
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

APPLICATIONOFTRANSFORMERSFORTECHNICAL
DOCUMENTATION ANALYSIS
VYUŽITÍ TRANSFORMÁTORŮ KE ZPRACOVÁNÍ TECHNICKÉ DOKUMENTACE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DÁVID BARTUŠ
AUTOR PRÁCE

SUPERVISOR doc. Ing. PETR MATOUŠEK, Ph.D., M.A.
VEDOUCÍ PRÁCE

BRNO 2025

Institut: Department of Information Systems (DIFS)

Student: Bartuš Dávid

Programme: Information Technology

Category: Artificial Intelligence

Academic year: 2024/25

Assignment:

1. Review the state-of-the-art of Transformer Neural Networks used in natural language processing.
Examine existing approaches, their applications and performance.

2. Investigate the format of technical documents. Propose essential pre-processing steps for these
documents. Investigate and develop word embeddings and vector databases.

3. Based on the consultant's recommendation use prompt engineering to deploy deep learning models
based on Transformer Neural Networks for specific natural language processing tasks, such as Q&A
tasks and text summarization.

4. Create a web-based interface to the model and demonstrate application of the model to selected
use cases.

5. Evaluate your results. Discuss contribution of your work and the potential real-world deployment.

Literature:
• Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D., “ELECTRA: Pre-training Text Encoders as

Discriminators Rather Than Generators”, Art. no. arXiv:2003.10555, 2020.
• Rothman, Denis, and Antonio Gulli. Transformers for Natural Language Processing: Build, train, and

fine-tune deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and
GPT-3. Packt Publishing Ltd, 2022.

• Lewis Tunstall, Leandro von Werra, Thomas Wolf: Natural Language Processing with Transformers,
Revised Edition, O'Reilly Media, Inc., 2022.

• Scotti, V., Carman, M.J. (2024). LLM Support for Real-Time Technical Assistance. In: Bifet, A., et al.
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track.
ECML PKDD 2024.LNCS, vol 14948. Springer, Cham.

• Julien Breton, Mokhtar Boumedyen Billami, Max Chevalier, Cassia Trojahn: Leveraging Semantic
Model and LLM for Bootstrapping a Legal Entity Extraction: An Industrial Use Case, Studies on the
Semantic Web, vol. 60, 20 - 36.

Requirements for the semestral defence:
Points 1-3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Matoušek Petr, doc. Ing., Ph.D., M.A.

Consultant: Dr. Martin Holkovič, Flowmon Networks

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2024

Submission deadline: 14.5.2025

Approval date: 22.10.2024

Bachelor's Thesis Assignment
164738

Application of Transformers for Technical Documentation AnalysisTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The bachelor’s thesis explores the integration of Transformer Neural Network models and
Retrieval-augmented generation into an application designed for efficient interaction with
technical documentation. Its primary function lets users ask specific questions to gather
relevant information from technical documentation. The tool makes use of large language
models, such as Gemini 2.5 and Llama 4. The thesis describes how the application was
developed, including how the vector database, ideal models and RAG parameters were
chosen. It also describes how the frontend was built and how the application was deployed.
It also includes evaluation and comparison of different large language models, and their
parameters focusing on their effectiveness in processing technical documents and answering
questions related to them.

Abstrakt
Bakalárska práca skúma integráciu modelov Transformerov a Generovanie rozšírené o vy-
hľadávanie do nástroja určeného na efektívnu interakciu s technickou dokumentáciou. Jeho
hlavná funkcia umožňuje používateľom klásť špecifické otázky a získať relevantné infor-
mácie z technickej dokumentácie. Nástroj využíva veľké jazykové modely, ako sú Gemini
2.5 a Llama 4. V práci je opísaný spôsob vývoja nástroja vrátane spôsobu výberu vek-
torovej databázy a ideálnych modelov a parametrov pre generovanie rozšírené o vyhľadá-
vanie. Opisuje tiež, ako bol zostavený frontend a ako bol nástroj nasadený. Zahŕňa aj
hodnotenie a porovnanie rôznych modelov so zameraním na ich účinnosť pri spracovaní
technických dokumentov a zodpovedaní otázok s nimi súvisiacich.

Keywords
Large Language Models, Natural Language Processing, Retrieval-augmented generation,
RAGAs, Technical Documentation

Klíčová slova
Veľké jazykové modely, Spracovanie prirodzeného jazyka, Generovanie rozšírené o vyhľadá-
vanie, RAGAs, Technická dokumentácia

Reference
BARTUŠ, Dávid. Application of Transformers for Technical Documentation Analysis.
Brno, 2025. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor doc. Ing. Petr Matoušek, Ph.D., M.A.

Rozšířený abstrakt
Táto bakalárska práca sa venuje využitiu modelov neurónových sietí Transformer a tech-
niky Generovania Rozšíreného o Vyhľadávanie (RAG) na analýzu technickej dokumentácie.
Hlavným cieľom práce bolo navrhnúť, implementovať a vyhodnotiť systém, ktorý umožňuje
efektívnu interakciu používateľov s rozsiahlymi technickými dokumentmi, najmä prostred-
níctvom odpovedania na otázky a sumarizácie textu. Práca reaguje na potrebu rýchleho
a presného prístupu k informáciám v technickej dokumentácii, kde manuálne vyhľadávanie
môže byť časovo náročné a náchylné na chyby. Práca začína prehľadom súčasného stavu
v oblasti spracovania prirodzeného jazyka (NLP), pričom sa zameriava na neurónové siete,
konkrétne na architektúru Transformerov. Detailne popisuje kľúčové komponenty Trans-
formerov, ako sú mechanizmy pozornosti (attention mechanisms), kódovače a dekodéry,
ktoré umožňujú paralelné spracovanie dát a efektívne zachytávanie kontextových vzťahov
v texte. Následne sa venuje veľkým jazykovým modelom (LLM), ktoré sú postavené na
architektúre Transformerov a trénované na obrovskom množstve textových dát. Práca
zdôrazňuje výhody LLM, ako napríklad schopnosť spracovať dlhé kontextové okná, čo je
kľúčové pre analýzu rozsiahlej technickej dokumentácie. Kľúčovou technikou použitou v
práci je Generovanie rozšírené o vyhľadávanie (RAG). Táto metóda umožňuje LLM prístup
k špecifickým dátam používateľa, čím sa zvyšuje relevantnosť a presnosť generovaných
odpovedí bez potreby pretrénovania celého modelu. Práca podrobne opisuje jednotlivé
kroky RAG techniky. Dokumenty sú rozdelené na menšie, sémanticky koherentné časti.
Skúmané sú rôzne metódy rozdelovania textu, na fixnú dĺžku, podľa semantiky alebo podľa
štruktúry textu. Ďalej je popísané vytváranie vektorových reprezentácií dát z ich častí
pomocou transfomrerov. Je popísaný aj spôsob vkladania vektorov a dát, ktoré k nim pa-
tria do databázy. Pri položení otázky sa jej vektorová reprezentácia porovná s vektormi
v databáze a nájdu sa najrelevantnejšie časti dokumentov. Práca tiež skúma efekt zmeny
poradia nájdených častí dokumentov, na generovanie odpovedí. Práca tiež opisuje ako LLM
použije pôvodnú otázku a nájdený kontext na vygenerovanie odpovede, a porovnáva výkon
rôznych modelov pri tejto činnosti. Ďalej práca opisuje dve dátové sady, ktoré používa
na vyhodnotenie výsledkov. Hlavná dátová sada, poskytnutá spoločnosťou Flowmon Net-
works, obsahuje technickú dokumentáciu k systému Flowmon ADS vo formáte Markdown,
ktorý zahŕňa rôzne štrukturálne prvky ako nadpisy, zoznamy, tabuľky a JSON bloky. Tento
dataset pozostáva zo 107 súborov o veľkosti 382 KB. Pre porovnanie a testovanie robust-
nosti aplikácie sa využívajú aj RFC dokumenty (oficiálne internetové štandardy) v textovom
formáte. Tento dataset obsahuje 37 súborov o veľkosti 408 KB. Ďalej je v práci popisovaný
návrh a implementácia aplikácie. Vyvinutá webová aplikácia umožňuje používateľom nahrá-
vať technickú dokumentáciu, vyberať modely LLM a klásť otázky alebo žiadať o sumarizá-
ciu dokumentov. V implementácii sa pre komunikáciu s rozsiahlymi jazykovými modelmi
(LLM) a získavanie odpovedí využívajú predovšetkým aplikačné programovacie rozhrania
(API) poskytované spoločnosťou Google. Tieto rozhrania umožňujú efektívne dopytovanie
modelov ako Gemini a prístup k ďalším službám, napríklad pre generovanie vektorových
reprezentácií textu alebo pre triedenie nájdených častí kontextu pri RAG. Hodnotenie sys-
tému prebiehalo pomocou frameworku RAGAs a synteticky generovaných testovacích sád
pre oba typy datasetov. Experimenty sa zamerali na porovnanie rôznych LLM, metód
chunkingu, počtu nájdených kontextových častí a vplyvu zmeny poradia nájdených častí
dokumentov.

Application of Transformers for Technical Docu-
mentation Analysis

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Ing. Petr Matoušek, Ph.D., M.A. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Dávid Bartuš
May 13, 2025

Acknowledgements
I would like to express my sincere gratitude to my supervisor, doc. Ing. Petr Matoušek,
Ph.D., M.A., for his valuable and exceptionally professional guidance throughout my thesis.
I would also like to thank Flowmon Networks for providing the dataset essential for this
thesis.

