BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

USING XDP TO ACCELERATE ROUTING
IN THE LINUX KERNEL

VYUZITi XDP PRO AKCELERACI SMEROVANI V JADRE SYSTEMU LINUX

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. SAMUEL DOBRON
AUTOR PRACE
SUPERVISOR Ing. MATE) GREGR, Ph.D.

VEDOUCI PRACE

BRNO 2025

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Master's Thesis Assignment Il

Institut: Department of Information Systems (DIFS) 164490
Student: Dobron Samuel, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Computer Networks

Title: Using XDP to accelerate routing in the Linux kernel

Category: Networking

Academic year: 2024/25

Assignment:

1. Get acquainted with eXpress Data Path (XDP) technology for fast packet processing.

2. Study the standard packet forwarding path in the Linux kernel

3. Perform performance testing of the existing xdp_forward prototype for measuring forwarding speed
and cpu utilization and identify problems and missing pieces in the prototype.

4. Evaluate the results and fix potential missing issues of the xdp_forward prototype.

5. Discuss possibility for hardware offloading of the xdp_forward prototype.

Literature:
» Bharadwaj, R. (2017). Mastering Linux Kernel development: A kernel developer's reference manual.
ISBN: 978-1-78588-613-3.
* Love, R. (2010). Linux Kernel Development (3rd ed.). Addison-Wesley Professional. ISBN: 978-0-
672-32946-3
» Gregg, B. (2019). BPF Performance Tools: Linux System and Application Observability (1st. ed.).
Addison-Wesley Professional. ISBN: 9780136554820

Requirements for the semestral defence:

1, 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Grégr Matéj, Ing., Ph.D.

Consultant: Toke Hgiland-Jgrgensen

Head of Department; Kolar Dusan, doc. Dr. Ing.

Beginning of work: 1.11.2024

Submission deadline: 21.5.2025

Approval date: 22.10.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

Abstract

Traditional Linux kernel packet forwarding faces performance constraints at high network
speeds. This thesis evaluates eXpress Data Path (XDP) acceleration through xdp-forward,
comparing its performance against standard kernel forwarding. Missing features were iden-
tified, primarily VLAN support and Netfilter integration. As part of this thesis, two VLAN
implementation approaches were developed: one using a patched kernel for direct informa-
tion retrieval using bpf_fib_lookup, and another using eBPF maps for unpatched kernel
compatibility. Performance tests demonstrate xdp-forward increases packet forwarding
rates up to four times over conventional kernel paths, with results varying by hardware
configuration. This thesis also discusses future work, including XDP queuing mechanisms
and hardware offloading possibilities, though current NIC support remains limited.

Abstrakt

Tradi¢né smerovanie paketov v jadre Linuxu naraza na vykonnostné limity pri vysokych
prenosovych rychlostiach. Tato diplomova praca sa zameriava na akcelerdciu pomocou eX-
press Data Path (XDP) pomocou néastroja xdp-forward a porovnava jeho vykon so Stan-
dardnym smerovanim v jadre. Pocas vyvoja boli identifikované chybajice funkcionality, na-
jmé podpora VLAN a integracia s Netfilterom. V rdmci prace boli navrhnuteé dva pristupy
k implementécii VLAN: jeden vyuZiva upravené jadro pre priamy pristup k chybajtcim in-
formaciam cez bpf_fib_lookup, druhy pouziva eBPF mapy, ¢o umoznuje kompatibilitu aj
s neupravenym jadrom. Vykonnostné testy ukazali, ze xdp-forward dokéaze zvysit rychlost
spracovania paketov az Stvornasobne v porovnani s beznym smerovanim, pricom vysledky
zavisia od pouzitého hardvéru. Préica sa venuje aj moznostiam dalSieho rozvoja, ako st
fronty v rdmci XDP ¢i hardvérové zrychlenie, hoci podpora zo strany sietovych kariet je
zatial obmedzena.

Keywords

xdp-forward, routing performance, high-performance networking, Linux kernel, packet for-
warding, XDP forwarding, networking stack

KTItcové slova
xdp-forward, vykon smerovania, vysoko vykonné siete, jadro Linux, smerovanie paketov,
XDP smerovanie, sietovy zasobnik

Reference

DOBRON, Samuel. Using XDP to accelerate routing in the Linuzx kernel. Brno, 2025. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Matéj Grégr, Ph.D.

Rozsireny abstrakt

Téato diplomova praca sa zaobera akceleraciou smerovania paketov v jadre systému Linux
pomocou technolégie eXpress Data Path (XDP). Na tvod sa rozobera sietovy stack Linux-
ového jadra — od prijatia paketu cez jeho spracovanie, az po jeho odoslanie. Praca analyzuje
kIucové komponenty jadra vratane prijimacich a vysielacich front, interakcie s ovlada¢mi a
ostatné mechanizmy pre spracovanie paketov. Nasledne sa praca v Kapitole 2.6 zameriava
na technologiu XDP a jej zdklad — eBPF (extended Berkeley Packet Filter), analyzujic ich
architektiru a sposob ich integrécie s jadrom.

Kapitola 3 sa zaobera identifikdciou chybajtcich funkcii, ako napriklad podpora VLAN,
chybajica integracia s Netfiltrom, absencia pozdrzanie paketov na cas a jeho docasné uloze-
nie, preklad adries a problémy s podporou virtudlnych zariadeni. Praca tiez analyzuje
obmedzenia vyplyvajice z dizajnu XDP.

Jedno z tychto obmedzeni — podpora VLAN pre xdp-forward sme implementovali vo
dvoch verzidch. Prva vyzaduje upravené jadro, konkrétne spravanie pomocnej funkcie
bpf_fib_lookup a druhy pristup, ktory vyuziva eBPF mapy pre uloZenie mapovania medzi
VLAN ID a ¢&istom rozhrania, to zabezpecuje kompatibilitu so starsimi verziami jadra.
Vylepsenia ¢akaju na ich zaclenenie do prototypu xdp-forward.

Vykonnostnd analyza nasej VLAN implementacie ukizala mierne znizenie vykonu v
porovnani so zakladnou verziou xdp-forward: priblizne o 10 % pri IPv4 a o 4 % pri IPv6.
Testovanie vykonu xdp-forward v Kapitole 5.4.1 na roéznych sietovych ovladacoch
(mlx5_ core, ice, bnxt_en a sfc) a architektiirach konzistentne potvrdilo, ze XDP dosahuje
vyssie rychlosti smerovania ako standardné jadro. Najlepsie vysledky dosiahol ovladac Intel
ice, kde prototyp xdp-forward spracoval az styrikrat viac paketov s velkostou 64 bajtov

nez klasické smerovanie v jadre.

Zaroven bol pozorovany vyrazny rozdiel vo vykone medzi IPv4 a IPv6. Pri pouziti
xdp-forward klesal vykon pre IPv6 o 7% az 28 % oproti IPv4, zatial ¢o pri klasickom
smerovan{ v jadre bol rozdiel mensi — v rozmedzi 1% az 10%. Vo vSetkych relevantnych
testoch dosahovalo zatazenie CPU priblizne 100 % na jadro.

Pri testovani smerovania pri pouziti viacerych jadier sa najskoér objavil problém so skéalo-
vanim nad 10 Mpps pre kernel. Analyzou v Prilohe A bol identifikovany problém, ktory
spocival v zamykani vystupnej fronty. Pouzitim fronty, ktord nevyuziva zamky sa umoznilo
lepsie skalovanie vykonu naprie¢ viacerymi jadrami procesora.

Testy sktimajice vplyv velkosti paketov odhalili zaujimavé rozdiely medzi metédami
smerovania. Pri smerovani v jadre boli rychlosti relativne stabilné bez ohladu na velkost
paketu. Naopak, vykon XDP bol citlivejsi na velkost paketov — vacsie pakety viedli k nizsim
poctom spracovanych paketov za sekundu.

Zaver prace (Kapitola 7) sa venuje moznostiam dalSieho rozvoja XDP smerovania. Velky
potencial predstavuje odsun xdp-forward priamo na siefové karty, ktoré by mohlo priniest
az 20-nasobné zvysenie vykonu. Beh xdp-forward priamo na hardvéri je vsak prolemom
kvoli svojej komplexnosti a vyuzivaniu funkcii, ktoré nie st na hardvéri dostupné, vratane
pristupu k smerovacej tabulke jadra. Dalsie zaujimavé oblasti na rozvoj zahiiaji integraciu
novych funkcii jadra — napriklad lepsiu integraciu s Netfiltrom prostrednictvom novych
pomocnych BPF funkcii.

Tato praca dokazuje, ze XDP dokaze vyrazne zvysit vykon pri smerovani paketov v
Linuxe, pricom identifikuje konkrétne oblasti, kde je priestor na rozsirenie funkcionality.

Using XDP to accelerate routing in the Linux ker-
nel

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Matéj Grégr Ph.D. The supplementary information was pro-
vided by Toke Hgiland-Jgrgensen. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis. I further declare that
all text was written by me, with generative large language models used solely as editing
tools for grammar correction, stylistic refinement, and improved articulation of my existing
ideas. All intellectual content, research, implementation work, analyses, testing, and con-
clusions are entirely my original work.

Samuel Dobron
May 21, 2025

Acknowledgements

In the vast expanse of existence, where infinite possibilities collide and diverge, I find myself
at this particular intersection of time and space, completing this thesis. The path that led
here — a sequence of seemingly random events, choices, and encounters — emerges from the
underlying chaos that governs all things, perhaps inevitable, perhaps merely one branch
among countless alternatives. Every conversation, every book encountered, every moment
of frustration or insight has shaped not just this work but the lens through which I perceive
the academic landscape. Scio me nihil scire — the recognition of our fundamental limitations
stands as relevant today as ever.

I extend my gratitude to my thesis supervisor, who provided guidance while allowing

me the freedom to explore. Similarly, my consultant offered invaluable perspective that
shaped this work in subtle but significant ways.
To my family, who have been present at every junction of my journey — your support has
been the constant in a universe of variables. And to friends who have engaged in countless
discussions, challenging assumptions and offering new perspectives — you have influenced
this work in ways neither you nor I can fully measure.

In this moment of completion, I acknowledge the butterfly effect of all interactions that
have led to this point. A different word, a different meeting, a different thought — any
small perturbation in the chaotic system of existence might have altered everything. That
we arrived here, in this particular configuration of knowledge and expression, seems both
miraculous and ordinary — the paradox at the heart of chaos itself.

Thank y’all.

Contents

1 Introduction
2 Linux kernel
2.1 User Space and Kernel Space Separation
2.2 Kernel Subsystemso oo
2.3 Network Interface Controller
2.4 Linux networking stack
2.5 extended Barkley Packet Filter
2.6 eXpressDataPath
3 Features Analysis
3.1 Firewalling
3.2 Connections tracking Lo Lo oo
3.3 Address translation
3.4 Packet queuing
3.5 Virtual devices
4 Extending xdp-forward functionality
4.1 Design e
4.2 TImplementation L L o
4.3 Functional tests
5 Performance analysis
5.1 Networking performance measurement tools
5.2 Testbedo
5.3 Test scenario design Lo
5.4 Results.
6 Future Work
7 Conclusion
Bibliography

A Tuning kernel forwarding performance beyond 10 Mpps

B Detailed Measurements Results

C Contents of the external attachment

30
30
31
32
32
33

35
35
37
39

41
41
42
43
49

59

60

61

65

70

(e

Chapter 1

Introduction

The rising volume of network traffic present significant challenges for packet processing
systems. Traditionally, the Linux kernel manages network packet forwarding, but this
approach encounters performance limitations as network interface speeds increase. The
kernel networking stack incurs substantial per-packet processing overhead through opera-
tions such as memory allocation, protocol parsing, and traversal of multiple software layers,
resulting in reduced forwarding rates. High-end routers and network appliances typically
avoid Linux software routing entirely due to these performance constraints, instead relying
on specialized hardware with application-specific integrated circuits for packet forwarding
operations. Consequently, network engineering has increasingly moved toward offloading
kernel networking functionality to dedicated hardware or to processing layers positioned
closer to the hardware interface.

This thesis investigates methods for accelerating packet forwarding in the Linux kernel
through the eXpress Data Path (XDP). XDP enables high-performance packet processing
by allowing extended Berkeley Packet Filter (eBPF) programs to execute at the earliest
possible stage of packet reception—directly after the Network Interface Controller (NIC)
receives a packet and before the kernel allocates a socket buffer. The work specifically ex-
amines xdp-forward, a utility within the xdp-tools collection that leverages XDP to per-
form direct packet forwarding at this early processing stage, bypassing substantial portions
of the conventional kernel networking stack. This approach positions xdp-forward as an
intermediate solution between traditional kernel software routing and pure hardware-based
forwarding, potentially offering a cost-effective alternative for scenarios that do not justify
dedicated forwarding hardware.

Although xdp-forward offers considerable performance benefits, it lacks certain features
present in the complete kernel stack. This thesis systematically addresses these limitations
through several approaches. Section 3 provides a comprehensive analysis of features cur-
rently not implemented in xdp-forward. Section 5 presents detailed results of performance
testing, measuring forwarding rates and CPU utilization.

As a practical contribution, this work implements support for Virtual Local Area Net-
works (VLANS), one of the identified missing functionalities. These modifications extend
xdp-forward’s applicability to more complex network topologies. The implementation has
been submitted and is awaiting integration into the upstream xdp-tools project. Finally,
Section 6 examines possible future development, including the possibility of hardware of-
floading for xdp-forward operations to further enhance performance.

Chapter 2

Linux kernel

Operating system is a set of programs that provide an abstraction layer between hardware
and user applications [42, Chapter 1.1]. One of the most critical program that is part
of operating system is kernel, which manages system resources, provides hardware abstrac-
tion, enforces security policies, and handles interrupts. The kernel schedules processes,
manages memory allocation, controls input/output operations, and facilitates interprocess
communication. Linux kernel implements a monolithic design where the kernel executes
in privileged CPU mode (ring 0), enabling direct hardware access and memory manage-
ment. User programs operate in unprivileged mode (ring 3) and must request kernel services
through system calls when requiring access to hardware resources or performing privileged
operations. [42, Chapter 1.7]

2.1 User Space and Kernel Space Separation

In modern operating systems, address spaces of processes are separated by memory virtu-
alization. This also applies to kernel and other user processes. This separation is called
kernel and user space.

User-space processes operate within isolated virtual address spaces, preventing interfer-
ence between applications. Each process maintains its own virtual memory mappings, with
the kernel managing the translation to physical memory addresses through page tables. [42,
Chapter 1.5]

Access to privileged operations from user space processes occurs through the system call
interface, as shown on Figure 2.1. System calls transition CPU from user mode to kernel
mode through syscall instruction on x86_ 64 architecture. System calls are implemented
as wrapper functions that prepare registers according to the x86_ 64 System V ABI calling
convention. The syscall ID must be present in rax register'. The parameters are passed
through registers in the following order: rdi, rsi, rdx, r10, r8, r9. If more parameters are
needed, they are passed on the stack. After the kernel processes the syscall request (e.g.
open() internally calls do_sys_open() kernel function), the return value is stored in rax
register. System calls calling APT is defined by x86_ 64 System V ABI. [28]

syscall IDs may differ based on CPU architecture and can be found in syscall IDs table. For example,
at https://gpages.juszkiewicz.com.pl/syscalls-table/syscalls.html

https://gpages.juszkiewicz.com.pl/syscalls-table/syscalls.html

Process 1

mov rax, 0x2
syscall
cmp rax, Ox0
js error

Process 2

mov rax, 0x2B
syscall
cmp rax, Ox0
js error

Process N

user space

accept() A A
return

code \ 4

open() ‘:eturn

\ 4 code Y

_. System call interface

v)

Kernel

2 A

Drivers

kernel space

HW

Figure 2.1: User and kernel memory spaces are separated and their communication oc-
curs via well-defined system call interface. This interface provides operations like open(),
read(), or accept().

2.2 Kernel Subsystems

This section is based on [9]. The Linux kernel implements a monolithic architecture where
all operating system services execute in kernel space. However, internally the kernel main-
tains a modular structure divided into distinct subsystems. Each subsystem handles specific
system functionality while communicating through well-defined interfaces. This design en-
ables maintainability and allows selective compilation of kernel features based on system
requirements.

The core kernel subsystems include:

e Memory Management Subsystem handles virtual memory operations, page alloca-
tion, and memory mapping. It implements demand paging, handles page faults, and
manages the Translation Lookaside Buffer (TLB).

e Power Management Subsystem controls the system power states, CPU frequency scal-
ing, and device power states through the ACPI interface.

e Process Scheduler manages CPU time allocation between processes, implements schedul-
ing policies, and handles context switching between tasks.

o Sound Subsystem provides audio device abstraction through ALSA (Advanced Linux
Sound Architecture), managing sound card drivers and audio streams.

e Networking Subsystem implements network protocols, packet processing, and network
device management through the network stack.

e and many others ...

The following sections explain the Networking subsystem in more detail.

2.3 Network Interface Controller

The machine’s first contact with Ethernet frame is, when it arrives to Network Interface
Controller (NIC) as a series of zeros and ones. The form of these zeros and ones depends
on used transmission medium.

However, covering physical layer standards and implementations is outside of this thesis’
scope. For anyone interested, we recommend [24]. It guide its’ readers through whole
Ethernet standard and implementation of NIC in VHDL?.

So, when the Ethernet frame is received by Network Interface Controller it gets processed
and if nothing went wrong it will eventually somehow end up in one of RX queues. How
it will get to RX queues and what RX or TX queues actually are we will discuss later.
Counterpart of RX queues are TX queues where egress packets are positioned until they
are transmitted over medium to some other Network Interface Controller [38, Chapter 1].

tx queue n

Figure 2.2: Network Interface Card (NIC) and kernel queues illustration showing receive
(RX) queues where the NIC hardware writes and kernel reads from, and transmit (TX)
queues where the kernel writes and NIC hardware reads from.

2.3.1 Network devices

In the Linux kernel, network devices are abstracted through the struct net_device data
structure. This structure serves as the primary representation of network interfaces within
the kernel, providing a uniform interface regardless of the underlying implementation [38,
Chapter 1]. The struct net_device contains fields for device properties, statistics, con-
figuration parameters, and most importantly, function pointers that define the operations
the device can perform [43].

Network devices are allocated using alloc_netdev_mgs (), which manages memory al-
location and initialization of the basic device structure. This function requires information
about the size of the private data, the device naming, the initialization routine, and the
number of transmit and receive queues to configure. After allocation, the device-specific
setup function performs hardware-specific initialization [43].

2VHDL (VHSIC Hardware Description Language) is a hardware description language used to model and
design digital systems, particularly integrated circuits and FPGAs. Unlike traditional and commonly used
programming languages that create software instructions for existing hardware, VHDL directly describes
the hardware structure and behavior itself, allowing engineers to program the physical circuits of electronic
systems [34, Chapter 1].

The sizeof_priv parameter allocates driver-specific private data, while txgs and rxqgs
specify the number of transmit and receive queues for the device. The setup function
pointer is called to perform device-specific initialization [43].

After allocation and initialization, the device must be registered with the networking
subsystem using register_netdev(). This function adds the device to kernel data struc-
tures, making it visible and usable by the rest of the system. The registration process
performs several important tasks, including assigning a device index, adding the device
to network namespace lists, and triggering notification of other subsystems.

The registered struct net_device persists in kernel memory even if the driver mod-
ule is unloaded, ensuring that configuration and statistics remain accessible. The kernel
implements a notification chain system through netdev_chain to inform other subsystems
about device state changes, allowing components to react to network device events without
tight coupling. [43]

Linux supports multiple types of network devices that all share this common infrastruc-
ture, while implementing different underlying mechanisms for packet processing.

Physical devices

The most basic network device type is physical device, representing actual hardware inter-
faces typically connected via PCle that provide connectivity to physical networks. These
devices are managed by kernel drivers that enable communication between the networking
stack and the hardware.

Physical devices are distinguished by their ability to support hardware offloading fea-
tures. These offloads move processing tasks from CPU to specialized hardware on the NIC,
improving performance and reducing system load [38]. Common hardware offloads include:

e Checksum offload — enables the NIC to calculate and verify checksums for various
protocols (IP, TCP, UDP), eliminating CPU overhead for these calculations

o TCP Segmentation Offload (TSO) — allows the kernel to pass large TCP segments
to the NIC, which handles the fragmentation into MTU-sized packets

o Generic Segmentation Offload (GSO) — extends segmentation capabilities to other
protocols

o Receive Side Scaling (RSS) — distributes incoming traffic across multiple receive
queues and CPUs based on hash values computed from packet headers

e Header splitting — separates packet headers from payload data to optimize memory
access patterns

o VLAN tag insertion/removal — handles 802.1Q VLAN tags in hardware, where the
NIC removes the VLAN tag from incoming packets and sets the corresponding VLAN
value in the socket buffer (skb_ buff) passed to the kernel

Physical device drivers implement device-specific operations by populating the
net_device_ops structure with function pointers. These functions include packet transmis-
sion (ndo_start_xmit), configuration, and statistic collection [38, Appendix A]. The driver
may also implement specialized operations like ndo_xdp_xmit for XDP program support,
which will be discussed later in this thesis.

