing from most
of the genomes in Figures 5.2 and 5.4. This happens when the program crashes either
during compilation or execution of the benchmark. In case of crashing during compila-
tion, the system runs out of available RAM. In case of crashing during benchmarking, the
program usually runs out of heap memory allocation. The safetyguard thus failed to keep
the inliner in check for dotty, the program crashes without producing metrics (including
the number of reachable methods), and that results in the pipeline attributing infinite fit-
ness to the genome. A real number needs to be assigned for fitness, so for practical reasons,
we arbitrarily set it to 999,999. We want to minimize the number of reachable methods,
so if any of the network configurations crash the benchmark for any of the scenarios, the re-
sulting fitness is so high that there is a very low chance such configurations can survive to
the next generation. This benefits configurations that might not inline too much, but they
also do not crash any of the programs during benchmarking.

As observed in Figures 5.3 and 5.5, by the final generation, all of the model configura-
tions manage to find a way to inline akka-uct and db-shootout just as much as in the first
generation, but this time most of them do not cause the compilation and execution of dotty
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Figure 5.2: Reachable methods of the first generation non-graph models.
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Figure 5.3: Reachable methods of the fifth generation non-graph models.

to crash. This happens without us explicitly fine-tuning the graph node limit to work for
dotty. Not only does dotty not crash, but the final generation of models manages to de-
crease the number of dotty’s reachable methods by a similar margin (in terms of percent
of the original reachable methods) as it does for akka-uct and db-shootout.

Solution # of reachable methods % of reference reachable methods
Reference 35,386 100%
Best model 27,780 78.5%

Table 5.4: Comparison of reachable methods for baseline and the best non-graph model for
akka-uct.

The resulting generation offers four different network configurations that produce a roughly
similar number of reachable methods across the three benchmark scenarios. We could be
tempted to pick a single model that keeps the lowest absolute number of total methods.
However, there are more metrics on which to base our evaluation than just the fitness
function used for training.

28



5.5.2 Binary Size

For the binary size metric, we can observe the same phenomena with missing metrics in
crashed dotty benchmarks and the subsequent recovery of success rate in the final popula-
tion as in Section 5.5.1 for reachable methods. As for the relationship between the decreas-
ing number of reachable methods and the increasing size of the resulting binary file, we
observe a relationship that in most cases seems negatively correlated. However, it turns out
that the extent of increase in binary size is not comparable between different models that
achieve similar counts of reachable methods, and in some cases, less reachable methods do
not translate to higher binary size compared with instances with more reachable methods.
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Figure 5.4: Binary size of the first generation non-graph models.
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Figure 5.5: Binary size of the fifth generation non-graph models.

This discrepancy is due to our inliners not choosing to inline all invocations of the same
function. As a result, functions tend to be partially inlined for some invokes, while staying
not inlined in other cases, thus generating larger binaries (due to code duplication) without
reducing the count of reachable methods in an IR. In terms of numbers, we have observed
an increase in the binary size of the resulting executable in the range of 2 to 3 times
the original for models with the best fitness.
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5.5.3 Validation

Once the training has been completed, we attempt to confirm the performance of the best
models compared to the baseline in scenarios that were not used for training. For this
purpose, we have handpicked three other programs found in the Rennaissance benchmark
suite: philosophers, reactors and scrabble.

To perform validation on these benchmarks, we pick the four best-performing network
configurations from the training phase and individually deploy them to a port on the lo-
calhost using our infere.py script, which parses the network parameters from the config-
uration file, creates an instance of a network with provided parameters and deploys it to
port 8001. The neural network configurations are located in the configs folder in a JSON
format: nograph1.json, nograph2.json, nograph3.json and nograph4.json.

Once one of the networks is deployed (Listing 5), we open a new terminal session and run
mx benchmark with the appropriate modifiers (Listing 6) to generate a benchmark report
in bench-results.json under the current working directory. If you run each benchmark
in the same working directory, mx will overwrite the file with each iteration, so a copy of
the file needs to be saved after each benchmark.

python infere.py configs/nograph1.json

Listing 5: Deploy a pretrained neural network to a local port. The script accepts
a mandatory argument with the path to the file with biases and weights of the network.

mx --env ni-ce benchmark "renaissance-native-image:philosophers"
mx --env ni-ce benchmark "renaissance-native-image:reactors"
mx --env ni-ce benchmark "renaissance-native-image:scrabble"

Listing 6: Run each validation benchmark separately.