Contents

1 Introduction 2

2 State-of-the-art of NLP methods 3
2.1 Natural Language Processing . 3
2.2 Types of Neural Networks Used for Natural Language Processing 3
2.3 Transformer Neural Networks . 4
2.4 Large Language Models . 8
2.5 Retrieval-augmented generation . 8
2.6 Evaluation of RAG systems . 14
2.7 Ragas Dashboard . 15
2.8 Summary . 17

3 Format of input documents 18
3.1 Markdown files . 18
3.2 Text files . 19
3.3 Summary . 21

4 Design and Implementation of the application for document analysis 22
4.1 User interface implementation . 22
4.2 Graphical user interface design . 22
4.3 Preprocessing input documents . 24
4.4 Question Answering and Document summarization 27
4.5 Summary . 31

5 Evaluation 32
5.1 Comparison of used model specifications and prices 33
5.2 Experiments . 33
5.3 Application Deployment . 38
5.4 Evaluation program Deployment . 39
5.5 Summary . 39

6 Conclusion 40

Bibliography 41

1

Chapter 1

Introduction

For professionals in various technical fields, it is essential to access and understand impor-
tant knowledge from technical documents quickly, given the speed with which projects have
to be delivered, the huge size of some projects, and the large amount of documentation for
them. Manual searching is a common approach used to do this, but it takes time and can
cause errors. In addition, it can be difficult to locate accurate information effectively in
technical documents due to their large size, complex nature, and the fact that they are
often dispersed in various locations.

This thesis presents an application designed to accelerate and simplify the interaction of
users with technical documentation. Its core functionality allows users to insert technical
documents from projects in different formats, such as Markdown or plain text, and ask
specific questions. To make finding information faster and more accurate, this application
leverages the Retrieval—Augmented Generation (RAG) method combined with powerful
transformer models. Large Language Models (LLMs) have significantly advanced Natural
Language Processing (NLP), showing a remarkable ability to capture deeper contextual
links within text. Their underlying structure allows them to grasp complex contextual
details, which is particularly useful for interpreting technical documentation effectively.

This thesis is structured to logically guide the reader through the problem, proposed
solution, and evaluation. Chapter 2 explains NLP, Neural Networks, Transformers, LLMs,
and RAG, which are all important concepts to understand in order to understand how the
application and tools it is built with work. Chapter 3 describes the input documents, their
format, and details about them. Chapter 4 explains the design and implementation of the
user interface, backend logic, document preprocessing, and the question answering parts
of the web-based application for document analysis. The last part of the thesis will be
dedicated to evaluating different approaches found through research about the topic.

The goal is to develop an application that combines LLMs with a user-friendly interface
that allows easy submission of documents to the knowledge base and a way to ask questions
about these documents. This thesis details the process of designing and implementing
the application, including the selection of appropriate LLMs, the creation of the vector
database, and an intuitive user interface.

The research involves a thorough evaluation and comparison of multiple transformer
models, along with various techniques for text chunking, information retrieval, and response
generation within a RAG technique. Additionally, it investigates the importance of effective
prompt engineering. The goal is to find the configuration of model, RAG strategies, and
prompts that yield the most favorable balance of speed, accuracy, and cost efficiency for
the specified use cases.

2

Chapter 2

State-of-the-art of NLP methods

This chapter provides an introduction to state-of-the-art natural language processing rele-
vant to the thesis. It focuses on transformer neural networks, LLMs that utilize the trans-
former architecture, and RAG, a method used to enhance the output of LLMs. Understand-
ing this is essential to understanding the parts of the implementation of this application
and the tools and frameworks used.

2.1 Natural Language Processing
Natural language processing is a field of computer science focused on enabling computers to
understand and interpret human language. There are many ways to do this. While histor-
ical approaches included models like Naive Bayes Classifiers and Hidden Markov Models,
Neural Networks gained prominence in the 2010s and became the dominant methodology
[1]. After natural language is processed so the computer can work with it, many natu-
ral language processing tasks can be done. Those involve translation, sentiment analysis,
speech recognition, text summarization, text classification etc. Focus of this thesis will be
on question answering.

2.2 Types of Neural Networks Used for Natural Language
Processing

• Recurrent Neural Networks (RNNs)

• Long Short-Term Memory Networks (LSTMs)

• Gated Recurrent Units (GRUs)

• Transformer Networks

RNNs, LSTMs and GRUs are all used for natural language processing [1]. They handle
sequential data, such as text. They process inputs sequentially, maintaining an internal
memory of previous inputs.

Transformers do not process data sequentially. Rather, they process all of the input simul-
taneously as shown in Figure 2.1 (parallel processing) by using self-attention mechanisms to
balance the importance of various input data components [2]. This architecture has shown

3

to be very effective for a lot of natural language processing tasks. For question-answering
tasks, transformer-based models are currently considered the best approach [1].

Figure 2.1: The transformer processing compared RNN processing [3]

2.3 Transformer Neural Networks
Transformer Neural Networks are a type of deep learning architecture that process sequen-
tial data, like natural language, by using a parallel multi-head attention mechanism. Since
their initial proposal in the 2017 paper ”Attention Is All You Need“ [2] by Vaswani et al.,
they have become the standard for a wide range of natural language processing tasks, in-
cluding text generation, machine translation, question answering, text summarization, and
more. The transformer model seen in Figure 2.3 consists of an encoder and a decoder.

The encoder processes the input sequence, while the decoder generates the output se-
quence. This architecture processes data in parallel, increasing the computational efficiency.

Let’s look at how the input sentence goes through the transformer. Let’s use the sen-
tence ”What is a WRQ packet in TFTP and what information does it contain?“ as an
example. First, the sentence is broken down into smaller parts called tokens in a process
called tokenization. This can be visualized using OpenAI platform tool for tokenization
visualization, using their GPT-4o model1. This sentence, which consists of 13 words, would
be divided into 16 tokens. Longer words or abbreviations can be broken down into multiple
tokens as can be seen in Figure 2.2.

Figure 2.2: Example of tokenization
1OpenAI Tokenizer. Available at: https://platform.openai.com/tokenizer [Accessed: May 2025]

4

https://platform.openai.com/tokenizer

Figure 2.3: The transformer model architecture [2]

After tokenization, the process called embedding, maps each token to a high-dimensional
(e.g., 512, 768, 1024) numerical vector. These vectors, called embeddings, capture the
semantic meaning of the token or they can capture complex semantic relationships between
words as geometric relationships within a high-dimensional vector space. Since the vector
space is high-dimensional, and direct visualization is not possible, there are some techniques
to reduce the dimensionality that help us to show some relations between the vectors.
Examples2 can be seen in Figure 2.4 and Figure 2.5.

2Linear substructures. Available at: https://nlp.stanford.edu/projects/glove/ [Accessed: May 2025]

5

https://nlp.stanford.edu/projects/glove/

Figure 2.4: Word vector relationships [4]

Figure 2.5: Word vector relationships [4]

As Transformer models process all tokens in parallel, they don’t inherently know the
original order of the tokens. Since word order is essential to the meaning of a sentence,

6

positional encodings are added to embeddings. The final vector for each token contains
both semantic and positional information. Following the addition of positional encodings,
these combined embedding vectors are fed into the first encoder layer of the transformer. A
standard transformer architecture stacks multiple identical encoder layers sequentially. The
output vectors from the first encoder layer become the input vectors for the second encoder
layer, allowing the computational process within the layer to be repeated multiple times,
progressively refining the representations. Each encoder layer has two main sub-layers, each
followed by a residual connection and layer normalization.

The first sub-layer is a Multi-Head Self-Attention mechanism. For each token’s vector,
this mechanism allows the model to look at all other token vectors in the sequence (including
itself) and determine which ones are most relevant or important for understanding this
specific token in its current context. Learned weight matrices transform each token’s vector
into three specialized vectors: a ’Query’, representing what the token seeks from others, a
’Key’, representing how it might be relevant to others, and a ’Value’, its actual content. By
comparing a token’s Query to other tokens’ Keys, the mechanism determines the ’attention’
or importance assigned to each corresponding Value. This focus is typically calculated using
Scaled Dot-Product Attention as seen in Figure 2.6. Weight matrices contain numerical
parameters that start with initial values (often random) and are iteratively updated using
algorithms like backpropagation based on how well the model performs on the training
data, allowing the model to learn the optimal transformations.

Figure 2.6: Multi-Head Attention [2]

Tokens deemed more relevant get higher weights. The result is a new vector for the
token that is enriched with information from other relevant tokens. Following the multi-
head attention calculation, the resulting vectors are added back to the original input vectors
and the sum is then normalized.

The second sub-layer is a position-wise Feed Forward Network. The Feed Forward
Network provides extra computational steps for the model to learn more intricate patterns
and features within each token’s context-aware representation. It looks at each token’s
vector one by one, completely separately from the others. The resulting vectors are again
added back to the original input vectors and the sum is then normalized.

7

After passing through the final Encoder layer, we have a sequence of output vectors, one
for each input token. The output vectors from this last layer represent the encoder’s final,
context-rich understanding of the input sequence. Each vector corresponds to an input
token but now contains information influenced by the entire sequence through the stacked
attention and processing layers.

The final output vectors are passed to the Decoder part of the model. The Decoder uses
these vectors, for generating output sequence. Decoder also includes Masked Multi-Head
Self-Attention mechanism. Here each token that is being generated can only attend to
tokens before it and itself. Decoder generates the output sequence token by token, using
the input from encoder and the output that decoder generated so far. Each decoder block
contains one additional sub-layer compared to encoder called Multi-Head Cross-Attention
where decoder integrates the encoder’s output. The Queries come from the Decoder’s
output of the masked self-attention, and the Keys and Values come from the final Encoder
output vectors.