Stacked devices

Stacked network devices operate as virtual interfaces created on top of other network de-
vices, typically physical interfaces. Unlike physical devices, stacked devices do not directly
control hardware but instead process packets before passing them to their underlying de-
vices or after receiving them. These virtual interfaces extend network functionality while
leveraging the common net_device infrastructure. [38, Appendinx A]

The Linux kernel implements several types of stacked devices:

e VLAN devices — implement IEEE 802.1Q virtual LANs by adding or removing VLAN
tags on packets. Created with ip link add link device name name type vlan
id 4d, these devices filter traffic based on VLAN ID. When transmitting, the VLAN
device adds the appropriate tag before passing packets to the parent device [23]. The
implementation is located in net/8021q/.

e Bond interfaces — aggregate multiple network interfaces into a single logical interface,
providing increased bandwidth or redundancy [18]. These devices implement various
bonding modes such as round-robin, active-backup, and LACP (802.3ad). The bond-
ing driver (drivers/net/bonding/) distributes outgoing traffic across slave interfaces
according to the selected policy and handles receiving traffic.

o Bridge devices — implement Ethernet bridging (IEEE 802.1D), connecting multi-
ple network segments at the data link layer (L2) [23]. Bridges maintain forward-
ing databases of MAC addresses to make forwarding decisions. The bridge code
(net/bridge/) registers hooks in the network stack using the netfilter framework.

o and others.

Stacked devices register with the kernel using the same registration process as physical
devices but implement different operations. Each stacked device type registers its own
net_device_ops structure, with specialized implementations of operations like
ndo_start_xmit that handle the device’s specific packet processing requirements before
delegating to the underlying device. [38, Appendinx A]

Virtual devices

Virtual devices exist entirely in software without requiring an underlying physical device.
These devices implement the same net_device interface but operate solely within the
kernel, supporting various virtualization, testing, and tunneling scenarios. [38]

The Linux kernel implements several types of virtualization devices:

e Loopback device — represented by the lo interface, provides an internal communica-
tion path within the system.

e Veth pairs — virtual Ethernet devices that always come in connected pairs, functioning
as a virtual connection between network namespaces. Veth devices transmit packets
bidirectionally — packets sent on one end are received on the other.

o TUN/TAP devices — provide a kernel-to-userspace network interface. TAP simulates
an Ethernet device and operates at layer 2, while TUN simulates a network layer
device and operates at layer 3.

o and others.

2.3.2 NIC driver initialization

In the previous section, we mentioned which network devices are supported by the Linux
kernel. In this section, we will focus only on the initialization of physical devices, as the
initialization process of other devices is not as important for the topic of this thesis.

Network device initialization is process that establishes the operational state of net-
work interface controllers within the Linux kernel. The initialization sequence begins when
the PCI® subsystem detects supported network cards, triggering device-specific probe rou-
tines [9, Chapter 13]. The initialization process includes several steps: allocation of DMA-
capable memory regions for transmitting and receiving descriptor rings, registration of in-
terrupt service routines, configuration of hardware offload capabilities, etc. Before making
the device operational, the driver must configure device-specific features such as RSS (Re-
ceive Side Scaling) for multi-queue support or its software alternative RPS (Receive Packet
Steering). All initialization operations must be completed before device registration, as
the network device becomes immediately available for packet processing after successful
registration. [14]

Queues allocation

During NIC driver initialization phase®, the driver allocates a fixed region of memory”
in RAM for packet processing and configures circular buffers, commonly known as rings
or queues. There might be just one or more receive (RX) and transmit (TX) queues.
However, most of modern NICs uses multiple RX and TX queues where each queue is usually
handled by different CPU". These pre-allocated ring buffers are used by NIC for populating
DMA descriptors pointing to memory where the actual packet data are located. [38, 14]

TAIL RX/TX

ring queue

Figure 2.3: Illustration of ring buffer or circular buffer data structure. The reader is reading
data from HEAD pointer position and writer is writing to TAIL position. If writer reaches
HEAD pointer the buffer is full. In context of RX queue, NIC driver would be writer and
CPU would be reader.

3Most of the high-end NICs are connected via PCI and so, we are ignoring other methods.

“Driver is in most cases, loaded during boot time — during device detection phase. But it may happen
during run time as well. For example, when connecting hot plug devices, manual (re)loading of responsible
driver, ...

"These memory regions require non-swappable, physically contiguous memory blocks [29].

SIn this thesis, the term CPU refers to a logical or physical CPU core, as this aligns with common Linux
kernel terminology.

Registration of handling functions

During the driver initialization phase, the driver must register various callback functions
that will be invoked by the networking subsystem during packet processing. These func-
tions are stored in the struct net_device_ops (network device operations) structure,
which serves as an interface between the networking stack and the device driver [38]. It’s
ndo_start_xmit function is called when the networking stack needs to transmit a packet,
while packet reception is handled through the ndo_napi_poll function within the NAPI
(New API) framework. NAPI combines interrupt and polling mechanisms to process pack-
ets in batch. [38, 14]

Interrupts

After setting up the operation structure, the driver proceeds with the interrupt handling
configuration. Modern NICs typically utilize Message Signaled Interrupts (MSI-X), which
enable the mapping of different hardware queues to specific CPU cores. [14, 32]

The interrupt handling mechanism operates as follows [17, Chapter 4] and [14]:

1. When packets arrive, the NIC raises an interrupt

2. The corresponding ISR acknowledges the interrupt and disables further interrupts
3. NAPI polling is scheduled on the appropriate CPU

4. The poll function processes packets up to the specified budget for processing

5. If all packets are processed, interrupts are re-enabled; otherwise, polling continues
with refreshed budgets

2.3.3 Spreading packets into queues

In previous sections we explained how receive and transmit queues work, what we did not
cover is how the queue for packet is selected. With multiple queues available, the system
must determine the appropriate queue for each packet to ensure efficient processing and
load distribution. This section relies on [19].

RSS

Receive Side Scaling (RSS) distributes incoming network traffic across multiple receive
queues using hardware-computed hash values from packet headers. The hash typically
includes IP addresses and port numbers, ensuring that packets from the same flow remain
on the same CPU core. This hardware-based approach maintains packet ordering while
distributing processing load across cores through a pre-configured indirection table.

RPS

Receive Packet Steering (RPS) provides a software-based alternative to RSS that operates
after packets reach RAM. RPS computes flow hashes in software and distributes packets
to CPUs based on configurable masks.

2.4 Linux networking stack

In this Linuz networking stack walk-through we will primarily focus on IPv4. Howewver,
there is little to no difference to IPv6.

User space
User process 1 User process 2 User process N
A A A
Kernel space !
L4
S
L3 Local delivery
conntrack f----- > routing Forward delivery—
A
L2
Taps
o
Iy 2 <
N A e
L 5 |
< [T
<
A AF_XDP
—XDP_PASS—| |
No XDP Generic XDP XDP_REDIRECT
I
GRO? |» RPs? I
XDP_TX
A ‘
A4
/ Ingress interface driver \
struct skb alloc «—XDP_PASS AF_XDP
A \ 4
No XDP/eBPF hooks Egress interface driver N
net_device > XDPEBPE L ypp REDIRECT— net_device
hooks =

\ /

Figure 2.4: Overview of Linux kernel networking stack showing essential components. The
diagram illustrates the packet processing paths through different layers, including the XD-
P/eBPF hooks in the ingress driver, generic XDP processing, and interactions between
kernel and user space. Based on [24, 21, 14].

10

2.4.1 Ingress packet path

The ingress packet path in the Linux networking stack represents the complete journey of a
packet from its arrival at the network interface until it reaches its final destination, either
a local application or being forwarded to another interface. The complete networking stack
architecture is illustrated in Figure 2.4. This section examines each stage of packet pro-
cessing in detail, following the same sequence a packet encounters as it traverses through
the regular networking stack. Understanding this path is essential for network stack opti-
mization and features like XDP that can intercept packets at various stages.

NAPI

The New API (NAPI) provides the interface between network device drivers and the kernel
networking stack to receive packets. When packets arrive at the Network Interface Card
(NIC), they are placed into RX rings through Direct Memory Access (DMA). The NIC
then raises an interrupt to notify the system of new packets. NAPI combines interrupt and
polling mechanisms to efficiently transfer these packets from the RX rings to the kernel
networking stack. To prevent interrupt storms during high traffic, NAPI employs two
control parameters — weight and budget. The weight parameter defines the maximum
number of packets that can be processed in one polling cycle per interface, with a typical
default value of 64. The budget represents the total number of packets that can be processed
across all network interfaces in a single NAPI polling cycle. The default budget is 300
packets. [14]

During low-traffic periods, the interface operates in interrupt mode. When traffic
increases beyond a threshold, NAPI switches to polling mode, reducing interrupt over-
head. [38, 44]

Passing frames to higher protocols

After GRO and RPS processing, packets are delivered to the appropriate protocol handlers
in the networking stack through two main mechanisms — protocol handlers and RX han-
dlers [14]. The core delivery logic is implemented in __netif_receive_skb_core().

list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
if (pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
if (pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
Figure 2.5: Protocol hooks processing. There might be system-wide hooks
(net_hotdata.ptype_all) and single device only hooks (skb->dev->ptype_all). Taken
from [44, net/core/dev.c, Line 5512].

Protocol handlers provide a way to process packets based on their higher protocol type.
Common examples include IPv4 (registered by ip_packet_type), IPv6 (ipv6_packet_type),

11

and ARP (arp_packet_type). This mechanism is also used by packet capturing tools like
Wireshark and libpcap. The kernel maintains two lists of protocol handlers:

1. ptype_all — receives all packets regardless of protocol
2. net_hotdata — an optimized list for most common protocols, improving performance

For each matching protocol handler, the kernel calls its .func member with the packet
as parameter. Protocol handlers are registered through dev_add_pack() [14]:

static struct packet_type my_packet_type = {
.type = htons(ETH_P_IP),
.func = my_packet_rcv,
s
dev_add_pack (&my_packet_type) ;
Figure 2.6: An example of dev_add_pack() and struct packet_type usage.

RX handlers provide a device-level hook mechanism that can intercept packets. This
is commonly used by virtual networking infrastructure like bridges. Only one RX handler
is allowed per device, registered using netdev_rx_handler_register() [l14]:

static rx_handler_result_t my_rx_handler(struct sk_buff **pskb)

{
/* Handler logic */
return RX_HANDLER_PASS;
}

netdev_rx_handler_register(dev, my_rx_handler, NULL);

Figure 2.7: An example of netdev_rx_handler_register() usage.

netfilter

After packets are processed by protocol handlers, they continue through the network stack
where they encounter the netfilter framework. Netfilter is the kernel subsystem that pro-
vides the infrastructure for packet filtering, network address translation (NAT), and packet
mangling. It operates by defining hook points at various locations in the packet traversal
path through the networking stack, with each hook allowing registered functions to exam-
ine and potentially modify or drop packets as they pass through. These hook points serve
as interception points within the network stack. [38, Chapter 9]
The netfilter defines five primary hook points in the IPv4 and IPv6 processing paths:

e NF_INET_PRE_ROUTING — Called before routing decisions, immediately after packet
validation

e NF_INET_LOCAL_IN — Called when a packet is routed to the local system
e NF_INET_FORWARD — Called when a packet is to be forwarded to another host
e NF_INET_LOCAL_OUT — Called for outbound packets originating from local processes

e NF_INET_POST_ROUTING — Called just before a packet leaves the system

12

These hook points aren’t implemented as separate functions; rather, they are invocation
points within key packet processing functions. For example, in the [Pv4 implementation, the
ip_rcv() function calls the NF_INET_PRE_ROUTING hook by invoking the NF_HOOK macro:

int ip_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)

{
/* Packet validation and initial processing ... */
return NF_HOOK (NFPROTO_IPV4, NF_INET PRE_ROUTING,
net, NULL, skb, dev, NULL, ip_rcv_finish);
+

Figure 2.8: Netfilter hook invocation in ip_rcv(). Taken from [44, net/ipv4/ip_input.c].

The NF_HOOK macro calls nf_hook(), passing protocol family, hook type, network
namespace, socket buffer, device pointers, and a callback function to execute if all hooks re-
turn NF_ACCEPT. Multiple hook functions can register at each hook point, executing in pri-
ority order until one returns a non-accept verdict or all complete. The bridge netfilter
subsystem extends this with Layer 2 hooks (NF_BR_*) that process Ethernet frames before
IP processing. Since hooks are executed for every traversing packet, with potentially multi-
ple functions per hook point, they represent significant processing overhead [38, Chapter 9.

conntrack

Following firewall filtering, packets that are allowed to proceed encounter the connection
tracking (conntrack) subsystem, which is implemented as part of netfilter as well. Connec-
tion tracking is feature of the Linux kernel’s networking stack that maintains state infor-
mation about network connections passing through the system. conntrack enables stateful
inspection by associating packets with their respective flows. [38, Chapter 9]

Connection tracking records information about network connections in the kernel’s con-
ntrack table. Packets enter the conntrack subsystem through two main entry points:

e nf_conntrack_in(): Called at the PRE_ROUTING and LOCAL_OUT hook points, this
function extracts connection information from the packet and either creates a new
conntrack entry or updates an existing one. [5]

e nf_conntrack_confirm(): Called at the POST_ROUTING and LOCAL_IN hook points,
this function confirms newly created conntrack entries by moving them from the
unconfirmed list to the confirmed list. [5]

This connection information is stored in a hash table for efficient lookups, contain-
ing state data such as connection status, timeouts, and counters. While enabling essential
networking features such as stateful firewalling, conntrack can become a performance bottle-
neck, particularly for systems handling numerous concurrent connections [35]. The module
supports various protocols (TCP, UDP, ICMP, etc.), each with protocol-specific tracking
methods implemented through struct nf_conntrack_l4proto [38, Chapter 9.

Routing decision

And finally, after all the previous steps, the routing decision needs to be made to decide
what are next steps — either delivering packet locally to some of the locally running processes

13

or, redirecting packet out of (some) networking interface. This will be further discussed
in the following section.

2.4.2 Routing using regular Linux networking stack

After processing the packet through the network stack as described in previous sections, the
packet reaches either IPv4 or IPv6 layer’. Within this layer, the function ip_rcv (ip6_rcv)
performs initial checks on the packet, examining header fields for correctness and verifying
checksum. Once these preliminary checks pass, the packet is passed to ip_rcv_finish_core,
which continues the processing. [44, net/ipv4/ip_input.c, Line 456]

As packet traverses through the IP layer processing, it reaches ip_route_input_slow
function, where the actual routing decision is made. This function determines whether
a packet should be delivered locally to a process running on the machine or forwarded
to another network interface. After processing broadcast and special case packets, the rest
of routing logic is implemented in function ip_route_input_slow.

This section examines the routing subsystem in detail, explaining how the Linux kernel
makes forwarding decisions based on destination addresses and policy configurations.

Routing tables

The sources for this section were [38, Chapeter 5| and [14, 41] and we discuss the most
important routing parts and features. For deeper understanding we advise readers to get
through mentioned sources.

The Linux kernel supports multiple routing tables, each with a unique ID, though users
typically interact with just the main routing table. These tables map destination networks
to next-hop information and are stored internally in an optimized Forwarding Information
Base (FIB). This architecture enables advanced scenarios such as policy-based routing. The
implementation resides in net/ipv4/fib_x* files, with £ib_lookup serving as the primary
interface for the networking stack to access routing information.

FIB The Forwarding Information Base (FIB) is the kernel’s core data structure for rout-
ing information, using a specialized trie-based structure for efficient IP address lookups.
This hierarchical organization is optimized through techniques like leaf-pushing and path
compression to reduce memory usage and improve cache locality. The kernel maintains sep-
arate but algorithmically similar FIB structures for IPv4 and IPv6 in net/ipv6/route.c
and net/ipv6/ip6_fib.c. Beyond packet forwarding, the FIB also supports multipath
routing through struct fib_nh_common and functions like reverse path filtering and VRF
implementation [6].

Lookup process

The routing lookup process in Linux begins when a packet needs to be routed, typically
in the context of ip_route_input_slow for incoming packets or ip_route_output_slow
for locally generated packets. The process aims to determine the appropriate path. [38,
Chapter 5]

When an incoming packet reaches ip_route_input_slow, the kernel first checks if the
packet is destined for a local address. This check involves lookup in the local routing table,

"Other protocols are outside of this thesis’s scope. Therefore, we are omitting them.

14

which contains routes for the machine’s own IP addresses. If the packet is destined for
a local address, it is marked for local delivery; otherwise, the routing process continues.
[44, net/ipv4/route.c, Line 2301]

The actual lookup follows these general steps:

1. The kernel consults the routing policy database (RPDB) to determine which routing
table to use. By default, this is the main routing table, but policy routing can specify
alternative tables. [38, Chapter 6]

2. Within the selected table, the kernel searches the FIB trie structure, traversing
it based on the bits of the destination IP address. This search implements the longest
prefix match algorithm, where the most specific matching route is selected.

3. The search continues until either a matching route is found or the lookup fails. In case
of failure, the kernel may fall back to a default route if one exists.

4. Once a route is found, the kernel extracts the next-hop information and the output
device from the routing entry.

The output of the routing lookup process is a routing result structure that contains all
necessary information to forward the packet, including next-hop addresses, output inter-
faces, and any specific handling instructions. [41]

Policy routing

Unlike conventional routing based solely on destination IP, policy routing considers addi-

tional parameters, including source address, TOS field, incoming interface, and packet size.

The Linux kernel implements this through the Routing Policy Database (RPDB), which

contains rules that determine which routing table to use for each packet [38, Chapter 6].

The fib_rules_lookup function processes these rules sequentially until finding a match.

Rules are represented by struct fib_rule and managed via the Netlink interface.
Common applications of policy routing include [41]:

e Source-based routing, where traffic from different source addresses follows different
paths

e Multi-homed setups with multiple internet connections, where traffic is directed based
on source or destination attributes

e Quality of Service (QoS) implementation, where traffic is routed differently based
on TOS or DSCP values

o Traffic isolation in virtualized environments or container setups

Route result

After the routing lookup process is completed successfully, the kernel creates a route re-
sult structure that encapsulates all the information needed for packet forwarding. This
is represented by struct rtable [38, Chapter 5]:

After a route has been selected, the kernel attaches this routing information to the
packet’s socket buffer (skb_buff) by setting its _skb_refdst field to reference the destina-
tion cache entry. [41]

15

struct rtable {
struct dst_entry dst; /* Common destination entry fields */
{
struct net_device *dev; /* Output device */
unsigned long expires; /* Cache expiration time */
/* Function pointers for packet handling */
int (*input) (struct sk_buff *);
int (*output) (struct net *net, struct sock *sk, struct sk_buff *skb);
s
int rt_genid; /* Route generation ID~*/
unsigned int rt_flags; /* Route flags */
__ul6 rt_type; /* Route type (unicast, broadcast, ...) */
__u8 rt_uses_gateway; /* Whether route uses a~gateway */

/* Info on~neighbour */
u8 rt_gw_family;
union {
__be32 rt_gu4;
struct in6_addr rt_gw6;
+;

/* Path MTU discovery information */

u32 rt_pmtu;

VA V4
s
Figure 2.9: Sample of the rtable structure from the Linux kernel. Some elements have
been omitted. Taken from [44, include/net/route.h, Line 56].

2.4.3 Egress packet path

After a packet has been processed through the routing and a route result has been attached
to the socket buffer struct skb_buff, it enters the egress path. The egress packet path
represents the journey a packet takes from the moment it’s determined to be forwarded out
of the system until it reaches the network hardware for transmission. For IPv4 packets,
the egress path typically begins with the ip_output () function, which serves as the entry
point for the transmission process. Similarly, IPv6 packets enter the egress path through
ip6_output () [41].

This section examines how packets traverse the various components of the kernel’s egress
processing pipeline. We are omitting the description of how packets originate from userspace
applications and reach the networking stack, as those mechanisms are not directly relevant
to the subject of this thesis which focuses on packet forwarding performance.

netfilter

The netfilter framework’s involvement in the egress packet path follows a similar pattern
to what was described for the ingress path. As packets move through the egress processing
pipeline, they encounter predefined hook points where registered netfilter functions can
examine and potentially modify or drop them.

16

For outgoing packets, two primary hook points are relevant [5]:

e NF_INET_LOCAL_OUT — This hook is invoked for packets originating from local pro-
cesses, triggered within the ip_local_output () function before routing decisions are
finalized.

e NF_INET_POST_ROUTING — This hook is the final inspection point before a packet
leaves the system, called from ip_finish_output () after routing decisions and before
neighbor resolution.

