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Abstract

This thesis presents an Al-powered web application for galaxy morphology classification,
which utilizes machine learning and a vision transformer-based architecture. PyTorch is
used for training the model and processing images from the Galaxy Zoo 2 dataset, while
data augmentation enhances the model’s ability to extract robust features. The final Cos-
moFormer model achieves competitive accuracy in galaxy image classification tasks. The
responsive web application seamlessly integrates the backend API and the frontend user
interface. Deployment on Red Hat OpenShift provides scalability and reliable orchestration
for the system. This work demonstrates how machine learning and cloud-native technolo-
gies can be combined to automate galaxy morphology analysis for modern astronomical
surveys.

Abstrakt

Tato prace predstavuje webovou aplikaci s podporou umélé inteligence pro klasifikaci mor-
fologie galaxii, kterd vyuziva strojové uceni a architekturu zalozenou na Vision Trans-
formeru. Pro trénink modelu a zpracovani snimki z datové sady Galaxy Zoo 2 je pouzit
framework PyTorch, zatimco augmentace dat zvysuje schopnost modelu extrahovat robustni
rysy. Kone¢ny model CosmoFormer dosahuje konkurenceschopné presnosti v tilohéch klasi-
fikace galaktickych snimki. Responzivni webova aplikace plynule integruje backendové
API s frontendovym uzivatelskym rozhranim. Nasazen{ na platformé Red Hat OpenShift
zajistuje skalovatelnost a spolehlivou orchestraci systému. Tato prace demonstruje, jak lze
strojové uceni a cloudové nativni technologie kombinovat pro automatizaci analyzy mor-
fologie galaxii v modernich astronomickych prazkumech.
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Rozsireny abstrakt

Tato prace se zabyva ndvrhem, implementaci a nasazenim webové aplikace pro klasifikaci
morfologie galaxii s vyuzitim metod umélé inteligence. Ke studiu morfologickych vlastnosti
galaxii byl zvolen vefejné dostupny soubor snimki Galaxy Zoo 2, ze kterého byly tréno-
vaci, valida¢ni i testovaci sady pro efektivni trénink modelu. Pro vyvazeni dat a zajiSténi
robustni generalizace byly aplikovany ruzné operace augmentace obrazu. Napfiklad, zména
velikosti, ndhodné rotace, ofez, rozostfeni a uprava barevnosti. Jadro klasifikdtoru tvori
lehka varieta Vision Transformeru, nazvand CosmoFormer, zalozena na architekture Cross-
Former. Model je sestaven a trénovan pomoci knihovny PyTorch za vyuziti akcelerace GPU
na platformé Red Hat OpenShift AI. Po dosazeni stabilnich vysledkt byl model serializovan
do formétu TorchScript, publikovan na Hugging Face a pripraven k inference. Backendova
¢ast aplikace je realizovana ve frameworku FastAPI, kde pfi startu nacitd CosmoFormer
a zpristupniuje koncové inference. Pro obsluhu HTTP pozadavkt slouzi server Uvicorn.
Frontend vychazi z Reactu, sestaveného nastrojem Vite, a vyuzivd komponenty pro po-
hodlné nahravani snimki. Statické zdroje zpracovava web server NGINX, ktery zaroven
funguje jako reverzni proxy pro presmérovani pozadavki na API. Kontejnerizace obou
sluzeb probéhla pomoci Dockeru s vyuzitim minimalnich obrazi. Pro kontinudlni nasazeni
jsou definovany OpenShift manifesty. Testovaci sada zahrnuje jednotkové testy API pomoci
pytest, ovéreni spravné syntaktické struktury manifesti skrze kustomize a vykonovy test
k6 simulujici zvyseny pocet uzivateli. Z vysledki vykonového testu vyplyva, ze skalovani
aplikace funguje spravné, nicméné je limitovano definovanou kvétou CPU. Navrh proto
ukazuje, jak lze vyvazit autoscaling a fizeni zdroju tak, aby byla zachovdna vysokda dos-
tupnost a rychla odezva sluzby. Vysledkem je plné funkéni, skalovatelna a robustni webova
aplikace, ktera umoznuje automatizovanou klasifikaci galaktické morfologie prostrednictvim
modernich technologii strojového uceni v cloud-native prostiedi OpenShift Container Plat-
form (OCP). Projekt slouzi jako vzorovy priklad, jak lze propojit pokrocilé pocitacové
vidéni s kontejnerovou infrastrukturou pro tvorbu prakticky vyuzitelnych nastroj v oblasti
astronomie.
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Chapter 1

Introduction

Information plays a key role in our lives and understanding the world which surrounds us.
There is no doubt that information is the most valuable resource, so with the increasing
power of our computers, our ways of obtaining information are developing incredibly fast.
As a species, we strive to receive, analyze, and produce as much information as possible.
About half a century ago, the Mariner 4 spacecraft approached Mars and for the first time
in the history of mankind took several pictures of another planet. After the camera took
a picture, the image was sent as a digital code to Earth. Then data had to be passed
through a decoder after receiving. This operation took several hours to process a single
image. NASA employees did not want to wait that long and decided to decode the image
manually, drawing the received message by hand. Therefore, it turned out that the world’s
first image of Mars was not a photo, but a hand-colored drawing. Nowadays, in a matter
of minutes, we receive high-quality images from Mars, which are taken by the Ingenuity
Martian helicopter assembled from smartphone chips. Moreover, the majority of time is
spent overcoming interplanetary distance rather than decompressing data. We are getting
terabytes of data from on-Earth surveys, while space observations, constrained by download
bandwidth, deliver gigabytes per hour.

If the example above doesn’t look convincing enough, here are some numbers that
Forbes cites in its article “175 Zettabytes by 2025”. According to this article, it is projected
that the amount of digital data generated by mankind will grow from 33 ZB in 2018 to
175 ZB by 2025. It means that the amount of information will increase fivefold in the
last seven years. This leads to the main problem. Traditional data analysis methods
are not keeping up with the growing amount of information. In recent years, the rapid
advancement of Artificial Intelligence (AI) and Machine Learning (ML) has transformed
various industries, leading to the development of innovative solutions for complex data
analysis. Al has not only accelerated data processing but has also achieved remarkable
results in areas where traditional methods face challenges. One such area is astronomy,
where the massive volumes of data generated by modern astronomical surveys make manual
analysis techniques ineffective.

The main goal of this thesis is not only to explore how Al can be applied to image
classification but also to showcase the entire process of developing a modern Al-based ap-
plication that utilizes machine learning for image classification tasks. We will investigate the
integration of such an application with advanced cloud-based platforms like Red Hat Open-
Shift. That application serves as the resulting product, reflecting the knowledge and skills
that will be gained while working on this thesis. This includes a fundamental knowledge
of astronomy, galaxy morphology, and an understanding of Machine Learning and Vision



Transformer architectures. The techniques for preparing and augmenting the dataset for
model training will be explained. Sequentially, the issues related to the training of the Al
model will be addressed. This thesis also covers the steps on how to make the training
process faster. The final model will be used in the web application that will be deployed
into a hybrid cloud solution such as Red Hat OpenShift Container Platform.