2.4 Large Language Models
LLMs are specifically designed to understand and generate human-like text. They are
trained on an enormous amount of text and have a huge number of parameters acquired
during training [5]. Transformers architecture is what enabled the scaling required to
create modern LLMs, as before architectures like RNNs/LSTMs sequential processing was
a bottleneck, making the training speed significantly slower than with transformers parallel
processing [2]. Another problem was that, while LSTMs improved memory compared to
basic RNNs, they still struggled to maintain relevant information across very long sequences.
Information from the beginning of a long paragraph or document could face degradation or
loss by the time the model reaches the end. The latest state-of-the-art models like Gemini
2.0 Flash have a 1 million token context window3. Such an extended context window
is particularly advantageous for tasks involving large volumes of information, including
technical documentation associated with complex projects.

2.5 Retrieval-augmented generation
This section introduces Retrieval-augmented generation, which is a method used for the
development of this application, and explains more about essential parts such as chunking,
embedding, similarity search, context retrieval, and vector databases. Retrieval-augmented
generation is a technique used to give LLM access to the data the user wants it to have
knowledge of. It is ideal for applications designed to answer questions about technical
documentation, as we can just insert files into a vector database and retrieve context from
them for LLM. Files then can be dynamically added and accessed at any time. There is no
need for lot of data to be stored, just the data user will want to ask about so the search
and generation is faster. For example, model named RETRO matched the performance of
models 25 times larger using Retrieval augmented [6]. This also offers good generalization
as files can be fed from lot of different projects at any time that will serve as context for
the LLM.

3Google, Long context | Gemini API. Available at: https://ai.google.dev/gemini-api/docs/long-
context [Accessed: May 2025]

8

https://ai.google.dev/gemini-api/docs/long-context
https://ai.google.dev/gemini-api/docs/long-context

2.5.1 Chunking

Chunking involves breaking down large documents into smaller parts, so the LLM doesn’t
have to process whole files every time it needs to produce output, just the relevant parts.
Chunking is done in many different ways, the next part describes the most relevant ones
for this thesis [7].

Fixed-Size Chunking

Fixed-Size Chunking is one of the simplest methods. Splitting text into segments of a prede-
termined number of characters, words, or tokens is easy to implement and computationally
efficient. It does not take semantic boundaries into consideration, potentially splitting sen-
tences, paragraphs, or code blocks in the middle, leading to context fragmentation. To make
this less of a problem, an overlap between consecutive chunks is typically recommended to
preserve some semantic context across chunks. However, this adds redundancy and is often
not as efficient as other methods.

Sentence/Paragraph Based Chunking

The sentence-based chunking method splits text based on sentence boundaries (e.g., using
periods, question marks, exclamation points), often grouping a fixed number of sentences
per chunk. It keeps the integrity of individual sentences, which can be crucial for semantic
meaning. Frameworks like LangChain integrate with NLP libraries like NLTK for robust
sentence segmentation. This approach gives smaller, potentially more precise chunks but
may lack broader context compared to the paragraph-based method. The paragraph-based
chunking method is similar to sentence splitting but uses paragraph delimiters (e.g., dou-
ble newlines \n\n) as the primary splitting point. This preserves more context within a
chunk compared to sentence splitting. However, paragraphs can vary significantly in length,
potentially leading to chunks that are too large or too small.

Recursive Chunking

Recursive Chunking approach offers more adaptability by attempting to split text using a
predefined list of separators in a hierarchical order (e.g., paragraphs \n\n, then sentences
\n or ., then words). It recursively splits by these separators until the chunks reach the de-
sired size. LangChain’s RecursiveCharacterTextSplitter is a popular implementation, using
["\n\n", "\n", " ", ""] as default separators. This method aims to keep semantically
related units (paragraphs, sentences) together better than fixed-size chunking.

Structural Chunking

Structural Chunking methodologies are specifically designed to leverage the structure of the
documents, especially when they are in structured formats like Markdown or HTML. Mark-
down Chunking is a structure-aware text splitting strategy specifically designed for docu-
ments formatted using Markdown. Popular implementations of this are LangChain’s Mark-
downHeaderTextSplitter and MarkdownTextSplitter. It splits text based on Markdown-
specific characters, and it also adds in relevant information about where that chunk came
from based on the Markdown formatting [8].

9

Semantic Chunking

This technique moves beyond structural or size-based splitting to group text based on
semantic meaning. It typically involves embedding sentences or paragraphs and then iden-
tifying breakpoints where the semantic similarity between adjacent units drops below a
certain threshold. The goal is to create chunks that are internally similar in topic or
meaning, ensuring the integrity of information during retrieval. By focusing on the text’s
meaning, semantic chunking can enhance retrieval quality, especially when maintaining
semantic integrity is vital. However, this method is computationally more intensive and
slower than structural or recursive methods due to the need to generate embeddings for
all sentences during the chunking process itself. Popular implementation is LangChain’s
SemanticChunker.

2.5.2 Comparison of chunking methods

Graph in Figure 2.7 shows how different approaches worked for financial documents. Dif-
ferent methods can also be improved by using LLM to generate LLM-based document-level
metadata and LLM-based chunk-level metadata. Embeddings can be made with the chunk
content and metadata that describe the content. This requires additional computation with
LLMs. Adding metadata made great improvements for the trials described in the blog the
graph is from, and processing them with a markdown approach yielded the best results.

Figure 2.7: Chunking approaches and how LLM-based metadata injection enhances them
[8]

2.5.3 Chunk Embeddings

Sentence embeddings are high-dimensional vectors that represent features or attributes of
chunks of text. They are made by transformer models to later find similar ones. Vector

10

dimensions depend on model. These vectors can be generated from semantics, context etc.
It’s a complex process and it’s hard to tell what all the things are that contribute to gen-
erating the final vector.

Popular framework for this is Python framework SentenceTransformers. It can use a lot of
different models to generate embeddings, one of the most popular ones being all-MiniLM-
L12-v2. In the figure 2.8 is visual representation of how embeddings are made, with model
deBERTa that makes 768 dimensional vectors.

Figure 2.8: Making embeddings from text with SentenceTransformers4

An alternative method involves utilizing Application Programming Interfaces (APIs)
offered by companies like Google. Although this approach offloads the computational re-
quirements from the user, the user is often rate limited on the free tier or the use of API
is paid, typically based on the number of input and output tokens processed. After the
embeddings are made, they are stored in the vector database with the chunk of text it was
made from, and possibly more valuable metadata for later retrieval of the right vectors.

2.5.4 Vector Database

Vector database is used for efficient storing of high-dimensional vectors. Main reason for
using vector databases is that they offer ways to do efficient similarity search [9]. Main pur-
pose is to find chunks of context that are semantically similar to the embedding of the user’s
query. There are plenty of databases where the user can do hybrid search, SQL queries that
filter depending on both standard relational criteria and vector similarity. One of those is
Postgres with the extension called pgvector, which makes Postgres hybrid database. This
means the user can input vectors into database with other metadata like name of the file,
chapter or some metadata generated by LLMs, and then can do hybrid search leveraging
both vector similarity search and SQL queries.

Figure 2.9 shows a visual representation of how vector databases are used to store and
retrieve context.

4Hugging Face Documentation How to Train Sentence Transformers. Hugging Face Blog, 2022. Available
at: https://huggingface.co/blog/how-to-train-sentence-transformers. [Accessed: May 2025]

11

https://huggingface.co/blog/how-to-train-sentence-transformers

Figure 2.9: Vector database workflow5

2.5.5 Retrieval

When the user queries the model, the prompt is converted into a high-dimensional vector
with the same embedding model as the chunk embeddings. The prompt vector is taken,
and a similarity search is performed to find the most similar vectors, which should be the
embeddings of chunks with the most similar meaning. Similarity is typically measured
using a distance metric in a vector space, with the most common metric being cosine
similarity. Then the chunks that are saved there with the most similar vectors are retrieved.
Usually, it is more chunks, the number depending on what works best for that particular
application. Cosine similarity measures the cosine of the angle between two vectors in a
multi-dimensional space. If the vectors point in the exact same direction, the angle between
them is 0∘, and the cosine of the angle is 1. This indicates maximum similarity. If the vectors
point in opposite directions, the angle is 180∘, and the cosine is -1. This indicates maximum
dissimilarity or opposition. If the vectors are orthogonal, the angle is 90∘, and the cosine is
0. This indicates no correlation or similarity [10]. All of these are visualized in the Figure
2.10.

5Elastic, Vector database definition, 2024. Available at: https://www.elastic.co/what-is/vector-
database [Accessed: May 2025]

12

https://www.elastic.co/what-is/vector-database
https://www.elastic.co/what-is/vector-database

Figure 2.10: Cosine similarity6

Reranking can also be part of retrieval. It is a process of reranking the retrieved results
and providing them to LLM in the next step in an order that would yield a better result.
Mostly, it involves having the most relevant chunks of context given to the LLM first. This
aims to reduces the hallucinations by selecting more relevant entries from the knowledge-
base and and improves relevancy of output[11]. There are many models to do this, one of
them being semantic-ranker-default-004 from Google.7

2.5.6 Generation

In the last step of RAG, the prompt and the retrieved context for the prompt are given
to the model that is trained to generate the output. It is typically a generative language
model, often a LLM, but for some tasks like question answering, different models, like
extractive models, can be used. Generative models can create new sequences of text from
scratch. They learn patterns, grammar, and style from their training data and can produce
new sentences and paragraphs. Extractive models identify and extract the most relevant
parts of existing text. They select parts of text directly from the source document.