These hooks are invoked through the same NF_HOOK macro (which ultimately calls the
nf_hook() function) as described in Section 2.4.1. Like in the ingress path, netfilter hooks
in the egress path enable mechanisms such as NAT (particularly SNAT for outgoing con-
nections), stateful packet filtering, and packet mangling operations before packets exit the
system. [38, Chapter 9]

Offloading and fragmentation

After packets pass through the netfilter hooks, they enter the __ip_finish_output () func-
tion which handles packet fragmentation when necessary. This function is responsible for
ensuring that the outgoing packets meet the Maximum Transmission Unit (MTU) of the
egress interface. The function checks whether the packet size exceeds the MTU of the out-
going interface. If a packet is too large, it must be divided into smaller fragments prior to
transmission. [44, net/ipv4/ip_output.c, Line 311]

Neighbor address resolution

Packets are then processed by ip_finish_output2() function, which handles the neighbor
address resolution. This function handles translation of L3 network layer addresses to L2
data link addresses. [44, net/ipv4/ip_output.c, Line 230]

For IPv4 packets, this involves searching the Address Resolution Protocol (ARP) cache,
while IPv6 packets use the Neighbor Discovery Protocol (NDP) cache. The process follows
these general steps:

o Extract the next-hop IP address from the route information attached to the socket
buffer

o Search the appropriate neighbor cache (ARP table for IPv4, NDP cache for IPv6) for
an entry matching this IP address

o If no entry exists, create a new neighbor entry in an incomplete state
o If an entry exists but is stale or incomplete, initiate address resolution

o If a valid entry exists with a resolved MAC address, use it to build the layer 2 header

When a neighbor’s MAC address is not resolved, the system sends an ARP Request (IPv4)
or Neighbor Solicitation (IPv6) message and typically queues the packet. The packet re-
mains in this queue until address resolution completes or times out. [38, Chapter 7|

17

Queuing discipline

After neighbor resolution, packets reach the final stage of the egress path before hardware
transmission which is queuing discipline (qdisc). The qdisc subsystem implements traffic
control mechanisms in the Linux kernel through software queues that manage packets before
they are placed in the hardware transmission queues. [40]

The packets enter the qdisc layer through the dev_queue_xmit () function, which serves
as the primary interface between the network stack and the device driver layer. This func-
tion locates the appropriate qdisc for the outgoing interface and enqueues the packet. [44,
net/core/dev.c, Line 4340]

The Linux kernel supports various queuing disciplines, each implementing different
packet scheduling and traffic shaping strategies. We will mention three of them [40]:

o FIFO (pfifo or bfifo) — The simplest discipline that processes packets in first-
in-first-out order. It offers minimal overhead but provides no traffic management
capabilities. The pfifo variant limits the queue by packet count, while bfifo limits
by byte count.

o fq_codel (Fair Queuing with Controlled Delay) — A more sophisticated discipline that
combines fair queuing with active queue management. It creates separate queues for
different flows and applies the CoDel algorithm to manage bufferbloat by monitoring
and controlling queue delay.

e noqueue — A special discipline that does not actually queue packets. Instead, it at-
tempts to transmit packets immediately or drops them if the device is busy. This
discipline minimizes latency at the cost of potential packet loss during congestion.

Once a packet passes through the qdisc layer, it is finally handed to the network de-
vice driver via the driver’s ndo_start_xmit () function. The driver then places the packet
in the appropriate hardware transmit queue, typically using DMA operations to transfer
the packet data to the NIC’s memory [44, include/linux/netdevice.h, Line 1031]. Af-
ter the packet is placed in the hardware queue, the NIC takes over the responsibility for
transmitting the packet on the physical medium. The actual transmission occurs asyn-
chronously, with the NIC generating an interrupt upon completion to notify the kernel that
the transmit buffer is now available for reuse.

2.5 extended Barkley Packet Filter

Extended Berkeley Packet Filter (eBPF) represents a significant advancement in Linux
kernel programmability. While classic BPF was primarily for packet filtering, eBPF has
evolved into a general-purpose execution engine within the kernel enabling privileged code
execution without requiring kernel modules or system downtime [36].

eBPF operates through a restricted instruction set architecture, with programs either in-
terpreted or compiled to native code via just-in-time compilation. Each program undergoes
rigorous verification before execution to ensure system stability and security. Programs can
attach to various kernel events including network events, system calls, function entry/exit
points, and tracepoints, with access to event context data, state maintenance through maps,
and interactions through helper functions [36, 13].

Primary use cases for eBPF include:

18

e Network programming and packet processing
e Security monitoring and enforcement

e Performance analysis and troubleshooting

e System tracing and observability

The subsequent chapters examine the key components of the eBPF architecture in detail.

2.5.1 eBPF Virtual Machine

The eBPF virtual machine operates within kernel space as a constrained execution environ-
ment for verified bytecode instructions. Unlike traditional VMs, it runs within an existing
kernel context, maintaining isolation through strict memory access controls while enabling
access to kernel functionality via helper functions [36, Chapter 3].

The VM implements a register-based architecture with eleven 64-bit registers: R0 for
return values, R1-R5 for argument passing, R6-R9 as general-purpose registers, and R10
as a read-only frame pointer. This architecture mirrors modern CPUs for efficient native
code translation [36, Chapter 3].

struct bpf_insn {
__u8 code; /* opcode */
__u8 dst_reg:4; /* destination register */
__u8 src_reg:4; /* source register */
__s16 off; /* signed offset */
__s832 imm; /* signed immediate constant */
+;
Figure 2.10: Structure describing a single eBPF instruction in its 64-bit format. Taken
from [44, include/uapi/linux/bpf.h, Line 77].

Instructions are encoded in either 64 or 128 bits depending on operation type. The
opcode field defines operations including arithmetic (ADD, SUB), bitwise operations, load/s-
tore, and control flow instructions [13]. 128-bit format accommodates operations requiring
larger immediates or direct memory references.

Memory access is restricted to the stack (limited to 512 bytes), program context, and
eBPF maps, with all accesses validated by the verifier before execution [36].

Comparison to regular kernel modules

The execution model differs significantly from traditional kernel modules. While kernel
modules execute as part of the kernel’s native code with full privileges, eBPF programs
operate within the constraints of the virtual machine. [39]

Their execution occurs in response to specific kernel events, with the virtual machine
manages the program’s lifecycle. When an event triggers, the corresponding eBPF program
is executed and clean-up is performed afterwards. The event-driven nature of execution
means that eBPF programs only consume resources when actively processing an event,
unlike traditional kernel modules that may maintain continuous state and execution con-
texts. [36, Chapter 3]

19

2.5.2 Just-In-Time Compilation

The eBPF uses Just-In-Time (JIT) compilation to transform architecture-independent
eBPF bytecode (made by regular compilers such as LLVM) into native machine instruc-
tions at program load time. The BPF programs are distributed as bytecode rather than
architecture-specific binaries, ensuring compatibility across different CPU architectures
while maintaining the highest possible execution performance. [13]

Linux kernel supports JIT compilation on multiple architectures, including x86_ 64,
ARMG64, PowerPC, SPARC, and RISC-V. Each architecture implements its own JIT com-
piler backend to handle architecture-specific optimizations and instruction selection. [13]

eBPF Instruction x86_64 Native
mov64 ril, 42 -+ mov $0x2a, J%rdi
call foo + callq <foo>

Figure 2.11: Example of eBPF program compilation to architecture specific instructions®.

2.5.3 BPF Program Verifier

The BPF verifier performs a static analysis before kernel execution to ensure safety and
stability. Since BPF programs execute in kernel context, memory access validation is critical
to prevent system compromise [39].

Programs must explicitly verify memory boundaries before accessing any regions, in-
cluding packet data, maps, and context structures. The verifier ensures that all execution
paths include proper boundary checks, rejecting programs that might access memory out-
side their allocated regions [36, Chapter 6].

// struct xdp_md *ctx = received data;
void *data = (void *) (long)ctx->data;
void *data_end = (void *) (long)ctx->data_end;

struct ethhdr *eth = data;
if (data + 1 > data_end)

return -1;
/* do something with packet */
Figure 2.12: Example of memory boundaries checking. The program will pass static
analysis done by verifier since program checks memory boundaries. Adapted from [20,
common/parsing_helpers.h, Line 93].

The code verifies the Ethernet header bounds prior to access. Without these checks,
a malformed packet could trigger out-of-bounds memory access in kernel space.

8The example inspired by https://blog.trailofbits.com/2022/10/12/solana-jit-compiler-ebpf-arm64,/.

20

https://blog.trailofbits.com/2022/10/12/solana-jit-compiler-ebpf-arm64/

// struct xdp_md *ctx = received data;
void *data = (void *) (long)ctx->data;
void *data_end = (void *) (long)ctx->data_end;

struct ethhdr *eth = data;
/* do something with packet */

Figure 2.13: This program will not pass static analysis done by verifier because of missing
memory boundaries check. Inspired by [20, common/parsing_helpers.h, Line 93].

eBPF programs restrictions

This section is based on [13] and [36, Chapter 6].
The verifier enforces several program restrictions to maintain deterministic execution
and prevent possible kernel memory corruption:

e Program flow restrictions:

— No backwards jumps (with exceptions for bounded loops since kernel 5.3)

— No loops with variable iteration counts

No pointer arithmetic that cannot be validated at verification time

No calls to arbitrary kernel functions

No modification of context structure fields

— No access to memory outside verified regions

— No undefined program states
e Resource limitations:

— Maximum 1 million instructions in total
— Stack limited to 512 bytes

— Maximum 32 or 33 tail calls in call chain'’

2.5.4 Maps

As we mentioned before, BPF programs are executed in virtual machine each time an event
triggers them. That implies, we need some other mechanism to keep track of BPF programs
state — that is where maps come up. Maps implement kernel-space storage that enables data
sharing between BPF programs and between BPF programs and user-space applications.
The kernel provides several map types optimized for different use cases. [13]

Map definitions specify parameters such as key size, value size, maximum entries, and
map type-specific flags. The storage implementation varies by map type, ranging from
arrays to hash tables. Access mechanisms implement atomic operations to ensure data
consistency during concurrent access from multiple BPF programs or user-space applica-
tions [36, Chapter 4]:

9Originally, 32 was meant as a limit. Due to off-by-one error it was 33 and other JIT compilers updated
their limit to 33 as well due to compatibility reasons. [12]

10741l calls in eBPF provide a mechanism for jumping from one eBPF program to another, similar to func-
tion calls but without returning to the original program — functioning analogously to the execve() system
call. A program can execute up to 32 consecutive tail calls using a BPF_MAP_TYPE_PROG_ARRAY map that
holds references to other eBPF programs. [12, 36]

21

o Array maps:

— Provide direct indexed access with pre-allocated fixed maximum entries

— There are also per-CPU array maps that eliminate problem with mutal exclusion
when multiple CPUs access the map.

e Hash maps:

— Key-value storage with dynamic entry allocation.

— Include LRU variants that automatically evict least recently used entries when
the map reaches its capacity.

e Ring buffer and perf buffer maps:

— Implement circular buffer semantics.

Map access from BPF programs occurs through helper functions [15]:

void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)

int bpf_map_update_elem(struct bpf_map *map, const void *key,
const void *value, u64 flags)

int bpf_map_delete_elem(struct bpf_map *map, const void x*key)

Figure 2.14: Selection of eBPF helper functions for map access from [15].

User-space applications access maps through file descriptors obtained by calling the
bpf() system. This approach is used not only for maintaining the state of the BPF program
but also for communication between the user-space application and the kernel space BPF
program as well. [13]

2.5.5 Kernel API

The Linux kernel provides several interfaces for integrating the eBPF functionality into
network device drivers when a trigger event occures. A key interface is the network device
operations structure net_device_ops, which includes the ndo_bpf function pointer. This
operation allows network devices to implement device-specific eBPF program handling. [44,
include/linux/netdevice.h, Line 1330]

2.5.6 Helper Functions

The kernel provides a set of helper functions that eBPF programs can call to interact
with various kernel subsystems. These functions implement interfaces for accessing kernel
functionality. The verifier ensures that helper function calls use valid arguments and return
value handling.

In context of this thesis, several helper functions might be useful [15]:

e bpf_fib_lookup() — Performs route lookup in the kernel’s Forward Information Base.
This function enables programs to determine the next hop for a packet based on des-
tination address.

e bpf_redirect() — Redirects packet to another network interface.

22

bpf_clone_redirect() — Clones and redirects packet.

bpf_skb_load_bytes() — Reads packet data at specified offset.

bpf_13_csum_replace() — Updates the layer 3 checksum after packet modification.

2.6 eXpress Data Path

The eXpress Data Path (XDP) is a packet processing technology integrated into the Linux
kernel that enables high-performance programmable networking. XDP operates at the
earliest possible point in the kernel’s network stack — directly after a packet arrives from
the network interface card (NIC). This placement allows XDP programs to process or fil-
ter packets before the kernel allocates any of its internal data structures such as socket
buffers (skb_buff). XDP programs are written as extended Berkeley Packet Filter (eBPF)
bytecode that runs in a sandboxed environment within the kernel. [21, Chapter 1]

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC("xdp")
int xdp_drop_all(struct xdp_md *ctx)
{

return XDP_DROP;

Figure 2.15: A simple XDP program that will drop all the incoming packets.

When a network interface receives a packet, before any other networking code is ex-
ecuted, the NIC driver calls the registered XDP program through the ndo_bpf function
pointer stored in struct net_device_ops [44, include/linux/netdevice.h, Line 1336].
This program can then examine the raw packet data and decide how to handle it using one
of several actions — pass it to the networking stack, drop it, transmit it back out, or redirect
it to another interface or CPU. struct net_device_ops also includes pointer to the func-
tion ndo_xdp_xmit, which enables packet transmission directly from XDP programs. [44,
include/linux/netdevice.h, Line 1340]

As shown in Figure 2.4, XDP operates below most of the kernel’s networking layers,
avoiding their associated overhead. This kernel integration represents a key difference from
kernel-bypass approaches like DPDK that move networking entirely to user space. Although
DPDK can achieve marginally higher peak performance, it requires dedicating CPU cores
exclusively to packet processing and reimplementing functionality already present in the
kernel. XDP provides a balanced approach — high performance when needed, while seam-
lessly integrating with the rest of the system. [21]

2.6.1 XDP actions

XDP programs have direct access to packet data and headers, allowing inspection and
modification of any part of the packet. When processing a packet, a program can alter
its contents, including header fields and payload data. However, if any modifications are
made to protocol headers, the corresponding checksums must be recalculated using BPF-
provided helper functions to ensure the packet remains valid. BPF provides functions such

23

as bpf_13_csum_replace and bpf_14_csum_replace for this purpose. The action return
code determines the subsequent processing path for the packet. [21, Chapter 3]

4)

XDP program
return codes

XDP_PASS

Redirection target
XDP_TX / Interface
XDP_REDIRECT > CPU
XDP_DROP \ Userspace
XDP_ABORTED

& /

Figure 2.16: The diagram shows the distinct processing paths for each XDP verdict. While
XDP_REDIRECT requires explicit function calls to handle packet redirection to specified tar-
gets (interfaces, CPUs, or userspace), other return codes like XDP_DROP and XDP_PASS in-
tegrate directly into the standard packet processing pipeline without additional execution
steps. Inspired by [21, Figure 2].

XDP__PASS

When an XDP program returns XDP_PASS, the packet continues through the standard
kernel network stack processing path. As shown in Figure 2.4, the packet moves from
the ,,XDP/eBPF hooks* block to the regular networking stack. At this point, the driver
allocates a socket buffer (skb_buff) structure and proceeds with standard processing. [36,
Chapter 8]

This action is useful when the XDP program needs to inspect or modify packets but
wants to maintain compatibility with existing kernel networking functionality. For exam-
ple, a packet filtering application might use XDP_PASS to allow legitimate traffic to reach
applications using standard sockets, while dropping suspicious packets using other XDP
actions.

XDP_TX

XDP_TX action enables packet transmission back through the same interface it was received
on, a process known as hairpinning. As illustrated in Figure 2.4, the packet returns directly
from the ,XDP/eBPF hooks* block to the originating interface.
When this action is selected, the packet bypasses the kernel and is placed directly into
the network interface’s transmit (TX) ring buffer for transmission. [36, Chapter 8]
Common applications of XDP_TX include:

24

o Network address translation (NAT) where IP addresses and/or ports require modifi-
cation

e Protocol translation where packet headers need restructuring

¢ Echo servers that need to respond on the same interface

XDP__DROP

XDP_DROP action provides a mechanism for efficient packet dropping at the earliest possible
point in the networking stack. This action is not explicitly shown in Figure 2.4 as the
packet processing terminates immediately at the XDP hook. [36, Chapter §]

When an XDP program returns XDP_DROP, the driver deallocates the memory associated
with the packet. The memory page containing the packet data is recycled back to the
driver’s memory pool for reuse with future packets.

This action is commonly employed in:

e DDoS mitigation systems
o Packet filtering applications

e Rate limiting implementations

XDP__ABORTED

XDP_ABORTED is an action that, like XDP_DROP, terminates packet processing at the XDP
hook. However, XDP_ABORTED serves a distinct purpose — it indicates an error condition
in the XDP program execution rather than an silent packet drop. [36, Chapter §]

When an XDP program returns XDP_ABORTED, the packet is dropped and the mem-
ory is deallocated similarly to XDP_DROP. However, the action also triggers a trace event.
These trace events can be monitored and analyzed using standard Linux tracing tools like
bpftrace or the perf. [20]

XDP__REDIRECT

XDP_REDIRECT enables packet redirection to another interface or CPU core. The redirection
target is specified by an index parameter, and the actual redirection is performed using
either bpf_redirect or bpf_redirect_map helper functions [25]:

int bpf_redirect(u32 ifindex, u64 flags);
int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags);

The redirection is implemented through the target interface’s ndo_xdp_xmit operation
(from struct net_device_ops). If the target interface’s driver does not implement this
operation, packets are silently dropped. The actual packet delivery mechanism is driver-
specific. [11]

The bpf_redirect function redirects packets based on the network interface index and
bpf_redirect_map function enables redirection through different map types [25, 11]:

e BPF_MAP_TYPE_DEVMAP — redirects packets to other network interfaces. For example:

// Redirect packet to interface index 2
return bpf_redirect_map(&redirect_map, 2, 0);

25

e BPF_MAP_TYPE_CPUMAP - offloads packet processing to another CPU core. This is use-
ful for load distribution:

// Redirect processing to CPU 3
return bpf_redirect_map(&cpu_map, 3, 0);

e BPF_MAP_TYPE_XSKMAP — redirects packets to AF_XDP sockets for user space pro-
cessing:

// Redirect to AF_XDP socket queue O
return bpf_redirect_map(&xsk_map, 0, 0);

To maintain high performance, XDP redirection operates without packet copying. Once,
the packet is transmitted, the page with packet is returned to the originating driver’s page
pool for reuse. [4]

2.6.2 Generic XDP

Generic XDP provides a software-based implementation of the XDP functionality that
operates on socket buffers (struct skb_buff) within the kernel networking stack. Unlike
native XDP, which processes packets at the driver level before struct skb_buff allocation,
Generic XDP intercepts packets after they enter the kernel networking stack, specifically
in the __netif_receive_skb_core() function, as shown in Figure 2.4. [21, Chapter 6]

When a packet arrives, the Generic XDP hook converts the standard kernel struct
skb_buff to an struct xdp_buff before passing it to the XDP program. Based on pro-
gram’s return code, the original struct skb_buff with packet is passed upper to the stack
or dropped. Transmitting XDP actions transmit the packet on their own and original
struct skb_buff is dropped:

ret2 = do_xdp_generic(device->xdp_prog, &skb);
if (ret2 == XDP_PASS)
// transmit packet
else
// drop packet
Figure 2.17: Simplified implementation of Generic XDP packet processing in regular Linux
kernel networking stack. Adapted from [44, net/core/dev.c, Line 5482].

This implementation enables XDP functionality on network interface cards that lack
native XDP support in their drivers. The functionality provided by Generic XDP matches
that of native XDP implementations — all XDP actions and helper functions are supported.
However, the performance characteristics differ significantly. Since packets must traverse
part of the kernel networking stack and undergo structure conversion, generic XDP exhibits
lower performance compared to native XDP implementations that bypass these steps. This
mode can be explicitly requested through the XDP_FLAGS_SKB_MODE flag when installing the
XDP program, even on network interfaces that support native XDP. [21, Chapter 6]

2.6.3 XDP use cases

XDP’s ability to process packets at the lowest possible layer in the networking stack makes
it suitable for various high-performance networking applications. The following sections ex-

26

amine several practical implementations that demonstrate XDP’s versatility in production
environments.

DDoS Mitigation

DDoS mitigation represents one of the primary applications of XDP, particularly for organi-
zations handling large volumes of network traffic. The early packet interception capabilities
of XDP enable efficient filtering of malicious traffic before it reaches the networking stack,
reducing system resource consumption during attack scenarios.

Cloudflare uses XDP for DDoS mitigation in their infrastructure as [7] implies. Their
implementation processes attack traffic directly at the edge servers rather than relying
on dedicated scrubbing centers.

Load Balancing

A notable implementation of load balancer based on XDP is Facebook’s Katran'', an open-

source layer 4 load balancer. Katran processes incoming packets at the network edge, using
consistent hashing to select destination servers and implementing encapsulation entirely
within the XDP program. The system maintains backend server health checks and can
dynamically update forwarding rules without interrupting traffic flow.

2.6.4 Routing using XDP forwarding plane

Another use case that XDP can be used for is packet routing. As discussed in Section 2.6.1,
XDP programs can use the XDP_REDIRECT action to forward packets to different network
interfaces after processing. Combined with the bpf_fib_lookup helper function (covered
in Section 2.5.6), XDP programs can perform routing table lookups directly to determine
the appropriate egress interface for each packet.

The basic implementation pattern for an XDP-based router involves several key steps:
first, performing a FIB lookup to determine the next hop; second, decreasing the TTL
(or hop limit for IPv6); third, rewriting the source and destination MAC addresses based
on the lookup result; and finally, calculating any necessary checksum updates. With these
operations handled directly at the driver level in XDP program, packets can be forwarded
with minimal overhead, bypassing the numerous layers of processing in the standard Linux
networking stack.

Existing solutions

There are already several existing solutions that utilize this approach to packet forward-
ing with XDP. These implementations vary in features, maintenance status, complexity,
and design philosophy. Before diving deep into xdp-forward, it’s worth examining other
projects to understand the broader landscape.

XDP router by Honghao Zeng XDP router'” is an unmaintained'? proof-of-concept
implementation of packet forwarding using XDP. It intercepts IPv4 and IPv6 packets,
performs a routing lookup using the bpf_fib_lookup helper function, and redirects packets

Uhttps://github.com/facebookincubator/katran
2https://github.com/Nat-Lab/xdp-router
13The last commit was 4 years ago.

