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Abstract

This thesis explores the design and implementation of user-defined functions (UDFs) in
a visual programming language (VPL) within the context of the Internet of Things (IoT)
and Smart Cities. It is built on top of an existing Pocketix vpl-editor tool and integrated
into the RIoT system. The primary objective is to enable non-technical users to create,
manage, and execute custom procedures, allowing for control of various IoT devices in smart
environments intuitively. By analysing the implementation against existing frameworks like
Blockly and Node-RED, the thesis identifies key requirements for accessibility, flexibility,
and seamless user interaction to accommodate them. The proposed solution is integrated
into the RIoT system, providing a user-friendly way for creating reusable workflows through
a visual editor. The resulting framework promotes logical encapsulation, scalability, and
efficient interaction via different IoT devices in the environment, empowering users to de-
fine reusable procedures with ease. These user procedures can be executed via the RloT
interpret into a Go code, suitable for IoT environments.

Abstrakt

Tato praca sa zaobera navrhom a implementaciou uzivatelsky definovanych funkcii (UDF)
vo vizudlnom programovacom jazyku (VPL) v kontexte Internetu veci (IoT) a inteligent-
nych miest. Stavia na existujicom Pocketix vizualnom editore a je integrovand do RIoT
systému. Hlavnym cielom je umoznit technicky nezdatnym uzivatelom intuitivne vytvarat,
spravovat a vyuzivat vlastné procediry spravujice a ovladajice IoT zariadenia v muadrych
ekosystémoch. Analyzou existujicej implementacie v kontraste voci existujicim systémom,
ako su Blockly a Node-RED, identifikuje klicové poziadavky na pristupnost, flexibilitu
a plynultd interakciu pre uzivatela. Navrhované riesenie je integrované do systému RloT
a poskytuje uzivatelsky privetivy spésob pre na vytvaranie opakovane pouzitelnych pro-
cedur prostrednictvom vizualneho editoru. Vysledné riesenie podporuje logickt enkapsula-
ciu, skalovatelnost a efektivnu interakciu so zariadeniami IoT, ¢im umoznuje pouzivatelom
jednoducho definovat znova pouzitelné procedury. Tieto uzivatelské procediry moézu byt
spustené za pomoci RIoT interpretu v Go kdde, ktory je vhodny pre pracu v muidrych
prostrediach.
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Rozsireny abstrakt

V sicasnosti prechadza svet zrychlujicou sa digitalizaciou, v ramci ktorej zohrava Inter-
net veci (IoT) klicova tdlohu pri transformécii tradiénych prostredi na inteligentné sys-
témy schopné autonémneho rozhodovania a fungovania. Vyvoj takychto systémov si vSak
casto vyzaduje odborné znalosti z oblasti programovania, ¢o vyrazne obmedzuje zapojenie
beznych pouzivatelov a spomaluje adopciu inteligentnych rieseni v doméacnostiach, skolach,
firmach a samospravach. Napriek mnozstvu dostupnych platforiem je stale citit absen-
ciu nastroja, ktory by umoznil jednoducht a zrozumitelni tvorbu automatizacnej logiky
bez nutnosti pisania kédu zastresujicu rézne zariadenia pod jednym systémom. Téato
bakalarska praca skima potreby uzivatela a existujicich rieseni za cielom vytvorenia navrhu
a je jeho implementéacie pre rozsirenie podpory vytvarania, spravovania a parametrizavie
pouzivatelsky definovanych funkcii (User-Defined Functions — UDF) v rdmci v organizécie
Pocketix.

Zakladnym cielom tejto prace je ulahcit definovanie vlastnej logiky spravania IoT zari-
adeni prostrednictvom intuitivneho grafického rozhrania, ktoré spristupni tvorbu autom-
atiza¢nych scendrov aj netechnickym pouzivatelom. To je obzvlast dolezité v kontexte
narastajuceho poctu inteligentnych zariadeni, ktoré generuju velké mnozstvo dat a zaroven
poskytujt moznosti interakcie prostrednictvom aktuétorov. Uspe$né nasadenie tychto zari-
adeni vsak casto zlyhdva prave na nedostatocnej podpore pouzivatelskej konfiguracie zari-
adeniami, uzivatelsky privetivym sposobom.

7 pohladu dostupnych rieseni je problém este zretelnejsi. Komercéné platformy sice
poskytujt jednoduché rozhrania na tvorbu logiky, napriklad v style podmienok a akcii zavys-
lich na nich, ale tie si vac¢sinou obmedzené na tizke mnoziny preddefinovanych scenarov a
nedovoluju vyraznejsiu modifikdciu alebo znovupouzitelnost vytvorenych funkcii. Navyse
byvaju zviazané s konkrétnymi sluzbami alebo produktmi, ¢im vznika fragmentécia a strata
interoperability. Praca preto prinasa open-source alternativu umoznujtcu Sirsiu personal-
izdciu, abstrahovanie logiky a opédtovnd pouzitelnost v rdmci systému RIoT.

Uvod préce je venovany prehladu technolégii IoT a ich architektonickym modelom,
pricom st zdoéraznené vyhody vrstveného pristupu a pouzitie protokolov ako MQTT ¢i
CoAP pre spolahlivii a skalovatelnii komunikaciu. DalSia ¢ast sa zaoberd vizualnym pro-
gramovanim ako prostriedkom na demokratiziciu vyvoja, historickym vyvojom VPL, jeho
vyhodami a rozdielmi oproti textovému programovaniu, ako aj analyzou konkrétnych exis-
tujucich rieseni Blockly, Node-RED a Scratch.

V centre prace stoji analyza stavu editora vpl-for-things, ktory bol navrhnuty ako
jednoduchy VPL editor, primarne pre IoT prostredie systému RIoT. Editor umoznoval
definiciu zdkladnych procedtr, ale neumoznoval ich parametrizaciu, abstrahovanie vstupov,
ani opdtovné pouzitie mimo aktualny kontext. Praca preto navrhuje novy pristup zalozeny
na tzv. ,Skeletonize“ méde. Tento rezim umoznuje oznacit bloky v ramci existujiceho
programu a transformovat ich do samostatnej procedury, ktora je automaticky parametri-
zovani. Parametre s reprezentované blokmi zariadeni, ktoré sd pri pouziti procediry
nahradené aktudlnymi komponentmi systému RloT. Takto je mozné dosiahnut vysoki
mieru flexibility, znovupouzitelnosti a abstrakcie.

Realizéacia riesenia zahfna zemny vyzadujice zdsahy do viacerych trovni systému. Fron-
tend rozhranie bolo upravené tak, aby podporovalo vyber casti programu, jeho konverziu
na UDF a jeho neskorsie vlozenie do inych programov. Boli implementované nové modalne
oknd, pouzivatelské interakcie a systém validdcie parametrov. Na tirovni backendu bol zave-
deny vztah medzi entitami programov a procedir, doplnend logika dynamického nacitania
iba tych procedur, ktoré su relevantné pre aktudlny program, ¢im sa znizuje pamétova



a vypoctova zataz. Implementéacia bola integrovand do API a databazy systému RIoT.
Implementovany navrh bol nasledne otestovany réznymi uzivatelskymi skupinami.

Pouzivatelské testovanie zahfnalo demo predstavenie systému RIoT a editoru pre Pock-
etix. Nasledne mali za dlohu vytvorit jednoduchy program, definovat a pouzit UDF. Pre-
behli tri testovania, kazdé s inym zameranim s ohladom na testovaciu skupinu. Prvy
test zahinal technicky zdatného uzivatela ktory mal splnit tlohu bez blizsej instruktaze
s cielom zistit intuitivnost aplikdcie. Nésledne bolo prevedené testovanie s cielovym uzi-
vatelom kde boli hodnotené privetivost a prinosnost. Posledny test zahinal studemtov
technickej unverzity kde sa zbierali nazory a ndpady na potencidlne dalsie rosirenia a zlepse-
nia. Testy potvrdili, ze zavedenie Skeletonize rezimu znizuje pocet potrebnych interakeii,
zrychluje vyvoj a zaroven zvysuje uzivatelsky komfort. Parametrizdcia umoznila jednoduché
znovupouzitie definovanych procedur v inych kontextoch, ¢o vyrazne podporuje modularitu.

Vysledky jednoznacne ukazuji, ze navrhnuté rozsirenie implementované v tejto praci
spliia stanovené ciele a zdroverl otvdra nové moznosti pre budtci rozvoj systému. Préca
prinasa funk¢nit implementaciu rieSenia a navrhuje budice rozsirenia a zlepSenia na zdk-
lade testovania. Medzi ne patri zavedenie podpory pre vytvorenie centrdlneho tloziska
UDF na ulahcenie vyberu a zdielanie procedir medzi pouzivatelmi, ako aj vylepsené Ul a
optimalizdcia rozhrania pre mobilné zariadenia.
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Chapter 1

Introduction

The ever-growing number and range of interconnected devices interacting with the real
world opens up doors to many possibilities for quality-of-life improvements, starting from
individual users, families or corporations all the way up to cities and countries. These
devices appear in our everyday lives in various forms and shapes. Some more obvious such as
smart watches monitoring our heartbeat, steps, saturation and other real-time data. Other
devices help us live more comfortable lives such as thermostats in our homes. They monitor
the temperature outside and inside the building, utilizing the data from their inputs to
adjust the heating according to the need. Many are hidden both in plain sight and out of it in
the form of more specialized systems like industrial sensors, environmental monitoring tools,
and security systems. Each of these devices plays a pivotal role in capturing, processing,
and transmitting data, enabling the creation of smart environments.

These smart environments are created by a network of connected cooperating devices
referred to as The Internet of Things (IoT). The Internet of Things refers to the broader
concept of interconnected devices communicating over the Internet, providing capabilities
for automatization, streamlining, and optimization of tasks, thus improving their overall
efficiency. The IoT extends over most major domains such as agriculture, healthcare, trans-
portation, smart homes or a niche application custom tailored by the user. Through seam-
less device-to-device communication, IoT creates opportunities for smarter, more connected
systems capable of functioning with minimal human intervention. However, to minimize
human intervention, we need to provide the user with a scalable and long-lasting solu-
tion. A solution that can facilitate and manage different types of sensors and IoT devices
while letting the user define their interactions or custom routines through end-user-defined
functions.

One of its significant applications in the near future is in the creation and manage-
ment of Smart Cities. Through the various integration of different loT-integrated devices
and sensors, cities can become more efficient, sustainable, and responsive to the needs of
residents or a random event that can develop in moments. A few of the many examples
include intelligent traffic management, allowing for a better flow or prioritization of the
public transport lines, automated waste collection and street cleaning, and enhanced public
safety or fire prevention systems. Such use cases demonstrate the transformative potential
of IoT, especially when deployed on a large scale in urban areas.

As the IoT ecosystems grow more complex and more users are exposed to them and
their workings, so does the need for the aforementioned end-user-defined functions. This
need stems from the aim to provide the user with greater and better control over the
behaviour and interactions of IoT devices. However, to accommodate this functionality



and to provide this control, a user-friendly interface that allows for a swift and comfortable
definition of custom functions to the end-user without deep technical knowledge or a steep
learning curve is needed. This must be coupled with a uniform control mechanism that
works across different devices, systems, and sensors, which is crucial to ensuring that users
can fully leverage the potential of IoT. It must be developed in such a way as to be able to
serve different types of users in various roles, integrating all sorts of inputs and outputs in
a simple, meaningful manner.

This brings us to the motivation for this work. The need for support for User-Defined-
Functions (UDFS) in a Visual Programming language (VPL), namely in the Pocketix
project, which provides a block-based visual editor for the Pocketix VPL. The VPL provides
a simplified, graphical way for users to interact with smart systems, reducing the complex-
ity of coding while making customisation accessible to non-technical users. By integrating
UDFS into a VPL, we enable users to more easily define their own logic, empowering them
to control and customise the behaviour of devices within a smart environment. This the-
sis is built on top of a Pocketix VPL Editor project for which a front-end support for
reusable UDFs and a back-end integration into the Real-time IoT (RIoT) data processing
information system will be implemented.

The following chapters of this thesis will provide insight into the IoT and its potential
usage in the creation and implementation of Smart Cities, explore the current and overall
challenges of fully utilizing the customization of IoT systems, analyze the existing VPL
options and their UDFs capabilities in regard to IoT integration, propose and develop
a way for the user to create, store, and reference UDFs via VPL Editor in the Pocketix
RIoT system. This will include both the front-end presentation of the EUDFs as well as
their back-end declaration and integration within the existing Pocketix and RIoT structure.

Firstly, Chapter 2 aims to provide an overview of the IoT landscape and its role in
Smart City and its development. This chapter outlines the fundamental aspects of 10T,
illustrating some of the architectures and technologies commonly used and how IoT devices
interact to enhance automation and efficiency, mainly examining the use in Smart City
environments. It discusses key infrastructure improvements like traffic optimisation and
energy management, showcasing how IoT technologies contribute to smarter urban systems
and a higher quality of life.

Secondly, Chapter 3 examines what VPLs are, their history and evolution, and the
existing VPL solutions out there. The main focus will be on how they tackle the support
for EUDFS and the different advantages and disadvantages arising from the given solution.
This chapter will also discuss the design principles and usability considerations that are
critical for enabling non-technical users to effectively interact with IoT systems to their
fullest potential.

Within Chapter 4, we dive into the analysis of the current Pocketix VPL Editor im-
plementation, what it offers in terms of EUDFs support, and what key requirements need
to be fulfilled to elevate the functionality provided, while adhering to the original idea.
Different aspects of existing VPLs and their capabilities for integration and creation of IoT
applications will be evaluated, drawing on the conclusions and findings from the 3, focusing
mainly on their ease of defining custom functions in smart environments. Existing VPLS
will be analysed on how they can be better optimised to handle IoT’s growing demands
for user-defined automation while comparing it with the current state of Pocketix and how
these findings translate to possible future add-ons.

Chapter 5 proposes an extension for the Pocketix allowing for user-defined functions
and its integration into the RIoT system. Based on prior analysis, we will propose and



implement a user-friendly VPL design, rooted in and built on top of the current Pocketix
VPL Editor. Thus, offering users an intuitive interface to visually define device interactions
and routines in the RIoT system. The solution emphasises reusability while enabling more
control and automation across smart environments utilising IoT devices.

Followed by Chapter 6 where the solution’s technical aspect is explained in more detail.
The implementation goes over the front-end and back-end solutions for both the VPL Editor
and its integration into RIoT.