Solution Reach. methods ↓ Binary size [MB] ↓ Max-RSS [MB] ↓ Execution [s] ↓
Reference 28,329 23.880 264 3,797.749
Model #1 22,287 74.897 249 3,833.973
Model #2 22,267 74.992 260 3,941.562
Model #3 22,267 74.986 257 4,012.233
Model #4 22,266 74.608 267 3,969.633

Table 5.5: Metrics for reference and non-graph models for benchmark philosophers.
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Solution Reach. methods ↓ Binary size [MB] ↓ Max-RSS [MB] ↓ Execution [s] ↓
Reference 28,675 24.108 795 22,740.325
Model #1 22,616 73.337 1,218 19,240.166
Model #2 22,613 73.338 1,242 18,302.744
Model #3 22,614 73.480 805 18,135.389
Model #4 22,613 73.485 815 17,106.370

Table 5.6: Metrics for reference and non-graph models for benchmark reactors.

Solution Reach. methods ↓ Binary size [MB] ↓ Max-RSS [MB] ↓ Execution [s] ↓
Reference 25,494 31.058 755 551.990
Model #1 20,057 76.747 709 516.158
Model #2 20,054 77.068 729 459.514
Model #3 20,054 77.302 741 494.129
Model #4 20,053 77.522 719 516.095

Table 5.7: Metrics for reference and non-graph models for benchmark scrabble.

As we can see in Tables 5.5, 5.6, and 5.7, the decrease in reachable methods is in a similar
percentual range as in the case of benchmarks used for training. The number of reachable
methods has been reduced by 21.4% (philosphers), 21.2% (reactors) and 21.4% (scrabble)
for each of the four variants of the non-graph model. The binary size also confirms the trends
from training, with the generated executable increasing in size by 214.0% (philosophers),
204.7% (reactors) and 148.8% (scrabble).

All four models performed in a very similar way in both reachable methods and binary
size, which is probably related to the fact they all rely on the same safety guardrails im-
plemented by us in the AOT compiler that make sure inlining is cut off when the IR graph
exceeds a threshold in node count or we are attempting to inline an uninlinable function.
The safety guardrails were explained more in depth in Section 5.2.

Based on the very similar reachable methods and binary size metrics for all four net-
works, we assume that there is no model among them, which is distinctively better in
general than the other three models. To validate this idea, we can look at the maximum
resident set size metric (max-rss), which gives better results for a different model configu-
ration in each benchmark scenario. We will move on to a neural network design that can
capture more detail about the internal representation of the program.
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Chapter 6

Inlining Based on Graph Neural
Networks

For a long time, neural networks have been used with traditional architectures to solve
issues that can be represented as Euclidean data, i.e., vectors of numbers. Such use cases
can be found in text, video and image domains. Neither of them requires an accurate
representation of complex relations between different pieces of data.

However, with the spread of machine learning use for almost any kind of problem where
datasets can be collected, we have arrived at a cross-road where old architectures are no
longer well suited for the problem. An example of such an issue is inline predictions. Al-
though our feedforward solution offers a way of iterative improvement over legacy solutions,
it does not answer the fundamental issue of reflecting code interactions surrounding the in-
vocation of a method. A simple set of conditions that checks for individual attributes with
hardcoded thresholds is replaced by a neural network that combines these local attributes
using an evolutionary algorithm. The next step is to parse such attributes for all surround-
ing code blocks around our invoke method and create a sense of a wider context on which
to base our decision. These blocks are all related to each other in some way based on
a parent-child relationship and what order they are executed in. We could use a text-based
Large Language Model (LLM) to tokenize the entire code and optimize it; however, LLMs
by design are not yet suitable for this, despite showing promising signs in research. As
Cummins et al. [3] noted, the main obstacles to solve are the sequence length and the lack
of arithmetic reasoning.1

Instead, we want to use the code already parsed in the Graal compiler in the form
of a graph-structured intermediate representation and transform it using neural networks
that can load graph input. In this way, we will be able to preserve the relations between
the methods and their calls without having to encode the state of the entire graph into
a complicated vector of numbers.

We get to load data as a set of nodes (plus their features) and directional edges. This
set of information gets passed into a graph convolution layer that outputs one-dimensional
numerical values that can be further processed by traditional layers, like in any other simple
feedforward neural network.

1During the writing of this thesis, new models such as OpenAI o3 came out. They have demonstrated
promising mathematical reasoning abilities that may unblock this area of experiments.
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6.1 Graph Neural Networks
Neural networks used to struggle with data in the graph domain. It was challenging to
represent certain types of data, such as genome structures or citation relationships be-
tween different research documents. Graph neural networks were designed to mitigate
these issues [22]. The core concept is based on the principle of message passing between
interconnected neighboring nodes until information spreads everywhere through neighbours
and their neighbours, as visualized in Figure 6.1. Message passing is, for example, used
in belief propagation for Bayesian networks [14] to pass probability distributions across
the directed tree structure. Graph networks take this idea one step further, and instead of
passing conditional probabilities (beliefs), they pass the features of individual nodes. That
is how neighbouring nodes learn about the features of their own neighbours.