The author believes that the experience, which has been gained while working on this
thesis, can be a valuable basis for the future, more comprehensive applications. Addition-
ally, it could serve as a useful guide for engineers who are just beginning their journey in
the development of applications whose core functionality relies on artificial intelligence.



Chapter 2

Galaxy And Its Morphology

This chapter provides an overview of galaxies and the differences between their types.
This background information is important for understanding the purpose of the study and
assessing the quality of the data that will be presented in later chapters. The chapter
discusses the reasons for studying galaxy morphology and the various types of galaxies.

2.1 Why Study Galaxies

The reason to study galaxies is that galaxies are the key to understanding the evolution of
our entire Universe. By looking at Figure 2.1, we see a huge variety of galaxies. Galaxies are
the largest stellar systems, primarily responsible for star formation and element synthesis.
They contain a majority of luminous matter: stars, stellar remnants, interstellar gas, and
dust, together with dark matter. Galaxies trace large-scale structure in the Universe and
cosmic history over 13 billion years [9]. The history of the Universe has been completely
acquired by studying the formation and evolution of galaxies.

Figure 2.1: Hubble Deep Field (https://science.nasa.gov/mission/hubble/science/
universe-uncovered/hubble-deep-fields/).
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Galaxies demonstrate a wide range of morphologies at different evolutionary stages.
Early-type galaxies are always reddish in color. They contain the older stellar population
and shell structures left by multiple galaxy mergers. These galaxies are mainly located in
dense environments and appear elliptical in the view of morphology. Late-type galaxies
have a bluish color and their star population is relatively young, containing ample cold
gas and showing star formation activities in an intense way. Stars in late-type galaxies
primarily exhibit rotational motion around the center, resulting in a disk-shaped galaxy
with a stellar disk and spiral arms. Morphology and structure are particularly important,
since they serve as a key for understanding how the galaxy’s physical parameters evolve
over time [2].

2.2 Galaxy Morphological Types

Galaxies demonstrate a diverse range of morphological types. In this section, we will provide
a brief overview of the primary classes of galaxies. The first to gain universal acceptance was
proposed by Edwin Hubble, who arranged galaxies in his famous “Tuning Fork” diagram,
demonstrated at Figure 2.2. The tuning fork scheme divides regular galaxies into four broad
categories: ellipticals, lenticulars, spirals, and irregular shapes. The Hubble sequence is the
most widely used system for categorizing galaxies, although there are variations of this
system that have been expanded by different researchers [3].

Figure 2.2: Hubble’s Tunning Fork [9].

Spiral Galaxies, as can be understood from the name, have a spiral pattern and visible
component parts. This type of galaxy is characterized by the presence of a distinct disk
with abundant gas, dust, and ongoing star formation. Spiral galaxies consist of three main
components (see further). Bulge is a large, spheroidal, tightly packed group of older stars.
Many bulges are thought to host a supermassive black hole at their centers. Disk (spiral
arms) is regions of stars that extend from the center of barred and unbarred spiral galaxies.
They contain younger, bluer stars. Halo is an extended, roughly spherical component of
a galaxy that extends beyond the main, visible component. It contains old clusters of stars
(globular clusters).

Barred (Galaxies are a type of spiral galaxy that has bar-shaped elongations of stars
throughout the center that “connect” two arms bent around. As the galaxy type progresses



from Sa to Sc 2.2, the spiral arms increase in prominence and become less tightly wound
and more irregular. The diffuse central bulge becomes less prominent.

Elliptical Galaxies (denoted E) are characterized by a spheroidal shape and a sym-
metric, equal distribution of stars in all directions. There is little or no evidence of dust,
gas, or star formation. New star formations are not present in elliptical galaxies. The star
population in these galaxies is old. These galaxies have variation in ellipticity and position
angle with radius (E0-ET).

Lenticular Galaxies (denoted S0) are a type of galaxy intermediate between an el-
liptical and a spiral galaxy in galaxy morphological classification schemes. They are more
flattened than elliptical galaxies and have a noticeable disk. The ring contains younger
stars, which are very bright and blue-colored.

Irregular Galaxies don’t have a particular pattern or symmetry in their shape, but
they are very common in our universe. Irregular galaxies are often small in size and have
younger, hotter stars.

Dwarf Galaxies are small galaxies that contain several million to a billion stars and
are the most common type of galaxy. They come in a wide variety of shapes and sizes.

Ring (Galaxies have the ring containing many massive, relatively young blue stars,
which are extremely bright. The central region contains relatively little luminous matter.
There are no spiral arms connecting the center with the ring.

Starburns Galaxies are one undergoing an exceptionally high rate of star formation.
The star formation of this type of galaxy is 100 times greater than we can see in the Milky
Way galaxy.

Spiral Galaxy Barred Galaxy Elliptical Galaxy Lenticular Galaxy

Irregular Galaxy Dwarf Galaxy Ring Galaxy Starburns type

Figure 2.3: Photos of Galaxies with Different Morphological Types (https://
esahubble.org/images/).
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Why Type of Galaxy Matter?

The classification of galaxies is essential for understanding the variety of structures and evo-
lutionary paths that galaxies can take. The shape and type provide important information
about galaxies’ properties, formation processes, and evolutionary paths. By analyzing how
different types of galaxies are distributed across our universe, astronomers can understand
the physical processes that shaped galaxies over billions of years.
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Figure 2.4: Galaxy evolution on the mass-size diagram (https://www.aip.de/media/
thesis/sabine-thater-doktorarbeit.pdf).

Figure 2.4 shows a correlation between galaxies’ shapes and mass. Dwarf irregulars
and spheroidals are in the low-mass region, late-type galaxies with intermediate masses,
and early-type galaxies are divided into fast and slow rotators. The sequence of late-type
galaxies aligns smoothly with the sequence of early-type galaxies. Massive galaxies are
dominated by round or weakly triaxial slow rotators. Classifying galaxies according to
their morphological characteristics is essential for effective data analysis [4].

2.3 Modern Galaxy Surveys and AI Applications

Earlier sky surveys produced only modest amounts of data. For instance, the National
Geographic Society-Palomar Observatory Sky Survey from 1958 collected just under 2,000
photographic plates of the night sky. Nowadays, the observations such as Sloan Digital Sky
Survey (SDSS), James Webb Space Telescope (JWST) and other survey projects generate
massive amounts of astronomical data. For example, only the SDSS survey has produced
photometric observations of nearly one billion unique objects across five filters, covering
roughly one-third of the sky. For this reason, analyzing growing volumes of data using
older methods is becoming increasingly difficult and inefficient. There is a necessity for
more intelligent classification in order to meet the huge processing demands. This means
that with modern surveys, Al tools offer an automated way to process efficiently such large
datasets, and modern astronomical research finds them valuable [11].