In Chapter 7, the goals of the thesis are re-examined to set the testing parameters.
A test case is proposed and tested with the relevant target audience, with each test being
briefly described. Findings are evaluated and used for proposing future add-ons to either
modify the existing implementation or extend it with new elements and features the users
would appreciate. The last Chapter 8 will go over the overall evaluation of the goals set in
this thesis and the level to which they were met.



Chapter 2

IoT and Smart Cities

The phrase “Internet of Things” started its prosperous life in the year 1999 as the title of
a presentation by Kevin Ashton at Proctor & Gamble (P&G) [3]. In it, he proposed linking
the new RFIDs in P&G’s supply chain to the internet. This was more than enough to fulfil
his goal to attract executive attention. He also gave an important insight that has been
misunderstood in the years to come and even today. In his eyes, the Internet of Things was
not just a simple barcode upgrade or a way to speed up the toll roads. He envisioned it as
a means to embrace the potential of computers, empowering them to observe, identify, and
eventually understand the world with little to no human interaction [3].

The Internet of Things represents a paradigm [4] where physical objects are intercon-
nected with virtual ones through various communication protocols and technologies to
provide more advanced services utilizing data collection, processing and evaluation, and
distribution.

Another similar IoT definition is as an ecosystem [31] of devices communicating seam-
lessly through implementing various technologies, enabling real-time analytics and decision-
making in diverse applications and environments.

The Internet of Things as a concept has experienced massive growth and transformation
in how digital systems and real objects interact, paving the way for advanced connectivity
and allowing for better and more high-end automation [4].

The majority of sources come to the consensus that the main devices enabling these ad-
vancements depend on integrating several technological and communication solutions. The
most relevant devices and Iot objects taking part in this growth process are identification
and tracking devices, various sensors depending on the desired utility, actuator networks
providing the backbone for the intercommunication of devices, and enhanced communica-
tion and security protocols to protect the user against unauthorised access.

The synergy of all the information obtained from various sensors and reading devices,
processed by the correctly chosen technology for the given task, and the ability to act on the
output in an appropriate and timely manner offers us a unique possibility to transform and
build the world around us in a manner never seen before. The right tool must be chosen
for the task at hand after considering the needs and limitations of the project at hand.
Facilitating this opportunity for quality of life improvement to as many people as possible
is important to me. Therefore, this chapter will examine the technologies, applications,
and examples within IoT with this goal in mind, focusing on those I find most relevant to
explain the concept without overwhelming the reader. These are not all the technologies
used in IoT and smart environments, but they represent the foundational pillars from which
a well-tailored solution can be crafted.



2.1 Architectures

As IoT is present across many fields, each of which requires varying levels of complexity,
the need for adequate architecture fitting the given situation arises. There are numerous
publications talking about the different architectures [49, 15, 31] with layer-based division.

This layer logic allows for encapsulation and separation, providing us with varying
levels of abstraction and functionality tailored to meet various needs in more complex
systems or user-defined implementations of IoT solutions. I will examine three layer-based
architectures to give a cross-section overview across the abstraction level, which can be
found in the smart environments, starting with a simple three-layer architecture to explore
the basic concepts, expanding on with the five-layer architecture, which provides two more
dedicated layers allowing for further specification and optimisation. To top it off, the
seven-layer architecture will be examined, exploring technologies and concepts best utilised
in large-scale IoT environments such as Smart Cities.

Three-layer Architecture

The simplest and thus also one of the first representations is the three-layer architecture
seen on the left side in Figure 2.1, made up of the following layers [4]. The perception,
the transport, and the application layer. Each serves a separate purpose to accommodate
the IoT implementation of collecting data, evaluating it, and acting on it in an environ-
ment. This structure allows for an easy abstraction over small and simple IoT systems or
applications where just the basic data collection, transmission, and delivery to end-user
applications is sufficient [49]. While being lightweight and compact, it suffers from a lack
of scalability and data processing capabilities. I will now examine the layers more closely,
observing their part, principles,and purpose.

The perception layer, also referred to as the Device layer, is the foundation block of the
IoT architecture, allowing the device to sense various aspects of the physical environment
and data collection from it via capturing and monitoring devices [17]. Devices such as
Sensors, actuators, RFID tags, and other IoT enable devices tasked with obtaining data
by converting the physical information into digital data and signals, allowing for it to be
propagated, processed, and acted upon in the higher layers. These play a role in contributing
to the creation of the main advantage of the perception layer, the ability to connect a wide
range of devices to the IoT network, thus enabling real-time data acquisition and monitoring
[24]. Despite this, it faces a number of challenges in various areas with the need to find
balance in them. A major challenge to this layer is its security as the devices are suspectable
to physical and cyber attacks [24], due to the aim of creating them in such a manner as
to be low-cost and energy-efficient. This is also reflected in the often low computational
resources and power constraints.

The transport layer, also referred to as the network or communication layer, is re-
sponsible for the transmission of the collected data from the perception layer for further
processing and subsequent storage [4]. It serves as the medium for data flow within the
IoT system, using different communication protocols such as Wi-Fi, Bluetooth, Zighee, or
5G to facilitate all the necessary connectivity and communication [49]. The combination of
various technologies and protocols allows the network layer to provide data transfer across
both short-range and long-range distances [4]. The most important aspects of the transport
layer are definitely the scalability and adaptability, serving as its main advantage, and the
potential data integrity, latency or overall connectivity issues, and security [19] concerns



serving as its disadvantage. These issues become more apparent, especially in managing
larger ToT operations consisting of more subsystems, each relying on a multitude of various
devices and sensors as the data can be intercepted, manipulated, or corrupted by malicious
actors.

The application layer is the topmost layer of this IoT architecture. Its purpose is to
deliver the final result of processed data to the end-user application [50]. It is also a layer
responsible for not just the presentation but also the interpretation of given data for specific
application purposes across various fields. The application layer is the key element in IoT
providing real added value [1]. That is achieved by turning the raw captured data into
actionable and meaningful insights that the user or a subsequent automated system can act
upon. While supporting a wide range of applications, each relying on and requiring different
data processing steps, storage needs, as well as various custom user interface elements, faces
challenges in data heterogeneity and integration [1]. Furthermore, the security and privacy
concerns are highlighted in contrast to other layers as this layer directly facilitates direct
interaction with data and systems.

Five-layer Architecture

To address the growing complexity and size of the IoT systems, a solution with more
precise control and overview of the system was needed [49, 17]. This is where the five-layer
architecture, the middle one in Figure 2.1, with two additional layers for the processing and
business sandwiching the application layer, comes into play [1]. These extra layers provide
enhanced data management, storage, analysis, and application-specific logic, making them
more suitable for more complex operations supporting a broader range of functionalities
and specific needs. Building on the three-layer architecture, the following two layers are
added to boost computing capability and ease of use. The first one is the processing layer [1]
and the second is the business logic layer [1]. This expansion to the three-layer architecture
provides better control and organisation as it provides better encapsulation and new possible
implementation solutions, thus being more scalable, adaptable, and overall offer a better
solution for facilitating bigger and more robust systems. The added layers are examined in
more depth to see how they affect the IoT system and expand its capabilities.

The processing layer, also referred to as the middleware Layer, enhances the standard
IoT architecture by adding a dedicated space for data analysis, storage and decision-making
[6]. This is accomplished by leveraging cloud and edge computing to better manage and
process the massive data volumes generated by the IoT device. While cloud computing
offers scalable storage and processing power by having the remote servers perform data
handling and processing, edge computing [6] offers a similar ability of quick data processing
by utilizing local computing resources at the network’s edge.

This combination creates Fog computing, which serves to reduce latency as the data
can be processed immediately by edge computing before being sent to the cloud for remote
storage or processing. This is especially useful for tasks requiring immediate responses. In
addition, it also supports advanced data processing techniques, including machine learning
and various analytics, allowing the raw data to be transformed into useful insight [6]. While
the processing layer offers many enhanced capabilities and benefits to IoT systems, it also
presents similar challenges regarding ensuring data privacy, maintaining processing speed,
and handling increased storage demands, making it essential to balance resources carefully
to optimize performance in large-scale applications with its utility [17].



The business layer [50], accommodated by the top layer in the five-layer Iot archi-
tecture, acts as a decision-making hub. This is where the insights from lower layers get
transformed into concrete business actions aligned with the strategic goals set by the user or
system controls. The business layer can coordinate multiple subsystems to react to a newly
created situation based on the insights from lower layers, allowing for a swift, tailor-made
solution to each situation as it arises. In addition to integration, it can manage and enforce
application-specific rule sets and compliances, making it easier to meet the operational and
regulatory demands [1]. For instance, in an Iot smart healthcare environment, the business
layer enforces strict access protocols which aim to protect patient privacy, in line with reg-
ulations like HIPAA, while at the same time optimising and streamlining necessary data
logging and subsequent action taking based on them.

Seven-layer Architecture

The seven-layer architecture is created by breaking each of the network and middleware
layers from a five-layer architecture into two more specified layers. These are the Connec-
tivity and Edge Computing Layer alongside the Data Accumulation and Abstraction Layer
seen in Figure 2.1. These layers enhance performance while reducing system load [49, 31].

The Edge Computing Layer [6] processes data closer to its source, reducing latency
and bandwidth usage by handling relevant information locally. This offloads pressure from
central servers, enabling real-time decision-making critical for applications like smart facto-
ries, where data processing is done on-site to detect defects or optimise production without
cloud delays [43].

The Data Accumulation Layer [35] collects, buffers, and aggregates raw data from edge
devices, ensuring consistency and preventing loss during transmission, which is vital for
environments with high data volumes or intermittent connectivity.

Three-layer architecture Five-layer architecture Seven-layer architecture
Perception layer Perception layer Perception layer Bottom
Network layer Network layer Connectivity layer
Application layer Middleware layer Edge layer
Application layer Data Accumulation layer
Data Abstraction Layer

Business layer

Application layer

Collaboration & Processes Top

Figure 2.1: Three, Five, and Seven layer architectures



Positioned above it, the Data Abstraction Layer [17] standardises aggregated data for
compatibility across diverse applications, enabling seamless integration in heterogeneous
IoT systems. For instance, in Smart Cities, it unifies data from weather sensors, traffic
cameras, and utility meters for urban management [26]. Together, these layers improve
scalability and interoperability, addressing challenges in real-time processing and multi-
source integration.

2.2 Technologies

IoT technologies needed for the implementation encompass a broad spectrum, from sensors
and actuators that gather real-world data, to advanced communication protocols that en-
able devices to exchange information efficiently. They also include robust data processing
frameworks, such as cloud and edge computing, which manage and analyze vast amounts of
information. Furthermore, as IoT systems grow more complex and integrated into critical
infrastructure, security and privacy technologies play an increasingly vital role in protect-
ing data and ensuring system integrity. However, most of the applications of IoT require
a tailor-made solution consisting of fitting technologies and devices.

Sensing and Data Acquisition Technologies

As mentioned in the perception layer, the ability to sense and perceive the real world is
essential for the IoT to perform its designed function. This is achieved thanks to vari-
ous sensing and acquisition technologies [17] interacting with and monitoring the physical
environment they are located in. These technologies help us bridge the gap between the
physical and digital worlds via the employment of sensors, actuators, and edge devices to
monitor, quickly analyze, and respond to conditions as they arise [50].

Sensors and actuators are the main components present in the perception layer. The
sensors’ role is to capture real-world data and relay it further into the ecosystem. Some
examples of sensing devices include but are not limited to temperature sensors,such as
DS18B20 Digital Thermometer, which provide precise readings for various applications re-
lying on the temperature data. motion, humidity, and many more parameters collected
from the real world in smart environments [4]. For more environmental monitoring, hu-
midity sensors like the DHT11 or DHT?22, these specific examples provide temperature
readings as well, let the user monitor the humidity of the location allowing for creation
of smart farming environments or industrial applications with need of humidity overview.
Light sensors, like the BH1750 Digital Ambient Light Sensor, can find a wide application
from automatic blinds and light control or to control the day light cycle in agriculture.
The motions sensors, like the HC-SR501 Passive Infrared (PIR) Sensor, detect changes in
infrared radiation, making them ideal for security systems and smart lighting solutions.
Additionally, gas sensors, like the MQ-135 Air Quality Sensor, monitor air pollution or
detect hazardous gases which can be crucial in preventing accidents in industry setting
or improving the life quality of the citizens in smart cities. Vibration sensors, such as the
ADXIL356 accelerometer, often used for early failure detection in critical infrastructure such
as turbines, pumps, and conveyor belts.

Actuators, on the other hand, perform physical actions that interact with the environ-
ment based on instructions obtained after processing the raw data from sensors. These
actions can include interactions such as opening or closing valves, turning switches on and
off, or adjusting the thermostat settings to represent and adapt to the current situation
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[2]. Some examples of the actuators used include DC gear motors, solenoid actuators, and
pneumatic actuators. DC gear motors, such as the Johnson Electric DC Motor with Gear-
box, are widely utilized in automated doors, conveyor systems, and robotics for delivering
controlled torque and motion. Solenoid actuators, like the Kendrion LIN B Series, are fre-
quently used in applications with need for locking, cutting, clamping, punching, positioning,
diverting, holding or rotating. Meanwhile, pneumatic actuators, such as the Festo DSBC
Series, are used for controlling valves in fluid and gas management systems. Together with
sensors, they create a feedback loop of data and appropriate action derived from it, allowing
the IoT to interact with the environment in a smart and adequate manner.

Communication and Networking Technologies

Communication and Networking technologies are the backbone of IoT systems, as without
their seamless and reliant data transmission and propagation among the devices, platforms,
subsystems, and end users. They are essential in the proper functioning of any IoT smart
environment on any scale across various applications ranging from smart homes to large-
scale implementations like Smart Cities. The chosen technology, communication methods,
protocols, and networks significantly impact the scalability, efficiency, and adaptability of
IoT systems, so a tailor-made solution is needed to facilitate different scenarios that demand
specific capabilities and trade-offs.

Solutions in the localized IoT setups are often utilizing short-range communication tech-
nologies like WiFi, Bluetooth, Zigbee, and Z-Wave [50, 17]. In applications with bandwidth-
intense requirements, such as camera surveillance, the high data rates of WiFi provide a way
to stream this vast amount of data to a processing server. For the needs of low power drain
transmission, Bluetooth is a widely employed technology of choice. Often found in wear-
able devices such as smartwatches, various sports trackers, and personal area networks due
to their low power consumption. Zigbee and Z-Wave excel in mesh networking, allowing
devices to communicate indirectly by relaying signals through intermediate nodes, which
is crucial for ensuring reliable connectivity in environments like smart industrial setups or
home automation systems.