Figure 6.1: Message passing in action. In this example information propagates between
nodes 4 & 5 to 6 & 7 via 1, 2 and 3.

There are multiple types of graph neural networks, each type being predominantly used
for a different category of inference tasks. Graph sample aggregation (GraphSAGE) [7]
is often used to predict links between nodes in an existing graph; graph attention net-
works (GATConv) [22] are used to make predictions on top of the entire graph level. For
us, the most relevant type is a graph convolutional network (GCN), which is used in
networks to predict at the node level. The principle of a multi-layered GCN network is
built upon the following equation:

𝐻(𝑙+1) = 𝜎
(︁
𝐷̃− 1

2𝐴𝐷̃− 1
2𝐻(𝑙)𝑊 (𝑙)

)︁
There is a lot going on in this formula, so let us break it down. The activation func-

tion 𝜎 - usually ReLU (𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)) - processes the result of multiplying matri-
ces 𝑊 (𝑙) (trainable weight matrix in the 𝑙-th layer), 𝐴 (adjacency matrix of the graph),
𝐻(𝑙) (matrix of node features in the 𝑙-th layer) and 𝐷̃𝑖𝑖 =

∑︀
𝑗 𝐴𝑖𝑗 (diagonal degree matrix

of 𝐴)) [8]. The degree matrix 𝐷̃ is used to normalize each row in matrix 𝐴, so that when
𝐴 multiplies 𝐻, it does not change the scale of the feature vectors.

Fortunately, we do not have to implement the formula directly in code, as it is already
available in PyG (PyTorch Geometric) library. To get started, it is important to understand
that the output of a GCN layer is the result of the interaction between nodes, their attributes
and the directed edges that connect the nodes with each other to form a relationship between
them, as shown in Figure 6.2.
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Figure 6.2: Input graph is processed by a hidden GCN layer. Output of the GCN
convolution layer is a matrix 𝑁 × 𝐹 , where 𝑁 is the number of nodes (4) in the graph
and 𝐹 the number of output features for each node (1). The output features are fed into
a ReLU activation function.

6.2 Graph as Input
Before building inlining pipelines with graph-based models, we look at how we can trans-
form the data we have in Graal into a format that can be fed as input into models with
GCN layers. PyG defines a class torch_geometric.data.Data that stores x (a matrix with at-
tributes for each node) and edge_index (a transposed matrix with directional node-to-node
relationships).

Figure 6.3: An example graph. The attributes of each node are a list of possible node
types, with 1 meaning belonging of the node to the type and 0 not belonging.

Inside Graal, we make a POST request for the current inlining decision. The body of
this request consists of a list of nodes with their node type and a list of directional edges,
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each edge being represented by a tuple of 2 zero-based indexes referring to the position of
the node in the nodes array. An example of such a request can be seen in Figure 6.3 and
Listing 7.

{
"nodes": [

{"nodeType": 0},
{"nodeType": 1},
{"nodeType": 2},
{"nodeType": 3}

],
"edges": [

[0, 2],
[1, 2],
[2, 3]

]
}

Listing 7: An example REST request made during compilation from Graal.

The node type is an enumerated datatype identified by a number, with each number
representing an index in the list of nodes we recognize. For a complete list of recognized
node types, refer to the Appendix A.

The root node of each graph is the invocation of the method we are trying to inline.
Invocation has an IR graph (IR of the method where invocation resides), and the invoked
method has an IR of its own. By collecting the surrounding of the invocation, we under-
stand collecting the immediate limited surrounding of both the invocation and the invoked
method, and merging the two IRs into one.

The challenge is to identify duplicate nodes introduced by merging of the graphs; in our
case, these are the parameters of the invoked method and the returned value. We identify
a connection between nodes in the parent and child graph for both the parameters and
the returned value. After removal of duplicate nodes, we adjust the indexing of the nodes
in edges.

Once the POST request is received, we transform the content into a Torch tensor com-
patible format, shown in Listing 8. As nodeType represents a categorical value, we transform
it using one-hot encoding into the final input for the neural network. One-hot encoding
transforms a non-negative number into a vector of zeros with a single number 1 among them.
For the number 𝑛, the number 1 would be placed at index 𝑛 in the vector. The length of
the vector is as long as the highest value of the categories we plan on encoding. For exam-
ple, if we have four categories in total, i.e., [0, 1, 2, 3], and we want to encode the second
category, i.e., 1, the one-hot encoded equivalent of that is [0, 1, 0, 0].

This is only done on the model’s backend, since there is no reason to inflate the REST
request’s JSON body by including an array of numbers instead of a single nodeType value
for each node found in the request. Each such request contains tens of nodes each, so
the size of requests does add up with no optimizations.
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import torch
from torch_geometric.data import Data

# each row represents a directional node-to-node edge
edge_index = torch.tensor([[0, 2],

[1, 2],
[2, 3]], dtype=torch.long)

# each row represents all attributes of a single cell
x = torch.tensor([[1,0,0,0],

[0,1,0,0],
[0,0,1,0],
[0,0,0,1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index.t().contiguous())

Listing 8: Request is transformed into its equivalent in the form of a Torch tensor.