2.5.7 Prompt engineering

Prompt engineering is the process of creating prompts that let us guide the behavior of
the model and achieve desired results without altering the model parameters. Most models
have a property the user can set called system instructions or something similar that lets
the user guide the model with natural language to tailor the results for many different
use cases. Prompts should be precise and unambiguous as most LLMs are trained on large
amount of data, so ambiguous questions can lead to lot of similar context. Common prompt
engineering techniques [12]:

• Role prompting is one of the most used methods. It involves instructing the LLM to
act as a specific persona when generating an answer, this could be an expert in the
field, an assistant in the field, a teacher, etc. It is used to format the way output is
generated in a way that the chosen persona would do it.

• One-shot or few-shot prompting is method where user gives the model example to
learn from for what should output look like for some input, guiding the model on how
to structure and generate output. If no examples are given, it is called zero-shot.

6LearnDataSci, Cosine Similarity. Available at: https://www.learndatasci.com/glossary/cosine-
similarity/ [Accessed: May 2025]

7Google Cloud. ”Ranking“. https://cloud.google.com/generative-ai-app-builder/docs/ranking
[Accessed: May 2025].

13

https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/
https://cloud.google.com/generative-ai-app-builder/docs/ranking

• Structuring the Prompt. Usually instructions are placed at the start of the prompt
or in system instructions parameter if model allows that. Often markdown or XML
elements such as ###, ## or <document>,<question> are used to distinguish different
parts of the prompt, like context, question, instructions, etc. Also, delimiters like äre
common.

2.6 Evaluation of RAG systems
The evaluation of the RAG system can be very challenging as it has many parts to evaluate,
not just the final output. Because of this, special frameworks had to be made for RAG
systems, that take into consideration all of its parts. One of them is RAGAs introduced in
RAGAs: Automated Evaluation of Retrieval Augmented Generation [13]. RAGAs provides
python library which can be used to evaluate large amount of metrics, some of which even
use LLMs for evaluation. These utilize calls to LLMs to get the score. These metrics can be
nondeterministic, as LLMs, even with temperature set to 0 can sometimes return different
results for some inputs. Second category RAGAs provides are Non-LLM-based metrics.
Those are deterministic for the same inputs. However experiments in RAGAs: Automated
Evaluation of Retrieval Augmented Generation [13] have shown LLM-based metrics are
closer aligned with human judgments.

2.6.1 RAGAs metrics explanation

The metrics8 described here are the ones used for evaluation in later chapter. The ones
important for question answering part are Faithfulness, Answer Relevancy, Semantic simi-
larity, and Rubrics based criteria scoring. The ones important for retrieval evaluation are
Context Precision, Context Recall.

Faithfulness

For this metric the LLM identifies number of claims in the response supported by the
retrieved context and divides that value with total number of claims in the response. It
ranges from 0 to 1, with higher scores indicating better consistency.

Faithfulness Score =
Number of claims in the response supported by the retrieved context

Total number of claims in the response

Answer Relevancy

For this metric N amount of questions are generated for the answer and then cosine sim-
ilarity is computed with embeddings of the new generated questions and the original one.
It ranges from 0 to 1, with higher scores indicating more relevant answers.

answer relevancy =
1

𝑁

𝑁∑︁
𝑖=1

cosine similarity(𝐸𝑔𝑖, 𝐸𝑜)

Here N number of questions are generated for the answer

• 𝐸𝑔𝑖 is the embedding (vector representation) of the generated question 𝑖.
8List of available metrics, Ragas. Available at: https://docs.ragas.io/en/latest/concepts/metrics/

available_metrics/ [Accessed: May 2025].

14

https://docs.ragas.io/en/latest/concepts/metrics/available_metrics/
https://docs.ragas.io/en/latest/concepts/metrics/available_metrics/

• 𝐸𝑜 is the embedding (vector representation) of the original question.

• 𝑁 is the number of generated questions, which is set to 3 by default.

Rubrics based criteria scoring

This metric calculates the score depending on user defined rubrics. Typically numeric scores
are used with description belonging to them. The LLM compares the generated answer with
retrieved context and reference. Then it scores them based on user defined scale.

Semantic similarity

This metric is calculated by making vectors from the answer and reference using the same
embedding model and computing cosine similarity between the two vectors, ranging from
0 to 1, with higher scores meaning more similarity.

Context Precision

K here is total number of retrieved chunks, the @K represents precision with K number
of retrieved chunks. Context Precision@K is calculated as the mean of the precision@k for
each chunk in the context. It ranges from 0 to 1, with higher scores indicating a more
precise context.

Context Precision@K =

∑︀𝐾
𝑘=1(Precision@k · 𝑣𝑘)

Total number of relevant items in the top K results

Precision@k is number of relevant chunks at rank k divided by amount of total number of
chunks at rank k.

Precision@k =
true positives@k

(true positives@k + false positives@k)

Context Recall

For this metric LLM identifies number of claims in the reference supported by the retrieved
context and divides that value with total number of claims in the reference. It ranges from
0 to 1, with higher scores indicating that better context was retrieved.

Context Recall = Number of claims in the reference supported by the retrieved context
Total number of claims in the reference

2.7 Ragas Dashboard
Ragas also has online dashboard that stores the results of experiments seen on Figure 2.11.
When the user chooses an experiment, he sees a table presenting all the samples in the
experiment with all the metric scores. The user can annotate the results one by one. There
is also an option to see what the input, retrieved contexts, and answer were for the sample.
This is shown on Figure 2.12. For LLM-based metrics, it can be seen what queries the
RAGAs internally used to evaluate them. For the Non-LLM-based metrics only the output
score of the metric and the parts the calculation of score depended on.

15

Figure 2.11: RAGAs Dashboard — all results

Figure 2.12: RAGAs Dashboard — LLM outputs

16

2.8 Summary
Chapters 2 covers essential concepts from basic NLP and neural networks, to the most
important details of transformer architecture. This chapter explains RAG, its parts, the
evaluation framework for RAG systems, and its metrics in detail. The following chapters
will build on these concepts and implement the application and its evaluation using the
methods and frameworks mentioned here.

17

Chapter 3

Format of input documents

The structure and format of input documents is one of the most important parts of RAG.
With structured files, most commonly used methods are the ones that leverage their struc-
ture. If they are not structured, we need to use more generic methods like fixed-size,
recursive, or semantic chunking.

3.1 Markdown files
The dataset used for this thesis was provided by Flowmon Networks. It is in the form of
Markdown files, which contain technical documentation. These documents provide informa-
tion about Flowmon ADS, a modern system for the detection of anomalies and patterns of
undesirable network behavior. The documents describe the introduction to the system, the
installation and configuration, the user interface, and the methods to detect various poten-
tially undesirable activities on the network and accumulate appropriate information. These
markdown files contain markdown elements such as headings 3.2, lists, tables 3.3, JSON
blocks 3.1, etc. This is the main dataset the application focuses on during implementation
and evaluation in the following chapters. It consists of 107 files, sized 382 KB.

Figure 3.1: Showcase of different types of formatting in markdowns — JSON blocks

18

Figure 3.2: Showcase of different types of formatting in markdowns — paragraphs and lists

Figure 3.3: Showcase of different types of formatting in markdowns — tables

3.2 Text files
To test how the application behaves on plain text files, RFC documents describing official
internet protocol standards1 will be used. To match the size of the first dataset, 37 text files
sized 408 KB from the 123 files available in this RFC section will be used for the experiments
in the evaluation chapter. They contain technical specifications and organizational notes
for the Internet, and they are available in multiple formats like text, PDF, or HTML. They
have lot of different ways of formatting inside of them like plain text paragraphs shown in
Figure 3.4, tables shown in Figure 3.6, chapters, sections, lists shown in Figure 3.5, ASCII

1Official Internet Protocol Standards. Available at: https://www.rfc-editor.org/standards. [Accessed:
May 2025].

19

https://www.rfc-editor.org/standards

diagrams, etc. In these, evaluation can be made showing how the implementation deals
with different types of formatting.

Figure 3.4: Showcase of different types of formatting in RFCs — paragraphs

Figure 3.5: Showcase of different types of formatting in RFCs — lists

20

Figure 3.6: Showcase of different types of formatting in RFCs — tables

3.3 Summary
This chapter describes the structural characteristics, formatting elements, and size of both
datasets. Recognizing these patterns, such as headings, lists, JSON blocks, and tables in
Markdown and RFC files, will provide a way to propose a processing of input documents
in the next chapter.

21

Chapter 4

Design and Implementation of the
application for document analysis

This chapter will describe how the QA application’s frontend and backend are implemented,
what tools have been used, and how. It also shows how input documents are being processed
and ingested into the vector database. It also shows diagrams that describe the architecture
of this application and show how every part of the architecture is implemented. Implemen-
tation is split into two chapters. This chapter is about the web-based application that users
can use to make queries about technical documentation related to the project. The next
one is about evaluation scripts that were used to choose the models, their parameters, and
RAG settings to achieve the best usability of the web-based application.

4.1 User interface implementation
The user interface was designed with user-friendliness as a primary goal, making the process
of uploading and querying technical documentation simple for users. The front-end was
developed with HTML5, providing the structural foundation, and Bootstrap and CSS were
used for the layout and styling. Vanilla JavaScript was used for client-side interaction. It
allows users to select the model used to provide answers for their prompts and to select
the files that users wanted to use for querying. For the backend, Python was chosen as it
is widely used for development involving Artificial Intelligence. It has many libraries for
working with neural networks and especially transformers, and makes working with them
simple. Python is used with Python web framework Flask, to handle server-side operations
and application logic. Flask makes HTTP request processing simple with Flask routes,
which map incoming requests to Python functions. Templates are files that contain static
data and placeholders for dynamic data. They are used to render HTML with specific data
in a web browser, so Flask templates were used for dynamic content rendering.