These short-range technologies, while reliable for localized deployments, face limitations
in range, scalability, and robustness, making them unsuitable for large-scale IoT systems.
While there are means to implement a wide-scale solution with short-range communication
technologies, such implementations are often fragile due to the nature of their implemen-
tation. This is where long-range communication technologies come into play as they were
designed to accommodate these needs with appropriate fallback systems to keep the com-
munication up and running.

For long-range communication, Low-Power Wide Area Networks (LPWANSs) [8] like
LoRaWan and Sigfox are key in enabling IoT applications transmission over vast areas with
minimal energy consumption. These are especially valuable in agriculture where the sensors
monitoring the soil moisture, various crop conditions, or livestock location are often located
and operated in remote areas with limited access to power and infrastructure [2]. Similarly,
cellular networks, including LTE-M and emerging 5G technologies, offer higher bandwidth
and lower latency, making them ideal for real-time applications such as autonomous vehicles
and Smart City infrastructure. For instance, 5G networks can support millions of devices
within a small geographical area, facilitating advanced IoT use cases like connected traffic
systems, predictive maintenance in utilities, and remote healthcare [41].
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The integration of communication technologies in IoT systems is underpinned by pro-
tocols like MQTT (Message Queuing Telemetry Transport) [27] and CoAP (Constrained
Application Protocol) [7], which are specifically designed for efficient data exchange among
devices displayed in Figure 2.2. MQTT is a lightweight messaging protocol that operates
on a publish-subscribe model. A central breaker manages the message delivery between the
publisher, a device sending data, and the subscriber, devices that have opted to receive data
from the given source. This allows devices to receive only the relevant data thus reducing
unnecessary network traffic and optimizing communication. This protocol is particularly
effective in scenarios requiring reliable message delivery with minimal overhead, such as
real-time monitoring systems in industrial IoT.

Conversely, CoAP is a web-based protocol following the client-server model tailored for
low-power and resource-constrained devices. Utilizing the Representational State Transfer
(RESTful) architecture similar to the HTTP but more optimized for IoT usage by using
lightweight methods such as GET, POST, PUT, and DELETE to enable efficient com-
munication. CoAP supports multicast communication which allows multiple devices to
receive updates and the same data simultaneously. This comes in handy when one sensor
is relaying its data to multiple nodes at once. Additionally, CoAP utilizes User Datagram
Protocol (UDP), thus making it ideal for devices with limited processing power or energy
constraints.

MaTT CoAP
N e
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Figure 2.2: MQTT vs CoAP comparison

However, these protocols have their limitations. MQTT is generally efficient due to its
lightweight nature, but it can struggle in high-throughput scenarios where rapid message
delivery and processing are required [27], making it less suitable for applications requiring
extensive data processing or complex interactions[45]. CoAP is well-suited for constrained
environments with low power and limited bandwidth[45]. It may lack robustness in han-
dling diverse and large-scale data streams. These constraints necessitate hybrid approaches
in demanding IoT applications, combining the strengths of multiple protocols to achieve
a balance of efficiency, functionality, and scalability. In high-density environments like
Smart Cities, communication technologies face additional challenges [50], such as network
congestion, which can result in increased latency and data loss.

Another essential piece of technology is the RFID (Radio-Frequency Identification) [47],
which enables efficient wireless data transfer and device interaction. RFID utilizes tags
embedded with information that can be wirelessly read by the RFID reader using radio
waves. There are either active or passive tags, with the active ones having their own power
source and the passive ones relying on energy emitted by the RFID reader. This allows for
high-speed scanning, identification, and tracking without direct line-of-sight, which enables
rapid data capture in a variety of environments.
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NFC (Near-Field Communication) [40] is a subset of RFID which operates at a shorter
range and higher frequency with bidirectional communication between devices that are
within a few centimetres. It is designed to facilitate the secure exchange of data via en-
cryption and authentication protocols, ensuring the safety of these interactions. NFC, in
comparison with RFID which is used mainly for tracking and tagging, enables more inter-
active behaviour such as device pairing, transferring of a small data amount, and access
authentication. In a similar fashion to RFID tags, NFC tags can operate without their
dedicated power source as they utilize the electromagnetic field to transfer data.

Data Processing and Storage Technologies

Data processing and storage technologies are critical to the effective functioning of IoT sys-
tems, ensuring that the vast amounts of data generated by connected devices are managed,
analyzed, and utilized efficiently. Cloud computing plays a central role in this ecosys-
tem [17], offering scalable storage and powerful analytics capabilities through platforms
like AWS IoT and Microsoft Azure IoT. For example, in smart agriculture, cloud comput-
ing enables the aggregation of data from multiple sensors monitoring soil conditions and
weather, providing farmers with actionable insights for optimized crop management. How-
ever, reliance on cloud computing introduces challenges such as latency and the need for
constant connectivity, which can be problematic in remote or time-sensitive scenarios.

To address these issues, the aforementioned edge computing [43] is utilized. Similarly,
fog computing facilitates an efficient data flow between edge devices and the cloud, enabling
applications like smart grids to process energy consumption data locally while centralizing
broader analyses for system optimization [6]. Furthermore, big data analytics enhances the
value of IoT systems by transforming raw data into insights [50].

Tools like Hadoop and Spark [42] are widely used to analyze large datasets, enabling
predictive maintenance in industrial IoT. For example, General Electric employs big data
analytics to monitor turbines and engines, identifying potential failures before they occur,
thereby reducing downtime and costs [17]. As IoT continues to evolve, emerging trends
such as Al-driven data analysis and quantum computing hold immense potential [2]. Al
models can identify patterns in sensor data to improve energy efficiency in smart buildings,
while quantum computing promises to solve complex optimization problems in logistics and
supply chain management faster than traditional computing methods.

Security and Privacy Technologies

Ensuring security and privacy is a critical challenge in IoT systems [16], as they involve vast
amounts of sensitive data exchanged across interconnected devices and networks. Encryp-
tion protocols such as AES (Advanced Encryption Standard) and TLS (Transport Layer
Security) play a vital role in protecting IoT communications. For example, TLS secures
data-in-transit by encrypting information exchanged between IoT devices and cloud servers,
safeguarding it against eavesdropping and interception. In healthcare IoT, this is essential
for transmitting sensitive patient data securely, ensuring compliance with regulations like
GDPR [26].

Authentication and access control mechanisms are equally important for preventing
unauthorized access [1]. Multi-factor authentication (MFA) combines multiple verification
steps, such as passwords and biometric data, to strengthen security. Additionally, role-
based access control (RBAC) assigns permissions based on user roles, limiting access to
sensitive operations. Blockchain-based identity management is emerging as a solution to
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enhance device authentication by creating tamper-proof digital identities, particularly in
large-scale IoT deployments like smart grids [41].

IoT systems also require robust mechanisms for threat detection and mitigation [43].
Machine learning algorithms are increasingly used to detect anomalies in network traffic,
identifying potential threats such as DDoS attacks and spoofing attempts. For example,
anomaly detection systems in industrial IoT can analyze real-time sensor data to identify
suspicious patterns that may indicate cyberattacks, allowing operators to take preventive ac-
tion. Despite these advancements, balancing privacy with functionality remains a challenge
[26]. Regulations such as GDPR enforce strict data privacy requirements, compelling IoT
developers to anonymize user data while maintaining its utility for analytics and decision-
making. By integrating encryption, robust authentication, advanced threat detection, and
compliance with data protection regulations, IoT systems can address the dual challenges
of security and privacy, ensuring trustworthiness and resilience in diverse applications.

2.3 Usages of IoT

Although Kevin Ashton coined the term “Internet of Things”, the first known IoT imple-
mentation is traced back to the early 1970s with the CMU CS Department’s Coke machine
[11]. Frustrated by empty or warm bottles after long walks to the machine, students
equipped it with microswitches to monitor each slot. These switches tracked whether the
slot was empty, recently loaded, or cold after a three-hour timer. The machine was con-
nected to a PDP-10 computer, enabling staff to remotely check its status. Over time, it
became an internet icon, accessible globally through the Finger protocol, allowing users to
query its status from any networked computer.

The ambitions with this technology reach far beyond the size and scale of a mere Coke
Machine connected to a terminal displaying some data. These days, the usage and integra-
tion of IoT find their way into many sectors with varying applications. The main trends
regarding IoT use are the creation of Smart Homes [35], improvement and modernization of
healthcare [17], Smart Agriculture [17], Industry 4.0 [4], and the creation and development
of Smart Cities [10].

The homes can easily be made into Smart Homes as there is no solid definition for what
constitutes a Smart Home [35]. The first steps to Smart Homes often, at least mine did this
way, start with a few smart devices, such as automated light control or an SMS-operated
garage door, making our life easier. These first steps can be taken by the average Joe while
other more advanced like smart security systems or smart heating require more skill and
knowledge. However, after installing them, the user interactions are really simple, often
letting us utilize our smartphones as the main control hub. Thus letting a wide range of
users interact and use them to their full potential.

Healthcare is another sector where the IoT can be applied to better and streamline
the daily workings of it. Allowing for far greater and more accurate oversight of patients
while lowering the load on each staff member. Smart monitoring bracelets [17] or integrated
systems across different types of medical care facilities can help in making faster and more
accurate observations, allowing the medical personnel to provide more well-fitted medical
care and potentially catch underlying conditions that might otherwise go unnoticed.

For Smart Agriculture, there is a range of sensors that help monitor different aspects,
such as soil moisture, weather conditions, and the state of the plants, enabling more precise
farming to optimize yield and resource usage [17]. In a similar fashion in the industry
setting, fitting the machinery with sensors [4] that monitor the vibrations and inner workings
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of the machine to alert the operator to the failure. These sensors can predict potential
failures, saving valuable time and resources.

The current urban performance of cities does not solely depend on the growth and
improvement of the physical infrastructure, as it can not sustain the expansion rates alone.
There is a need for a solution which provides a way to utilize the resources and systems
already present in a better and more effective way while not being invasive to existing
infrastructure [10]. The concept of ,Smart City“ has been introduced as a proposed solution
or, rather, a framework to be applied to cities and their future planning, nourishing and
supporting urban production factors.

These factors [10] include human capital, the skills and education of the workforce, social
infrastructure such as healthcare, education, and social services essential for city inhabi-
tants, economic infrastructure for the business and industry systems, physical infrastructure
including transportation, utilities, and housing suitable to the changing needs, and digital
infrastructure like the Information and Communication Technologies networks (ICTs) [25]
and overall digital connectivity. Digital infrastructure, in particular, has become critical in
Smart Cities, as ICT enhances the management and coordination of other urban resources.

2.4 Smart Cities and their Conceptualization

A general definition of a Smart City is an urban area utilizing advanced technologies,
particularly the ICT and IoT, to improve infrastructure, optimize resource use, and enhance
the quality of life for its residents [10]. The ever-growing trend of population concentration
in large cities provides many opportunities while creating challenges that need to be met
if they are to be successful. These challenges can be managed by the integration of ICT
and IoT technologies into various urban systems aiming to achieve greater efficiency in
various areas such as public transportation, energy and waste management, public safety,
and fostering sustainable, resilient, and low-impact urban environments [18].

The concept of Smart Cities is, however, multidimensional and extends beyond just
technologies. The governance and citizen engagement are as critical as the technical in-
frastructure. The governance consists of establishing and upkeeping policies, regulations,
and frameworks that support technological innovation while not overlooking issues like data
security, privacy, and public accountability, which must be addressed [29].

Citizen engagement plays a crucial role in ensuring that Smart City initiatives are de-
signed and kept up to date with the needs and preferences of its inhabitants. For proper
citizen engagement and interaction, the necessary technology must be made as accessible
and convenient as possible, enabling and encouraging the residents to participate actively
in urban development and management [26]. This citizen access-driven approach, which
recognizes multiple interconnected fields within the Smart City, is essential in creating sus-
tainable and adaptive urban spaces that blend technological advancements with inclusivity
and social well-being. By involving citizens and governance structures, Smart Cities foster
a collaborative environment where technology serves as a tool for achieving broader social
and environmental goals [12].

The Smart City infrastructure relies on a couple of core pillars that enhance urban func-
tionality, sustainability, and livability. Those are transportation and mobility [2], energy
and utility infrastructure [26], public safety [29], and environmental management [10]. To-
gether, these pillars create a resilient foundation for sustainable urban growth, addressing
key urban challenges through integrated smart technology and thus will be the main talking
points throughout this chapter.
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Role of Information and Communication Technologies

Information and Communication Technologies (ICTs) form the structural backbone of
Smart Cities utilizing real-time data collection, analysis, and automation to enable the
integration and optimization of urban services [26]. This allows for a vast amount of data
collection from various sources, such as sensors, cameras, and various IoT devices, together
facilitating a coordinated response to various situations and problems that can occur on
a daily basis in a busy city, like traffic congestion and fluctuating load on public trans-
port, energy consumption and potential power outages, and effective waste management
and disposal.

An essential component of ICT in Smart Cities is the broad and high-quality deploy-
ment of advanced communication networks such as broadband, 5G, and fibre optics, which
support high-speed data transmission and connectivity across urban areas [18]. These net-
works serve as the city’s central nervous system, sending fast signals to attend to each
situation arising through real-time monitoring and management of the city infrastructure,
fostering precise and agile decision-making and rapid response to emergencies.

ICTs major benefit, which they provide through monitoring and data-driven insights
gathered through them, is energy and water use optimization, greatly boosting sustainabil-
ity and reducing unnecessary waste [12]. Other useful utilities include the upkeep of public
places via automatic watering systems, light pollution-reducing street lighting features,
monitoring of the fullness levels in bins, and providing overwatch for citizens to provide
a safer and more comfortable living experience.

2.5 10T in Smart Cities and Smart Government

The Internet of Things (IoT) is the building block in the creation of Smart Cities as this
technology enables the integration and coordination of devices to improve the quality of
life and urban functionality [17]. In the context of Smart Cities, IoT connects various IoT-
enabled devices, such as sensors, cameras, and smart meters to gather and transmit data
about a wide range of aspects of city infrastructure, including traffic, energy consumption,
environmental conditions and factors, and public safety or recognizing medical emergencies.