6.3 Network Architecture
The NEAT library used up to now did not support graph algorithms. Therefore, we have
built our own network that fits its existing internals by replacing the original feedforward
model used in our prototype and reverse engineering its interface to fit our custom model.
A part of this backporting effort focuses on supporting the generation of parameters done
by NEAT, and consequent loading of these parameters as weights and biases into our model.
Another important aspect is the ability to have a custom number of inputs, all configurable
via the generic configuration file used for other NEAT models. This allows us to experiment
with different mappings, each variant supporting a different number of node types. As it
turns out, there are hundreds of different nodes, and processing input arrays of such length
has a negative impact on performance.

Figure 6.4: The architecture of a classification graph network. The number of node
attributes, hidden attributes and output channels come from the NEAT configuration file.

The final proposed graph model consists of three types of elements: GCNConv, ReLU
and Sigmoid. GCNConv stands for a graph convolution layer. We are using two of them,
each with its own softmax layer, bringing the total number of layers in our model to four.
As you can see in Figure 6.4 and Listing 9, we use the NEAT configuration file to provide us
with the number of node attributes, hidden attributes and output channels for each layer.

The node attributes serve as input to our neural network. In fact, there is only one
attribute for each node, its type. It is, however, one-hot encoded into an array of ones and
zeros. The array’s length equals the number of recognized node types in our model, plus
one that serves as a bin for all unmapped and unrecognized node types.
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Hidden attributes are an arbitrary number. The higher the number of hidden attributes,
the more complex information can be propagated between the input layer and the output
layer. A higher number of hidden nodes also means the need to generate more random,
yet optimal parameters with NEAT. Due to the one-hot encoding done on the input layer,
the number of parameters utilized for that layer is already greater than what we used in our
prototype, so it is desirable to keep the number of hidden channels as small as possible. For
hidden layer activations, we use ReLU as it is the go-to default function in hidden layers
for most neural networks. When it comes to the output layer, we are again classifying into
one of two categories, so we are keeping the same sigmoid final activation that we have used
previously.

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
def __init__(self, inputs, hidden, outputs):

super().__init__()
self.conv1 = GCNConv(inputs, hidden)
self.conv2 = GCNConv(hidden, outputs)

def forward(self, data):
x, edge_index = data.x, data.edge_index

x = self.conv1(x, edge_index)
x = F.relu(x)
x = self.conv2(x, edge_index)
y = F.softmax(x, dim=1)
return y

Listing 9: Architecture of the graph neural network in PyTorch.

6.4 Training
The base NEAT library does not use a deep learning framework such as Tensorflow or
PyTorch, instead it implements its linear regression operations directly in its source code.
We build a custom wrapper that bridges one library with another. The workflow goes as
follows:

1. NEAT generates a genome.

2. A custom wrapper creates a neural network in PyTorch and sets it up using:

(a) Weights and biases located in the genome generated in step 1.
(b) Parameters found in NEAT’s configuration file (number of input, hidden, and

output features).
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3. The wrapper containing the neural network is deployed to an API endpoint.

4. During benchmarking, each inference call is passed to the wrapper first, which trans-
forms the input received inside the REST payload into Torch compatible data struc-
tures before calling the actual model (Listing 10). The result of the call is then
transformed back into the format NEAT expects.

Transformation of the input JSON into arrays of node attributes and edges is performed
in api.py, which passes these two arrays into the Torch wrapper. There, the Python
arrays are transformed into Tensor arrays, which can be loaded into the GPU memory and
inference can be computed on a graphics card that offers more memory and parallelism
capabilities than an ordinary computer processor, and thus might calculate the results for
each inlining faster. After some testing, it has been observed that running our network on
the CPU is actually faster. This is down to more factors. The GPU we are training on is
an NVIDIA GTX 1650, which does not have enough performance to be considered a serious
machine learning grade hardware. The second factor is that traditional machine learning
workflows take advantage of GPU parallelism by increasing the batch size. In simple terms,
they execute the same kind of operation on more data in parallel, which is much faster
than performing operations on a single data entry at a time, one by one. The problem with
batch size parallelism is that Native-Image’s AOT compiler is already running in multiple
threads, so we would collect individual inference requests into a queue on the REST API
side and make the requesting threads on Graal’s side wait for a response. Once enough
REST requests are in a queue, we can execute the requests in a single batch in Torch and
then redistribute the results for each compiler thread. For the scope of this thesis, we are
not going to explore this architecture, since it does not constitute a minimal viable product
that this thesis aims for.