Deep Learning architectures like Convolutional Neural Networks (CNNs) and Convolu-
tional Vision Transformers (CvT) demonstrate higher accuracy in classifying galaxy mor-
phologies. The study notes that the CvT model achieved over 98% accuracy in classifying
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galaxies into five morphological categories [4]. This demonstrates that Al can be suc-
cessfully used to capture morphological distinctions between galaxy types. Based on this,
researchers have developed several Al applications for galaxy morphology classification,
leveraging Deep Learning models to handle the vast amount of data produced by modern
telescopes. We will briefly describe the main aspects of the most noticeable applications
that were developed for work with galaxies.

Morpheus is a Deep Learning framework that was designed for pixel-level analysis of
astronomical images. Morpheus is based on Convolutional Neural Networks (CNNs) and
is trained to analyze images from telescopes such as the Hubble Space Telescope. It can
process complex datasets, distinguishing between stars and different types of galaxies [8].

Zoobot 2.0 is an open-source library that provides pretrained convolutional neural
network (CNN) models for classifying detailed galaxy morphological features. The models
were pretrained on over 100 million volunteer annotations from the Galaxy Zoo project. It
was widely adopted within the astronomy community and has been integrated into major
surveys (such as HSC, DESI, and the Euclid Strong Lensing Discovery Engine). In a sit-
uation with an insufficient amount of data or when the dataset is relatively small, Zoobot
outperforms generic ImageNet pretrained models [25].

USmorph is a framework which combines unsupervised and supervised learning tech-
niques to classify galaxies’ images from the COSMOS field. It applies a two-step process,
starting with unsupervised clustering to group galaxies based on morphological features.
Then it uses the supervised methods for fine-tuning. This application is significant for pro-
cessing large galaxy surveys, enabling efficient categorization while maintaining accuracy
[21].

AT tools mentioned above serve not only to automate the classification of galaxies,
reducing the workload for astronomers, but also bring unprecedented levels of precision
and scalability to the analysis of large astronomical surveys.

10



Chapter 3

Core Ideas of This Thesis

Recently, artificial intelligence (AI) has emerged as a key focus in the I'T sector. Al applica-
tions have become a part of daily life, from language translators to streaming platforms that
utilize Al for recommendations. But there is one important detail that often escapes from
our eyes. Even though infrastructure platforms are also advancing, discussions often empha-
size AI’s capabilities rather than the underlying architecture. Cloud infrastructure provides
a solid foundation for web applications, handling tasks related to reliability and fault tol-
erance in high-load situations. Red Hat OpenShift, in particular, offers a comprehensive
Kubernetes-based environment with features like container orchestration, automated pod
scaling, pod self-healing, etc. These capabilities ensure that AI applications keep their
robustness and scalability, even during workload increases.

Talking about AlI, the focus often centers around natural language processing (NLP)
and large language models (LLMs). This is understandable given the popularity of LLM-
based applications such as ChatGPT [17] and DeepSeek [5]. However, there are other
areas of artificial intelligence, such as computer vision, that are also promising and deserve
attention. This thesis, therefore, explores Al architectures and models employed in vision
tasks and integrates them with hybrid-cloud platforms.

3.1 AI Application for Galaxy Classification

In section 2.3, we explored several effective Al-driven applications that utilize machine
learning for tasks such as classifying galaxy images. Motivated by those examples, this
thesis aims to investigate the integration of modern computer vision Al architectures with
advanced cloud-based platforms like Red Hat OpenShift. Building on that investigation, we
will create an application that embodies these insights and demonstrates how such a system
can be designed and deployed.

Firstly, it is necessary to identify tasks the application is intended to address and the
goals it must accomplish. This determination will help in understanding the scope of topics
that require exploration. This exploration will be directly transferred to the application’s
functional and nonfunctional requirements, as detailed in this section. The entire applica-
tion pipeline is illustrated at Figure 3.1.

From the user perspective, the application operates via the web without requiring a local
installation. The functionality includes uploading galaxy images to obtain their morphol-
ogy classification, which is determined by an Al model implemented on the backend. From
the developers’ side, each part of the application should be deployed into cloud-based in-
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Web Application

Galaxy Image Galaxy Class

Al Model

Figure 3.1: Illustration of application use case.

frastructure, which will provide high robustness and reliability under the high demand. All
this leads us to the following functional and non-functional requirements.

Functional Requirements

1. Galaxy Image Classification: The system will classify galaxy images into prede-
fined morphological categories using a Al model.

2. Model Integration: The backend will load the model at startup and manage its
lifecycle.

3. Scalability: The system will support horizontal scaling to handle increased load,
utilizing Openshift and its Kubernetes-based orchestration.

Nonfunctional Requirements

1. Deployment Platform: The application shall be deployed on the Red Hat Open-
Shift Container Platform.

2. Performance: The application will handle multiple concurrent users without signif-
icant degradation in performance.

3. Real-time Responsiveness: The application shall process and return results for
any user-initiated action in under 200 ms (0.2 s).

4. Accuracy: The classification model will achieve competitive accuracy, comparable
to existing models in the field

To accomplish this, we must address the following foundational questions: “How do
Artificial Neural Networks function?”, “Which architecture to use?”, “How can the dataset
be utilized for model training?”, “What are the features of apps with AI?”, “What is the
process of deploying an Al-based application into a cloud-based platform?”. These questions
will be addressed in the following chapters. The result of this exploration is an application
developed to apply the latest Al advancements as a practical tool for astronomers to classify
galaxy images. The application will illustrate how a fully containerized, real-time service can
be deployed on Red Hat OpenShift, balancing resource limitations with model performance.
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Chapter 4

Artificial Neural Networks

As demonstrated in section 2.3, Al-based tools can achieve excellent results. However,
before using advanced models, it is necessary to understand how Al works and what advan-
tages Machine Learning offers over traditional Al algorithms. This chapter introduces the
fundamentals of artificial neural networks. Following this, we will discuss the details be-
hind AT models’ learning process and how they make predictions. Furthermore, a significant
emphasis of this chapter is on understanding Vision Transformer architectures.

4.1 Machine Learning

Traditionally, the sophisticated algorithms written by programmers were used to make the
systems “intelligent”. An instance of such an algorithm for detecting the presence of a dog in
a photo could be formulated as “If there are three black circles in a triangular arrangement
within an image, it should be identified as a dog.” Nevertheless, this rule would fail against
a close-up shot of a muffin:

Figure 4.1: Dogs and Mulffins.
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We can apply the same principle to any field. In the past, if someone was interested
in creating a program to solve a practical problem, they needed to understand everything
about the input data. The programmer would then write as many rules as possible to
cover every possible edge case. Neural networks provide a unique benefit by combining
feature extraction with the use of those features for classification or regression. Since it
is not needed to come up with rules for classifying images, it eliminates most of the labor
associated with traditional techniques for engineers.