27

https://github.com/facebookincubator/katran
https://github.com/Nat-Lab/xdp-router

directly to the outbound interface using bpf_redirect. Packets with other Ethernet types
(such as ARP) are passed to the regular kernel networking stack via the XDP_PASS return
code.

The implementation handles basic packet processing operations, including TTL decre-
mentation and MAC address rewriting based on the next-hop information. When the kernel
finds a valid route through its FIB lookup, the XDP program modifies the packet’s TTL
field (or hop limit for IPv6), updates the Ethernet header with source and destination MAC
addresses, and redirects it to the appropriate egress interface.

Although the project claims to support VLAN handling, analysis of the source code
reveals significant limitations. The code simply strips the VLAN headers from the incom-
ing packets without preserving VLAN ID information. This contrasts with proper VLAN
offload handling (described in Section 2.3.1) where VLAN IDs are preserved in the socket
buffer metadata. In addition, the implementation lacks support for forwarding packets
to VLAN interfaces. The README documentation includes a misleading statement re-
garding VLAN interfaces:

To enable XDP for VLAN interfaces, enable XDP for their master interface.
VLAN headers are automatically stripped and the encapsulated IP /IPv6 packets
are routed. You may load the XDP executable on VLAN interfaces, but it will
be in the ,generic* mode and will not have any significant performance benefits,
as the VLAN driver does not have XDP support.

This statement is technically incorrect, as XDP programs cannot be attached to VLAN
interfaces at all [2, 8]. The kernel does not support loading XDP programs on virtual
devices like VLAN interfaces, even in generic mode.

XDP Proxy by Christian Deacon Another approach to XDP-based packet processing
is XDP Proxy'?, a well-maintained project that primarily focuses on implementing a state-
less NAT-like proxy system. While this project can perform packet forwarding using XDP,
its fundamental design is centered around NAT functionality with source-port mapping sim-
ilar to traditional tools like iptables and nftables. This focus on being a proxy rather
than a pure forwarding solution introduces significant complexity. The project lacks certain
networking features like VLAN support, but this is secondary to the core limitation that
it was designed with different goals in mind than efficient packet forwarding. Despite being
actively maintained with regular updates, its architecture is more optimized for scenarios
like address translation.

xdp-forward The xdp-forward utility is a component of the xdp-tools collection, a set
of utilities and libraries maintained by Toke Hgiland-Jgrgensen, a key contributor to XDP
in the Linux kernel. xdp-forward is actively maintained with regular updates and releases.
The project is distributed as part of xdp-tools under the GPL-2.0 license.

The implementation builds upon the original xdp_fwd kernel sample written by David
Ahern, but has been significantly expanded and integrated with the 1ibxdp library to pro-
vide better usability and kernel integration. The project is designed to work with modern
kernel features and maintains compatibility with current Linux kernel releases.

The utility is implemented using a combination of userspace control code written in C
and eBPF programs loaded into the kernel. The architecture follows the separation between

“https://github.com/gamemann/XDP-Forwarding

28

https://github.com/gamemann/XDP-Forwarding

the control plane (userspace) and the data plane (kernel). The userspace component handles
configuration, loading of eBPF programs, and management of the forwarding plane, while
the eBPF programs executed in kernel context perform the actual packet forwarding.
This thesis was specifically designed to focus on xdp-forward as the reference imple-
mentation for XDP-based packet forwarding, due to its active maintenance, robust design
and integration with the Linux kernel development ecosystem. A detailed analysis of its
functionality and performance characteristics will be presented later in Section 3.

29

Chapter 3

Features Analysis

As established in previous chapters, XDP operates at the earliest possible point in the net-
work processing path, intercepting packets directly within the device driver before entering
the Linux networking stack. This positioning, illustrated in Figure 2.4, provides significant
performance advantages, but also introduces functional constraints compared to the full
Linux networking stack.

This chapter examines the feature limitations of the xdp-forward implementation in con-
trast to standard kernel-based packet forwarding. Due to XDP’s placement within the de-
vice driver context, the analysis focuses on driver-level features that have direct implications
for packet forwarding functionality. Understanding these limitations is critical for deter-
mining appropriate deployment scenarios in which XDP-based forwarding offers advantages
while maintaining the necessary networking capabilities.

3.1 Firewalling

Packet filtering is an essential component of network management, typically implemented
through the Linux netfilter subsystem with userspace interfaces like nftables or iptables.
However, since XDP operates at the driver level, bypassing most of the networking stack,
it cannot leverage traditional firewalling mechanisms that operate at later stages.

The netfilter hooks are inserted at specific points in the networking stack’s packet
traversal path, as shown in Figure 2.4. By the time a packet reaches these hooks (e.g.,
NF_INET_PRE_ROUTING, NF_INET_LOCAL_IN), it has already been processed well beyond
the XDP layer. This difference presents significant challenges for integrating standard fire-
walling capabilities with XDP-forward.

Several approaches could theoretically enable firewall functionality within the XDP
context:

¢ Reimplementing firewall machinery in XDP: — This would require a background
userspace process to translate, update nftables rules, and pass them to correspond-
ing XDP programs. Complete compatibility would require reimplementing the entire
netfilter subsystem within XDP. That would duplicate much of the existing kernel
functionality and would need to be properly maitained.

e Selective bypass using LPM tries — Using BPF_MAP_TYPE_LPM_TRIE to store IP ad-
dresses of sources and/or destinations that should be processed by the regular ker-
nel stack rather than xdp-forward. This approach would require a userspace pro-

30

cess to maintain the IP trie and would effectively split traffic into two processing
paths, XDP-accelerated and kernel-processed packets. For traffic patterns where only
a small networking subset needs filtering, this approach could maintain performance
advantages. However, if most packets require filtering, performance would degrade
to kernel-stack forwarding with additional XDP overhead.

e New BPF helper for netfilter integration — Creating a new helper function that could
invoke netfilter hooks (similar to how NF_HOOK() is called in ip_rcv() at [44,
net/ipv4/ip_input.c, Line 569]). This would require constructing a temporary
socket buffer structure (struct skb_buff) from the raw packet data, which would
introduce significant overhead. Each packet would need parsing (to fill up this tem-
porary packet structure) and buffer allocation, largely negating XDP’s performance
benefits.

Beyond these native approaches, XDP does support loading multiple programs on the
same interface, creating a potential fourth option: using a dedicated XDP-based firewall
program alongside xdp-forward. Tools like XDP-Firewall' offer this capability, although
they typically require manual translation of existing nftables rules.

The current implementation of xdp-forward does not include integrated firewalling
capabilities. Users requiring both high-performance forwarding and packet filtering must
either:

o Accept the performance cost of using kernel-based forwarding with netfilter

e Implement a custom solution combining xdp-forward with specialized XDP filtering
programs

e Use xdp-forward for high-volume traffic patterns where filtering is unnecessary

3.2 Connections tracking

Another mechanism that could benefit from having a BPF helper with netfilter hook inte-
gration is connection tracking (conntrack). The Linux kernel implements connection track-
ing through the conntrack subsystem, which operates via netfilter hooks in the standard
networking stack.

Two potential approaches exist for enabling conntrack functionality in XDP:

e Implementing a BPF helper function as mentioned in Section 3.1.

e Implementing a BPF helper function dedicated for access to connection tracking table
and implementing packet manipulation operations in XDP programs

e Creating a parallel connection tracking implementation in XDP with a userspace
daemon to synchronize state with the kernel’s conntrack tables—while feasible, this
introduces potential consistency issues and duplicates functionality

Without direct conntrack access, XDP applications requiring stateful processing must
either implement limited tracking functionality using BPF maps or pass certain traffic to the
regular networking stack.

https://github.com/gamemann/XDP-Firewall

31

https://github.com/gamemann/XDP-Firewall

3.3 Address translation

Network address translation (NAT) in the Linux kernel is implemented using connection
tracking. Therefore, before adding support for NAT, support for connection tracking is re-
quired.

There already is support for network address translation in xdp-forward in flowtable
mode. However, this is a separate BPF program, that reimplements whole network address
translation in BPF program. After consulting this, we decided to focus on fib mode.

3.4 Packet queuing

Packet queuing plays a critical role in network traffic management, providing mechanisms
for buffering, prioritization, and scheduling of packets. While the regular Linux network-
ing stack incorporates multiple queuing mechanisms at different processing stages, XDP’s
positioning at the earliest point in the packet processing path means it lacks many of these
capabilities.

In the standard Linux networking stack, packets encounter several queuing stages as they
traverse the system:

o RX/TX ring buffers at the NIC level, which provide initial buffering for incoming and
outgoing traffic as discussed in Section 2.3.2

o CPU input queue backlog when RPS (Receive Packet Steering) is enabled, where
packets are queued before processing by a target CPU

e Queue discipline (qdisc) layer on the transmit path, which implements sophisticated
packet scheduling algorithms described in Section 2.4.3

XDP, however, operates directly in the driver context before packets reach most of these
queuing stages. The only queuing mechanism available to XDP is effectively the NIC’s
hardware ring buffers.

This lack of queueing capability significantly constrains XDP’s ability to implement
important networking features such as:

o Quality of Service (QoS) policies that require packet prioritization

e Bandwidth shaping to control traffic rates between interfaces of different capacities
o Handling of traffic spikes through controlled buffering

e Fair allocation of resources among multiple flows

o Rate limiting and policing

Several efforts have emerged to add queueing support to XDP. A notable initiative
began in 2022 when this thesis consultant Toke Hgiland-Jgrgensen submitted a Request
for Comments (RFC) patch series to the Linux kernel mailing list [3]. This proposed
implementation, known as XDP Queuing (XDQ), introduced a new PIFO (Push-In First-
Out) map type for storing XDP frames, a dequeue program type for the TX softirq context,
and helper functions for queue management.

As described in [3], XDQ enables packet scheduling by allowing packets to be enqueued
with assigned priorities, while always dequeuing from the head of the queue. This approach

32

maintains XDP’s performance advantages while adding critical queueing functionality. The
performance impact of adding queueing to XDP appears reasonable. According to pre-
liminary testing in [3], queueing adds approximately 50ns of overhead per packet, which
translates to about a 20% reduction in packets-per-second throughput compared to stan-
dard XDP forwarding. However, this still provides approximately twice the performance
of the regular networking stack.

Despite these efforts, XDP queueing support remains an ongoing development effort
as of 2025.

3.5 Virtual devices

XDP operates at the physical device driver level, which creates inherent complications for
supporting virtual networking devices. Virtual devices represent abstract network inter-
faces that typically do not have direct hardware access. Therefore, their support in XDP
is limited.

The list of virtual devices supported by XDP is significantly limited compared to the
standard kernel networking stack. This limitation stems from fundamental architectural dif-
ferences: virtual devices typically process packets as part of __netif_receive_skb_core(),
where handler from their subsystem is called. Supporting these virtual interfaces would re-
quire either reimplementing their functionality entirely within XDP or modifying kernel
interfaces to interact with XDP hooks.

For example, MACsec (IEEE 802.1AE Media Access Control Security) encryption is im-
plemented in the Linux kernel as an rx_handler (as discussed in Section 2.4.1). When
a packet arrives at a MACsec-enabled interface, the kernel calls the macsec_handle_frame
function to perform decryption and authentication before passing the packet to higher
layers. This processing occurs after the initial driver processing, where XDP hooks are
executed. Similarly, on the transmit path, MACsec does not implement the XDP-specific
functions required for integration.

Other virtual devices face similar constraints. According to discussions in [2], supporting
virtual devices like VLANs and bonded interfaces in XDP would require either:

o Complete reimplementation of the virtual device functionality within XDP programs

e Substantial modifications to kernel device drivers to support XDP at appropriate
points in the processing path

David Ahern attempted to implement support for VLANs and bonded interfaces in XDP
as documented in [2]. Despite his effort, the implementation remained unfinished, with even
the partial patch requiring over 600 lines of code changes to kernel internals.

The following subsections examine two common virtual device types, VLANs and bonded
interfaces, in more detail.

3.5.1 Bonds

Link aggregation, implemented in Linux through bonded interfaces, presents another im-
portant virtual device type for networking infrastructure. Bond interfaces combine multiple
physical network interfaces into a single logical interface, providing increased bandwidth
and redundancy. The Linux kernel’s bonding driver (drivers/net/bonding) supports mul-
tiple operational modes including round-robin, active-backup, 802.3ad (LACP), and load-
balancing configurations.

33

Unlike VLAN interfaces, bond interfaces have gained XDP support thanks to Jussi
Maki’s contribution [26]. This implementation differs significantly from how bonding oper-
ates in the standard networking stack.

On the receive path, packets arrive directly at the physical (slave) interfaces and are
processed by XDP programs as if no bonding were configured. This approach works because
bond interfaces, do not require packet manipulation for received traffic—the bond abstrac-
tion exists primarily at the device management level rather than the packet processing
level.

The more complex aspects of the implementation occur on the transmit path, where
the patch reimplements the slave selection logic from the bond driver directly within the
XDP context. This includes support for:

e Round-robin mode, which distributes packets sequentially across available slaves
o Active-backup mode, which maintains a primary interface with failover capabilities

e 802.3ad mode, which implements the IEEE 802.3ad Link Aggregation Control Proto-
col

e XOR mode, which assigns flows to specific slaves based on a hash of packet headers

After selecting the appropriate slave interface, the implementation invokes that physi-
cal interface’s ndo_xdp_xmit function to transmit the packet [44, bonding/bond_main.c,
Line 5512].

The bond implementation demonstrates a key pattern for supporting virtual devices
in XDP. Rather than attempting to integrate with the kernel’s existing virtual device in-
frastructure (which operates above the XDP layer), the approach reimplements the minimal
necessary functionality directly within the XDP context.

3.5.2 VLANSs

Virtual LANs (VLANS) represent one of the most common virtual network interfaces in pro-
duction environments. The Linux kernel implements VLANs through the 8021q module,
which creates virtual interfaces that handle IEEE 802.1Q tagged frames. When packets
arrive with VLAN tags, the kernel processes them through specialized handling routines
that strip the tags before passing the inner packet to the appropriate virtual interface.

VLANSs is a good fit for potential XDP integration compared to other virtual devices
for several reasons:

e The VLAN header has a fixed format and position within the Ethernet frame
o VLAN processing primarily involves header manipulation (adding/removing tags)
e The mapping between VLAN IDs and virtual interfaces follows a direct pattern

VLAN support represents a logical first step in extending xdp-forward functionality.
Section 4 explores practical approaches for implementing VLAN support in xdp-forward.

34

Chapter 4

Extending xdp-forward
functionality

The previous chapter identified several features missing in xdp-forward. While some
of these features would be too complex to implement (like netfilter integration) or are
already being worked on by others (like XDP queuing [3]), support for virtual devices
represents a practical area for improvement within this thesis scope. VLAN support was
selected as the implementation target for several reasons. First, VLANs are commonly used
in many network environments, making this enhancement practically useful. Second, while
bond interfaces already have XDP support through Jussi Maki’s work [26], VLANSs remain
unsupported.

4.1 Design

Before the actual implementation, it is necessary to understand how VLAN tagging works
at the packet level and examine possible implementation approaches within the XDP frame-
work.

4.1.1 VLANSs

Virtual LANs (VLANS) allow to logically segment a single physical network into multiple
broadcast domains. In Linux, VLANs are implemented as virtual network interfaces that
operate on top of physical interfaces. As shown in Figure 4.1, a VLAN FEthernet frame
differs from a standard Ethernet frame by the insertion of a 4-byte VLAN tag between the
source MAC address and the EtherType field. This tag consists of a 2-byte Tag Protocol
Identifier (TPID) set to 0x8100 for the IEEE 802.1Q standard, followed by a 2-byte Tag
Control Information (TCI) field that contains the VLAN ID and priority information.

In the Linux kernel, when a VLAN-tagged packet arrives, the function
__netif_receive_skb calls vlan_do_receive. If a tag is found, it gets removed, updates
the struct skb_buff with VLAN metadata, and continues processing as usual. Conversely,
when transmitting packets through a VLAN interface, the vlan_dev_hard_start_xmit
function is called. This function adds a VLAN tag to the packet before passing it to
the underlying physical interface. The VLAN ID used for tagging is determined by the
configuration of the VLAN interface itself.

35

Normal Ethernet frame

Destination Source Type/
Dat: R
MAC MAC length i CRC
6B 6B 2B 46 - 1500B 4B
N 802.1Q frame
Destination Source VLAN | Type/
Dat CRC
MAC MAC tag length atd
6B 6B 4B 2B 42 - 1500B 4B
A =]
Q_‘ L]
— m Z
B |=1(28] 3
>
2B 3b [1b] 12b

Figure 4.1: Comparison of standard Ethernet frame and IEEE 802.1Q VLAN-tagged frame.
The VLAN-tagged frame inserts a 4-byte VLAN tag between the source MAC address and
EtherType field. To accommodate this 4-byte tag without exceeding the maximum Ethernet
frame size, the space available for data payload is reduced by 4 bytes.

4.1.2 Approach

The main issue with implementing VLAN support for xdp-forward is that XDP programs
cannot be attached to VLAN interfaces [8]. Therefore, the underlying physical interface’s
XDP program must handle all VLAN processing.

When processing packets, the XDP program needs to handle several VLAN scenarios:

e Replace existing VLAN tag when forwarding between different VLAN networks
e Remove VLAN tag when forwarding from VLAN to untagged network
e Add VLAN tag when forwarding from untagged to VLAN network

The structure returned by bpf_fib_lookup function has fields for VLAN information:

struct { /* output */

__bel6 h_vlan_proto;

__bel6 h_vlan_TCI;
};
Figure 4.2: VLAN-related members of struct bpf_fib_lookup that is used both for
passing arguments to bpf_fib_lookup helper function as well as retrieving result of FIB
lookup. Taken from [44, include/uapi/linux/bpf.h, Line 7211]

However, these fields are not populated during lookups — they are intentionally set
to zero [44, net/core/filter.c, Line 5884]. The function correctly returns the VLAN
interface index and MAC addresses, but since the VL AN interface does not implement XDP

36

transmit function, interface index of VLAN interface needs to be translated to underlying
physical interface index. There are several possible approaches to implementing VLAN
support:

¢ Create a BPF map that maps VLAN interface indexes to their VLAN IDs and physical
interface indexes

e Modify the kernel to properly populate the VLAN fields in the bpf_fib_lookup
structure

e Create new BPF helper functions specifically for retrieving VLAN IDs and physical
interface indices — though this would be excessive since the structure for this infor-
mation already exists in bpf_fib_lookup

4.2 Implementation

After discussing implementation strategies with the thesis supervisor and consultant, we im-
plemented VLAN support in xdp-forward using two different approaches. The first ap-
proach uses a userspace-maintained mapping table, which works with unmodified kernels.
The second approach relies on kernel modifications to properly populate the VLAN fields
in the bpf_fib_lookup structure. Both implementations share common code for handling
different VLAN translation scenarios.

Before implementing the actual VLAN handling logic, we extended the packet parsing
code to identify VLAN-tagged frames. This is done by comparing the EtherType field
to the ETH_P_8021Q macro. When a VLAN header is detected, the code sets a pointer vhdr
to the VLAN header location and advances the offset to point to the inner protocol header,
allowing the rest of the xdp-forward code to process it normally.

Both implementation approaches use the same code path for the three possible VLAN
translation scenarios:

o For traffic between two VLAN interfaces (tagged to tagged), the code simply over-
writes the existing VLAN header with the destination VLAN ID in following branch:

if (vhdr && fib_params.h_vlan_TCI)
// packet has vlan header (vhdr) and has destination VLAN ID set

¢ When forwarding from a VLAN interface to an untagged interface, the code removes
the VLAN header:

else if (vhdr && 'fib_params.h_vlan_TCI)
// packet has vlan header (vhdr), no VLAN ID for destination

e When forwarding from an untagged interface to a VLAN interface, the code adds
a new VLAN header:

else if (!vhdr && fib_params.h_vlan_TCI)
// packet has no~vlan header (vhdr), but has destination VLAN ID

37

The key difference between our two implementation approaches lies in how the VLAN in-
formation is supplied to these code paths. Both approaches need to populate the h_vlan_TCI
and h_vlan_proto fields in the struct bpf_fib_lookup structure. By populating these
fields before entering the VLAN handling code, we can use a unified approach for all sce-
narios, regardless of how the VLAN information was obtained.

Our extension of xdp-forward has been submitted as a merge request' to upstream
project.

4.2.1 Userspace approach

The userspace approach to VLAN support relies on creating and maintaining a mapping
between VLAN interface indices and their corresponding physical interfaces and VLAN
IDs. This approach works with unmodified kernels.

Before loading the XDP program on physical interfaces, our implementation adds a step
to discover VLAN devices configured on top of forwarding-enabled physical devices. This
discovery is done by the find_vlan_interfaces function in the xdp-userspace-vlans.c
file using the Netlink protocol®.

For each physical interface, we retrieve information about all configured VLAN interfaces
up to a predefined maximum of MAX_VLANS_PER_IFACE’. The function populates an array
of custom-defined structures:

struct vlan_info {
__ul6 vlan_id; // VLAN ID
int phys_ifindex; // Physical interface index
int vlan_ifindex; // VLAN interface index
+;
Figure 4.3: Structure for storing VLAN interface information. Structure used in map,
which maps VLAN interface indices to their physical interfaces and VLAN IDs.

This structure contains all the information needed for VLAN translation: the VLAN
ID itself, the physical interface index where the XDP program is loaded, and the VLAN
interface index that the kernel uses for routing decisions. These structures are then stored
in a BPF map of type BPF_MAP_TYPE_HASH, using the VLAN interface index as the key.