There are various workarounds needed to make the custom solution work due to incon-
sistencies in the version of the NEAT library used. For example, I had to turn the fitness
minimization task into the maximization of negative fitness because the NEAT library did
not adjust its behavior when the appropriate parameter in its configuration was changed.
It always maximized fitness, regardless of the parameter in its configuration.

Another example was that the library did not generate a consistent number of con-
nections between its genomes at all times. That introduced an error when setting up our
PyTorch model, as it requires a fixed-length list of parameters for all the weights and biases
our model possesses. Generating fewer connections is generally not a bad idea, as it allows
us to dilute a neural network. However, in our case, sometimes there would not only be
fewer connections than we predefined, but there would also sometimes be more of them.
Due to our model architecture, we already have as many connections between nodes as it
is possible for a feedforward network to have, so for the sake of consistency, I have decided
to use a fixed number of connections no matter how many connections are in the gener-
ated genome. There is a parameter in the configuration file that modifies the probability
of adding and dropping connections, which can effectively forbid such mutations to our
genomes, should we set the probability to zero. A similar parameter exists for adding and
removing nodes in our network, it was also set to disallow any changes to the topology.
The number of inputs in the configuration file corresponds to the number of attributes of
a node, which in our case is the length of the one-hot encoded type of the node, i.e., 178.
The number of hidden features was set to 16, and the output features stay the same as in
the non-graph model configuration, i.e., 1. With the increase of nodes and edges, the total
number of parameters also increases, and with that, the changes caused by mutations to
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class GraphNetwork(object):
def __init__(self, genome_config):

self.device = torch.device('cpu') # my GPU was slower than my CPU
self.model = GCN(genome_config).to(self.device)

def activate(self, nodes: np.ndarray, edges: np.ndarray):
data = Data(

x=torch.tensor(nodes, dtype=torch.float),
edge_index=torch.tensor(edges, dtype=torch.int16)

).to(self.device)

with torch.no_grad():
out = self.model(data)

return out.cpu().numpy()[0].tolist() # node at idx 0 = invocation

def set_parameters(self, genome_config, genome):
self.model.conv1.lin.weight = torch.nn.Parameter(<weights>)
self.model.conv1.bias = torch.nn.Parameter(<biases>)
self.model.conv2.lin.weight = torch.nn.Parameter(<weights>)
self.model.conv2.bias = torch.nn.Parameter(<biases>)

@staticmethod
def create(genome, config):

network = GraphNetwork(config.genome_config)
network.set_parameters(config.genome_config, genome)
return network

Listing 10: Compatibility layer between PyTorch and NEAT. The genome represents
weights and biases that are used to set up the Torch network.

the individual weights and biases add up to a bigger total difference between genomes in the
population. Although the original compatibility threshold for the non-graph configuration
was high enough for all genomes in the same population to belong to the same species, that
is no longer the case for graph genomes. Each genome has its own pieces assigned, making it
10 species per generation. Since elitism (the preservation of best fitted genomes of the pre-
vious generation) is applied per species, either zero genomes can be preserved into the next
generation, or all ten of them are preserved. We opt to increase compatibility_threshold
to a very high number, which brings all genomes back into the same single species. For the
rest of the configuration, refer to the file config-gnn from Appendix D.

6.5 Evaluation of the Graph Model

6.5.1 Reachable Methods and Binary Size

With our training pipeline already proven from training the non-graph models, our main
area of focus is not whether the training progresses in the direction of models that inline
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more. Our focus lies on finding trends in the training - both similarities compared to
the training of non-graph models, but also the differences. In the case of graph models,
we have a much higher number of parameters compared to non-graph models - it is 2881
parameters for graph models, versus only 19 for non-graph models.

The difference is explained in the formula used to calculate the number of parameters
of a GCN network: 𝑃𝑎𝑟𝑎𝑚𝑠 = 𝐹𝑖 × 𝐹ℎ + 𝐹ℎ + 𝐹ℎ × 𝐹𝑜 + 𝐹𝑜, where 𝐹𝑖 stands for input
features (178), 𝐹ℎ for hidden features (16) and 𝐹𝑜 for output features (1). The first GCN
layer has 𝐹𝑖×𝐹ℎ number of weight parameters, plus 𝐹ℎ bias parameters. The second GCN
layer has 𝐹ℎ × 𝐹𝑜 number of weight parameters, plus 𝐹𝑜 bias parameters.

Although the feedforward non-graph models adhere to the same formula, in their case
𝐹𝑖 stands for 4 input numbers, 𝐹ℎ for 3 hidden features, and 𝐹𝑜 for 1 output feature.