Neural networks are not programmed in the traditional sense. They are trained using
specific datasets. Their capacity to learn during this training process represents a signif-
icant advantage over traditional algorithms [1]. During the training, neural networks are
able to identify complex dependencies between input and output data, as well as perform
generalization. This means that in case of successful training, the network will be able to
provide accurate results even when given data that is missing from the original training
dataset, incomplete, or noisy.

4.2 ANN Building Blocks

An artificial neural network (ANN) is a computational model inspired by the structure and
function of the brain’s neural network. ANNs are designed to recognize patterns and solve
complex tasks by processing information in a layered manner, much like how neurons in
the brain work to perform cognitive functions [10].

An ANN is a collection of tensors (weights) and mathematical functions that take in
one or more tensors as inputs and predict one or more tensors as outputs. The arrangement
of operations that connects these inputs to outputs is referred to as the architecture of the
neural network. Such architecture can be customized based on different parameters. For
example, whether the problem contains structured (tabular) or unstructured (image, text,
and audio) data (which is the list of input and output tensors).

The artificial neural network is composed of interconnected artificial neurons, often
called nodes. Each artificial neuron receives inputs from connected neurons or from the
input data at the first layer. It then processes inputs by applying weights to them, summing
them up, and passing the result to an activation function [10].

Inputs Weights

Activation
Ty e—n Function
Ty e—s — .OJ .
Activation
: : Transfer
L] Function
BJ
T e—— Threshold

Figure 4.2: Artificial neuron structure. (https://commons.m.wikimedia.org/wiki/File:
Artificial_neuron_structure.svg).
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In the Figure 4.2, 1,22, ..., zn are the input variables, and wlj, ..., wnj are the bias
weights (similar to the bias in linear regression).

An activation function is a mathematical function that determines whether a neuron
should be activated. The main goal of the activation function is to introduce a nonlinearity
to the network. It determines how the inputs from the previous layer should be transformed
and passed to the next layer. Without activation functions, neural networks would behave
like simple linear models, limiting their ability to learn the complex relationships in data.

Neurons are grouped into layers. We can distinguish several types of layers. Different
layers may perform different transformations on their inputs.

Hidden

Input

Figure 4.3: Neural network layers (https://www.researchgate.net/figure/General-
structure-of-an-ANN-layer_fig3_347819607).

The input layer is the first layer of the network. It is responsible for receiving the
raw input data. It passes the input features to the next layer in the network and does
not perform any computations. The number of neurons in the input layer corresponds
to the number of features in the dataset. In scenarios involving image data where each
pixel represents an individual feature, the number of neurons within the input layer will
correspond to the total number of pixels present in the image.

The hidden layers are the core computational units of an ANN. Hidden layers learn
patterns, features, and representations from the data. An artificial neural network can have
one or more hidden layers, which are responsible for converting the inputs into internal
representations. Architectures incorporating several hidden layers, termed deep neural
networks, possess the capacity to discern more complex patterns.

The final layer is called the output layer. Its purpose is to provide the prediction based
on the learned patterns from the hidden layers. The number of neurons in the output
layer depends on the type of task. For regression tasks that involve predicting a continuous
value (like predicting house prices), the output layer usually contains a single neuron. For
binary classification tasks (like dog or muffin), the output layer often has one neuron with
a sigmoid activation function. For multiclass classification tasks (like categorizing images
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into multiple classes), the output layer typically has as many neurons as there are classes.
The softmax activation function is often used to generate a probability distribution over the
classes. The output from this layer is the final prediction of the network, such as a category
label or a continuous value.

4.3 Deep Learning

Deep Learning involves the application of large multi-layer artificial neural networks that
process continuous representations, similar to the hierarchical structure of neurons in human
brains. At present, it stands as the most successful ML methodology, applicable to all ML
types, offering improved generalization from limited data and superior scalability for large
datasets and computational resources [14].

(o19)

Figure 4.4: Space partition for three different data sets. Available at: https://arxiv.org/
pdf/1706.00473.

The main difference between Deep Learning and Machine Learning is the structure of
the underlying neural network architecture. Deep Learning encompasses a group of models
which involve several computational layers. Deep network architectures incorporate non-
linearity in between each layer, which allows a much broader scale of expressivity. Deep
Learning, by its nature, is nonlinear and proficient in performing classifications in numer-
ous contexts where linear classification is not sufficient. The majority of contemporary
Deep Learning architectures use forward propagation for the computation of outputs and
backpropagation for the adjustment of network weights according to error gradients. While
a detailed exploration of mathematical formulas is beyond the scope of this thesis, it is
important to understand the main meaning of these terms.

A Feedforward Neural Network is a type of artificial neural network where the connec-
tions between neurons are directed forward. Unlike recurrent networks, there are no loops
or cycles. Data propagates from the input layer through one or more hidden layers to the
output layer. For instance, one of the most common feedforward neural networks is a Mul-
tilayer Perceptron (MLP). MLP is a type of feedforward neural network consisting of fully
connected neurons with a nonlinear kind of activation function. In MLP, neurons process
information in a step-by-step manner, performing computations that involve weighted sums
and nonlinear transformations.

Backpropagation is a supervised learning algorithm used to train artificial neural net-
works by minimizing the error between the predicted output and the actual output of the
model. The algorithm calculates the gradient of the loss function with respect to each
weight by applying the chain rule of calculus, and then updates the weights to reduce the
error. Different loss functions can be used for different purposes.
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4.4 Vision Transformer

Initially, Convolutional Neural Networks (CNNs) were used for image classification. CNN
models can detect image spatial features such as edges, textures, and shapes. This capability
is a key factor for object recognition. However, with the evolution of artificial intelligence
architectures, fundamentally new methods have been developed. This paved the way for the
introduction of a new architecture for image classification known as the Vision Transformer.
This architecture applies the attention mechanism, which was originally designed for natural
language processing, to visual tasks.

The Vision Transformer (ViT) model was introduced in 2021 in a research paper “An
Image is Worth 16*16 Words: Transformers for Image Recognition at Scale” [6]. Inspired
by the success of Transformers in natural language processing, ViT introduces a new way
to analyze images by dividing them into smaller patches and leveraging self-attention. This
allows the model to capture both local and global relationships within images, leading to
high performance in various computer vision tasks.

Original Transformer Architecture

As the Vision Transformer is based on the Transformer architecture, it is important to
take a brief overview of the foundational architecture described in the ,Attention Is All
You Need“ [23] paper. The mechanism of attention is central across all models within the
Transformer family. Understanding the functionality of the Transformer architecture is
crucial for leveraging benefits and limitations of the Vision Transformer (ViT) model.
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Figure 4.5: Transformer architecture diagram [23].
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Embedding

Traditionally, textual data in machine learning has been represented as n-gram words. The
example of 1-gram: if the original sample has 50,000 unique words, each input sequence
would be represented with a 50,000-dimensional vector. We would fill these dimensions
with the number of times each word appears in the specific input sequence. However, this
approach has several problems. First, even for small input sequences, we require a high-
dimensional vector, resulting in a highly sparse vector. Second, there is no meaningful way
to perform mathematical operations on these high-dimensional vector representations [22].