4.2 Graphical user interface design
These are the main parts of graphical user interface shown in Figure 4.1.

• Model: The header section contains the dropdown that lets users switch between
different LLMs.

• Uploaded documents: Panel with checkboxes that lets the user select which doc-
uments he wants to query or summarize.

22

• Upload File: User can upload text documents or markdown files in this section.
These documents will be processed and stored in a vector database to be later used
for context retrieval.

• Question Field: Once the document is uploaded, the user can ask specific questions
related to the content of the document.

• Answer Section: After submitting question, answer will be shown here.
• Uploaded Documents: In this area user can select which documents in the vector

database he would like to query.
• Clear buttons: Buttons to delete the chat history or clear database.

Figure 4.1: Graphical user interface

23

4.3 Preprocessing input documents
Documentation preprocessing for this tool consists of 4 steps shown in the Figure 4.2.

Figure 4.2: Steps for preprocessing files1

4.3.1 Load

The loading is done by user inserting files into HTML form with the attribute which allows
file uploads enctype="multipart/form-data". Supported formats are markdown files and
plain text files. When the file is submitted, POST request is made and it is handled by
Flask /upload route. In there upload_file function is called. There every file is processed,
first calling add_file_name_to_db function which adds file name to uploaded_documents
table in Postgres. This table is used to display name of all uploaded documents in the left
panel used for filtering in the web interface. After this process_and_store_file function
is called and takes file content, filename and database connection as parameters. In there
decode('utf-8') is used to convert file content into a string. The file content is then split
into chunks.

4.3.2 Split into chunks

For splitting into smaller chunks, I use different approaches, which are set with input
parameters for the application, based on the input file format. All character splitters I am
using are from langchain2.
First approach is using MarkdownHeaderTextSplitter.
In this approach MarkdownHeaderTextSplitter class from langchain_text_splitters
is used create instance of MarkdownHeaderTextSplitter, here is what parameters and
methods I am using.

Parameters

• headers_to_split_on (List[Tuple[str, str]]): Headers we want to track.

• strip_headers (bool): Strip split headers from the content of the chunk.

Methods

• __init__(headers_to_split_on[, ...]):Create a new MarkdownHeaderTextSplitter.

• split_text(text): Split markdown file into multiple components.

The headers used are ("##", "Header 2") and ("###", "Header 3"). strip_headers
is set to False. split_text(text) method is called on the instance with file content as a
parameter, which splits it into smaller chunks.

1Langchain Documentation, RAG. Available at: https://python.langchain.com/docs/tutorials/rag/
[Accessed: May 2025]

2Langchain Text splitters. Available at: https://api.python.langchain.com/en/latest/
text_splitters/index.html [Accessed: May 2025]

24

https://python.langchain.com/docs/tutorials/rag/
https://api.python.langchain.com/en/latest/text_splitters/index.html
https://api.python.langchain.com/en/latest/text_splitters/index.html

Second approach is using RecursiveCharacterTextSplitter.
In this approach RecursiveCharacterTextSplitter class from langchain_text_splitters
is used create instance of RecursiveCharacterTextSplitter, here is what parameters and
methods I am using.

Parameters

• chunk_size (int) – Maximum size of chunks to return

• chunk_overlap (int) – Overlap in characters between chunks

• length_function (Callable[[str], int]) – Function that measures the length of
given chunks

Methods

• __init__([chunk_size, ...]): Create a new RecursiveCharacterTextSplitter.

• split_text(text): Split text into multiple components.

I am setting chunk_size to 1000, chunk_overlap (int) to 200 and length_function
to len. split_text(text) method is called on the instance to split it same way as with
MarkdownHeaderTextSplitter.
Third approach is using SemanticChunker.
In this approach SemanticChunker class from langchain_experimental.text_splitter
is used create instance of SemanticChunker, here is what parameters and methods I am
using.

Parameters

• embeddings – Interface for embedding models

Methods

• __init__(embeddings[, buffer_size, ...]): Create a new SemanticChunker.

• split_text(text): Split text into multiple components.

I am setting embeddings to instance of GoogleGenerativeAIEmbeddings class, which is im-
ported from langchain_google_genai library. It is used to connect to Google’s generative
AI embeddings service. As model I set models/text-embedding-004. split_text(text)
method is called on the instance to split it same way as with MarkdownHeaderTextSplitter.

4.3.3 Embed chunks

For embedding the chunks into vector representation, I use different models, based on input
parameters for application.
First approach is using google API to make embeddings with models/text-embedding-0043.
Python library genai, which is made by Google to use generative artificial intelligence
with APIs, is used to make embeddings out of the document chunks. The model used is
models/text-embedding-004 and function used is embed_content as shown in Listing 1.
This maps sentences to a 768 dimensional dense vector space that can be used for sentence
or paragraph similarity search.

3Gemini API — Embeddings Available at: https://ai.google.dev/gemini-api/docs/embeddings [Ac-
cessed: May 2025].

25

https://ai.google.dev/gemini-api/docs/embeddings

client = genai.Client(api_key=os.environ.get('GEMINI_API_KEY'))
def generate_embeddings_genai(text):

result = client.models.embed_content(
model="models/text-embedding-004",
contents=text,

)
return result.embeddings[0].values

Listing 1: This code snippet demonstrates how embeddings are made with genai library.

Second approach is using Python framework Sentence Transformers to make embeddings
with intfloat/multilingual-e5-large-instruct. Using Sentence Transformers [14] which
is Python library for state-of-the-art sentence, text and image embeddings.4 Embeddings
are made from the document chunks, they are 1024 dimensional. The model used is
intfloat/multilingual-e5-large-instruct shown in Listing 2.

e5_model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
def generate_e5_embeddings(text):

instr_text = f"Instruct: Represent this documentation for retrieval
\nQuery: {text}"→˓

embedding = e5_model.encode(
instr_text,
convert_to_tensor=False,
normalize_embeddings=True
)
return embedding.tolist()

Listing 2: This code snippet demonstrates how embeddings are made with Sentence Trans-
formers library.

4.3.4 Store

After the embeddings are made insert_embedding_pgvector function is called. Here,
embeddings are inserted into the database along with the content the embedding was made
out of and the file name from which the chunk was taken. As vector database Postgres
with pgvector extension is being used. How records with embeddings are stored into the
database is shown in Listing 3.

4Sentence-Transformers Documentation. Available at: https://sbert.net/docs/
sentence_transformer/usage/usage.html [Accessed: May 2025]

26

https://sbert.net/docs/sentence_transformer/usage/usage.html
https://sbert.net/docs/sentence_transformer/usage/usage.html

def insert_embedding_pgvector(conn, file_name, content, embedding):
with conn.cursor() as cur:

cur.execute(
"""
INSERT INTO markdown_embeddings (file_name, content, embedding)
VALUES (%s, %s, %s);
""" ,
(file_name, content, embedding)

)
conn.commit()

Listing 3: This code snippet demonstrates how embeddings are stored in database.

4.4 Question Answering and Document summarization
Question answering for this tool can be described by following diagram in the Figure 4.3.

Figure 4.3: Steps for generating answer for question from the given context 5

4.4.1 Ask question

When a POST request is received at the /question endpoint, the Flask routing mechanism
directs it to the appropriate handler, which executes the answer_question function.

4.4.2 Retrieving context from vector database

First embedding is made out of the question with the same model as embeddings of chunks
were made, so either generate_embeddings_genai function or generate_e5_embeddings
function is called. After embedding of is made, most similar vectors in vector database
can be searched for. Cosine similarity is being used as similarity metric and k most similar
embeddings are being retrieved where k is based on input parameters for the application.
How query for hybrid search looks like when using pgvector is shown in Listing 4.

5Langchain Documentation, RAG. Available at: https://python.langchain.com/docs/tutorials/rag/
[Accessed: May 2025]

27

https://python.langchain.com/docs/tutorials/rag/

"""
SELECT * FROM markdown_embeddings
WHERE file_name = ANY(%s)
ORDER BY embedding <=> %s::vector
LIMIT %s;
""" ,
(selected_files, query_embedding, top_k)

Listing 4: Cosine similarity search with SQL query filters.

Then based on input parameters, reranking can be used and can return different number
of chunks. For reranking I am using semantic-ranker-default-004 model from Google.
Reranking is done using discoveryengine module from google.cloud library in a way
show in Listing 5.

client = discoveryengine.RankServiceClient(credentials=credentials)
ranking_config = client.ranking_config_path(

project=PROJECT_ID,
location="global",
ranking_config="default_ranking_config",

)
request = discoveryengine.RankRequest(

ranking_config=ranking_config,
model="semantic-ranker-default-004",
top_n=top_n,
query=query,
records=records

)
response = client.rank(request=request)

Listing 5: Reranking with semantic-ranker-default-004.

4.4.3 Prompting QA model and getting answer

Model for question answering can be chosen in dropdown in web interface 4.1. Based on
which one is selected, one of the functions is called. First option is answer_genai_api for
model gemini-2.5-flash-preview-04-17 and the second one answer_vertex_api for the
model llama-4-maverick-17b-128e-instruct-maas. Retrieved context and the question
are passed as parameters for these functions. Then prompt for the LLMs is put together.
To guide LLMs I used prompt engineering methods mentioned earlier like role prompting
and setting the system instructions. The resulting prompt and system instructions are as
shown in Listing 6.