When the XDP program performs a routing lookup using bpf_fib_lookup, the kernel
returns the destination MAC address and interface index where the packet should be for-
warded. For VLAN interfaces, this returned index is the VLAN interface index, not the
physical interface index needed for XDP redirection. To handle this, we implemented
a translation function set_vlan_params which:

e Checks if the returned interface index exists in our VLAN map

« If found, updates the lookup parameters with the physical interface index and VLAN
1D:
fib_params->ifindex = vinfo->phys_ifindex;
fib_params->h_vlan_TCI = vinfo->vlan_id;

"https://github.com/xdp-project/xdp-tools/pull/504

2A Linux kernel interface for communicating between kernel and userspace processes about network-
related configuration and statistics.

3Currently, set to 16.

38

https://github.com/xdp-project/xdp-tools/pull/504

This translation is the key difference between the userspace approach and the kernel
patch approach. The rest of the VLAN handling code (for adding, removing, or modifying
VLAN tags) functions identically in both implementations.

A limitation of this userspace approach is that the VLAN mapping is created when
xdp-forward is loaded and remains static afterward. If VLAN interfaces are added, re-
moved, or modified, the XDP program must be unloaded and reloaded to update the
mapping. A more robust solution would require a persistent userspace process that listens
for Netlink messages about network configuration changes and updates the BPF map ac-
cordingly. Since this prolongs the packet path through xdp-forward BPF program, it adds
processing overhead which results in to slightly lower performance (more on this, in sepa-
rate Section 5.4.6). Therefore, we decided to activate this support only if VLANS_USERSPACE
variable is set during compilation of xdp-forward.

4.2.2 Patched kernel approach

After confirming that our userspace solution worked with reasonable performance, this
thesis’ consultant Toke Hgiland-Jgrgensen decided to finish the kernel implementation for
VLAN support in bpf_fib_lookup. We assisted with testing and debugging this kernel
patch. This approach requires applying the patch to the kernel source code and recompiling
the kernel, but provides a more integrated solution with better maintainability.

The key improvement in the kernel patch is addressing the two issues we identified with
the current implementation:

e The kernel hardcodes 0 as the VLAN ID in the bpf_fib_lookup result structure

e It returns the VLAN interface index instead of the physical interface index

The consultant’s patch modifies the kernel to correctly populate these fields, eliminating
the need for the userspace-maintained mapping table. Our modification of xdp-forward
adds a special flag passed to the bpf_fib_lookup helper function that activates this new
behavior:

flags |= BPF_FIB_LOOKUP_RESOLVE_VLAN;

When this flag is set and the patched kernel is present, the lookup directly returns the phys-
ical interface index and the VLAN ID. The consultant plans to submit his patch upstream
to the Linux kernel.

Since this approach needs to do the same packet manipulations as userspace approach,
it slightly extends the code path in the XDP program and adds a small overhead. We imple-
mented a compile-time flag VLANS_PATCHED that enables the kernel patch integration. This
allows users to select the appropriate implementation based on their kernel version. It’s
important to note that even with the kernel patch, the packet manipulation logic (adding,
removing, or modifying VLAN tags) remains identical to the userspace approach. The
patch only replaces the need for the userspace map, simplifying the implementation and
improving maintainability.

4.3 Functional tests

In this section, we will evaluate functionality of our solutions. This includes all possible di-
rections and type of traffic, as we mentioned earlier and both versions of our implementation
— userspace and kernel patched.

39

For both implementations we ran tests more described in Section 5.4.6 with our bench-
marking tool with ——functional argument, which sets up whole test bed and stops before
running the performance test waiting for user input before continuing. Instead, we have
started tcpdump® on receiver’s NIC with:

$ tcpdump -i ens2finpl -B 4096 -w log.pcap

Then, we generated a couple’ of packets towards receiver’s NIC with xdp-forward on for-
warder.

Non trunked to non trunked In this test case, we are forwarding regular traffic without
any VLAN tag to be sure, that our solutions do not break forwarding of this type of traffic.

$ tcpdump -nn -e -r untagged2untagged.pcap
14:16:05.152550 src > dst, ethertype IPv6 (0x86dd), length 64:
src_ip.12000 > dst_ip.12000: UDP, length 2

As we can see, the packet arrived as well as there is no VLAN header. Thus, our
implementation does not break regular traffic forwarding.

Non trunked to trunked This test case is supposed to verify, that xdp-forward can
add VLAN header when packet is forwarded towards VLAN network.

$ tcpdump -nn -e -r untagged2tagged.pcap
14:19:35.929659 src > dst, ethertype 802.1Q (0x8100), length 68: vlan 20,
p O, ethertype IPv6 (0x86dd), src_ip.12000 > dst_ip.12000: UDP, length 2

As we can see, received packet has the correct VLAN header, as well as VLAN ID. Therefore,
our solutions are able to insert VLAN header.

Trunked to non trunked In this test case, we will test if our solutions are capable
of removing VLAN header.

$ tcpdump -nn -e -r tagged2untagged.pcap
14:17:46.086632 src > dst, ethertype IPv6 (0x86dd), length 64:
src_ip.12000 > dst_ip.12000: UDP, length 2

We have sent VLAN tagged packet and packet with no VLAN header arrived. Therefore,
our solutions are capable of removing VLAN headers.

Trunked to trunked In this test case, we well verify, that our solutions correctly rewrites
VLAN ID when forwarding packets between two networks using VLANSs.

$ tcpdump -nn -e -r tagged2tagged.pcap
14:21:19.879715 src > dst, ethertype 802.1Q (0x8100), length 68: vlan 20,
p O, ethertype IPv6 (0x86dd), src_ip.12000 > dst_ip.12000: UDP, length 2

As we can see, received packet has correct VLAN ID set.

“https://www.tcpdump.org/manpages/tcpdump.1.html
5The amount of packets is not important, all the packets are processes the same way.

40

https://www.tcpdump.org/manpages/tcpdump.1.html

Chapter 5

Performance analysis

This section is dedicated to comparing the performance of packet forwarding between the
standard Linux kernel stack and XDP-based forwarding (xdp-forward) that we described
earlier in Section 2.6.4. To properly benchmark these two approaches, we needed a good
testing methodology and appropriate tools.

5.1 Networking performance measurement tools

We first looked at the XDP test suite! which was a bachelor thesis focused on creating
testing framework for XDP. However, this suite mainly focuses on functional testing rather
than performance testing. It uses hardcoded BPF programs for its tests [22], and adapting
it for performance measurements would require significant amount of changes to this project.

Instead, we decided to use the Linux Network Stack Test (LNST) framework”, which
is designed specifically for testing network performance. We extended this framework to test
both regular kernel forwarding and xdp-forward, allowing us to directly compare their
performance.

In the following sections, we’ll describe the tools we used for packet generation (pktgen),
xdp-bench, and the LNST framework as well as the actual test case.

5.1.1 pktgen

Pktgen is a high-performance packet generator integrated directly into the Linux kernel.
The in-kernel implementation provides distinct advantages over userspace alternatives, par-
ticularly in terms of performance and compatibility. Being part of kernel allows it to bypass
most of the Linux networking stack, offering direct access to the host system’s network in-
terface driver and transmission process. [33]

It can generate traffic belonging to a single flow by maintaining consistent source and
destination parameters, or it can simultaneously create multiple flows by manipulating the
5-tuple connection parameters (source IP, destination IP, source port, destination port, and
protocol).

Implementation of pktgen requires minimal setup, as it exists as a kernel module within
the standard Linux kernel. Because of mentioned advantages LNST has chosen to use
pktgen for test cases that require a high performance packet generator. However, cur-
rent implementation of wrapper around pktgen in LNST does not support multiple flows,

"https://github.com/shoracek/xdp-test-suite/ — repository last updated 5 years ago
’https://1lnst.readthedocs.io/en/latest/

41

https://github.com/shoracek/xdp-test-suite/
https://lnst.readthedocs.io/en/latest/

or setting rate of generated packets. Therefore, we had to extend LNST’s implementation
of wrapper to support multiple flows. These changes are required for our following test
case implementation as well, they might be useful for upstream community as well. Thus,
we opened a merge request with our changes to upstream LNST project®.

5.1.2 Linux Network Stack Test — LNST framework

The Linux Network Stack Test (LNST) framework is a test automation and orchestration
tool specifically designed for network testing across multiple hosts. LNST establishes direct
communication channels with devices that are included in test scenario. The framework
handles the entire test lifecycle, including initial setup, test execution, result synchroniza-
tion, and system restoration after testing completion.

A significant advantage of LNST is its integration with established networking perfor-
mance tools. Rather than reimplementing measurement functionality within Python, LNST
leverages mature tools such as iperf3, pktgen, and xdp-bench as execution backends. This
approach abstracts the underlying tools while maintaining their native performance charac-
teristics, allowing the framework to gather and consolidate results for comparative analysis.

Recipes

Recipes in LNST define the complete test scenario, including network configuration, test
execution, and evaluation of results. Fach recipe runs measurements using the tools men-
tioned above, configures evaluators, and processes test results.

LNST recipes typically implement the following methods:

e Test wide configuration — Sets up the complete test environment including network
interfaces, routing tables, and any system parameters required for testing

e Ping tests — Run on agent machines to verify basic connectivity between systems
under test before proceeding with performance measurements

e Performance tests — Execute the actual measurements, which involves configuration
of test parameters, running the selected tool, gathering results, and evaluating per-
formance metrics

o Test wide deconfiguration — Restores all systems to their original state by removing
configuration changes made during testing

5.2 Testbed

The testbed comprises various CPU and NIC configurations commonly used in high perfor-
mance networking environments. NICs were selected with different speeds: Intel E810 series
(25 Gbps), Mellanox ConnectX and Solarflare cards (100 Gbps), and Broadcom BCM57508
(200 Gbps). Testing across multiple CPU architectures (Intel, AMD, ARM) and network
drivers provides insight into architecture-specific performance characteristics. While direct
comparisons between different hardware platforms have limitations, these configurations
help establish performance baselines across varying environments.

*https://github.com/LNST-project/lnst/pull/400

42

https://github.com/LNST-project/lnst/pull/400

Processor Sockets Cores NIC Alias

Intel Xeon 6438N @ 2.0GHz 2 32 MT2910 [CX-7] Intell, mlx5
Intel E810-XXV Intell, ice

AMD 7443P @ 2.8GHz 1 24 BCM57508 AMD, bnxt_en

ARM Altra Q80-30 @ 3.0GHz 1 80 MT2894 [CX-6] ARM, mlx5
Intel E810-C ARM, ice

Intel Xeon 5520+ @ 2.2GHz 2 56 Solarflare SFC9250 Intel2, sfc

Table 5.1: Testbed CPUs and NICs used for comparing driver performance. Alias column
represent names of individual configuration in results section.

5.3 Test scenario design

This section describes the implementation of performance measurement tests using the
LNST framework. We developed two test recipes: ForwardingRecipe for measuring stan-
dard Linux kernel forwarding performance and XDPForwardingRecipe for measuring
xdp-forward forwarding performance. With these changes, we have opened another merge
request with additional changes to upstream LNST project”.

The test scenario requires two physical hosts, each equipped with two network interfaces.
As illustrated in Figure 5.1, traffic flows from the first host (generator) to the second host
(forwarder) and then back to the first host (receiver). To prevent local delivery shortcuts
on the first host, we isolate each network interface in separate network namespaces.

Our test topology uses IPv6 and IPv4 subnets which are further divided into smaller
subnets (depending on, what IP version is test run for). Two transit networks are estab-
lished, one connecting the generator to the forwarder, and another connecting the forwarder
to the receiver. This design mimics real-world network configurations in which traffic flows
from core routers (represented by the generator and forwarder) to an edge router (repre-
sented by the receiver) serving client networks. In our test scenario, packets that reach the
receiver are counted and then dropped rather than delivered to actual clients.

5.3.1 Test environment configuration

Before executing any performance tests, we must establish a properly configured test en-
vironment. This section examines the implementation of the test_wide_configuration
function in our LNST recipe, which handles all necessary networking configuration.

The configuration process implements several steps to prepare the test environment:

e Enabling IP forwarding on the forwarder host by setting the appropriate sysctl values.

o Subnetting the primary test networks (passed to recipe by net_ipv4 or net_ipv6
parameters) into three smaller networks:
— An egress network connecting the generator to the forwarder
— An ingress network connecting the forwarder to the receiver
— A routed network space serving as destination networks

e Creating and configuring network namespaces on the first host to isolate traffic gen-
eration from reception

“https://github.com/LNST-project/lnst/pull/402

43

https://github.com/LNST-project/lnst/pull/402

Host 1 Host 2
__________________ fa00::1
wn
é E pktgens to fc00::/64 eth0 £a00:2
e S o w0 |
9, fa00::/64 dev eno12399 = E
fc00:1::/64 via a00::2 dev eth0 > - =) 2 =
fc00:2::/64 via fa00::2 dev eth0 -)p §_ H g
<= < £00::1] A
£600::2 ethl |€ Z
------------------ : 7
%) E drop + counter ethl < Sip6rome
? foocooooooooononons — fa00::/64 dev eth0
'§ fc00:1::/64, fb00::/64 dev ethl
2 $ip -6 route £c00:2::/64 £c00:1::/64 via f500::2 dev ethl
fb00::/64 dev ethl fc00:2::/64 via fb00::2 dev ethl
::/0 via tb00::1 dev ethl

Figure 5.1: Figure illustrates test scenario used for gathering results. pktgen generates
packets within generator’s namespace. These are sent over the switch towards forwarder,
which does the routing table lookup and forwards packets to receiver namespace using
different NIC, based on routing table.

e Configuring transit IP addresses on all interfaces to establish connectivity between
test components

e Setting up static routes to ensure packets follow the intended forwarding path since
there is no dynamic routing protocol in place

When testing is complete, the test_wide_deconfiguration function reverses all these

changes, returning the system to its original state by removing static routes and disabling
IP forwarding.

The XDPForwardingRecipe extends this configuration by enabling xdp-forward. Simi-
larly, during deconfiguration, the XDP program is unloaded from these interfaces to restore
the original state.

5.3.2 Verifying environment configuration

After establishing the test environment, the recipe executes a series of ICMP ping tests
to ensure proper routing configuration between all test components. The
generate_ping_endpoints method defines three ping paths:

e From generator to forwarder
e From forwarder to receiver
o From generator to receiver (testing end-to-end forwarding path)

Since each ICMP echo request generates a corresponding reply packet, these unidirectional
ping tests inherently verify bidirectional connectivity.

44

5.3.3 Performance measurements

After establishing and verifying the test environment, the recipe executes a series of per-
formance measurements to evaluate forwarding performance.

The following sections detail the specific implementation and methodology for each
measurement category.

Forwarding performance measurement

The core forwarding performance measurement is implemented in the
ForwardingMeasurement class.

At the generator side, the measurement uses the LNST’s pktgen module to generate
packets. These packets are crafted with destination IP addresses from the configured desti-
nation networks, but with the MAC address set to the forwarder’s ingress interface, where
are forwarder to receiver. At the receiver side, we deploy xdp-bench in drop mode, it sim-
ply counts incoming packets and then drops them immediately. This avoids packet being
processed by kernel, which is demands more resources.

The measurement also employs InterfaceStatsMonitor on the forwarder’s interfaces
to sample NIC hardware counters”. While these interface statistics serve as supplementary
data points. Our experiments indicate that some NICs drivers (especially m1x5_core driver)
do not update standard counters when running XDP programs, instead updating non-
standard counters only accessible via ethtool -S only.

Monitoring CPU utilization

To measure the CPU resources consumed during forwarding operations, our test employs
the CPUStatMonitor class from the LNST framework®. This monitoring component samples
CPU statistics at regular intervals by reading data directly from the /proc/stat file. The
monitor collects comprehensive CPU metrics including user time, system time, idle time,
interrupt handling time, and I/O wait time. Each sample is timestamped and the difference
between consecutive samples provides precise CPU utilization measurements during test
execution. In our tests, samples are collected at one-second intervals, providing sufficient
granularity.

5.3.4 Multiple CPUs fowarding performance

This test scenario evaluates how forwarding performance scales across multiple CPU cores,
which helps identify potential bottlenecks in both kernel-based and XDP-based forwarding.
To ensure fair distribution of processing load, we configured the test environment to direct
specific network flows to designated CPU cores using the DevFlowsPinningHWConfigMixin
class. This approach leverages hardware flow steering capabilities to map each flow to a
specific RX queue and its associated CPU core, rather than relying on standard Receive
Side Scaling (RSS).

For the test, we incrementally increased the number of active CPU cores from one to the
count of CPUs of our system, measuring forwarding performance at each step. All other
system parameters remained constant.

SExported by sysfs in /sys/class/net/<NIC>/statistics/.
Shttps://github.com/LNST-project/lnst/blob/master/lnst/Tests/CPUStatMonitor.py

45

https://github.com/LNST-project/lnst/blob/master/lnst/Tests/CPUStatMonitor.py

5.3.5 RX/TX ring size performance comparison

Ring buffer sizes can impact forwarding performance, particularly for batch processing be-
haviors. This test investigates how varying these buffer sizes affects XDP-based forwarding
performance. Since XDP has no other buffers nor queues, its performance is might be par-
ticularly sensitive to ring buffer configuration. Therefore, we focused this test specifically
on the XDP forwarding implementation.

We configured xdp-forward with various RX and TX ring size combinations, ranging
from minimum supported values to the maximum allowed by the hardware. Performance
was measured in terms of maximum packet rate.

5.3.6 CPU utilization scaling for various packet rates

Another test case examines how CPU utilization scales with increasing packet rates for both
forwarding implementations. Instead of testing all possible rates, we measured at intervals
of 30,000 packets per second from 30,000 to 480,000 pps. On top of that, we added the
zero-drop rates identified in Section 5.3.8. For each rate, we recorded CPU statistics. These
measurements reveal efficiency differences between kernel-based and XDP-based forwarding
under varying network loads.

5.3.7 Forwarding performance for various packet sizes

Packet size significantly impacts forwarding performance and CPU utilization. While 64-
byte packets stress forwarding planes, real-world traffic includes diverse packet sizes. AMS-
IX statistics” show this distribution:

o 64 — 127B: 27.8%
o 128 — 255B: 5.5%
e 256 — 511B: 2.8%
o 512 —1023B: 3.5%
o 1024 — 1513B: 37%

o Larger packets: 23%

Based on this and RFC 2544 [10], we selected packet sizes of 64, 128, 256, 512, 1024,
1280 and 1518 bytes for our analysis.

For each size, we measured CPU utilization at full throughput capacity, revealing the
actual forwarding performance for both kernel and XDP forwarding implementations across
different packet sizes.

5.3.8 Drop rate measurements

To determine the maximum sustainable packet forwarding rate, we implemented a binary
search algorithm in the NoDropRateMixin class. This approach systematically identifies
the highest packet rate that can be processed without exceeding a specified packet drop
threshold.

"https://stats.ams-ix.net/sflow/size.html?type=size

46

https://stats.ams-ix.net/sflow/size.html?type=size

The algorithm works by generating traffic with pktgen while monitoring packet counts
at interfaces along the path. It employs an iterative process:

o If the measured drop rate exceeds the configured threshold, the packet generation
rate is reduced

o If the drop rate remains below the threshold, the generation rate is increased

o Each time the direction changes (from increasing to decreasing or vice versa), the step
size is halved

e Each iteration involves a 5-second measurement period, with an additional period
skipped after rate changes to allow stabilization

This implementation, while not as sophisticated as dedicated tools like TRex®, pro-
vides valuable insight into forward performance capacity. We selected this approach for
its compatibility with test automation environments, where installing specialized software
packages can be problematic’. The method is particularly useful for comparative testing
between kernel forwarding and XDP forwarding implementations, even though absolute
measurements may be affected by packet reordering and timing variations.

5.3.9 VLAN test scenarios

Host 1 Host 2
__________________ fa00::1
2 ; . co006a | 12399.10
i pktgen to fc00::/64 |------------ a0
PR en012399 002 ... ;
- ANIERECECEEEEEEEEEE > n012399.10 |- 1
L e e Y el 1
5 $ip -6 route eno12399 L
&n o’
fa00::/64 dev en012399.10 > - i E .
£c00::/64 via fa00::2 dev en012399.10 ¢ - E E‘] 5
<= <—| 00:1 ¢ 5 B
f500::2 eno12409.20 |€ ! <
e £00::/64 oo ; z
@ U enol240920 f«— =0 —------ !
Z . drop+counter f------------
5 !. eno12409 $ 1p -6 route
BT £200::/64 dev en012399.10
& Sip-6route b00::/64 dev eno12409.20
b00::/64 dev en012409.20 fc00::/64 via f600::2 dev eno12409.20
::/0 via £600::1 dev eno12409.20

Figure 5.2: Figure shows the basic VLAN test, where packets are generated within VLAN

tagged network (VLAN ID 10) and sent towards VLAN enabled network at receiver side
(VLAN ID 20) via forwarder.

To evaluate VLAN processing performance, we extended our forwarding test methodol-
ogy to incorporate various VLAN configurations. The VlansForwardingMixin class extends

8https://trex-tgn.cisco.com/

9For example, m1x5_core driver requires additional package to work with TRex [45]. Another problem,
we faced is, that the latest version of TRex does not work with newer Python versions than 3.11 [27].

47

https://trex-tgn.cisco.com/

the basic ForwardingRecipe and XDPForwardingRecipe by overriding the test configura-
tion method to create VLAN devices on top of the physical interfaces.