Embedding overcomes those challenges. This is a technique used to represent the word
or sequence by a vector of real numbers that captures the meaning and context of the
word or phrase. An example of embedding is taking a set of words, such as [cabbage,
rabbit, eggplant, elephant, dog, cauliflower|, and representing each word as a vector in 2-
dimensional space capturing animal and color features [22]. The embedding representation
is shown in Figure 4.6.
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(+]
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Figure 4.6: Embedding plotting [22].

The dimension of “cabbage” and “cauliflower” is practically identical because both terms
refer to vegetables. Consequently, they are positioned close to each other.

Positional Encoding

Positional encoding in a Transformer is used to provide information about the position
of each token in the input sequence to the model. Respectively, positional encodings are
unique for each position in the sequence. By adding these position-dependent vectors to the
input embeddings, the model can distinguish between otherwise identical tokens appearing
in different locations. This enables the Transformer to learn not only which tokens to attend
to, but also how their relative and absolute positions affect meaning, such as word order in
a sentence or spatial relationships in a sequence of image patches.
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Model Input

The model input is the pointwise addition of the positional encoding and the embedding
vector. For example, a tokenized sequence like “I Live In New York” is shown in Figure 4.7.
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Figure 4.7: Model input [22].

Fach token is represented by an integer. The tokenized sequences are passed to the
embedding layer. The embedding of each token is represented by a vector. Finally, the
pointwise addition of the embedding and positional encoding is performed before feeding it
into the model[22].

Encoder Layer

The encoder layer is a crucial component in the Transformer architecture, responsible for
processing and encoding input sequences into vector representations [22].
Fach encoder block consists of the following components:

Input to the encoder: The input to the first layer of the encoder is the pointwise
summation of embeddings and positional encoding.

Multi-head attention: A key component of the encoder block in a Transformer is
the multi-head self-attention mechanism. This mechanism allows the model to weigh
the importance of different parts of the input when making a prediction.

Add and norm layer: The add layer adds the input to the output of the previous
layer before passing it through the next layer. This allows the model to learn the
residual function, improving performance. The norm layer normalizes the activations
of a layer across all of its hidden units.

Feed-forward: The output of the multi-head attention mechanism is fed to the
input of the feedforward layer. A non-linear activation function is applied, and an
add-and-norm layer follows it. The output is then fed to the next encoding block.

Encoder output: The last block of the encoder produces a sequence vector, sent to
the decoder blocks as features.

The encoder produces a sequence vector, which is sent to the decoder blocks.
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Decoder Layer

The decoder has a structure similar to the encoder but includes a masked multi-head
attention mechanism. The input to the first layer of the decoder is the pointwise summation
of the embeddings of the target and the positional encoding of the target sequence [22].

For the multi-head attention, the decoder receives information from the encoder and
previously generated tokens. Also, the decoder uses a masked multi-head attention. Unlike
regular multi-head attention, masked multi-head attention prevents the decoder from seeing
future tokens. Then, the feedforward layer extracts higher-level features from the data. At
the end, the linear layer in the decoder produces the final output, with an activation function
generating probabilities for the next word [22].

Attention Mechanism

The attention is one of the key features that makes the Transformer architecture so success-
ful. The attention mechanism allows models to weigh and prioritize relevant information
[22]. There are two main attentions: Self-attention and Multi-headed attention.
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Figure 4.8: Self-attention mechanism [22].
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Figure 4.9: Multi-head attention [22].

Self-attention calculates relationships between input tokens to understand their context.
Figure 4.8 demonstrates how self-attention works, showing how weights are assigned to
tokens like “it” in different sentences. Multi-headed attention uses multiple heads to focus
on different features of the input. Figure 4.9 illustrates how multiple attention heads capture
distinct contextual relationships.
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Vision Transformer (ViT) Architecture

Nowadays, transformers have become the model of choice to perform any task related to
natural language processing (NLP). This architecture allows training a model with more
than a hundred billion parameters without the need for preliminary model performance
saturation. Inspired by the success that transformers achieved when applied to NLP, it was
proposed to take advantage of the same architecture in order to perform image classification.
The main goal over CNNs was to use the self-attention mechanism that could improve
accuracy in image classification tasks.

The authors of “An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale” [6] proposed the Vision Transformers (ViT) architecture, which consists of break-
ing the image into 2D patches and providing this linear sequence of patches as input to the
model. A ViT is represented at Figure 4.10.

Transformer Encoder

A
O
Transformer Encoder

1

I

I

I

I

|

I

I

I z

Ear-e0doadne | | CEE

* I

I

I

|

I

1

Vision Transformer (ViT)

MLP
Head

Extra learnable
ﬁ

[class] embedding Linear Projection of Flattened Patches
Embedded
Patches

SR EREREREE ﬁl@é
Figure 4.10: Vision Transformer architecture [6].
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In Vision Transformers (ViT), the input image is divided into fixed-size patches, similar
to how a sentence is split into words in natural language processing tasks. The workflow
can be briefly described in the following steps:

1. Patch Extraction: The input image is divided into a grid of patches. For instance,
if the image size is 300x300, we can extract 9 patches of size 100x100. Each patch is
then flattened into a 1D vector.

2. Linear Projection: Each flattened patch is passed through a linear projection layer
to create patch embeddings. This process is analogous to generating word embeddings
in NLP, where each patch represents a visual token.

3. Positional Embeddings: To retain the spatial information of each patch within the
image, positional embeddings are added to the patch embeddings. These positional
embeddings ensure that the model understands the relative positions of the patches
in the original image. Additionally, a special class token is introduced, which is used
later for classification tasks.

4. Transformer Encoder: The combined embeddings (patch embeddings + positional
embeddings + class token) are fed into the Transformer encoder. Here, the data
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passes through several layers consisting of multi-head self-attention mechanisms, nor-
malization, and feedforward layers. These layers allow the model to capture both
local and global relationships between the patches.

5. Final Classification: After processing the embeddings, the output corresponding
to the class token is used for image classification. The embeddings of the remaining
patches can also be used as features for other tasks, such as object recognition or
image captioning.

Vit and CNN Comparison

Both Vision Transformers (ViT) and Convolutional Neural Networks (CNN) still remain
a popular choice for tasks involving image processing or recognition. However, these ar-
chitectures represent two different approaches to image classification, each offering unique
advantages and limitations.

In this section, CNN and ViT architectures’ key components will be compared, including
architecture, robustness, efficiency, and scalability. This comparison will provide a clearer
understanding of the features of using the Transformer architecture. This is essential for
creating an application, which functionality relies on a ViT-based model.