One of the main applications of IoT in Smart Cities is traffic management. The con-
nected sensors and cameras monitor the situation and collect data on vehicle flows and
potential accidents, pedestrian movement, and public transportation usage [50]. The data
and conclusions drawn from it allow the Smart City to adjust the traffic signals or electronic
variable speed signs, reroute traffic in case of accident or sudden congestion forming, and
provide real-time accurate data to prevent further congestion and lower the accident rate
thus improving both the effectiveness and safety.

In a similar fashion utilizing ICT networks connected to the power grid, IoT-enabled
smart grids are created [41]. These smart grids help monitor energy consumption across the
city regions and districts, balancing the demand without waste while lowering the chances
of power outages or overloads, and utilizing various renewable energy sources according
to the available supply. This greatly enhances energy efficiency saving finances and the
environment being an overall improvement.

IoT also enhances the possibilities of environmental monitoring, with sensors measuring
air quality, noise levels, pollen, and water quality across the city [29]. This data aids the
city in optimizing the living conditions by reducing pollution through the aforementioned
traffic control and other means, responding to environmental threats such as fires, floods,
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or contamination spills, and overall maintaining a healthy and clean urban environment for
the residents.

Smart Government is another critical application of IoT in the context of Smart Cities
[29]. Focusing on enhancing governance through technology-based decision-making and
active citizen engagement. These new technologies allow for better monitoring and analysis
of the events happening in the city, thus providing a base to tackle them more efficiently.
Interconnected public administration systems, automated service platforms, and intelligent
data-sharing frameworks are just some of the ways IoT supports Smart Governance [2].
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Chapter 3

Visual Programming Languages
and End-user Development

As demonstrated in the previous chapter, the IoT gives us immense possibilities. However,
the main goal is to take the full advantage of it by providing the end-user with a platform
packed with utilities and easy-to-use tools. Thus equipping the user with all necessary
parts to interact with and take advantage of IoT environments. For the full effect and user
coverage, the main focus should be on the platform choice and ways of interaction that are
the most handy to the user while posing as little entry barrier as possible.

The most universally used platform among device users is the mobile phone. Mobile
phones are the most universally used devices among users worldwide. As of 2023, ap-
proximately 78% [20] of the global population aged 10 and over owned a mobile phone,
surpassing the percentage of individuals who use the internet. In the United States, 97% of
adults own a cellphone [36] of some kind, with 90% owning a smartphone. This widespread
adoption underscores the mobile phone’s role as the most prevalent platform among device
users globally. Due to this massive representation, the platform we mainly focus on should
be mobile devices. However, due to their often small screen, they do not have the ability
to facilitate the conventional means of programming and routine definition. This can be
achieved with the help of correctly chosen or developed EUDF tools to accommodate the
user’s needs.

Parametrization plays a crucial role in allowing the user to gain full control of the smart
environment. It is often also the part of the environment that most users interact with as
the smart routine can be created once or via template and reused for various similar use
cases. Let’s take a smart greenhouse that is equipped with sensors and provides automated
watering capabilities controlled via parametrization in a phone app. The application has
an overview of the sensor’s current values, based on which the user can create conditioned
actions to control routines. The gardener can select the desired soil humidity for their
given plant, and the watering system takes care of the rest while providing the gardener
with useful data. For this to work we need an easy and effective way how to allow the user
to enter and modify these parameters.

Currently, one of the most commonly used solutions is the If This Then That (IFTTT)
[46]. If This Then That is a web-based trigger action programming platform designed
to simplify automation by allowing users to connect applications, services, and devices
through simple “if-then” logic statements known as applets. Launched in 2011, IFTTT has
gained popularity for its user-friendly interface, which enables non-technical individuals to
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create automation without requiring programming knowledge with just their smartphone.
For example, users can automate tasks such as saving email attachments to cloud storage,
turning on smart lights upon arrival at home, or receiving weather alerts. The platform’s
strength lies in its accessibility and extensive integrations [23], supporting hundreds of
services and IoT devices, which makes it a versatile tool for personal productivity, smart
homes, and social media management.

Despite its advantages, IFTTT also has notable limitations [30]. While it excels at
providing a straightforward way to connect services, as seen in Figure 3.1, its functionality
is restricted to basic workflows and lacks the complexity needed for advanced automation
tasks involving multiple conditions or custom logic. This limitation reduces its applicability
in professional IoT environments requiring more robust solutions. Additionally, IFTTT’s
reliance on third-party APIs means its applets are dependent on the continued availability
and reliability of these external services [46]. Changes or discontinuation of these APIs can
disrupt automation, making the platform less stable for critical use cases. Its simplicity
and reliance on external services highlight the need for more advanced platforms in complex
IoT ecosystems.

If &

Rain forecast

Then @&

Turn off power

Figure 3.1: Simple trigger in ITTT

Another popular solution is Zapier [51]. It is a web-based automation platform which
lets the user connect web applications into automated workflows, known as Zaps, without
any coding skills. It relies on events set as triggers in one app and actions represented
by various actions in another app to streamline repetitive processes. Its integration with
thousands of apps like Gmail, Google Sheets, and Slack makes it a popular choice in business
operations or marketing as it helps to reduce the manual effort needed.

Solutions like Node-RED or customized IoT platforms offer greater flexibility and con-
trol, making them better suited for professional or large-scale applications requiring granular
logic and enhanced security. More focus will be paid to how to tackle these challenges and
meet the needs that arise with them as well as go over the current state of the VPLs.
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Visual Programming Languages (VPLs) is a term associated with a range of forms
and utilities, all sharing one main common goal. Abstracting the code representation
and creation from the traditional code written in text into a simpler visual form [23].
Utilizing visual elements such as blocks, icons, or flows, thus shifts the major load off the
user and provides an experience with a lower entry barrier. This visual representation of
programming logic allows the user to connect predefined modules, perform actions, and
manage data flows through various plays on the simple drag-and-drop interface. Such an
approach to the code input from the user means the possibility of simplifying complex
programming tasks, allowing users with little to no technical background to create routines
or simple programs, thus letting them interact with the IoT. This way is often more intuitive
and accessible which is essential in the success of Smart Cities. The primary focus is
parametrization as this is the part with which the user interacts the most often.

3.1 Historical Context and Evolution of VPLs

The VPLs have actually quite an extensive and long history, within the scope of the rather
short overall history of Information technology. Their beginnings date back to the 1960s
and 1970s. The pioneering tools that set the tone for VPLs were basic Flowcharts and
Sketchpad [48]. These early graphical abstractions allowed for a visual representation of
computational processes. The Sketchpad [44] was a leap forward in particular as it let
the user directly manipulate the visual elements via a graphical interface, letting them
create various shapes and then interact with given shapes, setting the stage for further
improvements and innovations in this field.

VPLs picked up on popularity in use and later on the widespread adaptation within
the scientific and engineering community in the 1980s with the introduction of LabVIEW.
Enabling the user to design programs through the GUI allows the user to focus more on the
development rather than the implementation. This was proven by the observational study
from the Measurement Technology Center (MTC) [48] in which two research teams were
both tasked with the same requirements and provided the same resources with one team
using the VPL LabView and the other standard C language. After the elapsed time, the
VPL team fared way better than the stated requirements, whereas the latter team did not
even meet them, let alone exceed them. Proving that the concept VPL has fulfilled its aim
of being more accessible and simpler while providing the desired utility. This was a clear
go sign for VPLs with further research and resources being allocated for them.

The widespread popularity among other fields did not come until the late 1990s and
early 2000s when the trend of VPLs tailored for educational purposes came to fruition.
The most notable one was the creation of Scratch by MIT [39]. It was designed to teach
young students the fundamental concepts of programming while not burdening them with
complex syntax needed for correct code execution achieved with a simple block-based VPL.

Development and growth of the VPLs did not stop there and, in recent years, evolved
to more closely meet the needs of web and IoT applications. Tools like Node-RED and
Google Blockly have been developed to satisfy this demand. Providing accessible, flow-
based interfaces for the creation of IoT workflows and web-based programs. Node-RED
lets the user connect and control IoT devices with ease by linking nodes in a flow-based
environment [5]. Its universal application and simple interface propelled it to the forefront
of swift prototyping of IoT solutions. The Googles take on VPL, Blockly [14], is by its
telling name a block-based VPL that provides a visual abstraction over many programming
languages all under one VPL interface. This bridges the gap of various syntaxes across
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these, often vastly different, coding languages while accommodating a range of applications
ranging from education to web development. Doing all this while retaining most of the
utility each one provides. These VPLs will be described in greater detail in the subsequent
sections.

3.2 Comparison of Text-Based and Visual Programming

As we have mentioned, the main difference in which the VPLs stand out over the traditional
text-based programming languages is their visual representation of user interaction and
presentation of the data on Ul. VPLs prioritize accessibility and ease of use above all else,
facilitating a quick and easy code creation experience despite sacrificing or complicating
a few edge use cases [34]. In traditional text-based programming, the actual coding phase
is prefaced with often complex and lengthy learning procedures necessary for the creation of
even the simplest usable applications. This creates a steep learning curve that often deters
most users from partaking in such activities. Not having the necessary coding knowledge
leads to the creation of faulty code with the need for tedious debugging. These factors
result in unnecessarily long and frustrating development.

The Visual Programming Languages provide the user with predefined visual elements.
The graphical elements, such as blocks, diagrams, or nodes in flowcharts, snap and connect
together in a seamless and logically coherent way [39]. They represent the program’s logic
in accessible and intuitive while eliminating syntax errors. This feature lowers the cognitive
load on the users, allowing them a more concise and comfortable workflow [23]. This visual
clarity is particularly beneficial in the context of IoT where often complex applications
with a multitude of interconnected devices and data flows are implemented [5]. The VPLs
can help cut down the time between picking up a new technology and being able to create
usable outputs by it.

Ultimately the visual approach of VPLs opens up the doors of programming utility to
a wider audience with varying skill levels and technical backgrounds [5]. This accessibility
is especially relevant in collaborative environments like Smart Cities, where technical and
non-technical stakeholders need to work together on IoT projects and policy management.

3.3 Overview of the Existing VPLs

While there are many different classifications for VPLs based on their target users, inter-
action or execution model, and other criteria, I find the most relevant for this thesis to
be the representation type. The main types based on the representation division are the
Block-based, Dataflow, and Diagrammatic VPLs described in more detail below.

Block-based VPLs

Block-based VPLs such as Scratch [39] or Blockly [14] operate on a system of predefined
and user-defined blocks that snap together in a puzzle-like manner, enforcing syntactically
correct code structures. Each block represents a specific function or operation, such as
loops, conditions, mathematical operations, or user-defined functionality, with the connec-
tions between the blocks defining the program’s flow which is then executed per the VPLs
rules. In Figure 3.2 a simple program created in the block-based VPL Blockly is shown to
demonstrate the functionality. The program is visually constructed by rearranging blocks
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and filling in the conditions that define the program logic. Blockly then generates text-
based code in JavaScript that can be executed. The users can also pick Python, PHP, Lua,
or Dart as their target text-based programming language, making it a versatile choice.

One of Blockly’s key strengths is its intuitive user interface [14], which simplifies pro-
gramming for beginners while maintaining the flexibility required for more advanced users.
The drag-and-drop mechanism eliminates syntax errors, and the visual layout clearly dis-
plays the logical flow of the program, making it particularly well-suited for educational
environments and IoT applications. Additionally, Blockly’s ability to integrate into other
platforms as a framework allows developers to create customized VPL environments tailored
to specific needs.

However, Blockly has some limitations in user interaction. For example, as programs
grow in complexity, the workspace can become cluttered, making it difficult for users to
navigate and manage large blocks of logic [14]. This visual complexity can be a barrier for
advanced applications requiring intricate workflows [30].

Blockly enables users to define their own functions through custom blocks [14], which
can encapsulate specific logic or operations for reuse. Users can create a function block
by specifying input parameters and defining the internal logic using other blocks. This
functionality supports modular programming practices, making it easier to manage and
scale programs. For example, in an IoT application, a user could define a function block to
calculate temperature thresholds for activating a cooling system. The creation of custom
blocks in Blockly can also be achieved via manual implementation using JSON files or
a JavaScript API to provide better control to users with higher technical knowledge. In
the block, the name, type, input parameters, flow connections, and colour are defined,
allowing for this block to be then loaded and used in the program. These custom blocks
can then be reused in multiple workflows, reducing redundancy and improving program
clarity.

Logic \JavaScriptVHEngI\'sh V\ ® Run
] kﬂoaotﬁs set Count to var Count;

Text

Lists repeat  while Count > E]

Variables Count = 5;

Functions do  print Hello FIT VUT! while (Count >= @) {

window.alert('Hello FIT VUT!');

lcon o o ] R
}

Figure 3.2: Simple test program in Blockly

Dataflow VPLs

Dataflow VPLs’ main focus is the visual representation of the data flow between nodes or
blocks [5]. As you can see in Figure 3.3 demonstrated on a simple Node-RED program, each
node or block performs a specific operation, and each connection between them indicates
the path of the data being processed, thus representing the program logic.
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Figure 3.3: Example Node-RED program

Node-RED [5] is an open-source visual programming tool designed for wiring together
hardware devices, APIs, and online services in IoT systems. Developed by IBM’s Emerg-
ing Technologies group, Node-RED provides a flow-based development interface that al-
lows users to create workflows by connecting nodes, each representing a specific function
or device. It operates on a browser-based editor where users drag and drop nodes onto
a workspace, link them together to define the data flow, and configure each node’s prop-
erties. These flows are executed by a lightweight runtime built on Node.js, which makes
Node-RED highly extensible and suitable for resource-constrained IoT environments.

The logic revolves around event-driven flows, each node performing a specific task such
as receiving, processing, and sending data. The nodes are connected by lines or wires, each
representing the flow of messages, visualizing the logic of the program. For instance, a flow
may consist of an input node, such as data from a temperature sensor, a processing node,
like applying a threshold rule and evaluating the data, and an output node for sending an
alert if the threshold is exceeded. This modular approach makes it intuitive to design and
debug IoT applications.

Node-RED excels in accessibility for users with basic programming knowledge, offering
a drag-and-drop interface that simplifies complex tasks. Its node palette provides pre-
configured nodes for common operations, such as connecting to MQTT brokers, making
HTTP requests, or integrating cloud services [5]. However, despite its user-friendly inter-
face, Node-RED can present challenges for non-technical users, particularly in understand-
ing how to configure nodes or manage data types effectively.