Our VLAN testing methodology implements three distinct test scenarios, each evaluat-
ing a different aspect of VLAN processing:

o Tagged to tagged — As illustrated in Figure 5.2, traffic originates from a VLAN-
tagged network and is directed toward another VLAN-tagged network. This scenario
tests the performance impact of swapping VLAN tags during forwarding, which re-
quires the forwarder to process both ingress and egress VLAN headers.

e Tagged to untagged — Traffic originates from a VLAN-tagged network but is des-
tined for a network that does not use VLANs. This scenario evaluates the performance
of VLAN tag removal during forwarding, which occurs when traffic moves from a seg-
regated VLAN environment to a flat network.

o Untagged to tagged — Traffic originates from a network without VLAN tagging
but is destined for a VLAN-enabled network. This scenario tests the performance
of adding VLAN tags during forwarding, which happens when traffic from a flat
network enters a VLAN-segmented environment.

48

5.4 Results

In this section, we will focus on results evaluation of tests, we described earlier. The results
are based on 10 subsequent iterations of test case running on one of the machine pair
mentioned in Section 5.2. Unless presenting results for CPU utilization focused test cases,
all measurements were bottlenecked by the CPU with utilization approximately 100 % per
core. This section mostly includes plots as they are easier to read. However, full-sized
results in table can be found in Appendix B.

5.4.1 Driver performance comparison

As we mentioned earlier, XDP is implemented within NIC driver itself. Therefore, it makes
sense to start with comparison of individual driver performance.

RX/TX ring size

Before digging into advanced results, we focused on experimenting with RX and TX ring
sizes. Table 5.2 shows comparison of forwarding performance when using the XDP-based
forwarding plane for multiple drivers. In this test case, we started at ring sizes of 1024 and
we were increasing it by step size of 1024 with end at driver’s maximum value.

bnxt en sfe ice mlx5
RX/TX ring size
1024 20M+100K 12M+£52K 41M=+96K 26 M £29K
2047 2.0M +48.7K
2048 12M+£58K 41M+9.7K 26 M £35K
3072 41M +£31.3K 26M+27K
4096 39M 87K 26M+3.0K
5120 41M +£81K 26M +54K
6144 41M+62K 26M+31K
7168 40M+£81K 27M+45K
8160 4.0M +30.6 K
8192 27TM £5.0K

Table 5.2: The table presents comparison of various RX and TX ring size configurations
across various drivers. The measurements were done using IPv6 and xdp-forward since
we expect XDP to be most affected by these settings. FEmpty values represents values
incompatible with driver. FE.g. ice’s maximum ring sizes are 8160.

From Table 5.2 we can see, that various ring size configurations has little to no effect
on forwarding performance. Therefore, for following tests we stick to the driver’s default
values. It might has some impact in cases, where packet rate is not constant as it was in our
use-case. However, our test is a provides first insights into impact of ring size.

Single stream

This section presents results of forwarding performance on both forwarding planes we fo-
cused on — kernel and xdp-forward. In this test case, we focused on single stream forwarding
performance and we compare individual drivers results to each other in Figure 5.3.

49

Comparison of forwarding performance across drivers

Bl Kernel
s XDP

4.0M

Mpps]

— 3.0M

2.0M
b ‘ ‘ ‘ I
0

Intell, ice Intell, mlx5 AMD, bnxt_en ARM, ice ~ ARM, mlx5 Intel2, sfc

Packets per second

Figure 5.3: Comparison of forwarding performance across different network drivers and
hardware platforms. The figure shows packet forwarding rates measured in packets per
second (Mpps) for both standard kernel forwarding (blue) and xdp-forward (red) for-
warding planes. Error bars indicate standard deviation across test iterations. The results
demonstrate that xdp-forward consistently achieves higher forwarding rates than kernel
forwarding across all tested configurations.

Figure 5.3 and Table B.1 demonstrate that xdp-forward outperforms kernel forward-
ing across all tested configurations, though with varying improvement ratios. The Intell
platform with the ice driver exhibits the highest performance differential, while the In-
tel2 platform with the sfc driver shows the smallest gap (1.4 Mpps vs 1.1 Mpps, about
1.3x improvement).

IPv6 traffic generally shows lower performance than IPv4, with reductions ranging from
approximately 2% to 28% depending on the configuration. This performance difference
is more pronounced in xdp-forward implementations.

It should be noted that direct comparisons should only be made between different drivers
on the same hardware platform due to varying processor capabilities across test systems.
Despite this limitation, these results consistently demonstrate the performance advantage
of xdp-forward across diverse hardware environments.

In following section, we will focus on presenting results of Intell, mlx5 configuration
only, as we identified this one as widely used.

Multiple streams

After analyzing single stream performance, we extended our evaluation to assess how both
forwarding planes scale with multiple CPU cores and parallel traffic streams. For these tests,
the kernel forwarding configuration used the noqueue queuing discipline and had netfilter
completely disabled because we encountered scaling limitations when attempting to exceed
10 Mpps (further details in Appendix A). This configuration makes the comparison with
xdp-forward more comparable, as XDP naturally operates without queuing mechanisms
or netfilter functionality.

50

Forwarding performance for multiple CPUs/streams

e~y

40.0M "*"*"""A-—A--*__

30.0M -

20.0M

10.0M ‘--0--‘.’_‘
0.-1-*46810121416182022

Number of CPUs/streams

N
=

[\
o
=

Packets per Second per Stream

=

Total Packets per CPU /stream
—
o
=

Bl Kernel s XDP -@®- Kernel (Per Stream) —k=- XDP (Per Stream)

Figure 5.4: Forwarding performance scaling with increasing number of CPU cores and
traffic streams. The left y-axis and bar charts show total packets forwarded per second
across all streams, while the right y-axis and line plots represent per-stream forwarding
rates. xdp-forward consistently delivers higher throughput than kernel forwarding across
all configurations. Both forwarding implementations demonstrate scaling with additional
CPUs.

Figure 5.4 and Table B.2 demonstrate that both forwarding implementations scale effec-
tively with additional CPU cores and streams. The total forwarding throughput increases
nearly linearly as more processing resources are allocated. At the maximum tested config-
uration of 22 streams, kernel forwarding achieves approximately 15.2 Mpps for IPv4, while
xdp-forward reaches 47.5 Mpps — maintaining its significant performance advantage with
a 3.1x improvement ratio.

Regarding IPv6 traffic, we observe that it scales at a comparable or slightly higher pace
than IPv4 for both forwarding planes. This result might be most likely explained by the
lower absolute packet rates for IPv6.

5.4.2 Drop rate stability

For this test we used the methodology outlined in Section 5.3.8, employing a binary search
algorithm to find the maximum packet rate that achieves a specified target drop percentage.
Figure 5.5 and Table B.3 present the results across various desired drop rates.

The kernel forwarding implementation demonstrates notably consistent behavior with
standard deviations. This stability persists even with the noqueue queuing discipline en-
abled and netfilter disabled. In contrast, xdp-forward exhibits substantially higher
variability.

This disparity in stability most likely comes from fundamental architectural differences.
In contrast, xdp-forward operates with minimal buffering. When a packet arrives, it must
be processed immediately within the driver context. If resources are temporarily unavail-
able—for instance, if the transmit device is busy—the current packet must be dropped.
This immediate processing model improves the latency for successfully forwarded packets
but creates significant variability in drop behavior under load.

51

kernel - Acceptable PPS

1.0M é

e
A~ .
B 800.0K |J_"-|
:% =
o
3 600.0K % =
[} =
< |::_| o

400.0K ==

o € ==
=0
= 2
200.0K '@'
0.0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 09 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 5.0
Desired Drop Rate [%]
xdp - Acceptable PPS
2.5M
Ve
= 2.0M o = E
A O o L
% b = O o
= (0]
Z oM ° 5 = é +
o,
g o)
< 1.0M
’ o — © © (@]
jo)
500.0 K 3

0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 5.0
Desired Drop Rate [%)]

Figure 5.5: Comparison of acceptable packet rates for varying desired drop rates between
kernel and xdp-forward forwarding planes. The box plots represent the distribution of ac-
ceptable PPS values across multiple test iterations for each target drop rate. The kernel
forwarding results (top) show remarkably consistent performance with minimal variance
between iterations, while xdp-forward results (bottom) exhibit significantly higher vari-
ability. This difference highlights the stability characteristics of buffered versus immediate
packet processing approaches.

52

The absolute performance difference remains consistent with our previous findings, with
xdp-forward handling approximately 2 — 2.3x more packets than kernel forwarding before
reaching comparable drop rates. These results further reinforce the potential benefits of im-
plementing queuing mechanisms within XDP, as discussed in Section 3.4.

Due to the computationally intensive nature of these tests, we limited this experiment
to five iterations per configuration, which provides useful insights into the relative stability
characteristics of both forwarding mechanisms anyway.

5.4.3 CPU Utilization for Packet Rate Scaling

While our previous section focused on presenting results of the maximum packet rates
achievable with specific drop percentages, this section examines how CPU utilization scales
with increasing packet rates. Rather than testing all possible rates up to the maximum,
we selected discrete test points ranging from 30000 packets per second up to 484 522 PPS
(which represents the average 0% drop rate from the previous section with outliers re-
moved), using increments of 30000 PPS and including 230190 (which represents average
0% drop rate for kernel).

CPU Usage vs Packet Rate

1 1 1
40 P el N NS
—— Kernel IPv4 ZETTET R a"
4 @ Kemel IPv6 =1l =1 =l :
—e— XDP IPv4 I i ' 23
4 @ XDPIPv6 =

-— Kernel Drop Rate
=== XDP Drop Rate

[\
ot

Average CPU Usage (%)
_)
ot (an)

—_
o

—— ————y S ———— -

100.0K 200.0K 300.0K 400.0K 500.0K
Packet Rate (packets/sec)

Figure 5.6: CPU utilization scaling with increasing packet rates for kernel and xdp-forward
implementations. The graph plots average CPU usage (y-axis) against packet rate (x-
axis) for both IPv4 and IPv6 traffic. Vertical dashed lines indicate packet rates where
measured drop percentages occur. The significantly lower slope of the xdp-forward curves
demonstrates its superior CPU efficiency compared to kernel forwarding.

As shown in Figure 5.6 and detailed in Table B.4, CPU utilization scales linearly with
packet rate for both forwarding planes. However, the slope of this relationship differs signif-

53

icantly between implementations. The kernel forwarding implementation exhibits a steeper
gradient.

This efficiency difference is further quantified in the ,Ratio“ columns of Table B.4,
which represent packets processed per percentage of CPU utilization. The kernel maintains
a relatively consistent ratio of approximately 11,800 packets per CPU percentage point
for IPv4, while xdp-forward achieves ratios typically exceeding 29,000 packets per CPU
percentage point—a 2.5x efficiency advantage.

For IPv6 traffic, both forwarding planes show slightly higher CPU utilization compared
to their IPv4 counterparts, reflecting the additional processing overhead associated with
larger IPv6 headers.

5.4.4 Zero Drop CPU Utilization Scaling

This section presents results of CPU utilization when scaling the number of processing cores
while maintaining zero packet loss (using the packet rate, we measured earlier). As shown
in Figure 5.7 and Table B.5, both forwarding implementations achieve linear scaling in terms
of total packets processed, with xdp-forward consistently handling approximately twice the
packet volume of kernel forwarding.

CPU Utilization Scaling With Zero Drop Packet Rate

B XDP CPU load

W Kemcl CPU load 10.0M
— 40 =—@= XDP packets forwarded
?5") —@— Kernel packets forwarded —
3] 80M &
H e
‘8; 30 -
g E
2 6.0M 8
T o
S N
= 5
~ 20 A
) 4.0M =
&~ =
@) &
&5 ol
£10 2.0M
Z

0 0

1 2 4 6 8 0 12 14 16 18 20 22
Number of CPUs/streams

Figure 5.7: IPv4 zero-drop rate performance scaling with increasing core count. Bar charts
show per-core CPU utilization, while lines represent total throughput. xdp-forward main-
tains consistent CPU usage per core while kernel forwarding shows increasing utilization
overhead as cores are added, despite both achieving linear packet throughput scaling.

The key difference appears in per-core CPU utilization patterns. xdp-forward main-

tains nearly constant per-core CPU usage (16-20%) regardless of the number of cores,
indicating excellent scaling efficiency. In contrast, kernel forwarding shows steadily increas-

54

ing per-core utilization as cores are added, growing from approximately 20% with a single
core to over 40% with 22 cores for IPv6 traffic.

The ,,Overhead“ column in Table B.5 quantifies this effect, showing that xdp-forward’s
additional per-core CPU overhead remains below 2.5% even at 22 cores, while kernel for-
warding reaches over 20% added overhead. This behavior aligns with our findings in Ap-
pendix A.

5.4.5 Packet size scaling

This section extends our evaluation to examine how forwarding performance varies with
packet sizes ranging from 64 to 1518 bytes. As shown in Figure 5.8 and Table B.6, the two
forwarding planes behaves differently to packet size variations.

Packet Size Scaling for Kernel vs. XDP

I Kernel
30M mmm XDP
2.0 M
1.0 M

1024 1280 1518
Packet Slze (bytes)

Packets per Second

Figure 5.8: Packet forwarding performance comparison across different packet sizes using
the Intel,mlx5 driver with IPv6 traffic. The graph shows packet processing rates for both
kernel forwarding (blue) and xdp-forward (red). While kernel maintains consistent packet
rates regardless of size, xdp-forward shows size-dependent performance variation, with
optimal throughput at medium packet sizes.

Kernel forwarding demonstrates consistent processing rates across all sizes tested. For
the Intel,ice platform with IPv4 traffic, it consistently processes approximately 1.3 Mpps
regardless of size. Similarly, IPv6 traffic rates remain stable at around 1.1 — 1.2 Mpps.

However, xdp-forward shows performance variations with packet size. On the In-
tel,mlx5 platform, it achieves optimal performance with medium-sized packets (256-1024
bytes), reaching 3.7 — 3.8 M pps for IPv4.

5.4.6 VLANSs

This section is dedicated to present results of our VLAN tests. Firstly, we will look into
comparing forwarding performance with VLAN offloads enabled and disabled, then we will
present results of various VLAN test cases to test out our xdp-forward extension.

55

Offloaded VLAN tagging

Before evaluating our VLAN extension for xdp-forward, we first assessed the impact
of VLAN processing on kernel forwarding performance. Modern NICs offer VLAN of-
floading capabilities to handle tag insertion and removal in hardware, but these offloads
cannot be used with XDP.

Forwarding Performance of enabled/disabled VLAN offloads

|
988.0 K:

i1L1M
976.7K |

IPv6

IPv4

0 200.0K 400.0K 600.0K 800.0 K 1.0M 1.2M
Packets per Second [Mpps]

=== Non-VLAN tagged baseline Il Offloads Disabled N Offloads Enabled

Figure 5.9: Performance comparison of kernel forwarding with different VLAN handling ap-
proaches. The graph shows packet forwarding rates for baseline (no VLAN tags), hardware-
offloaded VLAN processing, and software-based VLAN processing for both IPv4 and IPv6
traffic. VLAN processing reduces throughput by approximately 11%.

As shown in Figure 5.9 and Table B.7, VLAN-tagged packets reduce kernel forwarding
performance by 11-13% compared to non-tagged packets. However, the performance dif-
ference between hardware-offloaded VLAN handling and software-based processing is only
about 1-2%. This suggests that while VLAN processing does affect performance, the actual
mechanism of tag handling contributes little to the overall overhead.

Various Traffic Type Comparison

This section evaluates performance across four different VLAN traffic patterns: untagged-
to-untagged (no VLANSs), tagged-to-tagged, untagged-to-tagged, and tagged-to-untagged.
As shown in Figure 5.10 and Table B.8, we compare kernel forwarding performance with
three xdp-forward variants: unmodified xdp-forward, and our two extension solutions.

For non-VLAN traffic, unmodified xdp-forward outperforms kernel forwarding, as al-
ready presented. However, when handling VLAN-tagged traffic, the unmodified version
performs slower than kernel forwarding since it must pass packets to the kernel stack for
VLAN handling.

Our VLAN extensions successfully address this limitation, restoring xdp-forward’s per-
formance advantage across all VLAN traffic patterns. The kernel patch solution generally
achieves better results than the userspace implementation. The performance overhead com-
pared to non-VLAN traffic is approximately 0-2% for the kernel patch solution and 4-8%
for the userspace implementation.

VLAN forwarding performance

2.5M
7
&
= 2.0M
g
g
g 15M
190)
g
o 1LOM
B
4
g
A 500.0K
. AN d
VLARNS tagee
No Ta gged to T U (o gged to T ged 1O o Untag
B Kernel B XDP - Userspace solution
Il XDP - No VLANS support XDP - Kernel patch solution

Figure 5.10: Performance comparison of different forwarding implementations across var-
ious VLAN traffic patterns. The figure shows packet forwarding rates for standard ker-
nel forwarding, unmodified xdp-forward, and our two VLAN extension implementations
(userspace and kernel patch). For non-VLAN traffic, unmodified xdp-forward demon-
strates superior performance, but it falls below kernel forwarding performance for VLAN-
tagged packets. Both of our VLAN extension implementations restore xdp-forward’s per-
formance advantage, with the kernel patch solution achieving slightly better results than
the userspace implementation.

5.4.7 Call Graph Analysis

For the final component of our performance analysis, we examined the execution profile
of xdp-forward using Linux perf tools. Figure 5.11 presents an aggregated flame graph
captured while xdp-forward processed 22 parallel streams on 22 CPUs with the mlx)
driver. For this test, interrupt handling for both ingress and egress NICs was pinned to the
same CPUs.

The flame graph reveals multiple performance hotspots. The most significant time con-
sumer is the FIB lookup process, which accounts for approximately 26% of execution time.
This includes all the functions called by underlying functions of bpf_xdp_fib_lookup. This
makes routing table lookups a primary candidate for further optimization efforts.

The second major time consumer is packet redirection, with xdp_do_redirect alone
consuming 21% of CPU time. This function handles the process of enqueuing packets to the
egress device’s transmission queue. The actual packet transmission (visible in functions like
mlx5e_xdp_xmit and mlx5e_xmit_xdp_frame) accounts for approximately 6.2% of execu-
tion time. Another significant processing cost (about 10%) is associated with memory
management, particularly returning DMA pages from the egress NIC back to the ingress
device’s page pools. This is visible as calling functions like xdp_return_frame_bulk and
others.

57

Aggregated Flame Graph - 22 streams, xdp-forward

|
|
|
a B mixSe_xdp_.. i
|
|

I fib6_node
pfib6lookup | ba_xmit_all |
| [bpfipv6_fib_lookup T bg_enquewe
|bpf_xdp_fib_lookup 1 _ 1 [
| bpf_prog_162b13054b6a2e37_xdp_fwd_fib_full xdp_do_redirect ~ @mIX5.. |
—_
mix5e_skb_from_cqe_mpwrq_linear bq_xmit_.. page_.. | |
| mixSe_handle_rx_cqe_mpwrq . _dev fl. |xdp_re.. | § 08
| mix5e_rx_cq_process_basic_cqe_comp [BSEEN ixSe_free_xdps.. (.. (il
lImixSe_poll_rx cq . mbkSepollxdpsq_cq mixSe_..
mix5e_napi_poll

__napi_poll

net_rx_action |
handle_softirgs

run_ksoftirqd

smpboot_thread_fn |
kthread

| ret_from_fork_asm

Figure 5.11: Aggregated flame graph of xdp-forward processing 22 streams on 22 CPUs
using the mlx5 driver. The call stacks are aggregated on function ret_from_fork_asm
to provide a unified view. The most significant time consumer is the actual FIB lookup.

5.4.8 Summary

The performance tests we ran comparing xdp-forward to standard kernel forwarding
showed several important results.

When testing with a single stream, xdp-forward was faster than kernel forwarding
by 1.3x to 3.8x on all hardware we tested, with the Intel and ice machine configura-
tion reaching the highest speed at 5.0 Mpps. This performance advantage continued when
we added more CPUs. Even with 22 parallel streams, xdp-forward processed 47.5 Mpps
compared to kernel’s 15.2 M pps, maintaining a 3.1x advantage. We also noticed that ker-
nel forwarding was more stable in its drop rates while xdp-forward showed more variation.
This makes sense because the kernel has built-in buffering at various stages of networking
stack that helps smooth out processing, while XDP processes packets immediately with
minimal buffering.

CPU usage testing showed that xdp-forward is more efficient, processing about 29 000
packets per CPU percentage point compared to kernel’s 11 800 packets. We also found that
as we added more CPU cores, xdp-forward kept its per-core CPU usage steady, but kernel
forwarding needed more and more CPU per core, reaching over 20% extra utilization at 22
cores when forwarding packets at zero drop pace.

When we tested different packet sizes, we saw that kernel forwarding processed about
the same number of packets regardless of size, but xdp-forward worked best with medium
to large sized packets.

Our VLAN extension for xdp-forward successfully fixed its inability to handle tagged
traffic efficiently. The kernel patch solution we developed added only 0-2% overhead com-
pared to non-VLAN traffic.

Looking at the call graph, we identified that routing table lookups (26%) and packet
redirection (21%) took most of the processing time in xdp-forward, showing us where
to focus for future improvements.

Chapter 6

Future Work

This section discusses possible areas of future work that could extend the functionality and
performance of XDP-based packet forwarding.

Hardware Offloading

When discussing XDP program execution, it’s important to distinguish between native
mode and hardware offloading. The native mode executes the BPF/XDP program on the
host CPU within the driver context, while hardware offloading refers to complete execution
of the BPF program within the NIC hardware with no CPU involvement [30].