As it becomes apparent, the significant increase in parameters count for graph models
originates in our input layer, which consumes 171 numbers instead of 4. While for the feed-
forward network we are consuming four continuous numerical attributes, for graphs we are
using a categorical attribute (type of a node), which can not be encoded in a single num-
ber the same way as continuous data. Doing that would assume that categorical data are
ordered and that IfNode can be, e.g., more than StartNode and less than InvokeNode.
It also assumes a sense of transitive relationship between categories, where StartNode <
IfNode and IfNode < InvokeNode implies InvokeNode being more than StartNode on
a scale greater than IfNode is greater than StartNode. None of these assumptions are cor-
rect; node types are not ordered, and they are only labels - there is no sense of scale when
comparing them. Continuous variables satisfy both of these requirements, e.g., a 180 cm
tall person is taller than a 170 cm tall person, but not as much taller as a 190 cm person
would be. Categorical data are not like that.

The higher number of parameters paradoxically leads to less variability in fitness be-
tween genomes in the same generation, with the initial population starting out on a mostly
conservative spectrum of inlining decisions. The genomes that do inline, always run out
of memory on the heap during compilation of dotty. As generations start adding up, the
genomes eventually start inlining and they arrive at metrics similar to those observed when
training non-graph models.
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Figure 6.5: Reachable methods of the first generation graph models.

As presented in Figures 6.5, 6.6, 6.7 and 6.8, similarly to non-graph models, we observe a
slight decrease in reachable methods and an increase in binary size for the best models. The
apparent indifference between non-graph and graph models makes it obvious that despite
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Figure 6.6: Reachable methods of the fifth generation graph models.

graph models having more structural information at their disposal, they are trained to
perform similarly to the feedforward network with the existing setup and fitness function.

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Genome

Bi
na

ry
Si

ze
[M

B]

Figure 6.7: Binary size of the first generation graph models.
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Figure 6.8: Binary size of the fifth generation graph models.
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6.5.2 Validation

In this section, we compare the four best network configurations against the reference
metrics. We also compare the selected configurations against one of the non-graph models
in Section 5.5.3. As all non-graph models performed similarly to each other, we arbitrarily
selected Model #1 to represent the entire non-graph group.

Solution Reach. methods↓ Binary size [MB]↓ Max-RSS [MB]↓ Execution [s]↓
Reference 28,329 23.880 264 3,797.749
Non-graph 22,287 74.897 249 3,833.973
Graph #1 22,266 74.836 247 3,989.168
Graph #2 22,266 74.912 273 4,015.206
Graph #3 22,266 74.913 257 4,003.657
Graph #4 22,266 74.914 265 4,023.690

Table 6.1: Metrics for reference, non-graph and graph models for benchmark philosophers.

Solution Reach. methods↓ Binary size [MB]↓ Max-RSS [MB]↓ Execution [s]↓
Reference 28,675 24.108 795 22,740.325
Non-graph 22,616 73.337 1,218 19,240.166
Graph #1 22,613 73.409 890 16,968.259
Graph #2 22,613 73.333 816 18,373.149
Graph #3 22,613 73.332 857 17,224.159
Graph #4 22,614 73.111 858 18,341.642

Table 6.2: Metrics for reference, non-graph and graph models for benchmark reactors.

Solution Reach. methods↓ Binary size [MB]↓ Max-RSS [MB]↓ Execution [s]↓
Reference 25,494 31.058 755 551.990
Non-graph 20,057 76.747 709 516.158
Graph #1 20,053 77.370 809 507.561
Graph #2 20,053 77.530 770 563.633
Graph #3 20,053 77.453 754 502.499
Graph #4 20,054 76.907 726 501.725

Table 6.3: Metrics for reference, non-graph and graph models for benchmark scrabble.

Again, in Figures 6.1, 6.2 and 6.3 we observe results that are very similar to those in
Section 5.5.3. It is unavoidable to talk about how models so different in parameters, and
in the case of non-graph and graph models, also different in architecture, yield so similar
results. For all validation cases, every model tested has made only a positive decision
about inlining, which means that no inlining was refused by any of the models tested.
This leads to the conclusion that although all of the best models from both non-graph
and graph categories possess attributes that make them refuse to inline in specific cases
where other models would inline too aggressively and cause benchmarks to fail (e.g., dotty
benchmark), in other cases they might inline everything they can and they are only stopped
by the guardrails we have implemented in Section 5.2. During training, the guardrails had
the important task of keeping the training on track and avoiding models from losing their
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way while exploring too aggressive inlinings that would make the execution of the compiled
machine code fail. Unfortunately, this also makes aggressive inliners safe, as they can try
to inline everything - they will eventually be stopped by the automatic guardrails before
they can cause any harm. Such models do not need to develop a complex understanding of
harmful inlinings, they only need to avoid inlining in cases where the hardcoded guardrails
are not activated. Those cases are only a subset of the problems that the inliner should
recognize and solve in a real world, otherwise we are back to inlining mostly based on
hardcoded thresholds in code.