Architecture features ViTs use a self-attention mechanism to extract global depen-
dencies across an entire image. Images are split into fixed-size patches, which are treated
similarly to tokens in NLP tasks. The self-attention mechanism then allows the model
to weigh the importance of each patch relative to others, capturing both local and global
context in a single pass [18, 15].

In comparison, CNNs have local receptive fields, where each neuron processes only
a small region of the image. The global processing capability of ViTs makes them highly
effective for tasks requiring context over long distances within an image [15].

Dataset performance ViTs demonstrate superior performance on large datasets due to
the self-attention mechanism’s ability to capture long-range dependencies and relationships
between patches. For smaller datasets, ViTs often require pretraining on larger datasets
or extensive data augmentation to outperform CNNs. Studies have shown that ViTs can
achieve impressive results in specific applications, such as crop and weed monitoring with
UAV images, sometimes achieving higher F1-scores and accuracy compared to CNNs [15].

Robustness Another crucial aspect of comparison between CNNs and ViTs is their ro-
bustness to disturbances in images. ViTs have been found to be more robust than CNNs in
several tasks due to their ability to model global dependencies across the entire image. This
global context allows ViTs to better handle the disturbances in images, such as noise, occlu-
sions, etc. For example, in digital holography, ViTs are able to capture the entire hologram,
rather than focusing on localized areas. Moreover, ViTs demonstrate better resilience to
high-frequency noise that tends to confuse CNNs [19, 15].

Conversely, CNNs are more sensitive to small perturbations and adversarial examples,
primarily due to their reliance on local feature extraction. The property of convolutional
layers can lead to reduced performance in tasks where global context is essential, or where
input data is violated. But it is worth noting that recent advancements, such as the
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introduction of anti-aliasing filters and adversarial training, have improved the robustness
of CNNs in some cases [15].

Computational Efficiency In terms of computational efficiency, CNNs are generally
more efficient than ViTs, particularly for real-time or resource-constrained applications.
CNNs benefit from optimized hardware acceleration, which can handle convolution opera-
tions efficiently, allowing for faster training and inference. Furthermore, various techniques,
such as pruning, quantization, and knowledge distillation, can compress CNNs without sig-
nificant loss in performance, making them suitable for deployment on devices with limited
computational power [15].

ViTs, while capable of parallel processing due to their patch-based input, often re-
quire more computational resources due to the self-attention mechanism. Especially when
processing high-resolution images or large datasets. The complexity of self-attention with
respect to the input size can lead to significant overhead, limiting the scalability of ViTs
in resource-constrained environments. However, ViTs have shown promise in reducing the
training time when using pre-trained models or leveraging transfer learning, where they can
surpass CNNs in training efficiency [15].

Generalization Generalization is another area where CNNs and ViTs differ. ViTs have
been found to generalize better to unseen data, especially when fine-tuned on large datasets.
The ability of ViTs to capture global relationships in an image helps them generalize well
to tasks with varying input distributions. Pretraining ViTs on large-scale datasets, such as
ImageNet, has been shown to significantly improve their generalization capabilities [15].
In contrast, CNNs generally require larger datasets to achieve similar generalization
performance. Their reliance on local feature extraction can hinder generalization when
trained on small datasets. However, CNNs perform exceptionally well when fine-tuned on
domain specific datasets, such as in medical imaging or object detection tasks [15].

ViT for Image Classification

The choice of the architecture is usually determined by the goals of the application and the
problems this application solves. As it was defined in section 3.1, our application should be
capable of classifying galaxy images. In our case, there are the following potential problems:
images could be highly compressed and noisy; various rotations have a place to be; new
galaxies’ images, which wouldn’t be present in the training dataset, could also be processed
and classified.

The reasons why to choose the ViT for our purposes are the following: First, ViTs
can handle images of various sizes and aspect ratios without significant loss of information
due to resizing or cropping, making them versatile for different image types. Second, ViTs
may outperform CNNs in tasks involving noisy or distorted images. Third, due to their
capability to capture global relationships, ViTs have superior generalization to new data.

Modern ViT-based Architectures

Nowadays, there are many advanced architectures that were created by modification of the
original ViT. In this section, we will discuss some of the advanced ViT-based architectures
that can be suitable for galaxy morphology classification tasks.

23



Convolutional Vision Transformer
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Figure 4.11: Convolutional Vision Transformer architecture [28].

The Convolutional Vision Transformer (CvT) introduces the combination of convolu-
tions with attention mechanisms. The convolutions are utilized to embed and reduce the
dimensionality of the image or feature map across three distinct stages. Additionally, depth-
wise convolution is applied to project the queries, keys, and values for the attention process
[28].
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(a) The architecture of CrossFormer for image classification. (b) Two consecutive CrossFormer blocks.

Figure 4.12: CrossFormer architecture [26].

The authors of “CrossFormer: A Versatile Vision Transformer Hinging on Cross-scale
Attention” [26] claim that their architecture outperforms PVT and Swin by employing
alternating local and global attention mechanisms. The global attention is implemented
across the windowing dimension to reduce complexity, similar to the axial attention strat-
egy. They also introduced a cross-scale embedding layer, demonstrated to be a versatile
enhancement for all vision transformers. Additionally, a dynamic relative positional bias
was developed to enable the network to generalize to images of higher resolutions.
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Figure 4.13: Swin Transformer architecture [13].

Swin Transformer

The “Swin Transformer” paper introduces a hierarchical representation approach by split-
ting the image into separate local windows with no overlaps and performing self-attention
within each window. To address cross-window interactions, these windows are shifted in
the following layers, aiding in complexity reduction and efficient scaling for bigger images.
This architecture delivers robust outcomes across different vision tasks, all while keeping
the computational load low [13].

Fach architecture can be better than another in certain aspects. The universal approx-
imation theorem says a sufficiently complex neural network can approximate any function.
In other words, for any given input, we can design a neural network architecture and tune
the weights to predict any arbitrary output. Take any dataset or task; we can design an
architecture and fine-tune it until it achieves the desired predictions [1].

For purposes of galaxy classification application, Crossformer architecture has been
chosen, because of its cross-scale attention design. Galaxy images typically contain large,
low-frequency structures (the overall disk or halo) alongside fine, high-frequency details
(spiral-arm knots, dust lanes, bar features). CrossFormer’s alternating local-global atten-
tion and cross-scale embedding layer let the network model these multi-resolution cues in
a single forward pass, improving sensitivity to morphology while keeping the parameters
count lower than similarly accurate hierarchical ViTs.
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Chapter 5

Red Hat Openshift

In chapter 4, we examined fundamental concepts related to Deep Learning. Nonetheless, one
of the most significant challenges associated with Al has not been addressed yet. Although
model inference can be run on CPUs, model training is predominantly performed with the
use of GPU acceleration. Consequently, a significant amount of VRAM and GPU resources
is needed. It could be highly expensive to purchase an Al-dedicated GPU. One of the
opportunities to address these problems is using cloud-based computing solutions.