As of writing this thesis, full hardware offloading for XDP is supported only by Netronome
Agilio SmartNICs [16]. While other offloading technologies exist, such as TC (Traffic Con-
trol) rule offloading supported by various NICs, offloading entire BPF programs represents
a significantly higher level of complexity. TC offloading typically supports a limited set
of match-action operations, whereas XDP programs can implement arbitrary packet pro-
cessing logic within the constraints of the verifier.

Hardware offloading offers significant performance benefits', but it has important lim-
itations for complex forwarding programs like xdp-forward. The bpf_fib_lookup helper
function, central to routing functionality, is not supported on Netronome NICs [31]. This
creates a significant problem for offloading xdp-forward. For the NIC to perform routing
lookups, it would need to maintain a synchronized copy of the kernel’s FIB, or query the
kernel for lookup results, introducing latency.

A potential approach could implement map-based route caching, where a userspace
daemon populates discovered routes into a BPF map accessible by the offloaded XDP
program, with a fallback path to the kernel when no cached route exists.

Future Kernel Features Integration

Several kernel features under development could enhance xdp-forward’s functionality. XDP
queuing [3] would address the packet queuing limitations discussed in Section 3.4, enabling
better handling of traffic between interfaces with different capacities. Integration with net-
filter functionality (Section 3.1) through new BPF helper functions could provide stateful
packet filtering capabilities that are currently missing from XDP-based solutions.

1[30] states that for packet load-balancing, performance is up to 20x higher than with native XDP.

59

Chapter 7

Conclusion

This thesis explored packet forwarding acceleration in the Linux kernel, focusing primarily
on the eXpress Data Path (XDP) and the xdp-forward utility. The work aimed to identify
performance limitations of traditional kernel networking and evaluate XDP-based alterna-
tives.

Our analysis revealed several features present in the standard kernel networking stack
but absent in xdp-forward. These included proper VLAN support, Netfilter functionality
for firewalling and connection tracking, and packet queueing mechanisms. The architectural
differences between these approaches directly impact their respective feature sets.

A practical contribution of this work was the implementation of VLAN support for
xdp-forward. We developed two approaches: one requiring a patched kernel that modifies
the bpf_fib_lookup helper function behavior, and another using userspace-managed map-
ping compatible with unmodified kernels. The changes have been submitted as a merge
request to the upstream xdp-tools project. Performance testing of our VLAN implemen-
tation showed reasonable overhead compared to baseline xdp-forward performance. The
added VLAN processing created approximately 4% overhead for IPv6 traffic and 10% for
IPv4 traffic.

Broader performance comparisons between xdp-forward and traditional kernel forward-
ing identified the Intel’s ice driver as particularly effective for XDP workloads. With this
driver, xdp-forward achieved packet forwarding rates up to 4x faster than the kernel’s
forwarding path. We noted xdp-forward showed more significant performance degradation
for IPv6 compared to IPv4 (7% to 28%) than the kernel forwarding path (1% to 10%).

Multi-CPU forwarding tests revealed scaling limitations in the kernel that capped per-
formance at approximately 10 Mpps. Further investigation allowed us to identify and
resolve this bottleneck, enabling a higher forwarding rate. We developed a custom method
for analyzing packet drop rates. The packet size impact analysis showed different behaviors
between forwarding planes. Kernel forwarding maintained relatively consistent rates re-
gardless of packet size, while XDP-based forwarding showed a stronger correlation between
packet size and performance.

Finally, we explored hardware NIC offloading as a future direction. While some sources
suggest potential 20x performance improvements, offloading xdp-forward presents chal-
lenges due to its complexity exceeding current hardware offload capabilities. Comprehensive
XDP offload support currently exists only for Netronome NICs, limiting broader adoption.

60

Bibliography

[1] AHERN, D. RSS/RPS + locking qdisc. August 2020. Available at:
https://people kernel.org/dsahern/rss-rps-locking-qdisc. [Accessed 13-05-2025].

[2] AHERN, D. Bpf_fib_lookup VLAN. Kernel VGER, 16. April 2021. Available at:
https:
//lore.kernel.org/xdp-newbies/9e19881a-1£62-410f-8dec-0eff0c7ea03bOgmail.com/.

[3] ALFREDSSON, F.; HURTIG, P.; BRUNSTROM, A.; HOILAND JORGENSEN, T.
and BROUER, J. D. XDQ: Enhancing XDP with Queuing and Packet Scheduling.
In: 2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN).
2024, p. 52-56. ISBN 979-8-3503-9376-7.

[4] ApaLopiMas, I. and BiaNcoNI, L. XDP and page_pool API. February 2020.
Available at:

https://archive.fosdem.org/2020/schedule/event/xdp_and_page_pool_api/.
FOSDEM’20.

[5] Avuso, P. N. Netfilter’'s Connection Tracking System. Linuxz Journal. Linux Journal,
LLC, November 2006, vol. 31, no. 3, p. 34-39.

[6] BERNAT, V. IPvj route lookup on Linuz. 21. June 2017. Available at:
https://vincent.bernat.ch/en/blog/2017-ipv4-route-lookup-linux. [Accessed
04-02-2025].

[7] BERTIN, G. XDP in practice: integrating XDP into our DDoS mitigation pipeline.
In: Cloudflare. Technical Conference on Linux Networking (NetDev 2.1). The Netdev

Society, 2017. Available at:
https://netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf.

[8] BORKMANN, D. XDP: Failing to attach XDP program to a tagged VLAN interface.
GitHub, 24. May 2023. Available at:
https://github.com/cilium/cilium/issues/24768#issuecomment-1561224279.
[Accessed 13-12-2024].

[9] BoOVET, D. P. and CESATI, M. Understanding the Linux Kernel: from 1/O ports to
process management. 1stth ed. ,, O’Reilly Media, Inc.“, 2005. ISBN 0-596-00002-2.

[10] BRADNER, S. and McQUAID, J. Benchmarking Methodology for Network
Interconnect Devices RFC 2544. 2544. RFC Editor, march 1999. Available at:
https://www.rfc-editor.org/info/rfc2544.

61

https://people.kernel.org/dsahern/rss-rps-locking-qdisc
https://lore.kernel.org/xdp-newbies/9e19881a-1f62-410f-8dec-0eff0c7ea03b@gmail.com/
https://lore.kernel.org/xdp-newbies/9e19881a-1f62-410f-8dec-0eff0c7ea03b@gmail.com/
https://archive.fosdem.org/2020/schedule/event/xdp_and_page_pool_api/
https://vincent.bernat.ch/en/blog/2017-ipv4-route-lookup-linux
https://netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://github.com/cilium/cilium/issues/24768#issuecomment-1561224279
https://www.rfc-editor.org/info/rfc2544

[11]

[12]

[13]

[14]

[17]

BROUER, J. D. Introduction to: XDP and BPF building blocks. October 2019.
Available at: https://people.netfilter.org/hawk/presentations/ebplane2019/xdp-
bpf-building-blocks.pdf. Ebplane by Juniper.

CHAIGNON, P. The Cost of BPF Tail Calls. Mar 2021. Available at:
https://pchaigno.github.io/ebpf/2021/03/22/cost-bpf-tail-calls.html. [Accessed
20-12-2024].

CiLiuM AUTHORS. BPF Architecture — Cilium 1.17.0-Dev Documentation. Cilium,
Dec 2024. Available at:

https://docs.cilium.io/en/latest/reference-guides/bpf/architecture/. [Accessed
20-12-2024].

DaMATO, J. Monitoring and Tuning the Linux Networking Stack: Receiving Data |
Packagecloud Blog — blog.packagecloud.io. packagecloud.io, June 2016. Available at:

https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-
receiving-data/. [Accessed 03-11-2025].

EBPF .10 DOCUMENTATION AUTHORS. Helper functions — eBPF Docs. 2024.
Available at: https://docs.ebpf.io/linux/helper-function/. [Accessed 05-01-2025].

EBPF.10 DOCUMENTATION AUTHORS. Program Type 'BPF_PROG_TYPE XDP’ -
eBPF Docs. eBPF.io, 2024. Available at:
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_XDP/#xdp_flags_hw_mode.
[Accessed 05-01-2025].

EMMERICH, P.; PUDELKO, M.; BAUER, S. and CARLE, G. User Space Network
Drivers. In: Proceedings of the Applied Networking Research Workshop. New York,
NY, USA: ACM, 2018-07-16, p. 91-93. ISBN 9781450355858. Available at:
https://dl.acm.org/doi/10.1145/3232755.3232767.

FRrRAZIER, H.; VAN DOORN, S.; HAYS, R.; MULLER, S.; TOLLEY, B. et al. IFEFE
802.3ad Link Aggregation (LAG): what it is, and what it is not. Ottawa, Canada:
IEEE 802.3 Higher Speed Study Group, April 2007. Available at:
https://www.ieee802.0rg/3/hssg/public/apr07/frazier_01_0407.pdf.

HERBERT, T. and BRUIIN, W. de. Scaling in the Linux Networking Stack Linux
Kernel Documentation. Aug 2018. Available at:

https://www.kernel.org/doc/Documentation/networking/scaling.txt. [Accessed
18-10-2025].

HoiLAND JORGENSEN, T. and BROUER, J. D. XDP Programming Hands-On
Tutorial. GitHub, 2019. Available at:
https://github.com/xdp-project/xdp-tutorial. [Accessed 04-09-2025].

H@1LAND JORGENSEN, T.; BROUER, J. D.; BORKMANN, D.; FASTABEND, J.;
HERBERT, T. et al. The eXpress data path: fast programmable packet processing in
the operating system kernel. In: Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies. New York, NY, USA:
Association for Computing Machinery, 2018, p. 54-66. CoNEXT ’18. ISBN
9781450360807. Available at: https://doi.org/10.1145/3281411.3281443.

62

https://people.netfilter.org/hawk/presentations/ebplane2019/xdp-bpf-building-blocks.pdf
https://people.netfilter.org/hawk/presentations/ebplane2019/xdp-bpf-building-blocks.pdf
https://pchaigno.github.io/ebpf/2021/03/22/cost-bpf-tail-calls.html
https://docs.cilium.io/en/latest/reference-guides/bpf/architecture/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/monitoring-tuning-linux-networking-stack-receiving-data/
https://docs.ebpf.io/linux/helper-function/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_XDP/#xdp_flags_hw_mode
https://dl.acm.org/doi/10.1145/3232755.3232767
https://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://github.com/xdp-project/xdp-tutorial
https://doi.org/10.1145/3281411.3281443

[22]

23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

HORACEK, v. XDP test suite for Linux kernel. 2020. Available at:
https://is.muni.cz/th/tq8qf/.

IEEE. IEEE Standard for Local and metropolitan area networks—Bridges and
Bridged Networks. IEEE Std 802.1Q-201 (Revision of IEEE Std 802.1Q-2011),
2014.

KERLING, P. Design, implementation, and test of a tri-mode Ethernet MAC on an
FPGA. Ilmenau, 2019. Dissertation. Available at:
https://www.db-thueringen.de/receive/dbt_mods_00038245. Bachelorarbeit,
Technische Universitdt [lmenau, 2015.

KERRISK, M. Bpf-helpers(7) — Linuz manual page. January 2024. Available at:
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html. [Accessed 12-11-2024].

Maxki, J. XDP bonding support. Kernel VGER, 30. July 2021. Available at:
https://lore.kernel.org/all/20210730061822.6600-1-joamaki@gmail.com/.

MATVIENKO, A. Latest Trex on ubuntu 24.04 with python 1279 2024. Available at:
https://groups.google.com/g/trex—tgn/c/iz06h7vkdgA/m/u98a2£f5pAgAJ. [Accessed
12-12-2024].

MATzZ, M.; HUBICKA, J.; JAEGER, A. and MITCHELL, M. System V Application
Binary Interface: AMDG6] Architecture Processor Supplement. SUSE, July 2012.
Available at: https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf.

MILLER, D. S.; HENDERSON, R. and JELINEK, J. Dynamic DMA mapping Guide
Linux Kernel Documentation. Technical Documentation. Linux Kernel, April 2024.
Available at: https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt.
[Accessed 03-10-2024].

MONNET, Q. The Challenges of XDP Hardware Offload. February 2018. Available
at: https://archive.fosdem.org/2018/schedule/event/xdp/. FOSDEM’18.

NETRONOME. EBPF Offload Getting Started Guide online. Aug 2018. Available at:
https://help.netronome.com/support/solutions/articles/36000050009-agilio-ebpf-
2-0-6-extended-berkeley-packet-filter. Revision 1.2.

NGUYEN, T. L.; SILBERMANN, M. and WILcOX, M. The MSI Driver Guide
HOWTO. 6.12th ed. Intel Corporation, 2008. Available at:
https://docs.kernel.org/PCI/msi-howto.html. [Accessed 14-10-2025].

OLssoN, R. Pktgen the linux packet generator. In: Proceedings of the Linuz
Symposium, Ottawa, Canada. 2005, vol. 2. Available at:
https://www.kernel.org/doc/ols/2005/01s2005v2-pages-19-32.pdf.

PEDRONI, V. A. Clircuit design with VHDL. 3rdth ed. MIT press, 2020. ISBN
0262042649.

PoruirT, A. Linux Conntrack: Why it breaks down and avoiding the problem.
Tigera, April 2019. Available at:

https://www.tigera.io/blog/when-1linux-conntrack-is-no-longer-your-friend/.

[Accessed 03-02-2025].

63

https://is.muni.cz/th/tq8qf/
https://www.db-thueringen.de/receive/dbt_mods_00038245
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://lore.kernel.org/all/20210730061822.6600-1-joamaki@gmail.com/
https://groups.google.com/g/trex-tgn/c/iz06h7vkdgA/m/u98a2f5pAgAJ
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://archive.fosdem.org/2018/schedule/event/xdp/
https://help.netronome.com/support/solutions/articles/36000050009-agilio-ebpf-2-0-6-extended-berkeley-packet-filter
https://help.netronome.com/support/solutions/articles/36000050009-agilio-ebpf-2-0-6-extended-berkeley-packet-filter
https://docs.kernel.org/PCI/msi-howto.html
https://www.kernel.org/doc/ols/2005/ols2005v2-pages-19-32.pdf
https://www.tigera.io/blog/when-linux-conntrack-is-no-longer-your-friend/

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

RICE, L. Learning EBPF. 1stth ed. O’Reilly Media, 2023. ISBN 9781098135096.

RICHARDS, M. Eztreme HTTP Performance Tuning: 1.2M API req/s on a 4 vCPU
Instance. May 2021. Available at: https:
//talawah.io/blog/extreme-http-performance-tuning-one-point-two-million/.

[Accessed 14-01-2025].

ROSEN, R. Linuz Kernel Networking: Implementation and Theory. 1stth ed. USA:
Apress, 2013. ISBN 143026196X.

SALZMAN, P. J.; BURIAN, M.; POMERANTZ, O. et al. The linux kernel module
programming quide. ver, 2001.

SIEMON, D. Queueing in the Linux network stack. Linuz Journal. Belltown Media
Houston, TX, 2013, vol. 2013, no. 231, p. 2.

STENDER, A. Routing Decisions in the Linux Kernel — Part 1: Lookup and packet
flow. 04. July 2022. Available at: https://thermalcircle.de/doku.php?id=blog:

linux:routing_decisions_in_the_linux_kernel_1_lookup_packet_flow. [Accessed
04-10-2024].

TANENBAUM, A. and Bos, H. Modern Operating Systems. 4thth ed. Pearson, 2014.
ISBN 013359162X.

THE KERNEL DEVELOPMENT COMMUNITY. Network Devices, the Kernel, and You!
The Linux Kernel documentation. Available at:
https://docs kernel.org/networking/netdevices.html. [Accessed 10-10-2024].

TORVALDS, L. et al. Linux Kernel Version 6.12 https://www.kernel.org. v6.12.
2024. Available at: https://elixir.bootlin.com/linux/v6.12/source. Released Nov
2024.

TREX AUTHORS. Mellanox support. 2024. Available at:

https://trex-tgn.cisco.com/trex/doc/trex_appendix_mellanox.html. [Accessed
01-05-2025].

64

https://talawah.io/blog/extreme-http-performance-tuning-one-point-two-million/
https://talawah.io/blog/extreme-http-performance-tuning-one-point-two-million/
https://thermalcircle.de/doku.php?id=blog:linux:routing_decisions_in_the_linux_kernel_1_lookup_packet_flow
https://thermalcircle.de/doku.php?id=blog:linux:routing_decisions_in_the_linux_kernel_1_lookup_packet_flow
https://docs.kernel.org/networking/netdevices.html
https://www.kernel.org
https://elixir.bootlin.com/linux/v6.12/source
https://trex-tgn.cisco.com/trex/doc/trex_appendix_mellanox.html

Appendix A

Tuning kernel forwarding
performance beyond 10 Mpps

During work on Section 5.4.1 we found that with regular kernel forwarding we cannot for-
ward more than roughly 10 M packets per second when using multiple CPUs. However, we
can easily reach more than 40 Mpps with xdp-forward forwarding. Therefore, we decided
to investigate further what is wrong.

By forwarding more than 4x more with xdp-forward we can confidently say that the
limit of our NIC is much higher than 10 Mpps. As we mentioned, all of our tests fully
utilize the CPU and so the measured performance is bottlenecked by it.

Therefore, we ran our test with perf' running in the background with the following
command:

perf record -a -g -C <list of 22 CPUs used in test> -o mlx5_22cpus -F 4000
--buildid-all --call-graph dwarf,16384 sleep 60

The resulting flamegraph? can be seen in Figure A.1. We can see, that most of the time,
CPUs are running function __dev_queue_xmit which is output’s interface transmit func-
tion. Most of the time spent in this function, CPUs spent in function _raw_spin_lock
which is a busy waiting for queuing discipline lock to be released by some other transmit-
ting CPU.

Our issue is similar to the problem that David Ahern faced and described in [1] and the
problem that was described in [37]. Based on this and consultation with the supervisor, we
tried to use non-locking queue such as noqueue. This significantly helped with scaling as
we can see in Figure A.4. Apart from better performance, in Figure A.2 we can see that
transmission is now heavily affected by netfilter subsystem rather than _raw_spin_lock.

Unfortunately, since netfilter subsystem is implemented as part of SELinux, which
has their hooking functions hardcoded in the kernel (due to security reasons), in or-
der to completely disable netfilter subsystem, we had to recompile the kernel without
netfilter support’. As we can see on Figure A .4 this slightly helped.

"https://perfwiki.github.io/main/

2Flamegraphs are hierarchical visualizations of profiling data that display call stacks as colored bars
whose width represents CPU time consumption, making performance bottlenecks immediately visible in
code execution paths.

3This can be done by removing CONFIG_NETFILTER=y from compilation configuration file.

65

https://perfwiki.github.io/main/

Aggregated Flame Graph - 22 streams, kernel

| |

(=]

[_kmem_cac|.

(kmem_cache;.

napi_skb_c.. |

_napi_build..

\napi_build_skb |
_from_cqe_f

Figure A.1: The figure presents aggregated flamegraph on function ret_from_fork_asm of
forwarding machine, that used 22 CPUs for forwarding traffic. We can see, that the most
limiting factor for forwarding is in this case __dev_queue_xmit function, which we tracked
down to be a queuing discipline lock. The machine was using default queuing discipline —
fq_codel. The function consumed 49 % of total computation time.

The queueing discpline as well as netfilter subsystem are completely bypassed when
running xdp-forward. Therefore, we used modified kernel and noqueue for measuring
multi-cpu performance in Section 5.4.1.

66

Aggregated Flame Graph - 22 streams, noqueue qdisc, kernel

Figure A.2: The figure presents aggregated flamegraph on function ret_from_fork_asm of
forwarding machine that used non-locking queuing discipline mechanism noqueue. Flame-
graph revealed another function being hotspot, function selinux_ip_forward which han-
dles POSTROUTING hooks in netfilter subsystem. The machine spent roughly 48 % of total
computation time by running this function.

Aggregated Flame Graph - 22 streams, noqueue qdisc, no SELinux

Figure A.3: This figure presents aggregated flamegraph on function ret_from_fork_asm
of forwarding machine with noqueue queuing discipline and kernel compiled without
netfilter subsystem. We can see, the lock limiting the performance is not present any-
more, as well as there is no netfilter function that would slow down the processing.

67

Comparison of kernel forwarding performance

15.0M pomm QDisc: fq_codel

19.5M BN QDisc: noqueue
’ B noqueue and no netfilter

10.0 M

7.5M

5.0M

2.50M l

211
1 2 4 6 8 10 12 14 16 18 20 22

Number of CPUs/streams

Total Packets per Second

Figure A.4: Comparison of CPU scaling behaviour for various queueing disciplines and
netfilter configuration.