The issue of inliners’ reliance on guardrails originates in the inliner’s objective to reduce
the number of reachable methods. A more complex fitness function that incorporates
the size of the binary and the time it takes to execute the compiled binary file could penalize
the models that inflate the executable size irresponsibly. Keeping the size low means the
inliner will encounter guardrail limits less often (the guardrails cut off inlining when the
IR graph exceeds a fixed number of nodes). By doing this, we shift the responsibility for
handling excessive inlining to the fitness function and therefore to the process of training
the models, rather than silently guarding the actions of models that are greedy with inlining.
However, incorporating all metrics requires a formula to compute a single number that
serves as the fitness function. This task requires non-trivial research on top of the existing
infrastructure we already built and used to train our models, and it is out of the scope of
this work.
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Chapter 7

Conclusion

The goal of the thesis was to investigate the capabilities of GraalVM, its Native Image com-
ponent, and to design and implement a machine-learning-based heuristic in the environment
of GraalVM Native Image. The chosen area of focus became inlining during the construc-
tion of the internal representation (IR) graph of the AOT compiler, even before the static
analysis is executed. In the original Native Image implementation, the heuristics are set up
using constant thresholds fine-tuned according to predefined benchmarks. The aim was to
research an improved heuristic using machine learning and neural networks.

The first step was to explore and collect training data. We decided not to train a classic
model using annotated training data, as it is not possible to determine which individual
inlining is good or not. We decided to implement a pipeline with genetic algorithms, which
generates neural network parameters that are benchmarked against each other on a set of
training programs. To verify the functionality of the pipeline, a simple feedforward neural
network was designed and evaluated. This network is later used as a comparison for the more
complex graph neural network. However, the graph neural network was incompatible with
the implementation of the base NEAT library, which is why we implemented a wrapper
middleman to tie together NEAT library and Torch.

During training, the first generations of models would inline either too aggressively and
cause the program to crash during benchmarks, or inline too little and not produce much
different executable images compared with the conservative baseline inliner. As training
progressed, the models improved inlining, and the generated native images stopped crashing
at runtime, but it came at a cost. Although we could reduce the number of reachable
methods by around 20-25%, the size of the binary would increase two to three times.
The best networks from the training stage of both non-graph and graph models were then
deployed locally and validated on previously unseen programs. There, the models confirmed
the decrease in reachable methods, but also the significant increase in binary size. In most of
the benchmarks, both for training and validation scenarios, we observed a modest increase
in execution time of the generated native binary. There were also scenarios where these
models increased the execution time by bigger margins and scenarios where they decreased
the time compared with the existing baseline.

As a consequence, it is not possible to determine a statistically positive impact of
the neural networks presented in this thesis. During the writing of this thesis, we have
encountered many options, where we could have taken a different approach that could have
produced a different result. Some of these options include modifications to the API end-
point to execute model inference in batches, which may increase the speed of compilation,
which in turn allows to train more generations of networks. This would have helped con-
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sidering our training sessions were limited by the population and species size, which was
a trade-off made due to hardware constraints. A related performance improvement is to
embed the model directly into the compiler’s source code and remove the REST overhead
that way. Another option is to experiment with models that have multi-layered graph con-
volutions instead of the two-layered convolution used in our approach. Finally, we found
that the combination of our simple fitness function, the restricted number of training itera-
tions, and the hardcoded security guardrails between the model and the compiler, constrain
the ability of our models to learn more generic patterns about harmful decisions, because
they learn to inline aggressively and rely on the hardcoded guardrails to stop them.
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Appendix A