28

prompt = f"""
Chat History:
{[]}

Retrieved Context (from vector database based on current question):
{context}

Current Question:
{question}
"""

Listing 6: Prompt for large language models

I am using the same instructions for all LLMs. First I used role prompting to set the
persona for the LLM.

Role and Goal:
You are an AI assistant specialized in answering questions based
on provided technical documentation. You are part of a RAG system.
Your goal is to be helpful, accurate, and context aware, leveraging
both the retrieved documents and the ongoing conversation history.

Then I wanted to set the priority on what should the LLM focus when generating output.

Instructions:
1. # Analyze the Current Question #: Carefully consider the
Current Question in the context of the full Chat History.
2. # Check for Follow-up #: Determine if the Current Question
is a direct follow-up, clarification request, or elaboration
on the preceding answers in the Chat History.
3. # Prioritize Previous Answer, if there is one #: If the
Current Question is a direct follow-up on the previous answer,
prioritize information from that previous answer first.
Use the Retrieved Context to supplement or verify information
for this follow-up question, but ensure your response is focused
on the previous answer.
4. # If the current question is not a follow-up, prioritize the
Retrieved Context #: If the current question is not a follow-up,
base your answer primarily on the Retrieved Context, with history
potentially supplementing it.
5. #Use full provided history#: Provided history consists of last
5 questions and answers. Understand what the user is trying to achieve
and use the full context to answer the question.

Another goal was to let the LLM know how to synthesize the information, when to use
its internal knowledge instead of provided information, and what to do if answer cannot be
found in either of those.

6. # Synthesize the retrieved information logically #: In RAG, the
context is sorted by cosine similarity with the question. If relevant
pieces are scattered within the context, resolve potential ambiguities.
6. # Detail and accuracy #: Provide a detailed, clear, and accurate
answer based on the information sources and their priority.
7. # Fallback to general knowledge #: If the answer cannot be

29

reasonably constructed from the Retrieved Context and relevant parts
of the Chat History, use your general knowledge as a source with the
lowest priority. If you use your general knowledge, let the user know
that the information doesn't come from the provided technical
documentation but from your general knowledge.
8. # Handling Uncertainty: # If you cannot confidently answer the
question using context and history, let the user know, don't make up
the answer.

The last part was there specifically because answers are being rendered on the web
interface and they should be formatted in a way the user can understand them with ease.

9. # Make the answer markdown format #: The whole generated text needs
to be formatted according to markdown rules, to make it easier to
display on webpage. Don't use big headings, use only ###.

After the prompt is built, the function answer_genai_api genai client is used to query
the LLM using API as shown in Listing 7.

client = genai.Client(api_key=os.environ.get('GEMINI_API_KEY'))
response = client.models.generate_content(model=session['selected_model'],
contents=prompt,config=types.GenerateContentConfig(

temperature=0.0,
max_output_tokens=3000,
system_instruction=[

types.Part.from_text(text=SYSTEM_INSTRUCTIONS),
]

))
return response.text

Listing 7: Call to the genai API

Function answer_vertex_api calls vertex API the way shown in Listing 8.

SERVICE_ACCOUNT_KEY_PATH = "path_to_vertex_key.json"
cred = service_account.Credentials.from_service_account_file(

SERVICE_ACCOUNT_KEY_PATH
)
vertexai.init(project=PROJECT_ID, location=LLAMA_REGION, credentials=cred)
vertex_model = GenerativeModel(model_name=f"publishers/meta/models/{qa_model}",
system_instruction=SYSTEM_INSTRUCTIONS)
chat = vertex_model.start_chat()
response = client.models.generate_content(model=session['selected_model'],
contents=prompt,config=types.GenerateContentConfig(

temperature=0.0,
max_output_tokens=3000,
system_instruction=[

types.Part.from_text(text=SYSTEM_INSTRUCTIONS),
]

))
return response.text

Listing 8: Call to the vertex API

30

After the answer is received from the API, it is rendered on the web interface for the user.
It also gets appended along with the question to the chat history that is saved in the Flask
session.

4.4.4 Document summarization

When a POST request is received at the /summarize endpoint, the Flask routing mecha-
nism directs it to the appropriate handler, which executes the summarize_file function.
Summarizing works same as asking question regarding prompting the LLM, only difference
is that the context is not retrieved based on similarity search, but all chunks made from
selected file are retrieved and the question part in prompt is Summarize this document.

4.5 Summary
This chapter detailed the complete architecture and implementation of the technical doc-
ument analysis application. Key components, including the user-friendly interface, the
document preprocessing pipeline involving loading, chunking, embedding, and storage, and
the RAG-based question-answering system utilizing selected LLMs and context retrieval,
have been described. The result is an application designed to meet the thesis goal, which
involves performing Q&A tasks and summarizing technical documentation. After imple-
menting the application, the next step is to evaluate its performance, which is part of the
implementation that the next chapter is focused on.

31

Chapter 5

Evaluation

To assess the performance of my RAG system, I am using RAGAs framework in the eval-
uation program. The program is designed to easily evaluate the RAG system by allowing
simple adjustments to input parameters like chunking methods, embedding and generation
LLMs, and the amount of retrieved context. Evaluation with RAGAs requires questions
and ground truths that are related to documents ingested into the database for context re-
trieval. LLMs are prompted with these questions same way, described in previous chapter
then dictionary containing questions, ground truths, chunks of context and answers is made.
Using datasets1 python library, dataset type is made out of the dictionary. Then RAGAS
evaluate function is used to evaluate the dataset, and get scores for the set metrics. How
it is used in evaluation program is shown in the Listing 9.

eval_data = {
"question": questions_rfc, # List of strings
"ground_truth": ground_truths_rfc, # List of strings
"contexts": contexts, # List of lists of strings
"answer": answers # List of strings

}
eval_dataset = Dataset.from_dict(eval_data)
result = evaluate(

dataset=eval_dataset, # Dataset object
metrics=metrics, # List of metrics
llm=gemini_llm, # LLM instance
embeddings=gemini_embeddings, # Embedding model instance
raise_exceptions=True,
run_config=rate_limit_config,
experiment_name=experiment_name

)

Listing 9: Evaluating datasets

RAGAs has a TestsetGenerator that lets a user generate testset from their docu-
mentation using LLMs 2. It generates the scenarios and personas, and then generates
sample questions with corresponding ground truths based on the dataset provided. Us-

1Hugging Face Datasets Documentation. https://huggingface.co/docs/datasets/index [Accessed:
May 2025]

2Ragas , Generate Synthetic Testset for RAG https://docs.ragas.io/en/stable/getstarted/
rag_testset_generation/ [Accessed: May 2025]

32

https://huggingface.co/docs/datasets/index
https://docs.ragas.io/en/stable/getstarted/rag_testset_generation/
https://docs.ragas.io/en/stable/getstarted/rag_testset_generation/

ing TestsetGenerator I have generated a testset that includes 70 questions and ground
truth related to the question for this Flowmon ADS dataset, which contains 107 mark-
down files, with a size of 382 KB. For rubrics, I am using the ones mentioned in RAGAs
documentation3.

"score1_description": "The response is entirely incorrect and fails to address
any aspect of the reference.",→˓

"score2_description": "The response contains partial accuracy but includes
major errors or significant omissions that affect its relevance to the
reference.",

→˓

→˓

"score3_description": "The response is mostly accurate but lacks clarity,
thoroughness, or minor details needed to fully address the reference.",→˓

"score4_description": "The response is accurate and clear, with only minor
omissions or slight inaccuracies in addressing the reference.",→˓

"score5_description": "The response is completely accurate, clear, and
thoroughly addresses the reference without any errors or omissions.",→˓

5.1 Comparison of used model specifications and prices
Pricing for text inputs and outputs per million tokens is shown in Table 5.1.4

Model Parameters Pricing ($/million tokens)
Input Output

Gemini 2.5 Flash Not specified $ 0.15 $0.60
Mistral Large (24.11) 123 B $2.00 $6.00
llama-4-maverick 17 B active 400 B total $0.35 $1.15

Table 5.1: Model Pricing and Parameters Comparison

5.2 Experiments
This section details the experiments conducted to evaluate the performance of the RAG
system. Evaluation consists of testing various configurations of chunking methods, LLMs,
number of retrieved context chunks and reranking of retrieved context. It contains an
evaluation of all of these parameters, with multiple LLMs calculating the score for metrics,
and explores the effectiveness of different parameters on different formats of input files.
RAGAs scores every question in the data set separately, so all the results mentioned in the
tables are mean of all the question scores.

5.2.1 Experiment number 1: Number of retrieved context chunks

For my first experiment, I decided to do the following settings:
3Code adapted from: Ragas. Rubrics-based criteria scoring | Ragas Documentation. Avail-

able at: https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/general_purpose/
#rubrics-based-criteria-scoring

4Pricing data from Google Cloud Vertex AI documentation Available at: https://cloud.google.com/
vertex-ai/generative-ai/pricing#cost-of-building-and-deploying-ai-models-in-vertex-ai [Ac-
cessed: May 2025]

33

https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/general_purpose/#rubrics-based-criteria-scoring
https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/general_purpose/#rubrics-based-criteria-scoring
https://cloud.google.com/vertex-ai/generative-ai/pricing#cost-of-building-and-deploying-ai-models-in-vertex-ai
https://cloud.google.com/vertex-ai/generative-ai/pricing#cost-of-building-and-deploying-ai-models-in-vertex-ai

• Chunking Method: Markdown chunking, as based on figure 2.7 it should yield the
best results.