68

69

FQ-CoDel noqueue noqueue, No netfilter

Packets/s Multiplier ~Packets/s Multiplier Packets/s Multiplier
CPUs
1 11M+16K 1.1M(+1.3%) £25K 1.1M(+4.8%) £2.1K
2 19M+91K 1.81x 20M £16.2K 1.88x 21M £176 K 1.88x
4 3.7M £104K 3.51x 39M £20.2K 3.63x 40M £442K 3.60x
6 5.0M £11.9K 5.16x% 5.7TM £29.1K 5.26 5.8 M £39.7TK 5.23%
8 T2M£152K 6.73x T2M+£80K 6.71x TAM 374K 6.64x
10 87M+£226K 8.22x 89M £37T0K 8.30x 9.2M £+60.5 K 8.24x
12 99M £10.2K 9.28x% 10.2 M £50.8 K 9.44x 10.5 M £56.5 K 9.38x
14 105 M £94K 9.89x 11.2M £98.1 K 10.42x 11.6 M £48.7TK 10.39x
16 108 M +£9.0 K 10.18x 125 M £30.5 K 11.63x 129M £79.0 K 11.60x
18 109M +£94 K 10.23x 13.4M £69.0 K 12.40% 13.8 M £ 789K 12.36 %
20 109M 71K 10.28x 141 M £478 K 13.12x 14.6 M £54.6 K 13.08x
22 109M £5.7K 10.27x 14.7M £224K 13.63x 15.2M £69.9 K 13.64x

Table A.1: Comparison of various queuing discipline and enablement of netfilter for multiple CPUs. The first row presents results for
single CPU and we can see that using noqueue with netfilter enabled increases forwarder packet by 1.3 % compared to £q_codel and
it increases amount of forwarder packets by 4.8 % for setup with noqueue with no netfilter running on system. The numbers are based
on IPv6 measurements.

0.

Appendix B

Detailed Measurements Results

Basic Tests Results

XDP Kernel
IPv4 IPv6 IPv4 1Pv6
CPU NIC Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Intell ice 50M 95K 41M (-17.8%) 597K 12M 200K 1.1M (-9.9%) 75.6 K
mlx5 32M 353K 26M (—-16.8%) 3.0K 1.1 M 246K 1.1M (-3.1%) 214 K
AMD bnxt_en 25M 359K 1.8M (—28.4%) 174K 815K 49K 748.6 K (—8.9%) 44K
ARM ice 1.8M 209K 1.6M (—7.0%) 1.1K 9295 K 232K 9175K (—-1.3%) 77K
mlx5 1.7M 56K 1.5M (—11.9%) 38K 8146 K 30.7TK 782.7TK (—3.9%) 1.7TK
Intel2 sfc 1.4M B53K 1.2M (-14.8%) 43K 1.1 M 81K 1.1M (—1.9%) 3.6 K

Table B.1: Comparison of xdp-forward and kernel forwarding performance across various CPU architectures and NIC drivers. Values show
mean forwarding rates (Mpps) with standard deviations for IPv4 and IPv6 traffic. Percentages in parentheses indicate IPv6 performance
relative to IPv4. XDP consistently outperforms kernel forwarding by 1.3x to 3.8 across all configurations, with Intel Sapphire and ice
achieving the highest absolute performance. IPv6 processing shows 7-28% lower performance than IPv4 for XDP forwarding.

12

Kernel XDP
1P IPv4 IPv6 IPv4 IPv6
Metric Mean, StdDev Multiplier Mean, StdDev Multiplier Mean, StdDev Multiplier Mean, StdDev Multiplier
CPUs

1 1.1M+241K 1.00 x 1.IM+£21.0K 0.98 x 32M +335K 1.00 x 26 M £28 K 1.00 x
2 21M £+203K 1.86x 21M£176 K 1.88x 6.1 M 213K 1.88 x 5.2M £ 13.6 K 1.95 x
4 40M 440K 3.57 x 40M £442K 3.60 x 1T9M £35.8K 3.69 x 103 M £41.3 K 3.89x
6 58 M £43.2K 5.19x 5.8 M £39.7TK 5.23 X 171M £84.8K 5.30x 151 M £21.56 K 5.69 x
8 7T4M+340K 6.59 x 7T4M+374K 6.63 % 228 M £116.3K 7.08x 201 M £70.7 K 7.60 %
10 92M +£438K 822X 92M £60.5 K 824 278 M £208.5 K 8.63 x 247M £108.7TK 9.33 x
12 105 M £64.6 K 9.32 % 105 M £56.5 K 9.37 % 31.0M £182.1 K 9.61 x 293 M £126.7K 11.05x
14 11.6 M £741 K 10.38 x 11.6 M £48.7K 10.39 x 35.3M £336.8 K 10.94 x 33.0 M £328.1 K 1248 x
16 129M £55.6 K 11.53 x 129M £79.0K 11.59 x 398 M £530.1 K 1234 x 372M £375.7TK 14.06 x
18 138 M £674K 12.28 x 13.8 M £789K 1235 x 41 ME+1.0M 13.69 x 386 M £335.0 K 14.58 x
20 14.6 M £924 K 12.98 x 14.6 M £54.6 K 13.07 x 46.6 M £883.7TK 14.44x 41.5M £525.0 K 15.66 x
22 15.2M £88.5 K 13.53 x 15.2M £699K 13.63 x AT5M £296.6 K 14.74 x 440 M £320.1 K 16.60 x

Table B.2: Multi-stream forwarding performance comparison between kernel and xdp-forward implementation. The table presents mean
forwarding rates (in Mpps) with standard deviation across different stream counts for both IPv4 and IPv6 traffic. The multiplier columns
indicate the scaling factor relative to single-stream performance. Both forwarding planes demonstrate scaling as stream count increases,
with xdp-forward maintaining a significant performance advantage over kernel forwarding across all configurations. The data shows that
at maximum tested configuration (22 streams), kernel forwarding achieves a 13.5x scaling factor for IPv4, while xdp-forward reaches
14.7x, indicating slightly more efficient parallel processing capabilities.

Drop Rates Tests Results

Kernel XDP
Acceptable PPS Actual Drop Rate [%] Acceptable PPS Actual Drop Rate [%]
Desired Drop Rate [%]

Gl

0.0 2284 K +£72K 0.00£0.00 47T 0K £352K 0.00£0.00
0.1 2451 K +74K 0.06 £0.03 637.3 K £283K 0.04£0.04
0.2 2541 K +£125K 0.154+0.03 788.3K 534K 0.16 £0.09
0.3 2642K 156 K 0.2240.06 1.0 M £266.1 K 0.18 +£0.16
0.4 2764 K +£21.2K 0.344+0.09 1.0M £2219K 0.32 £+ 0.09
0.5 2045 K +34K 0.46+0.04 981.0K £1129K 0.41+£0.09
0.6 309.4K +13.2K 0.50+0.11 1.1M+£164.0K 0.52 £ 0.07
0.7 3339 K £46 K 0.60+0.12 1.6 M £2583 K 0.59 £ 0.07
0.8 3403 K £84K 0.724+0.11 14M £2448 K 0.70 £ 0.05
0.9 3598 K £114K 0.87+0.03 1.5M £136.2 K 0.68 £0.19
1.0 386.7K £ 170K 0.89 £0.06 1.6 M £116.8 K 0.83 £0.21
1.2 419.6 K £10.7 K 0.97+0.25 1.7M £80.1 K 1.10 £ 0.09
1.4 457 7TK £36.2K 1.13+0.39 16 M £119.1 K 1.26 £0.16
1.6 501.2 K +£21.7K 1.484+0.12 1.8M £83.0K 1.43£0.25
1.8 5459 K £ 324K 1.46+0.46 1.8M £146.3 K 1.24 +0.70
2.0 565.1 K £ 170K 1.744+0.14 19M £295 K 1.78 £0.19
2.5 669.6 K +124 K 2.154+0.19 20M £2255 K 2.39+£0.11
3.0 7924K £35.9K 2.834+0.12 22M +88.0K 2.83 £0.08
5.0 10M£759K 3.26 £1.19 23M £1549K 3.46+1.14

Table B.3: Drop rate stability comparison between kernel and xdp-forward forwarding implementations. The table presents the maxi-
mum acceptable packet rates (PPS) that achieve specified target drop percentages, along with the actual measured drop rates for each
configuration. Values show mean + standard deviation across five test iterations. Both implementations show a generally predictable
relationship between increasing packet rates and drop percentages.

€.

Packet Rate For Desired Drop Rate

Kernel XDP
IPv4 IPv6 1IPv4 IPv6
Mean StdDev Ratio Mean StdDev Ratio Mean StdDev Ratio Mean StdDev Ratio
300K 2.82 0.04 10647 2.85 0.27 10540 1.26 0.03 23720 1.42 0.02 21153
60.0K 5.35 0.06 11209 5.59 0.03 10739 1.96 0.02 30567 2.54 0.03 23600
90.0K 7.94 0.07 11333 8.17 0.07 11015 3.19 0.06 28221 3.68 0.03 24433
120.0K 10.27 0.08 11681 11.69 0.11 10262 4.25 0.07 28243 4.78 0.03 25092
150.0K 12.86 0.11 11666 13.52 0.07 11095 5.19 0.07 28900 5.86 0.05 25606
180.0K 15.46 0.10 11643 16.16 0.06 11138 6.20 0.05 29038 6.98 0.03 25799
210.0K 17.90 0.15 11729 18.64 0.11 11267 7.28 0.10 28862 8.14 0.06 25806
230.2K 19.43 0.11 11849 20.73 0.12 11104
240.0K 20.39 0.06 11768 21.25 0.06 11293 8.26 0.11 29041 9.23 0.05 26 000
270.0K 22,96 0.08 11762 23.85 0.09 11319 8.90 0.66 30325 10.22 0.06 26 408
300.0K 25.76 0.13 11645 26.50 0.10 11320 10.07 0.17 29804 11.35 0.09 26 436
330.0K 27.85 0.14 11849 29.10 0.08 11339 11.00 0.07 29998 12.44 0.07 26519
360.0K 30.56 0.18 11782 31.73 0.12 11347 11.97 0.19 30066 13.60 0.10 26471
390.0K 32.98 0.24 11827 34.34 0.13 11358 13.30 0.14 29333 14.55 0.13 26 809
420.0K 35.38 0.26 11871 37.06 0.13 11334 14.27 0.13 29437 15.85 0.16 26493
450.0K 37.83 0.23 11894 39.33 0.18 11443 15.26 0.14 29488 16.91 0.12 26615
484.5 K 16.12 0.26 30065 18.21 0.12 26611

Table B.4: CPU utilization metrics for kernel and xdp-forward implementations across increasing packet rates. For each packet rate
and protocol combination, the table presents mean CPU usage percentage, standard deviation, and efficiency ratio (packets processed per
percentage of CPU utilization). The data demonstrates that xdp-forward maintains almost 3x higher efficiency than kernel forwarding
across all tested rates, processing around 29000 packets per CPU percentage point compared to the kernel’s 11800 packets.
implementations show slightly increased CPU usage for IPv6 traffic, though the relative efficiency advantage of xdp-forward remains

consistent across protocols.

Zero Drop Rate CPU Utilization Scaling

22

Kernel XDP
IP Version CPUs Average CPU Utilization Overhead PPS Average CPU Utilization Overhead PPS
1Pv4 1 19.43 +0.11 228.6 K + 791 16.12 + 0.26 4822 K + 24K
2 23.51 £0.03 4.08% 229.9 K +122 16.66 £ 0.41 0.55% 483.9 K + 198
4 24.93 £ 0.62 5.5% 229.9 K +105 17.01 £ 0.27 0.89% 484.0 K +191
6 23.26 £ 0.66 3.83% 229.8 K + 104 17.58 £0.19 1.47% 484.1 K £+ 159
8 28.71+£1.3 9.28% 229.9 K 4+ 46 17.49 £ 0.2 1.38% 484.0 K + 190
10 29.72 +£2.08 10.3% 2299 K + 117 18.22 £0.1 21% 484.0 K £ 235
12 29.23 £2.98 9.8% 229.9 K +125 1742 £ 0.1 1.31% 484.0 K + 231
14 31.35 £ 2.7 11.93 % 229.8 K +£90 17.81 £0.13 1.7% 484.0 K + 208
16 33.27 £ 1.58 13.84 % 229.9 K + 109 18.59 £ 0.08 2.48 % 483.9 K + 243
18 34.65 +4.76 15.22 % 230.0 K + 33 18.02 £0.16 1.91% 483.8 K £ 230
20 36.23 £ 2.56 16.8% 229.9 K £+ 108 18.45 £ 0.11 2.33% 484.0 K £+ 228
22 39.48 +£2.89 20.06 % 2299 K +112 18.57 £+ 0.08 2.45 % 484.0 K £+ 239
IPv6 1 20.73 £ 0.12 228.4 K +993 18.21 £ 0.12 4809 K £ 29K
2 23.46 £0.15 2.73% 2254 K £25K 18.68+0.28 0.47% 483.9 K + 188
4 19.17 £ 0.09 —1.56% 2246 K £153 19.13 £0.18 0.92% 483.8 K + 203
6 24.16 £ 0.1 3.43% 224.6 K +83 19.37 £ 0.26 1.16 % 484.0 K + 226
8 25.06 £0.23 4.33% 224.6 K +115 19.51 £0.15 1.3% 483.8 K £ 170
10 26.31 +0.45 5.57% 224.5 K + 159 19.15+£0.15 0.94% 483.8 K + 108
12 28.38 £ 1.57 7.65 % 2243 K +171 19.97 £0.1 1.76 % 484.0 K £ 207
14 30.65 £ 3.54 9.91% 2254 K +£3.6 K 19.57+£0.17 1.37% 483.8 K 4+ 205
16 34.69 £ 1.25 13.96 % 224.2 K + 250 19.93 £0.07 1.72% 483.9 K £ 291
18 36.1 £4.54 15.37% 224.0 K + 180 19.98 £ 0.06 1.78 % 483.9 K £+ 221
20 41.63 + 0.94 20.9% 224.0 K + 144 20.16 £ 0.08 1.96 % 484.1 K £ 137
22 44.14 + 2.17 23.41% 223.9 K 4+ 285 20.3 £ 0.07 2.1 % 484.1 K 4+ 242

Table B.5: CPU utilization and throughput metrics at zero drop rates. The table presents data for IPv4 and IPv6 traffic with increasing
CPU core counts, showing average CPU utilization per core, overhead compared to single-core baseline, and packets forwarded per second.

Gl

Packet Size Scaling Results

Kernel XDP
Platform Pkt Size IPv4 IPv6 IPv4 IPv6
Intel, ice 64 1.2M,4+20.0 K 1.1M,£75.6 K 50M,+9.5 K 4.1M,4+59.7TK
128 1.3M (+2.1%),£22.2 K 1.3M (+11.3%), £14.0 K 4.2 M (—15.3%),£254.9 K 3.7 M (—9.5%), +144.8 K
256 1.3 M (+3.0%),+24.0 K 1.2 M (49.1%),+209 K 4.0 M (—20.1%),+4.7TK 3.7TM (—10.8%), +£65.9 K
512 1.3 M (+3.0%), £18.7 K 1.2M (+7.9%),£971 K 45M (-11.1%),£191.6 K 4.1 M (—0.0%),+109.0 K
1024 1.3 M (+2.5%),+28.9 K 1.3M (+11.7%),+9.3 K 2.4 M (—52.1%),+2574 K 2.7 M (—35.1%),+£5.9 K
1280 1.3 M (+3.6%), £26.5 K 1.2M (+9.2%), £184 K 21 M (—58.3%),£212.1 K 2.1 M (—48.1%),+5.2 K
1518 1.0 M (—18.1%),+153.3 K 1.1 M (—5.4%),+1259K 1.8 M (—63.3%),+195.5 K 1.8 M (—55.6%),+166.2 K
Intel, mlx5 64 1.1M,+24.6 K 1.1M,+£214K 3.2M,+35.3 K 26 M,+3.0K
128 1.2 M (+4.8%),+19.8 K 1.1M (+2.7%),£2.7TK 29M (-10.0%),£54 K 26 M (—-0.7%),£29 K
256 1.2 M (+3.5%),+3.2 K 1.1 M (+3.2%),+14.0 K 3.8 M (+20.4%),+6.0 K 3.4 M (+28.6%),+10.9 K
512 1.2 M (+4.0%),+2.6 K 1.1 M (4+2.6%),+3.9K 3.8 M (+20.3%),£5.8 K 34M (+29.2%),£75 K
1024 1.2 M (+3.5%),+2.2 K 1.1 M (42.9%),+3.7TK 3.8 M (+20.2%), £6.6 K 3.4 M (+29.4%),+£3.2 K
1280 1.2 M (+3.9%), +4.1 K 1.1 M (+3.0%), £5.0 K 3.7TM (+15.8%),+£20.7TK 3.4 M (+27.4%),+17.7TK
1518 1.2 M (+4.1%),+6.4 K 1.1 M (4+2.9%),+2.2 K 3.8 M (+18.0%),£5.3 K 3.3 M (+23.7%),+4.7TK

Table B.6: Packet size scaling performance for kernel and xdp-forward implementations on Intel platforms with ice and mlx5 drivers.
The table presents forwarding rates (in Mpps) with standard deviation for both IPv4 and IPv6 traffic across various packet sizes. Values
in parentheses indicate percentage change relative to the 64-byte baseline. While kernel forwarding maintains consistent packet rates
regardless of size, xdp-forward shows significant variations, with peak performance at medium packet sizes. For larger packets (10244
bytes), performance becomes constrained by the 25G ICE NIC’s bandwidth limit, particularly for xdp-forward, explaining the performance

decline at these sizes.

9.

VLAN Tests Results

Protocol Baseline Offloads enabled Offloads disabled
IPv4 1.2M+96K 1.0M(-11.1%)+ 144K 997.6 K (—13.3%) £ 13.5 K
IPv6 1.1M+21K 988.0K (—11.4%)+32K 976.7K (—12.4%)+2.1K

Table B.7: Performance impact of VLAN handling methods on kernel forwarding. Values in parentheses indicate percentage change
relative to the baseline. Hardware offloading provides only a marginal 1-2% advantage over software processing.

Implementation Untagged to Untagged Tagged to Tagged Untagged to Tagged Tagged to Untagged
IPv4 Kernel 1.2M,+96 K 1.0M,£144 K 994.6 K, +3.0 K 11M,£55K

No VLANSs support 3.2 M (+176%),+33.5 K 9348 K (—9%),+11.6 K 859.2 K (—14%),+25K 1.0 M (—6%),+36.3 K

Userspace 2.9 M (+156%),£37.7TK 3.0 M (+192%),+3.6 K 3.0 M (+198%),£14.0 K 3.0 M (+177%), £29.4 K

Kernel Patch 3.2M (+181%),+6.0 K 3.0 M (+188%),+6.2 K 3.5 M (+248%),+12.7K 3.2 M (+197%), £26.0 K
IPv6 Kernel 1.1M,£2.1 K 988.0 K, +3.2 K 9894 K,+44 K 1.1M, 440K

No VLANSs support 2.6 M (+137%),+2.8 K 814.2 K (—18%),+2.2 K 8138 K (—18%),+1.7K 919.3 K (—15%),+104 K

Userspace 2.5 M (+128%),£3.1 K 2.4 M (+145%),+24 K 2.4 M (+144%), 4.6 K = 2.6 M (+139%),+2.6 K

Kernel Patch

2.6 M (+132%), £3.5 K

2.5 M (+152%),+5.6 K

2.5 M (+148%), +6.8 K

2.6 M (+144%), +13.2 K

Table B.8: Performance comparison of forwarding implementations across VLAN traffic patterns. Values in parentheses show percentage
change relative to kernel forwarding. While unmodified xdp-forward outperforms kernel for non-VLAN traffic but falls behind for VLAN
traffic, both VLAN extension implementations restore performance advantage, with the kernel patch solution showing slightly better
results than the userspace implementation.

Appendix C

Contents of the external
attachment

/

| _analysis/
| Results.ipynb Jupiter notebook for results analysis
| _results/ ..., Measurement data for thesis outcomes
| _cpu_scaling_for_zerodrop/ .Zero drop rate tests with CPU scaling
| _multi_stream/ Multi-stream tests at maximum packet rate
| kernel/coiiiiiiiiiiii Kernel forwarding results
fg codel/ .o e fq_codel qdisc results
noqueue/ noqueue gdisc with netfilter results
noqueue+no_nf/ noqueue without netfilter results
| _ndr_pps_rate/ ... No drop rate test results
| queues/ ... RX/TX ring size impact test results
| ratep_scaling/ Packet rate scaling results (single CPU)
| _single_stream/ Single stream maximum forwarding tests
L,mlx5+sapphire/ Tests with MLX5 and Sapphire hardware
kernel_fq_codel/ciiiiiiiiian, fgq_codel qdisc results
kernel/ noqueue with disabled netfilter results
kernel_noqueue_nf_enabled/ ..noqueue with enabled netfilter
| _various_msg_sizes/iiiiiiiiiin. Packet size scaling results
| V1aANS/ e VLAN tests results
functional/ pcap files for xdp-forward extensions
offloads_disabled/ VLAN offloads comparison tests
performance/c.ciiann. VLAN performance test results
I oY= ot P Flamegraphs
aggregate_cpus.py Script used for per-CPU perf stats aggregation
L teXt/ LaTeX sources of thesis
L,DP.pdf ... Compiled thesis document
| implementation/eeiiiiiiiiiiiiiiie... Source code used in thesis
xdp-tools/ ...ttt Modified xdp-forward implementation
InSt/ e Modified LNST framework for testing
kernel-vs-xdp-forwarding/ Custom benchmarking tool

77

	Introduction
	Linux kernel
	User Space and Kernel Space Separation
	Kernel Subsystems
	Network Interface Controller
	Linux networking stack
	extended Barkley Packet Filter
	eXpress Data Path

	Features Analysis
	Firewalling
	Connections tracking
	Address translation
	Packet queuing
	Virtual devices

	Extending xdp-forward functionality
	Design
	Implementation
	Functional tests

	Performance analysis
	Networking performance measurement tools
	Testbed
	Test scenario design
	Results

	Future Work
	Conclusion
	Bibliography
	Tuning kernel forwarding performance beyond 10 Mpps
	Detailed Measurements Results
	Contents of the external attachment