It allows users to define their own custom functions using its function node, which
supports JavaScript programming. This flexibility enables users to implement bespoke
logic that goes beyond the capabilities of pre-configured nodes. For example, users can
write a function that dynamically adjusts an IoT system’s behaviour based on real-time
sensor data or custom algorithms. The function node also supports debugging by displaying
outputs and logs, enhancing the development process. The visualization of custom logic in
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Node-RED is handled through its flow-based interface, which represents each function as
a node within the workflow [5]. This makes it easier for users to see how custom functions
integrate with other components and how data flows through the system. Additionally,
Node-RED’s integration with dashboards allows users to create interactive visualizations,
such as charts and status indicators, to monitor and control their IoT systems in real-time
[50]. This capability is especially valuable in applications like smart homes or industrial
IoT, where live data representation is crucial for decision-making.

Diagrammatic VPLs

Diagrammatic VPLs use structured diagrams, such as flowcharts, to visually represent pro-
gram logic and, most importantly, the system behaviour [48]. In comparison to dataflow
VPLs, which focus mainly on the data flow, diagrammatic VPLs focus more on the descrip-
tion and representation of the system. These languages find their main application in do-
mains with the need for modelling, simulation, and analysis of complex systems. A notable
example is Simulink [38], a diagrammatic VPL mainly used in engineering and industrial
applications.

Simulink allows users to create block diagrams to model, simulate, and analyze dynamic
systems, such as control systems or signal processing workflows. It offers a way to solve
equations numerically using a graphical user interface rather than requiring code. This
approach simplifies the representation of complex interactions by using visual elements
that can be intuitively understood and manipulated. In Figure 3.4, a program simulating
a wind turbine system is demonstrated. Diagrammatic VPLs are especially valuable in
professional settings, where precision and clarity are essential for tasks like prototyping or
verifying system behaviours before deployment.
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Figure 3.4: Example of Simulink program
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3.4 Designing User-Friendly Solutions for Custom Function
Workflows

User-friendly solutions for custom function workflows in IoT VPLs are essential to accom-
modate the creation of complex IoT systems accessible to as many users as possible. The
IoT will find its way more and more into our everyday lives and thus must accommodate
a way for the user to define their own procedures.

The VPLs used in these systems must offer intuitive interfaces that allow users to easily
define, manage, and visualize custom functions without the need for extensive programming
or prior briefing [13]. In this context, user-centred design principles, such as simplicity,
consistency, and interactivity, are critical focus areas essential for a long-term user-oriented
solution. An effective IoT VPL should implement these principles with the user’s varying
programming skill levels in mind. Ensuring the VPL is simple enough to grasp with minimal
prior information needed, but not sacrificing the utility essential for the more skilled users
to find the VPL useful. Utilizing the standardized ways of user interaction that the user
is used to form his other daily usage of this mobile such as press and hold for further
interaction or drag and drop utility.

By prioritizing usability and accessibility [39], the VPLs can create a smooth interaction
with the interface, bridging the gap between the technical complexity and various user needs
and providing more effective and inclusive IoT usage and development.

An important aspect that must be carefully considered is the main targeted platform,
as it heavily influences the user’s way of interacting with the VPL. Due to Pocketix being
developed as a mobile VPL IoT-enabled solution, the designing principles for mobiles will
be mainly examined. For mobile development, designing user-friendly VPLs involves ad-
dressing specific challenges such as smaller screen real estate, touch-based interaction, and
the need for on-the-go functionality [13].

An effective solution must implement responsive layouts and streamlined workflows to
enhance usability on mobile devices. Careful balance must be maintained of the information
provided, with the issue of over-cluttering the screen and overwhelming the user’s mind.
Utilising collapsible menus or zoomable workspaces to better organise and visualise the
workspace could partially solve the issues. Additionally, supporting multi-touch gestures
for connecting or rearranging blocks can enhance the interactivity and intuitiveness of the
interface. In the following chapter 4, the current state of EUDFs and the ways a user can
define their own procedures in different VPLs will be examined with the aim of evaluating
different approaches and their potential application in developing the solution for this thesis.
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Chapter 4

Analysis of the Current
Implementation and Existing
Frameworks

As mentioned throughout the thesis, the proposed solution should cater to the target audi-
ence of users with little to no technical knowledge. Thus, it must be simple enough as not
to overwhelm the user while providing them with a rich repertoire of functionality.

The solution will be building on top of an already existing visual editor supporting
a Pocketix block language, with minimal support for user-defined functions already im-
plemented. The VPL Editor will be further integrated into the RIoT system, providing
a fuller and more refined experience. This chapter aims to go over the current solution
and to identify necessary changes to accommodate the support for UDFs, while modifying
the logic to better support integration into the RIoT smart system.

RIoT, a Real-time Internet of Things, which started as a bachelor’s thesis by Bures
Michal [9]. RIoT is an advanced information system designed for real-time IoT data pro-
cessing and state monitoring, enabling users to define custom key performance indicators
(KPIs) to track and optimise system behaviour. It encapsulates a smart environment, al-
lowing the user to manage various smart devices [22], create dashboards [33] to visualise
the obtained data, and create procedures to execute various routines on said connected IoT
devices.

The goal of this analysis is to identify the main key areas and aspects that need to
be reworked or developed, with regard to the creation and use of reusable user procedures
within the RIoT integrated VPL Editor. Currently, the RIoT system is being further
developed and optimised in joint efforts by students under the supervision of Ing. John
Petr under the umbrella of the Pocketix organization®.

4.1 Pocketix VPL

The VPL Editor operates on the Pocketix VPL, described in more detail in both the
thesis by [37] and voucher [21] by Petr John. The Pocketix VPL establishes both the
metamodel and the program model, while also dictating certain editor-specific features
and limitations.

Thttps://github.com /pocketix
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The metamodel outlines the structural constraints and valid hierarchical relationships
within the VPL. It specifies permissible parent-child configurations, preventing invalid con-
structs, such as simple commands containing child nodes. Additionally, it also captures
visual attributes like block colours and icons for representation in the editor.

Two primary statement types, simple and compound, are defined in the metamodel
and further expanded on by the thesis of Bc. Lukas Podvojsky [37]. Simple statements,
represented by the LanguageCmdStatement type, are basic commands with parameter lists,
typically of types Number, String, or Boolean. Compound statements extend the base
type LanguageStatement, enabling conditional logic, which allows for constructs such as
While, If, or Else.

The program model serves as the object representation of VPL programs, facilitat-
ing evaluation and REST API communication. Each program instance is represented by
a Program object, containing a single Block that holds a list of statements. These state-
ments are further categorised as AbstractStatement, CompoundStatement, or Command.
Compound statements mirror their metamodel counterparts, supporting conditional execu-
tion, while commands are individual executable statements with parameter lists.

Although the structure may seem redundant, it is deliberately designed to support
future extensions, such as program-scoped variables, without modifying the core model.

This flexibility ensures a scalable and maintainable program representation within Pocketix
VPL.

4.2 Current State of VPL Editor

The current VPL Editor? is the product of Be. Lukas Podvojsky described in his thesis [37].
It provides a well-structured solution allowing for the creation of programs or procedures
and serving as a base for future additions or modifications. The editor is implemented using
TypeScript and the lightweight Lit web components library, while the project is configured
to be published as an npm package containing all the necessities for integration and use in
different projects.

The current state of the VPL Editor, as seen in Figure 4.1, consists of interactive editors
and editor controls placed above them. Controls allowing the basic interaction for variable
and procedure management, and import/export of the JSON program file. The editor
consists of two windows, the graphical editor (GE) and the text editor (TE). A preferred
display mode can be selected, allowing for either just the graphical editor view, just the
text editor view, or a side-by-side combination of both, as seen in Figure 4.1.

Both of the editor views display the contents of the program block in their respective
format, while keeping the contents synced between the two. This means that any block
constructed via the graphical editor will automatically translate to the text editor, and
changes made to the text editor, such as changing values or fixing expressions, translate
back to the graphical editor. Thus facilitating an intuitive solution in line with the overall
project’s design.

https://github.com/pocketix/vpl-for-things
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Figure 4.1: Original VPL Editor with simple program displayed in graphical and text view

The VPL program is constructed in the editor using different statement blocks selected
by the user via a click-based interface or direct editing in the text editor view. Blocks can
be added through the + button in the graphical editor view, seen in Figure 4.1, which opens
the Add New Statement modal featuring two tabs, both of which can be seen in Figure 4.2.
The two tabs are the basic statements, with all the editor-native blocks, and the device
statements, offering the user all available devices and their respective commands.

Fach block has an icon, a name, optional variables or arguments, and a hamburger icon
opening a menu for block manipulation. Clicking on the burger menu displays options to
either move the block up and down in the body or to delete the block, which removes it
from the body but does not delete the block as such from the program. A small arrow on
the right side of parent blocks allows for their child blocks to be hidden, helping with the
visual clutter when creating or managing more complex programs.

Add New Statement X Add New Statement W

Search Search

£ Else If # LT22222-Relay-1.setRelay

Figure 4.2: The original Add Statement selection with basic and device blocks

The internal representation of the program is represented as a JSON file seen in the
listing 4.2. The program file consists of two main parts. The first part is blocks, which is an
array of statements adhering to the internally defined logic and paradigm representing the
body of the program, which is displayed one-to-one in the TE and in its VPL representation
in the GE. The latter being the header, consisting of userVariables entry, holding the
variables defined in the program, and userProcedures entry, holding the name and body
of the custom user procedure defined in the program. When the body block is being parsed
and an ID which is not defined in the basic blocks is found, the userProcedures in the

28



o N O s W N =

L
N OOk W NN H O ©

header are parsed, and in case of a match on ID, the body of the given procedure is inserted
in place of the parsed ID.

Listing 4.1: JSON representation of the Program structure

"header":
"userVariables": s
"userProcedures":

"NewProcedure":

"id": "Doorbell-1.takePicture"

>

"block":

"id": "NewProcedure"

At the moment, the user procedures act more like standalone programs from which the
user can build more complex programs with little reusability potential. The limitations
in reusability stem from the hard-coded device statements in the user procedures body,
making this implementation of UDFs unsuitable for repeated use in even slightly different
circumstances. Nor does it support the idea of UDFs being used in a different environment.

An existing user procedure can be added to the program via the Add statement button,
appearing among the basic blocks in the statement selection. To create a user procedure,
clicking on the Procedures button brings out the modal seen on the right in Figure 4.3.
Clicking on the +Add button brings out the Add Procedure modal, seen on the left part
in Figure 4.3, where the user defines the procedure name and visual aspects of the block,
adding it to the list of available procedures in the procedures modal.

New Procedure X Procedures X
4 NewProcedure Search +Add
Background Color |I:|| _
Text Color ’E| # NewProcedure

v Create X Cancel

Figure 4.3: The Procedures creation modal (left) and added user Procedures modal (right)

Clicking on any of the defined procedures listed in the procedures modal opens the
selected UDF in the editing modal. The procedure modal loads the name, colour, and
body of the procedure, as seen in Figure 4.4, showcasing a simple UDF consisting of basic
and device statement blocks. At the moment, both the visual aspects and the functionality
of creation of and interaction with the UDF are nearly identical to the ones in the main
program body seen in Figure 4.1.
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As the current editor does not yet support information exchange between the editor and
the system it is part of. A need for a way for the editor to take data into the element, such
as program data or information about the available devices, needs to be added. The RIoT
system will be used as an example and the main focus, as fully integrating it into the RIoT
system is part of the thesis. The changes made and solutions discussed or displayed in rela-
tion to RIoT can be, with minor tweaks, applied to other smart environments, supporting
scalability and reusability of the editor as well.

The program saving and user procedures logic is not implemented and will have to
be designed before the implementation and integration. The new UDF support needs to
introduce a way to assign RIoT device blocks to the given UDF in the program block in
a way that will not affect the original UDF body. This will allow for the UDF to be used
across the program as before, while abstracting the device selection and moving it from the
procedure body to the place in the program where the UDF is used.

= voes RO © -
) Buzzer-1.beep a

Doorbell-1.takePicture

I +

-

Figure 4.4: User procedure with simple program body opened for editing

The current state of the VPL Editor is well-suited for a new module integration that will
introduce a solution more in line with the need for reusable UDF support while integrated
into the RIoT system. As mentioned, two main aspects will have to be examined and
have the solution tailored around them. The first one focuses on the VPL Editor and the
representation, creation, and modification of UDFs within it, allowing for variable use of
procedures while streamlining the creation process for the user. The second is the further
integration of already existing functionality into the RIoT system, which dictates the need
for the solution to support interactions with the database. Implementing CRUD operations
for the program and user procedures, for which a need to be handled separately apart from
the program arises.

The next section will examine existing solutions and framework advantages and draw-
backs with respect to their relevance in regard to UDF creation and parametrisation, while
not omitting the IoT integration. Relevant findings and conclusions for each existing solu-
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tion will be outlined, with the final proposed solution reflecting them while keeping in line
with the overall projects idea.

4.3 Existing Solutions

Most users are accustomed to interacting with intuitive and straightforward interfaces in
daily-use applications such as messaging apps like WhatsApp and Messenger, or other use-
ful or entertainment applications. These platforms rely on clear flows accommodated by
simple gestures, clicking buttons or icons, dragging elements, or navigating through struc-
tured menus. Users should feel confident in navigating, creating, and modifying procedures
without requiring prior technical knowledge or instructions.

In regard to the design and implementation, the user needs to have a clear way to
create and utilise their own procedures. The creation of these procedures and their usage
should be separated so as not to confuse the user due to possible nesting when creating
more advanced and complex programs. The right approach must be chosen with respect
to when the user will most likely define their own procedures and in what way they will
be used. In the following subsections, two very popular, well-established solutions will be
examined. Namely, Blockly’s and Node-Red’s approaches, as each framework offers unique
insights into the two main aspects laid out in the previous section.

Blockly

Blockly provides a highly visual and intuitive approach to user-defined function creation,
primarily through its drag-and-drop interface. Users define procedures by assembling
blocks, each representing an action, input, or logical operation. To create custom func-
tions, users can access the custom block creation tools, where they specify the block’s
structure, including inputs, outputs, and internal logic or may opt to define their custom
blocks manually via JSON objects and JavaScript functions.