• Data: All 107 Flowmon markdown files ingested in database, sized 382 KB

• Embedding model: Google text-embedding-004

• LLMs: gemini-2.5-flash-preview-04-17, llama-4-maverick-17b-128e-instruct-maas, Mis-
tral Large (24.11)

• Number of retrieved context chunks: variable

• LLM used to calculate score for metrics: gemini-2.5-flash-preview-04-17

As RAGAs needs LLM to generate the score for calculating the metrics I first decided to
use gemini-2.0-flash-001. I ran evaluation using gemini-2.5-flash-preview-04-17 to generate
responses to the prompts, with 20 retrieved chunks. Then I reran the evaluation again and
got different results for both. This can happen for multiple reasons, most common ones
being that models parameters are continuously being adjusted, the other one floating-point
arithmetic precisions. Because operations calculating the probability of the next token are
parallelized on multiple resources, the exact order of operations can vary slightly between
runs. With this happening, some token that wouldn’t otherwise have higher probability of
being next token can get picked.

After this I tried using gemini-2.5-flash-preview-04-17 and the results were the same
across multiple runs with the same parameters, so I decided to keep using it as the LLM
used to calculate score for metrics. The results of experiment number 1 are shown in Table
5.2 for llama4, Table 5.3 for gemini-2.5, and Table 5.4 for Mistral Large.

Metric 20 25 30
faithfulness 0.808269 0.805194 0.872692
answer_relevancy 0.887196 0.878201 0.900209
context_precision 0.999999 0.999999 0.999999
context_recall 0.957721 0.960578 0.969761
semantic_similarity 0.905009 0.905333 0.902820
domain_specific_rubrics 3.985714 4.128571 4.228571

Table 5.2: llama-4-maverick with different amounts of retrieved chunks

Metric 20 25 30
faithfulness 0.959336 0.956145 0.948480
answer_relevancy 0.903508 0.899954 0.881290
context_precision 0.999999 0.999999 0.999999
context_recall 0.957721 0.965340 0.969761
semantic_similarity 0.920235 0.919857 0.919034
domain_specific_rubrics 4.585714 4.671428 4.614285

Table 5.3: gemini-2.5-flash-preview-04-17 with different amounts of retrieved chunks

34

Metric 20 mean 25 mean 30 mean
faithfulness 0.870780 0.889669 0.881136
answer_relevancy 0.916198 0.909478 0.911987
context_precision 0.999999 0.999999 0.999999
context_recall 0.957721 0.965340 0.969761
semantic_similarity 0.904830 0.901914 0.902961
domain_specific_rubrics 4.500000 4.471428 4.457142

Table 5.4: mistral-large-2411 with different amounts of retrieved chunks

Experiment conclusion

In this experiment, gemini-2.5-flash-preview-04-17 consistently showed strong per-
formance across the different chunk settings. With 25 chunks, it achieved the highest
domain_specific_rubrics score (4.67) and high faithfulness (0.956) and semantic simi-
larity (0.920). Model llama-4-maverick generally scored lower, particularly in faith-
fulness (0.80-0.87) and domain_specific_rubrics (3.98-4.23) compared to the other two
models. Model mistral-large-2411 performed well, often close to Gemini, especially in
answer relevancy (around 0.91) and domain_specific_rubrics (around 4.45-4.50). Model
gemini-2.5-flash-preview-04-17 had overall, considering its consistently high scores
across metrics, particularly the domain-specific rubrics and faithfulness. Considering that
increasing prompt context size raises costs, and given that gemini-2.5-flash-preview-04-17
achieved the highest domain_specific_rubrics score along with comparably high scores on
other metrics with 25 retrieved chunks, I will use 25 as the number of retrieved context
chunks for my next experiments.

5.2.2 Experiment number 2: Changing LLM used for evaluation

Settings for second experiment:

• Chunking Method: Markdown chunking

• Embedding model: Google text-embedding-004

• Data: All 107 Flowmon markdown files ingested in database, sized 382 KB

• LLMs: gemini-2.5-flash-preview-04-17, llama-4-maverick-17b-128e-instruct-maas, Mis-
tral Large (24.11)

• Number of retrieved context chunks: variable

• LLM used to calculate score for metrics: gpt-4o-mini

For my second experiment, I will be using gpt-4o-mini as the LLM used to evaluate results
in RAGAs, to see if Gemini did not perform better in the first experiment only because it
was also evaluating how good the responses are. I will be setting the number of retrieved
context chunks to 25 as it got the best result in domain specific rubrics. The results of
experiment number 2 are shown in Table 5.5.

35

Metric 25 lama-4-maverick 25 Gemini 2.5 Flash 25 Mistral Large
faithfulness 0.865412 0.954167 0.936639
answer_relevancy 0.868643 0.881560 0.906636
context_precision 0.999999 0.999999 0.999999
context_recall 0.955714 0.948888 0.962381
semantic_similarity 0.893595 0.919857 0.901915
domain_specific_rubrics 4.828571 4.914285 4.885714

Table 5.5: All models with 25 retrieved chunks

Experiment conclusion

In this experiment, Gemini and Mistral outperformed Llama in faithfulness, answer rele-
vancy, semantic similarity and domain specific rubrics, while they were very comparable
in all of the metrics. However, since the price per token of Gemini is much lower, as can
be seen in Table 5.1, I will choose Gemini to carry out the next experiments. There are
small differences between runs in this experiment, which can be seen in context recall, as
even with temperature set to 0 on gpt-4o-mini, results changed a small amount between
runs, which did not happen with Gemini 2.5 Flash as the LLM used to calculate score for
metrics. This inconsistency also happened before with Gemini 2.0 Flash, so as I mentioned,
I will be using Gemini 2.5 Flash as LLM used to calculate the score for metrics for all the
other experiments.

5.2.3 Experiment number 3: Chunking methods on Markdown Files

For my third experiment, different chunking methods will be used for the model gemini-
2.5-flash-preview-04-17 with the setting that performed the best in the experiment before,
to find the best chunking method to use for the main Flowmon dataset. The results of
experiment number 3 are shown in Table 5.6. Settings for the third experiment:

• Chunking Method: Markdown chunking, Semantic Chunking, Recursive Chunking

• Embedding model: Google text-embedding-004

• Data: All 107 Flowmon markdown files ingested in database, sized 382 KB

• LLMs: gemini-2.5-flash-preview-04-17

• Number of retrieved context chunks: 25

• LLM used to calculate score for metrics: gemini-2.5-flash-preview-04-17

Metric Markdown chunking Semantic Chunking
faithfulness 0.956145 0.948465
answer_relevancy 0.899954 0.902465
context_precision 0.999999 0.999999
context_recall 0.965340 0.945912
semantic_similarity 0.919857 0.913380
domain_specific_rubrics 4.671428 4.442857

Table 5.6: All models with 25 retrieved chunks

36

Experiment conclusion

Markdown chunking outperformed Semantic chunking across most evaluated metrics. Specif-
ically, it achieved higher scores in faithfulness (0.956 vs 0.948), context recall (0.965 vs
0.946), semantic similarity (0.920 vs 0.913), and notably higher in domain_specific_rubrics
(4.67 vs 4.44). Semantic chunking only slightly edged out Markdown chunking in answer
relevancy (0.902 vs 0.900). For the structured Markdown dataset, leveraging the document
structure via Markdown chunking proved more effective than the meaning-based Semantic
chunking approach.

5.2.4 Experiment number 4: Chunking methods on Text Files

With RAGAs TestsetGenerator I have generated testset that includes 150 question and
question-related ground truth for the RFC dataset, which contains 37 text files, with size
of 408 KB. There are more RFC files describing official internet protocol standards, but I
wanted the datasets to be of a similar size, so I picked only 37 files that had around the
same disk size as the Flowmon ADS dataset. To ensure comparable embedding lengths, I
found that the average embedding length made from semantic chunking is 1610 characters,
and set chunk_size for RecursiveCharacterTextSplitter to be 1610 with 20% overlap.
In this experiment, I will be testing how the application performs for a similar dataset to
the Flowmon ADS dataset but in a different format, as well as what are the best chunking
options for the text format. The results of experiment number 4 are shown in Table 5.7.
Settings for the fourth experiment:

• Chunking Method: Semantic Chunking, Recursive Chunking

• Embedding model: Google text-embedding-004

• Documents: RFC Text documentation, consisting from 37 text files, sized 408 KB.

• LLMs: gemini-2.5-flash-preview-04-17

• Number of retrieved context chunks: 25

• LLM used to calculate score for metrics: gemini-2.5-flash-preview-04-17

Metric Semantic Recursive
faithfulness 0.986529 0.981751
answer_relevancy 0.896361 0.900307
context_precision 0.953333 0.959999
context_recall 0.951777 0.945912
semantic_similarity 0.911525 0.914743
domain_specific_rubrics 4.846666 4.800000

Table 5.7: All models with 25 retrieved chunks

Experiment conclusion

The results show that the application performs very well when handling plain text doc-
uments. Both Semantic and Recursive chunking methods yielded high scores across all

37

metrics. Faithfulness was very high (above 0.98) for both methods, showing the model re-
liably based its answers on the retrieved text content. Answer Relevancy was high (around
0.90), confirming the answers effectively addressed the questions. Context Precision and
Recall were also high (around 0.95), indicating the retrieval process successfully identified
relevant document sections. Semantic Similarity scores (above 0.91) suggest the generated
answers closely matched the meaning of the ground truths. The Domain-Specific Rubrics
scores were excellent (above 4.80 out of 5), demonstrating high overall quality of the re-
sponses according to the defined criteria.