Red Hat Openshift AI Platform

Red Hat OpenShift AI provides specialized tools and frameworks for data science and ma-
chine learning, including an integrated environment to develop, train, deploy, and monitor
AT models at scale. At Figure 5.1 the key component of this platform can be seen.

S

Object storage
(OpenShift Data Foundation, IBM Storage, AWS S3, etc)

Workbench container images Projects/Workbenches Data Science Pipelines Model Serving/Monitoring
Deps and Libs: CUDA, Pandas... Data Deployed model
connection ] '
+ featn OPyTorch _, Workbench ) Runtimes
[ [ Y Pod e (,‘\?.) GpenVIN®
Operators Cluster yra Pipeline nVIDIA Triton Prometheus
> Base Image: P . ° storage TGIS Caikit
Jupyter
Python 3.1 !0‘ Kubeflow notebook controller Kubeflow pipelines @ KServe
Kubeflow
hy Red Hat OpenShift Al Operator o, RedHat OpenShift Red Hat OpenShift oo RedHat OpenShift
. iEe. CReEaE < | Pipelines Operator 3 Service Mesh Operator % Serverless Operator

:I);I:;l:r:‘loud ' Red Hat OpenShift Container Platform Red Hat OpenShift Dedicated Red Hat OpenShift Service on AWS
Compute NVIDIA.
accelerators
Deployment EI aWS M Microsoft N >
platforms Azure ) IBM Cloud

Physical Virtual Google Cloud

Figure 5.1: Architecture of OpenShift AI [16].
Workbenches: In OpenShift Al, a workbench is a containerized environment for data

scientists. A workbench image is a container image that OpenShift Al uses to create
workbenches. OpenShift Al includes a number of images such as PyTorch, TensorFlow,
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etc. that are ready to use for multiple common data science stacks. Workbenches run as
OpenShift pods and are designed for machine learning and data science. These workbenches
include the Jupyter notebook execution environment and data science libraries [16].

Cluster storage: OpenShift Al uses cluster storage, which is a Persistent Volume
Claim (PVC) mounted in a specific directory of the workbench container. This ensures
that users will be able to retain their work after logging out or workbench restart [16].

Data connections: In OpenShift Al, a data connection contains configuration param-
eters using which you can connect workbenches to S3-compatible storage services [16].

Data science pipelines: In OpenShift Al, a data science pipeline is a workflow that
executes scripts or Jupyter notebooks in an automated way. Using pipelines, it is possible
to automate the execution of different steps and store the results [16].

Model serving: Model server uses a data connection to download the model file from
S3-compatible storage. After the download, the model server exposes the model via REST
or gRPC APIs. OpenShift AT uses Kserve as the model serving platform and supports model
runtimes such as OpenVINO, Triton, Text Generation Inference Server (TGIS), Caikit, etc
[16].

Model monitoring: With the monitoring and logging features provided by OpenShift
Al it is possible to track the performance of the data science workloads and fix any potential
problems [16].

OpenShift Al contains a wide range of tools. For data scientists, OpenShift Al offers
a “Workbench” component. This is an interactive JupyterLab containerized environment
that comes with popular libraries and frameworks like TensorFlow and PyTorch. OpenShift
AT also supports attaching GPUs or other accelerators to these notebook pods to speed up
model training for Deep Learning workloads.

Red Hat OpenShift Container Platform (OCP)

Red Hat OpenShift Container Platform (OCP) is a consistent hybrid cloud foundation for
building and scaling containerized applications.

OCP provides tools to simplify the application deployment and management by adding
extended functionality on top of Kubernetes. One of the main benefits for developers who
do not have much experience with Kubernetes is a web console. The web console provides
an intuitive GUI that helps users manage resources with no need to use CLI commands.
Also, OCP has an integrated CI/CD pipeline, built-in monitoring, and a curated ecosys-
tem of Operators (Kubernetes controllers) for managing services. The platform handles
the building, deploying, scaling, and securing containers while letting developers focus on
application implementation and maintenance. The core architecture features are illustrated
at Figure 5.2.

In OpenShift, each created object is represented as a declarative resource. These re-
sources are declared as a YAML or JSON manifest, submitted to the API server, and the
OpenShift control plane keeps the cluster state with the desired state. So then, the resources
needed for deploying a galaxy classification web application will be briefly described below.

Project in OpenShift is a Kubernetes namespace enriched with annotations, default
network policies, and role-based access control (RBAC) settings. It provides a security-
scoped boundary for all of your application’s resources—pods, services, quotas, and so on.
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Deployment resource declares the desired number of pod replicas running the container
image, together with update strategies and liveness/readiness probes. OpenShift uses this
to create and manage a ReplicaSet under the covers, ensuring high availability.

HorizontalPod Autoscaler (HPA) automatically adjusts the number of pod replicas
based on observed metrics (e.g., CPU utilization). This ensures that the classifier scales up
under load and scales down to save resources when idle.

Service provides a stable network endpoint that load-balances traffic across the pods
selected by a label selector. Internally, it allocates a ClusterIP so other pods can discover
the classifier backend.

Route exposes a Service at a public hostname.

ResourceQuota limits the total amount of CPU, memory, and object counts (Pods,
Services, Routes, etc.) that can be created in a Project, preventing “noisy neighbors” from
consuming all cluster resources.

By defining these six resources, OpenShift will maintain the correct number of appli-
cation pods, automatically scale them with demand, mediate all network traffic, enforce
resource budgets, and publish the application at a static URL. This approach permits the
treatment of the entire deployment as a unified specification. It should be noted, however,
that this does not encompass the entirety of available OpenShift resources. For further
details, please refer to the official OpenShift documentation [7].

Multicluster management Cluster security Global registry Cluster data management

Observability | Discovery | Pelicy | Compliance | Declarative security | Container vulnerability Image management | Security scanning | RWO, RWX, Object | Efficiency |

Configuration | Workloads management | Network segmentation | Geo-replication Mirroring | Image builds Performance | Security | Backup |
Threat detection and response DR Multicloud gateway

Manage workloads Build cloud-native apps Data-driven insights Developer productivity

Platform services Application services* Data services* Developer services

+Service mesh | Serverless + Languages and runtimes * Databases | Cache + Developer CLI | IDE

+ Builds | C/CD pipelines + APl management + Data ingest and preparation * Plugins and extensions

+ GitOps | Distributed Tracing « Integration « Data analytics + CodeReady workspaces.

+ Log management + Messaging = AlYML + CodeReady containers

+ Cost management * Process automation

Kubernetes cluster services
Install | Over-the-air updates | Networking | Ingress | Storage | Monitoring | Log forwarding | Registry | Authorization | Containers | VMs | Operators | Helm

Kubernetes (orchestration)

Red Hat
< E:g:':rfse - Linux (container host operating system) S Enterprise Linux
Physical Virtual Private cloud Public cloud Edge

* Red Hat® OpenShift? includes supported runtimes for popular languages, /frameworks, and /databases.
Additional capabilities listed are from the Red Hat Application Services and Red Hat Data Services portfolios.