The more user-friendly approach is using the Blockly Developer Tools, seen in Figure
4.5. This visual tool utilises a similar block structure to allow the user to create their
own custom blocks. The user is presented with the shell of the block, which defines its
basic structure. Each block has a name, inputs defined via different pre-made blocks, block
connections, a tooltip field, a help URL, and the colour of the block.

The pre-made blocks that are used to define custom blocks via the Blockly Developer
Tools can be seen in Figure 4.6 from left to right for the Input, Fields, and Connection
Checks. Using these, the user can create, set, and manage the input parameters of the
block he is creating. In the example in Figure 4.5, a simple custom block is created using
the value input block and the checkbox field type, with any subsequent connection after
it. The connection type can be selected in the dropdown menu, allowing for only bottom
connected, only top connected, top and bottom connected, or left connected type. Following
these are the optional tooltip help URL variables with a colour picker at the end.
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Figure 4.6: Options of Blocks in Blockly Developer Tools

All these come together to create a new custom block, which is visually displayed in the
top right corner with the actual generated code for the block below it. To then use this
custom block, the generated JSON code (Figure 4.7) for the block needs to be saved and
included in the Blockly program in the correct order according to dependencies.
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Figure 4.7: Code representation of Example Custom Block

For users who need to accommodate more complex concepts within the custom block,
which might be difficult to create via the graphic interaction in the Blockly Developer
Tools, a direct text-based block definition is available. The custom block is represented in
the JSON format, seen in fFgure 4.7, letting the user precisely define the block to their
needs. This can be accompanied by incorporating JavaScript into the block, allowing for
far greater functionality and customisation. This requires more extensive programming
knowledge and is not well-suited for the target audience, for whom the proposed solution is
designed. On top of that, the main focus is on modification of the graphical editor within
the VPL Editor, as opposed to the text editor, whose functionality will only be preserved.

Once defined, these blocks act as encapsulated units of functionality that can be visually
incorporated into workflows by dragging them onto the canvas. This modular approach
enables users to break down complex tasks into smaller, reusable components, enhancing
clarity and efficiency. Blockly ensures that only valid block connections are permitted,
guiding users through the procedure creation process and preventing syntax-related errors.
This visual mechanism allows users to focus on creating the program logic rather than
implementation details, making it accessible to beginners and non-technical users.

Although Blockly is effective as a visual programming tool, it faces limitations with
complex or large-scale workflows, such as those occurring in IoT and smart environments.
Highly nested logic or many interconnected blocks can result in visual clutter, complicating
workflow management. Furthermore, Blockly lacks native support for Iot-specific features
like device integration or communication protocols, often requiring additional custom im-
plementation for such use cases. Custom blocks can be defined to represent the lot devices
and then used in the program in accordance with the general program’s logic.

Blockly is conceptually similar to the existing implementation, outlining the need to keep
the implementation and interaction logic in line with the general program’s workflow when
dealing with IoT devices or UDFs. Despite this, the way of defining reusable blocks which
contain the IoT device does not accommodate use cases where the needed implementation
logic is the same across multiple instances, but for different Iot devices. Furthermore,
these custom blocks serve more to extend and modify the repertoire of available blocks,
each serving their specific given purpose, rather than acting as custom user procedures.
Tackling this issue will greatly improve the reusability of the UDFs and overall ease of use
of the program.
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Node-RED

Node-RED takes a different approach to EUDF creation, focusing on dataflow program-
ming and seamless integration with IoT devices and services. Users define procedures by
interacting with a flow-based editor, where each function or operation is represented as
a node on a canvas. To define a custom procedure, the user selects the required nodes from
a palette, drags them onto the canvas, and connects them using virtual wires to establish
the data flow. Nodes can represent a variety of functions, including data input from sen-
sors, computational processes, or control commands for devices. Users can configure each
node by double-clicking it to open a settings panel, where they define parameters such as
input formats, thresholds, or output destinations. The flow is executed from left to right,
visually demonstrating how data moves through the procedure in real time, enabling users
to understand and refine the process easily.

The creation of flows in Node-RED is rather easy. With some learning curve, even a user
with minimal programming knowledge can create routines of varying complexity by using
the provided nodes. The custom Node creation, however, is not so straightforward and
user-friendly. Nodes get created when the flow is deployed [32], allowing them to send and
receive messages while the flow is running and get deleted once the next flow is deployed.

Fach Node consists of a JavaScript file that defines the Node’s behaviour and an HTML
file that defines the Node’s properties, the edit dialogue and help text. The package.json
is used to package them all together and as an npm module. To then include this Node
into our current workspace, it needs to be installed via the npm install command. After
successful installation, the node can be included in the code and interacted with as all the
other nodes.

One of Node-RED’s key strengths is its focus on IoT integration. As mentioned, the
platform supports a wide range of protocols, such as MQTT, CoAP, and HTTP, and allows
users to interact directly with IoT devices and cloud services. This makes Node-RED
particularly well-suited for developing custom automation workflows in smart environments.
Users can create highly tailored solutions by integrating multiple devices, services, and data
streams into their procedures without major complications often associated with importing
and connecting them to the VPL or other frameworks. This greatly reduces the need for
custom Nodes as there is a wide variety of Nodes to be picked from, which slightly sets off
the issue of custom Node creation difficulty.

This flexibility comes with a tradeoff. Node-RED’s interface, while powerful, can be
overwhelming for non-technical users. The process of configuring nodes and managing con-
nections between them requires a level of understanding of dataflow programming and IoT
architectures. This can make the learning curve steeper for users who lack technical exper-
tise. Furthermore, Node-RED’s workflows can become complex and difficult to manage as
the number of nodes and connections increases.

The main takeaways from the Node-RED implementation give insight into the handling
of the IoT device interactions and integration within the greater loT system. While letting
the user create and use custom reusable blocks, their behaviour and implementation in the
workflow can be adjusted to better suit the situation they are used in.

4.4 RloT

Lastly, the RIoT [9] needs to be examined and analysed to determine and outline the
core aspects relevant to UDF support and VPL Editor integration. RIoT is a modular and
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scalable information system designed for the management of smart environments consisting
of various types of IoT devices [22], and the data processing and visualisation in dashboards
[33] based on it. The architecture is based on a microservice model, where individual
services are implemented in Go and communicate asynchronously using Rabbitmq. This
allows for a highly responsive and fault-tolerant system suitable for horizontal scaling. On
the frontend, a modern web interface built with React and TypeScript interacts with the
backend via a Graphql API, enabling flexible access to system functionality and data.

A key feature of RIoT is its ability to monitor smart devices and evaluate their data
using user-defined criteria, specifically Key Performance Indicators (KPIs). The system
transforms raw sensor data into meaningful insights, which can then be used for visualisa-
tion, decision-making, or automated responses. This data can be used for variable creation
when constructing conditions in the VPL Editor.

VPL Editor is installed into the RIoT as an npm package, introducing the VPL-Editor
element used to facilitate all of the editor’s functionality and interaction. RIoT does not
have direct access to this element or its contents, while having access to all the information
gained from IoT devices added to the system. A need for a data exchange between these
two “layers” presents itself.

To accommodate and integrate the already existing VPL Editor’s functionality into
RIoT, CRUD operations on programs made by the user need to be introduced. This
will allow for persistent saving of programs in the RIoT database. Once programs from
the editor can be saved, additional interactions such as loading programs into the editor,
updating and deleting existing programs can be added. This will help integrate the standing
functionality while laying the base for further additions.

The data exchange in this case needs to be a two-way street, allowing for the data to
be both taken from the VPL Editor and inserted into the RIoT for processing and vice
versa. The crucial data needed from the RIoT is all the available IoT devices, as the editor
is using a demo device list that currently does not reflect the state of devices in RIoT.
Thus, providing the editor with all the devices and their commands in a format-compliant
manner is crucial and will greatly move the integration, solidifying the VPL Editor’s place
and purpose within the RIoT system.

By combining the RIoT system’s real-time capabilities with the visual interface of the
VPL Editor, users are given a powerful and accessible toolset for defining logic and automat-
ing behaviours in smart environments. The integration supports both technical users and
non-programmers, offering an intuitive way to design, manage, and run logic across com-
plex IoT infrastructures while benefiting from the robustness and performance of a modern
backend system.

4.5 Summary of Anaysis

Both Blockly and Node-RED offer valuable insights into the creation of EUDFs, each with
its own strengths and limitations. Blockly excels in simplicity and user-friendliness, making
it accessible to users with little technical experience while being conceptually more in line
with the current implementation. Its visual clarity and error-prevention mechanisms make
it ideal for smaller workflows and educational contexts. However, its lack of built-in IoT
functionalities and challenges with managing complex workflows limit its applicability to
advanced IoT use cases.

Node-RED, on the other hand, provides unparalleled flexibility and integration capa-
bilities for IoT and smart environments. Its support for a wide range of protocols and
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seamless device integration make it a powerful tool for creating custom automation work-
flows. However, its complexity and steep learning curve can be barriers for non-technical
users, and its mobile usability is limited compared to Blockly.

From the analysis of the current VPL Editor, RIoT, and existing solutions, the following
requirements shaping the proposed solution arise. The addition, creation, and use of custom
user procedures should not disturb the flow of the user’s experience, nor should they go
out of their way to do so. It needs to be in line with the user’s know-how and what they
might expect from the application they are using and its current state presented to them.
Building on top of the current support for UDFs in the VPL Editor, the logic of defining
UDFs as standalone reusable blocks that adhere to the program’s overall logic and workflow
is correct. These blocks act as small standalone programs that get executed in place of the
found user procedure ID in the program body.

The UDFs do not take parameters, so the only data that can flow into them are the
device statements and user-defined variables placed in the body of the procedure. This
standalone block logic will be kept due to the constraints of the implementation limitations
and the goals of the thesis. Despite this, some sort of UDF parameterisation needs to be
implemented with a focus on IoT device selection. Parametrisation allowing for greater
flexibility in the use of procedures in a specific place of the program, similarly to Node-
RED’s parameterisation and ability to tweak and fine-tune nodes, needs to be introduced.

The need for a new and swifter way of constructing these procedures, while ideally allow-
ing the user to reuse already crafted program parts, is crucial in mediating a frustration-free
experience that users will gladly come back to again. To meet the integration requirement
within the RIoT system, the VPL Editor must rely on and work with up-to-date informa-
tion about the devices and values from sensors coming from the RIoT system, while being
able to store needed information and data.
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Chapter 5

Proposed Solution

The solution aims to utilise already existing frameworks and functionality to re-use and
build on top of the established project structure. The solution consists of the changes to
the editor, RIoT interface to accommodate new functionality, and the backend integration
into the RIoT. The front-end will consist of the VPL Editor and the changes needed to
accommodate the aforementioned advanced UDF support, and the RIoT-side Ul, which
will help to mediate the data exchange between the two. The back-end part will examine
changes required to facilitate new blocks, possibly added to the language, used in programs
and procedures that will be saved in the database. The programs saved in the database
will be used in the interpret-unit, where they are parsed and evaluated. The new UDF
logic will have to be reflected here as well.

The first front-end area is the modification of the VPL Editor to introduce more compre-
hensive user procedure creation and management logic. The standing logic and functionality
will be updated to better distinguish it from the use case in the program body, while inte-
grating it into the existing editor in an unintrusive manner. This will be accomplished via
the Skeletonize logic, providing a faster construction of new UDFs utilising the selection of
already existing program parts paired with parameterisation of the user procedures with
IoT devices.

The second front-end is further integration of the VPL Editor into the RIoT system to
accommodate sourcing of the aforementioned IoT devices registered in the RIoT system,
while simultaneously adding the CRUD database operations to allow for persistent saving
of the programs and user procedures. On the RIoT system side, the user procedures will
be saved and handled separately from the program data to accommodate dynamic loading
of current UDFs into the VPL Editor, making all available UDFs accessible to all programs
being created and used.

The back-end area will focus on the updates to the database and operations required
to facilitate the separation of programs and procedures while allowing for global access
to procedures. The update to interpret logic should be minor, and changes needed to be
made to the file to keep the original logic can be easily done before parsing takes place. As
changes to procedure structure and representation will be made, the parsing will have to
accommodate this lightly modified format.
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5.1 Proposed VPL Editor Changes

The editor’s basic functionality will be expanded upon by the populated UDF creation
mechanism referred to as Skeletonize mode, allowing for a swifter and more enjoyable
user experience while laying the base for the utility proposed later in the solution. This
mechanism will introduce a new editor mode in which, instead of editing the program, the
user selects the desired blocks, tracking them for addition to the body of the newly to be
created procedure.

A simple diagram of the abstracted process seen in Figure 5.1 showcases the selection of
blocks, preparation of the procedure and execution of other possibly necessary tasks prior
to UDF population, and the newly created procedure populated by the selected block. The
left block in Figure 5.1 represents the current program body, consisting of blocks described
in more detail below, from which blocks are selected for the new UDF to be built. The
middle represents an abstraction of the UDF preparation, which prepares the body of the
new UDF and performs any necessary actions, with the block on the right representing the
newly created UDF consisting of the selected blocks, where some were modified or changed
to adhere to the new logic.

In selection mode, clicking on the block adds it to the tracking used in the UDF body
preparation. The blue frame is a parent block allowing for child blocks, thus introducing
nested logic, presenting a couple of ways to handle it while offering possible quality of life
improvements for the user. This would come in the form of automatically selecting all
nested blocks of the targeted block while still letting the user deselect the unsuitable ones.
It will be faster and less tedious as opposed to selecting each individual block, and is more
in line with what the user might expect.
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Figure 5.1: Block selection for the preparation of new UDF

User procedure
Copied body

The remaining colored frames each represent a different type of block, with grey rep-
resenting the basic editor blocks, red being the device statement, and green symbolising
a user procedure. This is to hint at the different behaviour of various selected blocks in
the preparation of UDF. For example, the device statements selected will be replaced by
a placeholder block, which holds block-type information instead of the actual device in-
stance. This will abstract the device instantiation, allowing for modifiable assignment a the
place of UDF usage in the program body instead of the original hard-coded devices. The
user can create a procedure as before, but without having the option to add any device state-
ments, with an option to use the placeholder block to use in building the procedure logic
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in place of the original device statements. Device statements can still be inserted directly
into the main program body, where the placeholder block cannot be inserted instead.

To initialise a procedure with the desired device parameters, the user clicks on the UDF
block in the program body, opening the procedure initialisation modal where they can as-
sign the chosen device to each individual placeholder. Instead of modifying the original
procedure body, references to the selected devices will be made. When opening each ini-
tialised UDF in the program, its relative devices will be loaded, replacing their placeholders.
This allows for great customizability while not modifying the original program.