5.2.5 Experiment number 5: Using reranking

For my fifth experiment, I used semantic-ranker-default-004 from Google to rerank the
25 retrieved context chunks based on their relevancy and put the most relevant chunks into
the context first. The results of experiment number 5 are shown in Table 5.8. Settings for
the third experiment:

• Chunking Method: Markdown chunking

• Embedding model: Google text-embedding-004

• Data: All 107 Flowmon markdown files ingested in database, sized 382 KB

• LLMs: gemini-2.5-flash-preview-04-17

• Number of retrieved context chunks: 25

• LLM used to calculate score for metrics: gemini-2.5-flash-preview-04-17

Metric Without reranking With reranking
faithfulness 0.956145 0.993673
answer_relevancy 0.899954 0.904894
context_precision 0.999999 0.999999
context_recall 0.965340 0.980952
semantic_similarity 0.919857 0.916961
domain_specific_rubrics 4.671428 4.857142

Table 5.8: All models with 25 retrieved chunks

Experiment conclusion

The introduction of a reranking step using semantic-ranker-default-004 yielded significant
improvements in the overall quality and reliability of the RAG system’s outputs. Every
metric improved, except context_precision which stayed the same and semantic_similarity
with very minor decrease, which is likely negligible given the substantial gains in faithfulness
and overall quality.

5.3 Application Deployment
The application is hosted on the Google Cloud Platform, providing easy access and scal-
ability of all its parts. The application is hosted on the Cloud Run service, which is a

38

serverless platform that provides automatic scaling. It is deployed with a simple shell script
that builds container from specified folder containing python script and text file contain-
ing python packages requirements. It also specifies the service name, serverless platform,
region, authentication, and connects to the database instance.

gcloud run deploy ${SERVICE_NAME} \
--source ./app \
--platform managed \
--region ${REGION} \
--allow-unauthenticated \
--add-cloudsql-instances=${INSTANCE_CONN_NAME}

The database is also hosted on the Google Cloud Platform, using the Cloud SQL service.
It is connected to the same virtual network, so it can communicate with the application.

5.4 Evaluation program Deployment
I am running the evaluation on both my machine and on the Google Cloud Platform. On the
cloud the evaluation is run using Batch service, which is a service to schedule, queue, and
execute VM scripts and containerized batch jobs. First, a Docker image is made according
to a Dockerfile and pushed to Google Artifact Registry.

docker build -t $IMAGE_URI .
docker push $IMAGE_URI

FROM python:3.13-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY main.py .
COPY rag_functions.py .
CMD ["python", "main.py"]

Then the batch job gets submitted and executes on the Google Cloud Platform.

gcloud batch jobs submit \
--location=europe-west4 \
--config=job_definition.json

It also requires a job_definition.json file which specifies what image on Artifact
Registry to build the container from, what local variables to set for the container, the
needed compute and storage resources, and how to use them.

5.5 Summary
This chapter detailed the development of an evaluation tool and evaluation steps to assess
the performance of the developed RAG system for technical documentation analysis. Using
the RAGAs framework and synthetically generated test sets for both Flowmon ADS mark-
down dataset and RFC plain text dataset describing official internet protocol standards,
the goal of evaluation was to find optimal setting for both. Outcomes of the evaluation
are described in the conclusion of this thesis. This chapter also covered deployment of the
application and evaluation scripts on Google Cloud Platform.

39

Chapter 6

Conclusion

This thesis explored the application of Transformer neural networks, specifically through the
LLMs and RAG techniques, for analyzing technical documentation. The primary goal was
to develop and evaluate a system capable of efficiently answering user questions and sum-
marizing content from technical documents, making it easier to navigate the large amount
of documentation. The work covered the state-of-the-art in relevant NLP techniques, inves-
tigated the formats of provided technical documents, and proposed effective pre-processing
steps. A web-based application was designed and implemented, with functionalities such as
choosing different LLMs, uploading and processing documents on which user can then per-
form Q&A and text summarization tasks. A significant portion of this work was dedicated
to evaluation using the RAGAs framework. Experiments systematically compared different
LLMs, chunking methods, the number of retrieved context chunks, effects of reranking and
performance on different input document formats. Key findings from the evaluation indi-
cated that for the structured Markdown dataset, the Markdown chunking method combined
with the gemini-2.5-flash-preview-04-17 model and retrieving 25 context chunks provided a
strong balance of performance on the chosen metrics and cost-efficiency. The system also
demonstrated very good performance on plain text RFC documents using both Semantic
and Recursive chunking. Based on these results, the deployed web application was config-
ured to use the MarkdownHeaderTextSplitter for ingested Markdown files and Semantic
Chunking for plain text files, combined with the gemini-2.5-flash-preview-04-17 model, re-
trieving 25 context chunks and context reranking for both the formats.

The main contribution of this thesis lies in the practical implementation and thorough
evaluation of a RAG system specifically tailored for technical documentation. It provides
empirical evidence on the effectiveness of different configurations for this specific domain
and document types. The developed application showcases significant potential for real-
world deployment to help developers or users quickly understand parts various technical
projects. It can help quickly find specific information within extensive documentation or
generate concise summaries of lengthy documents for quick reviews.

However, future possible improvements could be made. Future work could involve
testing and optimizing the system’s performance with much larger documentation, as the
current main dataset consists of 107, sized 382 KB. Another area that could be expanded
is formats of input documents as this thesis focuses only on two formats, markdown and
plain text. Also, all evaluation is done by one framework, so future improvement could be
human evaluation or use of more evaluation tools.

40

Bibliography

[1] Khurana, D.; Koli, A.; Khatter, K. and Singh, S. Natural language processing:
state of the art, current trends and challenges. Multimedia Tools and Applications.
Springer Science and Business Media LLC, july 2022, vol. 82, no. 3, p. 3713–3744.
ISSN 1573-7721.

[2] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L. et al. Attention
is all you need. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017,
p. 6000–6010. NIPS’17. ISBN 9781510860964.

[3] Joshi, C. Transformers are Graph Neural Networks. The Gradient online.
September 2020. Available at:
https://thegradient.pub/transformers-are-graph-neural-networks/. Accessed:
2025-04-24.

[4] Pennington, J.; Socher, R. and Manning, C. D. GloVe: Global Vectors for Word
Representation. In: Empirical Methods in Natural Language Processing (EMNLP).
2014, p. 1532–1543.

[5] Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. et al. Language
Models are Few-Shot Learners. In: Larochelle, H.; Ranzato, M.; Hadsell, R.;
Balcan, M. and Lin, H., ed. Advances in Neural Information Processing Systems 33
(NeurIPS 2020). Curran Associates, Inc., 2020, p. 1877–1901.

[6] Treviso, M.; Lee, J.-U.; Ji, T.; Aken, B. van; Cao, Q. et al. Efficient Methods for
Natural Language Processing: A Survey. Transactions of the Association for
Computational Linguistics. Cambridge, MA: MIT Press, 2023, vol. 11, p. 826–860.

[7] Kshirsagar, A. Enhancing RAG Performance Through Chunking and Text
Splitting Techniques. International Journal of Scientific Research in Computer
Science, Engineering and Information Technology, september 2024, vol. 10,
p. 151–158.

[8] Tarakad, N.; Yu, P.; Samdani, R. and Merrick, L. Long-Context Isn’t All You
Need: Impact of Retrieval and Chunking on Finance RAG. Snowflake online. March
2025. Available at: https://www.snowflake.com/en/engineering-blog/impact-
retrieval-chunking-finance-rag/. Accessed: 2025-04-24.

[9] Han, Y.; Liu, C. and Wang, P. A Comprehensive Survey on Vector Database:
Storage and Retrieval Technique, Challenge. CoRR, 2023, abs/2310.11703.

41

https://thegradient.pub/transformers-are-graph-neural-networks/
https://www.snowflake.com/en/engineering-blog/impact-retrieval-chunking-finance-rag/
https://www.snowflake.com/en/engineering-blog/impact-retrieval-chunking-finance-rag/

[10] Karabiber, F. Cosine Similarity. Learndatasci. Available at:
https://www.learndatasci.com/glossary/cosine-similarity/. Accessed: 2025-04-24.

[11] Mortaheb, M.; Khojastepour, M. A. A.; Chakradhar, S. T. and Ulukus, S.
Re-ranking the Context for Multimodal Retrieval Augmented Generation. January
2025. Available at: https://arxiv.org/abs/2501.04695.

[12] Chen, B.; Zhang, Z.; Langrené, N. and Zhu, S. Unleashing the potential of
prompt engineering for large language models. Patterns, 2025, p. 101260. ISSN
2666-3899.

[13] Es, S.; James, J.; Espinosa Anke, L. and Schockaert, S. RAGAs: Automated
Evaluation of Retrieval Augmented Generation. In: Aletras, N. and De Clercq,
O., ed. Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics: System Demonstrations. St. Julians,
Malta: Association for Computational Linguistics, March 2024, p. 150–158.

[14] Reimers, N. and Gurevych, I. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
November 2019.

42

https://www.learndatasci.com/glossary/cosine-similarity/
https://arxiv.org/abs/2501.04695

	Introduction
	State-of-the-art of NLP methods
	Natural Language Processing
	Types of Neural Networks Used for Natural Language Processing
	Transformer Neural Networks
	Large Language Models
	Retrieval-augmented generation
	Evaluation of RAG systems
	Ragas Dashboard
	Summary

	Format of input documents
	Markdown files
	Text files
	Summary

	Design and Implementation of the application for document analysis
	User interface implementation
	Graphical user interface design
	Preprocessing input documents
	Question Answering and Document summarization
	Summary

	Evaluation
	Comparison of used model specifications and prices
	Experiments
	Application Deployment
	Evaluation program Deployment
	Summary

	Conclusion
	Bibliography