Supported node types

InvokeNode IfNode
LogicNegationNode LoopExitNode
ConstantNode PiArrayNode
ValuePhiNode IntegerTestNode
NewMultiArrayNode SqrtNode
LoadFieldNode FloatConvertNode
LoweredAtomicReadAndWriteNode XorNode
UnsafeCompareAndSwapNode NarrowNode
DynamicNewInstanceWithExceptionNode IntegerBelowNode
TypeSwitchNode FloatDivNode
ArrayLengthNode ConditionalNode
UnsafeCompareAndExchangeNode NotNode
AtomicReadAndAddNode IntegerLessThanNode
LoadIndexedNode ZeroExtendNode
NewInstanceWithExceptionNode SignedRemNode
NewArrayNode RightShiftNode
InstanceOfNode RoundFloatToIntegerNode
StoreFieldNode AbsNode
LoadExceptionObjectNode CopySignNode
StoreIndexedNode SignumNode
NewArrayWithExceptionNode SignedDivNode
LogicCompareAndSwapNode UnsignedRightShiftNode
InstanceOfDynamicNode NegateNode
DynamicNewArrayNode SubNode
AtomicReadAndWriteNode SignExtendNode
ValueCompareAndSwapNode ObjectEqualsNode
MethodCallTargetNode AndNode
NewMultiArrayWithExceptionNode FloatLessThanNode
ReachabilityFenceNode FloatNormalizeCompareNode
DynamicNewArrayWithExceptionNode ExpandBitsNode
DynamicNewInstanceNode SignedFloatingIntegerRemNode
NewInstanceNode UnsignedDivNode
LoweredAtomicReadAndAddNode UnsignedMaxNode
ExceptionObjectNode OrNode
DynamicCounterNode FloatTypeTestNode
SideEffectNode FloatEqualsNode
StringToBytesNode IntegerEqualsNode
UnreachableNode IsNullNode
DynamicPiNode MinNode
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MaxNode UnsafeCopyNode
OpMaskTestNode ObjectIsArrayNode
AddNode StateSplitProxyNode
MulNode OpaqueValueNode
IntegerNormalizeCompareNode SpeculationFenceNode
PointerEqualsNode GuardedUnsafeLoadNode
ReinterpretNode RawLoadNode
LeftShiftNode JavaReadNode
RoundNode BranchProbabilityNode
SignedFloatingIntegerDivNode GetClassNode
UnsignedMinNode BytecodeExceptionNode
ShortCircuitOrNode LoadMethodNode
MergeNode JavaWriteNode
PauseNode CaptureStateBeginNode
ConditionAnchorNode UnboxNode
SpinWaitNode ForeignCallWithExceptionNode
StartNode MemoryMapNode
BeginNode WriteNode
DeadEndNode MemoryPhiNode
ComputeObjectAddressNode ReadNode
UnwindNode OffsetAddressNode
AllocatedObjectNode IndexAddressNode
CommitAllocationNode FloatingReadNode
VirtualBoxingNode SideEffectFreeWriteNode
VirtualInstanceNode MemoryAnchorNode
VirtualArrayNode UnreachableControlSinkNode
EnsureVirtualizedNode IndirectCallTargetNode
ValueProxyNode DirectCallTargetNode
GetObjectAddressNode LoopBeginNode
SwitchCaseProbabilityNode ReturnNode
LoadArrayComponentHubNode InvokeWithExceptionNode
IntegerSwitchNode GuardedValueNode
ValueAnchorNode ParameterNode
UnsafeMemoryLoadNode FixedGuardNode
ClassIsArrayNode PiNode
ForeignCallNode LogicConstantNode
NullCheckNode EndNode
OpaqueLogicNode LoopEndNode
LoadHubOrNullNode FrameState
UnsafeMemoryStoreNode
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Appendix B

Evolution of training for the
non-graph model

B.0.1 Reachable Methods
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Figure B.1: 1st generation
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Figure B.2: 2nd generation
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Figure B.3: 3rd generation
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Figure B.4: 4th generation
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Figure B.5: 5th generation
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B.0.2 Binary Size
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Figure B.6: 1st generation
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Figure B.7: 2nd generation
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Figure B.8: 3rd generation
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Figure B.9: 4th generation
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Figure B.10: 5th generation
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Appendix C

Evolution of training for the graph
model

C.0.1 Reachable Methods
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Figure C.1: 1st generation
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Figure C.2: 2nd generation
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Figure C.3: 3rd generation
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Figure C.4: 4th generation
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Figure C.5: 5th generation
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C.0.2 Binary Size

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Genome

Bi
na

ry
Si

ze
[M

B]
akka-uct db-shootout dotty

Figure C.6: 1st generation
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Figure C.7: 2nd generation
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Figure C.8: 3rd generation
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Figure C.9: 4th generation
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Figure C.10: 5th generation
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Appendix D

Content of the submitted archive

The documentation and source files are submitted in a zip archive. In the root of the archive,
xkende01.pdf contains the text of the thesis and xkende01-latex.zip contains its LATEX
source files. The neat folder contains the training and deployment pipeline of the networks,
README.md a short guide on how to train and deploy networks, and requirements.txt a list
of Python dependencies. configs contains the JSON configuration files for the best net-
works of both graph and non-graph networks. config-xor contains the original example
configuration for the NEAT library, config-feedforward and config-gnn are its modified
variants used to train non-graph and graph models. evolve.py is used to launch a training
instance, infere.py is used to deploy an existing configuration and api.py for the deploy-
ment of a mock network. From the side of GraalVM’s source code located in graal, only
InlineBeforeAnalysis.java has been modified with an extra loop over all invokes in the
IR graph, which calls the locally deployed non-graph or graph model for inlining guidance.

xkende01.pdf
xkende01-latex.zip
neat/
configs/
gnn/

gcn.py
graph_network.py

.env_template
api.py
config-xor
config-feedforward
config-gnn
evolve.py
export_data.py
infere.py
requirements.txt
README.md

graal/
substratevm/src/

com.oracle.graal.pointsto/src/
com/oracle/graal/pointsto/phases/

InlineBeforeAnalysis.java
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