The actual Ul changes to the editor will include a slight editor-controls overhaul
with a button for Skeletonize being added, visualisation of the selected blocks, and other
visual element changes, tailoring a smooth experience. The initial proposed solution can
be seen in Figure 5.2 with changes made to the graphical editor on the left and the body
of the newly created UDF populated with the selected blocks, with devices being replaced
by placeholders. The status of the editor will be visually conveyed to the user in an
appropriate way. In the case of the draft, it is the red outline. The UI should prevent the
user from making mistakes or introducing errors into the program while also guiding them
via appropriate modification of the already familiar concepts.
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Figure 5.2: Proposed editor changes (left) and a placeholder logic (right)

5.2 Proposed RIoT Integration

At the moment, there is no interaction between the RIoT and the VPL Editor, with the
editor being available for demo purposes. The basic overview of the hierarchy can be seen
in Figure 5.3. The diagram displays the parts of the RIoT system with which the editor will
communicate, or they will have to accommodate the changes made. Firstly, there needs to
be an interface between RIoT and the VPL Editor to allow for data exchange.

The VPL Editor will be modified with a function accessible from the RIoT side, allowing
for programs and devices to be passed to the editor. This will be used for the initialisation
of the editor and during programs being loaded from the database. A way to keep track of
all current procedures and their formatting suitable for the editor will be added.
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Figure 5.3: RIoT diagram

RIoT Front-end

When opening the editor from the Automations page, only the bare editor is displayed.
The proposed solution will be modified and built upon to situate the RIoT interaction Ul
elements above the editor controls. These elements will provide all the necessary function-
ality for the implementation of database operations for programs and procedures, allowing
for saving new ones, updating and deleting the existing ones, or updating just the changes
made to procedures.

On the editor page load, when the editor component mounts, all the current devices
with relevant information are fetched from RIoT and prepared into an editor-compliant
format. The editor is relying on the consistency and correctness of device data received
from the RIoT system and will not perform any additional checks.
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Figure 5.4: Flow chart showcasing the load and save/load process

RIoT passes the selected programs’ data on the Load button click to the editor, where it
is used to reinitialize the context and displayed to the user for use and interaction. Before
the data is passed, all UDF entries are fetched, adding them to the header of the program,
as seen in Figure 5.4, providing the user with all available procedures without having to
save all procedures to each program saved into the RIoT database, preventing redundant
and bulky program data.

On program save or update, the program data file is retrieved from the editor, saving
the body and variables into the program database table. The user procedures from the
program data are compared against the procedures table to determine changes that are
then applied and reflected in the system. The simplified overview can be seen in Figure
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5.4. This allows for modifying procedures while having the update made to it be applied
to all programs using this procedure.

Back-end Integration

The back-end core will be modified to include the blocks added during implementation
of proposed solutions, ensuring the validity check can be performed on program save to
database and on program execute when it’s sent to interpre-unit for parsing and execu-
tion.

A new table for VPL procedures will be created in the entry, holding its name and pro-
cedure body, allowing for dynamic loading without local restrictions. The program table
will remain unchanged as the UDF separation takes place at the program data level by ex-
traction of procedures from the header and subsequent clearance of the given collection. To
future-proof the solution and provide a more solid base for functionality add-ons, a linking
table between the program and procedures is proposed. Its functionality is fully fledged,
but the general purpose will be to remove redundant data fetching and optimisation.

[ VPLProgramProcedures ]

- ProgramiD (FK)

— - ProcedurelD (FK)

VPL Program - (PK: ProgramID + ProcedurelD [m
- 1D (PK) =10 (PK)
~[Nams - Name
- Data - Data
- LastRun
- Enabled

Figure 5.5: ERD of VPL Program and Procedure tables with an M:N relation
An entity relationship diagram, showcasing the solution described above, can be seen
in Figure 5.5. It features three tables with two units that need persistent saving with an
M:N relation implemented via a linking table. Linking table keeps a track of all unique

procedures used in the program, allowing for better information propagation and ensuring
data consistency.
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Figure 5.6: Request from Interpret-Unit to obtain the data for interpretation
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This will also be utilised in the interpret-unit, ensuring the modifications done and
new logic don’t introduce errors or undefined behaviour like error parsing a missing UDFs,
which will not be stored with the program anymore. While implementation details need to
be discussed with respect to whether linking will be implemented, the general abstracted in-
teraction of fetching the data from RIoT to interpret is described in a diagram seen in Figure
5.6. It visualises the relation and communication between the backend-core in the RIoT
system and interpret-unit element. The interpret-unit queries the backend-core
via RabbitMQ requests, fetching the program and user procedures for interpretation. Pro-
gram Exec represents the entry point in Interpret-Unit seen in the previous Figure 5.6.
It receives a program ID that was sent for execution, based on which all the necessary
information is gathered, formatted, and prepared for interpretation.
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Figure 5.7: Diagram showcasing the interpret logic and proposed changes

The planned minor modification to the fetching and interpretation logic is visualised
via the flowchart in Figure 5.7. The flowchart consists of blue statements, which are from
the original implementation logic done by Matus Tabi [28], with green ones highlighting
the modified or added ones needed to accommodate reusable UDF support.

The program data for the interpretation is constructed from data of the given program,
consisting of userVariables and the body block. This is fetched by the interpret query
further using the program ID to fetch all the related procedures as seen in the 5.7 marked
by the edge two. The empty userProcedures, formerly populated by all UDFs saved in
each program, are populated by procedures fetched from the Backend-core database.

The query, consisting of either all available procedures or just the linked ones, is pro-
cessed and parsed, inserting every entry into the program header seen in Figure 5.7 denoted
by the edges three and four. After the program data is prepared and validated, it is passed
to the interpret-unit for interpretation, marked by the edge five.

The only modification remaining to have the correct functionality restored is the device
replacement in the initialized procedures. Placeholder blocks need to be detected before
they are added to the AST, which is being created in the interpret-unit market by the
edge six. During the parsing, user procedures are detected and checked for device place-

42



holder blocks. If no placeholders were found, denoted by the number nine, the parsing
continues. On detection of the placeholder block, the corresponding entry from the proce-
dure’s metadata is retrieved, appending it instead of the placeholder block, denoted by the
edge eight in Figure 5.7. This ensures that the proposed UDF custom initialisation and its
implementation are correctly reflected in the final Go code.

43



Chapter 6

Implementation

The Chapter implementation of the VPL Editor follows the structure set out in the previous
chapter 5, without any major changes or deviations from the original plan. An easier
and more versatile way of UDF creation was provided via the Skeletonize functionality,
controlled by an intuitive and visualized click-based selection of desired blocks. The UDF
logic and structure were expanded to accommodate the data necessary for versatile user
functions without hard-coded device statements.

The RIoT interface will be equipped with control elements to provide the user with
a way to interact with the RIoT side of the integration. Taking care of the CRUD program
operations and procedure updating, ensuring the changes from the VPL Editor are reflected
and saved in the system. Device and procedure loading into the program will be done in
the background, not burdening the user with its handling.

Minor changes will need to be made server-side to accommodate the new block, as files
are validated on save. This change will need to be reflected in the interpret so that the
device type blocks are replaced with the corresponding initialised device statement. This
will ensure that the right selected logic is executed and appended to the parsing tree.

6.1 VPL Editor

As this thesis builds on top of an already existing implementation, reusing and modifying
already existing assets while adhering to existing logic will be a priority to avoid inflating
the project with unnecessary dependencies. The VPL Editor is built using the Lit library,
utilising custom events to notify other parts of the editor of changes that might require
a rerender of a given component. The proposed solution will not focus on the text editor,
but its functionality needs to be intact after the new support for UDFS. The editor con-
trols, various modals and information displayed or accessible from them, and primarily the
graphical editor will be modified.

The program structure, as seen in Listing 4.2, consists of a header containing the user
procedures and user variables entries, and a block which serves as the main body of the
program. Currently, each header is unique to each given program, being together exported,
imported, and handled as a single JSON file. The solution will propose a way allowing for
the separation of user procedures, elevating them to be globally shared across all programs
instead of the user procedures being locally locked to each program. The user variables will
stay as local-only values to keep the custom variable interaction in the editor simple. The
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structure will require a small revision and expansion to accommodate UDF parameterisation
metadata.

While support for program saving and editing will be integrated, greatly increasing
the reusability and bettering the user experience, it alone will not be sufficient to provide
the level of customisation and re-usability required. The user might want to re-use only
a smaller portion of the program or refactor its logic quickly, without the hassle of copying
and editing the original program. This requires a simple yet effective way of letting the
user select blocks from an existing program to populate the body of a newly created pro-
cedure, while not affecting the original program. This will be provided via the Skeletonize
functionality button as seen in the modified editor controls in Figure 6.1.

Skeletonize

The Skeletonize mode will allow the user to select blocks from an existing program. The user
turn the skeletonized mode on and off with the skeletonized button. The skeletonized mode
will be accompanied by a short info element to familiarise the user with it. In the example
seen in Figure 6.1, the first block was clicked, automatically selecting all its nested blocks.
The set variable is not selected as the user clicked on it to deselect it from the skeletonized
selection. Once the user picks the desired blocks, clicking on the Create Procedure button
brings out the modal for procedure creation seen in Figure 4.3, where they enter the name
and configure the visual aspects of the block. To streamline the process, the user should
be taken straight to editing of the newly created procedure instead of having to click on it
manually.
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Figure 6.1: Example program used as source of the block selection for procedure population

The editing modal of the newly created procedure populated by the selected blocks
can be seen in Figure 6.2. On the first glance, it is identical to the one in Figure 4.4,
but there is a crucial difference. It is due to the lack of device statement blocks and the
appearance of a new deviceType block, both of which will be discussed in greater detail
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in the parameterisation section. The user can modify and finish up the creation of the
new procedure, utilising all the basic blocks and selection of RIoT statements, in a similar
manner to the main body.
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Figure 6.2: Newly created UDF from Skeletonize and the available RIoT statements

The use of these procedures stays in line with the original implementation, where created
procedure blocks appear in the Add statement selection among the basic blocks. In the
next section, slight modifications will be introduced to further the UDF functionality while
keeping it inline and ready with the RIoT integration. These changes focus on modifying
the UDF representation logic to allow for parameterisation via assignment of devices from
the RIoT system.

Parametrisation

As aforementioned, the UDF is contained in a standalone block which does not take any
values as parameters, nor does it return any. Currently, parametrisation will not focus on
or address this as it is in line with the current implementation logic. Parametrisation of
UDFs is to be understood as abstracting the procedures by not allowing device instance
blocks, which are replaced by a placeholder block in the procedure body. This separates the
creation of UDFs and assignment of particular device instances, allowing for one logic to
be reused in different scenarios or environments as opposed to being limited to hardcoded
devices.

This is mediated and implemented by the Device Type block seen in Figure 6.2. It is an
internal block, available only in the UDF editor modal, which holds the type and position
obtained from the selected skeletonised device block. Optionally, the deviceType block can
be directly added to the UDF without a type. The DeviceType block is not interpreted by
the server as it doesn’t execute any action.

This abstraction serves to provide a way to retain relevant information from the selected
device statement block, but let the user assign any desired device block to the specific
instance of UDF in the program body, as can be seen in Figure 6.3. The device statement
blocks will now be available only in the main program block, thus allowing the user to
create a simple program with directly initialised IoT devices without accidentally adding
the device block to UDF and breaking the implementation logic.

The user procedure block will be extended by the devices array, holding references to
the specific device type blocks in the procedure body. Each entry has uuid, which is used
to link the device list entry to the correct device type in the UDF, a deviceld holding the
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device type if uninitialized and the selected device statement if initialised, and the values
array holding potential selected device statement values. This change, seen in Figure 6.3,
will be accomplished by expanding the procedure block in the program body, originally
consisting of only ID, with devices array made up of entries with uuid used for internal
state management, the devicelD responsible for holding the name of the assigned device
block, and values array holding the value for statements that have it.

[
4 SkeletonizedProcedure = t ,
"id": "SkeletonizedProcedure"”,

"devices": [
+ {
"uuid": "aeb4c3ba-bB39-4ce2-aba¥-
2e669cd35615",
"deviceId": "AlertDevice",
"values": [
"AlertDevice"

[
4 SkeletonizedProcedure a {
"id": "SkeletonizedProcedure",

"devices": [
+ {
"yuid": "aebdc3ba-bB39-4ce2-aba’-
2e669cd35615",
"deviceld": "Buzzer-1.beep",
"values": []
}
1
}
1

Figure 6.3: Uninitialized (top) and initialised (bottom) UDF in the program body

By clicking on the added UDF in the program’s body, such as the uninitialized procedure
seen in Figure 6.3, the modal for procedure init is displayed with the body of the procedure
loaded. On first procedure init, the body of the procedure is displayed, including any
placeholder blocks in it. When the user clicks on any of the device placeholder blocks,
a Select Device Statement modal is shown, displaying all the available device blocks.
If the device type contains a valid type value, the displayed blocks are separated into two
lists, with the top list showing devices of the corresponding type and the bottom showing
all other devices. If the device type doesn’t contain a valid type, only one list with all
blocks is shown.

Upon device selection, the originally clicked device type block is replaced by the selected
device statement. This replacement will not be directly modifying the body of the procedure
as it would be with the original implementation. Instead, the selected device statement is
saved into the corresponding entry in the devices array while keeping any of the potential
values synced and recorded. The user will be able to reselect a different device statement by
clicking on the target, bringing up the same modal for device statement selection, mirroring
the device type use case. Clicking on initialised UDF will open the procedure init modal
again, displaying the selected device statements in place of their corresponding device type
block, as can be seen in Figure 6.4.
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Figure 6.4: UDF opened for initialisation (left) and the device selection modal (right)

6.2 Integration into the RIoT System

The VPL Editor is currently featured as a standalone module available in the RIoT, ac-
cessible through the Automations page, seen in Figure 6.5, providing an interactive demo
showcasing creation of programs in the Pocketix language. Despite this, there is currently
no real integration between the RIoT and VPL Editor. The page hosting the VPL Editor in
RIoT will be modified to accommodate necessary interactions, allowing for the integration,
such as CRUD operations for the program and user procedures providing persistent storage
or device loading, to ensure the VPL Editor is working with the latest devices in the RIoT
system.

RloT

4 Back-end Front-end N
\ (,[ Home ] [ Devices ]

-
[ Backend-core J

/ \ / Automations

VPL Editor
[PostgresqLJ 4 -
f

B )
J \

interpret-unit

k\\

Figure 6.5: Overview of RIoT system modules
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The user interface, seen in Figure 6.6, will feature a drop-down selector displaying all
saved programs from the RIoT database. Clicking on a program from the list will select it,
but no action will be performed yet. Three buttons under the program selector will serve as
controls each providing the listed functionality of either Load, fetching the program data and
passing it to the VPL Editor, Update, which takes the program data from VPL Editor and
updates the selected program with it, and the Delete, which deletes the selected program.
The second prominent UI feature will be a program name entry field with two buttons under
it: the Save Program and Update Procedures. Save Program takes the name from the
entry field and program data from the VPL Editor, using them to create a new program
entry in the database. Update Procedures updates only the user procedures. This is for
cases when only UDFs are modified.

Select Program Program Mame
Select a program Enter program name
Loac Update Procedures

Figure 6.6: RIoT controls with program selector and name entry field

Database Integration

When the page is loaded and the VPL Editor component mounts, the device instances from
RIoT are queried and formatted, preparing them to be passed to the VPL Editor. Similarly,
all the user procedure entries from the database in RIoT are fetched, and userProcedures
in the header of the program file is constructed. This data is then passed to the VPL
Editor, initialising the editor with information corresponding to the current state of RIoT.
Once this is finished, the editor is ready to be used.

Changes made in the VPL Editor will not be automatically reflected in the RIoT system,
but due to executive decisions, will be operated by the above-described button-based Ul
from Figure 6.6. Once the user constructs a program in the editor, optionally containing
new or modified UDFs, the program can be saved under a new name or be used to update
the selected program. A simple overview of this process is seen on the right side in Figure
5.4, showcasing the processing of the UDFs from the program data before applying changes
to the database. On Save Program button click, a non-empty name will be taken from
the name input field, pairing it with the program data and userVariables pulled from
the VPL Editor, creating a new database entry in the programs table. Subsequently, all
necessary checks and validations related to program saving and procedure updating take
place.

The device type block will need to be added on the server side as a valid block option, as
validity checks will be performed server-side before a program or procedure is saved. One
of these checks will include the status of UDFs in the program, looking for added, removed,
or modified UDFs. These changes need to be detected and reflected in their respective
entries in the database. This check is performed and applied anytime a Save Program,
Load, Update, or Update Procedures button is clicked.

On any program data loading into the VPL Editor, the current state of the user pro-
cedures is constructed from the database, populating the userProcedures in the program
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header before appending it to the rest of the passed data, as seen in Figure 5.4. This
ensures that the VPL Editor is working with the latest versions of procedures, providing
independent and complete access to every program.

A linking table, seen previously in Figure 5.5, between the programs and procedures
used in them was implemented to provide more information and a better base for further
implementation. This will allow us to fetch only the relevant procedure information needed
for the interpretation of the chosen program, removing the redundant information that
would be otherwise loaded.

Server-side Integration

The user procedure evaluation logic had to be adjusted to account for the new block type,
updating the parsing function to replace the deviceType block with the corresponding
device entry from the devices array. The separation of procedures from the program
means that the retrieved program for interpretation does not contain user procedures in
the header, unless this is a legacy program created before this thesis implementation. A need
for a scalable and adequate solution to provide the interpret with procedures relevant to
the parsed program arises, which was not originally accounted for in the proposed solution.

The agreed-upon solution was to implement a linking table of programs and used proce-
dures, allowing for just the used procedures to be fetched on program interpretation. This
was deemed as a more efficient and long-term resilient solution as opposed to bulk loading
all the procedures or ad-hoc querying on an unknown block ID.

This table is queried with the ID of the program to be interpreted, returning linked
procedures and their data. The combination of the procedure ID and its data is used to
prepare a suitably formatted user procedure entry. The output is then parsed by the already
implemented user procedure parsing function, adding it to the header.userProcedures of
the program, which is extended by these entries.

Program execution (—Program ID—» interpret-unit

T
sends

¥
RabbitMQ querry ——
| retums
returns J'
Linked procedures
Program data <—| parsed & formated
added

T
passed |
J' userProcedures

Interpret

Figure 6.7: UML Diagram showcasing the fetching and formatting of UDFs in interpret-unit
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Chapter 7

Testing

The main goal of the user testing is to evaluate the proposed and implemented solution
in regard to the thesis goals, with the main aim to test the intuitiveness and level of
quality of life improvement provided. Then overall feedback is reflected upon and used for
the proposed future additions and improvements. The users will have the RIoT system
introduced, followed by a demo showcase paired with a task for the user to try and execute,
while being observed and asked about the current interaction experience. At the end,
they express their overall feedback and suggestions regarding the tested experience. This
feedback was then gathered and evaluated, drawing a concrete conclusion which was then
formatted and reflected upon in future extensions.

7.1 User Testing

The RIoT system, its basic structure, and purpose are presented to the user to give them
a general overview. The user is informed about the purpose, scope, and goals of the thesis,
sparing them the technical details. The testing scenario will first ask the user to create
a simple program, testing the program creation in order to subsequently test the program
saving, loading, updating, and deletion. Then the user is tasked with creating a new UDF
via the original procedure creation functionality to familiarize them with UDFs and their
use in the program, while setting a baseline for comparison of the new functionality.

Following up on this, the new Skeletonize functionality and UDF initialisation are tested.
The program created by the user is used in the skeletonize selection, where the task is to
select blocks to transfer existing logic into a new UDF. This UDF is then edited and finished
to be then used and initialized in the program. Lastly, the use of the new UDF is tested
by the user, where they initialize it with the desired devices.

Fach test case will follow the above-mentioned testing scenario, tested by a different
target user with slight differences in the amount of information provided to simulate the
real use case as best as possible. The testing will be mainly evaluated based on the following
criteria. Intuitiveness, evaluating the ease of use and technologies or methods used in regard
to users’ overall expectations, to create a frustration-free experience they would return to.
Quality of life aims to find out if the solution meets the thesis criteria to provide users with
means to control a smart environment containing different IoT devices from one place, as
opposed to using the native applications that come with each device. The feedback will
capture the opinions and feelings of user towards the tested application and their remarks
and suggestions, serving as indicators used for proposing relevant future additions.
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Unassisted Design Intuitivness Testing

This case aims to gauge the difficulty of adapting the solution by a technically well-versed
user, a male STEM University student with good computer knowledge, accustomed to
many types of interactions with applications. Only the RIoT system and task at hand were
explained, without instructions on how to use the editor. Aspects and functionality not
important or relevant for testing are outlined to the user.

The user took time exploring different features and means of interaction, inquiring about
some specific functionality or purpose of buttons and blocks, but overall could navigate
the editor quite swiftly without major issues. Then the user was shown the original user
procedure creation process with an explanation about device blocks and the logic necessary
to use them. Skeletonize mode, with only its purpose described, was introduced, observing
the subject attempt to complete the task of creating a simple procedure reusing an already
existing program body. The user could complete this task intuitively without major issues.

The following task of using and initialising the newly defined procedure was a bit less
straightforward. The user intuitively clicks on the used procedure to interact with it, but
the opened modal for initialisation was too similar to the one for editing, confusing the user,
making him close the modal and look elsewhere. After informing the user they were in the
right section, they continued to attempt to initialise the procedure. The user struggled
with the concept of initialisation of procedures with devices and asked more about it, with
the explanation helping them successfully complete the task.

Overall, the user found the editor to be intuitive to use and in line with his expectations
of interactions. The new selection logic was welcomed, and its quality of life improvement
potential was recognised in potential real use by the user. The main drawbacks for the
user were similarly looking elements serving different purposes without labels, informative
descriptions or highlighted distinctions. Having the initialisation be entered through the
statement block menu rather than block click would be more in line with the user’s personal
preference.

Target User Testing

The second test case is a target audience user testing involving a middle-aged female accoun-
tant, with average surface technical knowledge, living in a house with gradual introduction
to smart devices and more advanced mobile functionality. This will simulate a real-life sce-
nario where I figure as the RIoT system admin introducing a new user to the environment
and showing them the functionality. It aims to gauge the accessibility of the solution to the
user within the broader context of the system, while inquiring about their interest in such
a solution within a smart-home environment.

The RIoT system, its modules, and purpose will be presented to give the user an idea
for motivation of the thesis, with the goal of equipping the user with the ability to take
control of this smart environment with ease. Following it was a brief presentation of the
editor functionality and UDF creation with comparison to the original solution. User was
then tasked to create their own program and perform CRUD operations on it, creating their
own UDF via the selection logic, using and initialising it in the program.

While successfully completing all the tasks and giving positive feedback, the user re-
quired more assistance with searching for some of the desired functionality and was unsure
in their initial use of the application. After some time and additional demonstration, the
user picked up the flow of the application and could complete the task with more ease. The
initial confusion was caused by similarly looking pages with slight differences between them,
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paired with not having a current window name description, with potential instructions or
help, while the yet unpolished design did not positively influence it.

Despite the initial hiccups, the tested solution was warmly received and acclaimed as an
intuitive solution that the user would come back to, and can see themselves using in smart
home management. The need for consistent and clear naming, with a visually telling UI
overhaul featuring well-known and widely used features, was brought up by the user and
is very important to them. They can imagine the current selection for procedure creation
work well on a mobile platform, allowing for quick creation and use of simple programs,
but the solution needs to be adjusted to suit complex programs better.

Genral feedback

Lastly, a demo was presented to a group of six bachelor students from the Faculty of
Information Technologies from Brno University of Technology, accompanied by a master’s
student in the same field, and the thesis supervisor, Ing. Pert John. The thesis and its
implementation were presented to receive both wider feedback for the implemented logic
and suggestions for feature additions. The demo followed the established pattern of CRUD
operation showcase, UDF creation via both the original and new selection logic, and UDF
initialisation with the device statement instances as parameters.

The selection functionality was deemed an improvement to the original solution, provid-
ing the user with a swifter way of procedure creation. Need for a better, more user-friendly
selection functionality button name was brought up, along with a better structure and dis-
play layout for the statement addition modal, having the procedures be displayed in their
own tab. Having the database operations be implemented with a need for the user to click
on fewer blocks to achieve their goal, while providing a better visual preview of the function
before they select a UDF, was suggested among future extensions. Additionally, a new way
for storing and previewing UDFs before they are used was proposed to further ease the use
of procedures in the program body.

7.2 Future Extensions

Based on the results of the user testing and general feedback, several directions for future
extensions are proposed to improve usability, clarity, and functionality of the editor. The
most prominent issue observed across test cases was the visual and functional similarity of
modals used for editing and initialization. Future work should include a redesign of these
interfaces with clearer visual cues, labels, and purpose-distinctive layouts to eliminate user
confusion and streamline task completion.

To further enhance the accessibility and ease of use, especially for non-technical users,
the interface should include dynamic tooltips, contextual help, and clearly labelled buttons.
These features would help users understand the available actions without requiring prior
instruction. Additional improvements include better window naming and navigation aids,
such as breadcrumbs or persistent headers, to provide orientation within the editor. A core
change needed in naming is the confusion between programs and procedures. The similarly
sounding names without a clear distinction cause confusion for the user, and procedures
should be renamed to functions, as this is now more in line with their use and functionality.

A procedure store was proposed, displaying all available procedures and additional
information about them, allowing the user to have an overview of their choices in procedures.
This would remove the need to inspect the procedures by opening them or using them in the
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body first, removing unnecessary steps needed to get the information the user needs. This
would further allow for the sharing of procedures among different environments and systems.
Need for value preservation when selecting the same device statement as was originally
replaced by the placeholder block to streamline the use or a way to create predefined
reusable UDF blocks was highlighted.

Another key extension is the implementation of a guided or tutorial mode for first-
time users. This could walk them through the core functionalities, particularly the more
abstract concepts such as UDF initialization with devices, which caused hesitation even
among technically proficient users.

Given the positive reception of the Skeletonize-based procedure creation, it is advisable
to further refine and expand this mechanism to support more complex pattern selections
and transformation scenarios. Finally, adapting the interface for mobile platforms with
an emphasis on usability for short and simple program creation would align with user
expectations and increase practical adoption in smart-home environments.
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Chapter 8

Conclusion

With the rising popularity of smart devices, there is a growing need for a simple yet powerful
tool for home environments. The variety of IoT devices and the lack of unified control
present a challenge. This is addressed by the RIoT system through gradual development and
expanding functionality. It encapsulates various devices under a single logic and interface,
providing users with advanced dashboard visualisations and a VPL Editor for creating
programs and procedures that control and interact with the smart environment.

The thesis provides a comprehensive overview needed for a basic understanding of smart
environments and their role in the creation of smart cities. Architectures and technologies
are examined to gain a better perspective on the building blocks used in smart environments.
The various usages of IoT are presented and their potential link to Smart Cities.

End-user development in visual programming languages is examined to support the
thesis goals. Based on this, the existing solution is analysed, leading to a new, user-friendly
procedure creation approach with reusability. The solution is implemented, tested with
different users, and future extensions are proposed based on the results.

This thesis further integrated the editor into the RIoT system, enabling persistent data
storage and passing of information, such as current devices, between the system and the
editor. Two key modifications were made: a faster, more user-friendly procedure creation
method and device parameterisation for functions, allowing procedure reuse within program
logic. Together, these enhancements significantly improve the editor’s functionality and
bring the RIoT system closer to practical home use.

While the proposed solution met the thesis goals and enhanced RIoT’s functionality to
better support users, further development is required. The focus on implementation over
UI design led to some usability issues identified during testing. However, users were still
able to complete tasks successfully and provided positive feedback, with Ul improvements
noted as a recommended enhancement.

To address usability challenges revealed during testing, future development should focus
on clearer distinction between editor modals, improved clarity through tooltips and nav-
igation aids, and renaming “procedures” to “functions” for better conceptual alignment.
A centralized function store should support reuse and cross-environment sharing. Pre-
serving parameter values when replacing blocks, supporting predefined UDFs, and adding
a guided tutorial mode are key for novice users. Enhancing Skeletonize and adapting the
editor for mobile use would further improve flexibility and accessibility.
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Appendix A

Contents of the external storage
media

e This file in PDF format.

o source/README.md - detailed description of the repository and changes
o source/RIoT — changed files in the RIoT system

o source/vpl-for-things — changed files in the original editor

e source-latex — folder with source files for building latex document
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