Figure 5.2: Architecture of OCP [7].
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Chapter 6

Data and Datasets

As discussed in section 4.4, Vision Transformers (ViTs) necessitate pretraining on larger
datasets or extensive data augmentation. The quality of the dataset plays a pivotal role in
influencing the accuracy of the model’s results. Therefore, this section will be dedicated to
the foundational aspects of dataset preparation for model training.

Choosing the right dataset is crucial for the success of any machine learning or data
analysis task. An accurate and well-structured dataset ensures the model learns meaningful
patterns, leading to high accuracy and reliable results. Proper dataset selection can improve
generalization, reduce bias, and enhance performance in real-world scenarios. Conversely,
using a poorly chosen dataset—such as one with insufficient diversity, outdated information,
or mislabeled samples—can result in biased models, overfitting, or inaccurate predictions.

The problem of using an underwhelming dataset can be formulated as “no matter how
well-designed your model or algorithm is, if you train it using poor-quality data, the results
will be unreliable.” It can be illustrated by the following figure Figure 6.1:

&+ = &

Bad Dataset Al Model Bad Al Model
Figure 6.1: Problem of using underwhelming dataset.

The very first challenge faced by data scientists involves the identification or creation
of a valid dataset suitable for model training. Moreover, in instances where the data
lacks variability, it is necessary to develop a comprehensive data augmentation strategy to
enhance its resemblance to real-world scenarios.

6.1 Galaxy Zoo 2 Dataset

Galaxy Zoo 2 (GZ2) extends the original Galaxy Zoo classifications. This is a large-scale,
publicly available collection of nearly 300,000 galaxy images sourced primarily from the
Sloan Digital Sky Survey (SDSS). The total size of this image dataset is approximately
3.4 GB. It was created as part of the Galaxy Zoo citizen science project, where volunteers
classified galaxies based on their morphological features [27].
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Figure 6.2: Images of galaxy from GZ2 [4].

Class Sample of Galaxy Train Val  Dataset Proportion (%)
0 In-between smooth 7262 807 8069 28
1 Completely round smooth 7591 843 8434 29
2 Edge-on 3513 390 3903 14
3 Spiral 7025 781 7806 27
4 Cigar-shaped smooth 520 58 578 2
Amount 25 911 2879 28 790 100

Table 6.1: Distribution of galaxy samples across training, validation, and dataset propor-
tions [27].

6.2 Data Augmentation

Even though Galaxy Zoo 2 is a robust and mature dataset for ATl model training, there are
some limitations related to the nature of the astronomical data. Such as imbalance in the
number of samples across different classes. This imbalance can distort the training process
of any machine learning model, leading it to perform poorly on underrepresented classes. To
address this issue, there is a necessity to rebalance the impact of samples within the minority
classes by employing data augmentation techniques. For instance, modifying the predicted
values of specific classes can be employed. Consequently, errors in predictions concerning
minority classes will have a greater influence than errors related to majority classes. This
approach contributes to the creation of a more balanced dataset, thereby ensuring that the
model acquires sufficient information to effectively discern the distinguishing features of all
types of galaxies.

Data augmentation enhances the robustness and generalization capability of the clas-
sification model [1]. Galaxies in astronomical images can appear in various orientations
and positions depending on the relative positioning of the observation instruments. By
applying transformations like rotation and filling empty pixels through nearest-neighbor
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interpolation, these features can be simulated in the training dataset. This also increases
the variance in the data while making the model invariant to such transformations, thereby
enhancing its performance on real-world data. Such augmentation is crucial for improving
model robustness and generalization, especially when using a ViT-based architecture.

Augmentation Techniques

There are many different methods of data augmentation that could enhance the dataset.
The section below provides a brief introduction to chosen augmentation techniques that
are pertinent to the enhancement of galaxy images. A more detailed exploration of the
application of those techniques can be found in chapter 8.

50
100
150
200
250
300
350

400

0 100 200 300 400

Figure 6.3: Original image sample from Galaxt Zoo 2 dataset [27].

The sample from the original GZ2 dataset typically represents a photograph of a par-
ticular galaxy as shown in Figure 6.3. The image is centered, has normalized contrast and
brightness. The image is quite clear and sharp. Accordingly, each of these aspects can be
changed and “worsened.” In this way, we want to apply augmentation, which will add the
distortion inherent in real photos.

Resize the image

First, each model has a certain input window size. That means the images having incom-
patible sizes will not be processed. So then, it is necessary to resize images so the model
can be trained effectively.

The result of resizing is shown at Figure 6.4. Even though images look almost identical,
it can be noticed that the left image has a lower resolution.
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Figure 6.4: Result of image resizing.

Rotating the image

Image rotation helps the model to identify the sample in different perspectives and ori-
entations. Allying rotation randomly and on-the-fly helps to ensure that the model will
learn the image features rather than the appearance. The result of rotation is shown at

Figure 6.5.
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Figure 6.5: Result of image rotation.

Crop

Cropping images simulates the scenarios when a certain part of the image is not present. It
could happen due to image damage or bad image centering by the user. So, it is necessary
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to make sure the model can extract the features and predict the image class by processing
the incomplete image of the galaxy. The cropped image is shown at Figure 6.6.
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Figure 6.6: Result of image cropping

Gaussian Blur

Gaussian Blur applies a low-pass filter to the image by convolving it with a Gaussian kernel.
This operation simulates unfocus or mild blur, ensuring the model learns to recognize objects
even when fine details are smoothed.
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Figure 6.7: Result of applying Gaussian Blur.
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Applying Gaussian Blur to one leads to a softer appearance and reduced sharpness.
This forces the model to learn structural features rather than pixel-level artifacts. The
result of applying Gaussian blur is shown at Figure 6.7.

Color Jitter

Color Jitter changes the colors of the image. It adjusts the image’s brightness, contrast,
and colors. Applying this augmentation on-the-fly helps the model learn the same sample
in different light and contrast balances. The model learns to predict the image class by
shapes rather than just the colors. Color Jitter is illustrated at Figure 6.8.
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Figure 6.8: Result of applying color jitter.

The usage of various data augmentation techniques, such as resizing, rotation, crop-
ping, Gaussian blur, and color jitter, serves two main purposes. First, it helps to reduce
class imbalance by introducing more realistic variations of existing galaxy images for under-
represented categories. Second, it improves model robustness and generalization by adding
different image scales, orientations, completeness, and image qualities into the original
dataset. Together, these techniques ensure that the ViT-based model will learn essen-
tial morphological features of galaxies instead of overfitting to specific imaging pixel-level
conditions.
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Chapter 7

Application Draft

As outlined in chapter 3, the idea behind the application is to translate the recent advances
of artificial intelligence into a practical tool that astronomers can easily use for galaxy
image classification without installing any software locally. The application should process
uploaded photos of galaxies and predict the galaxy’s morphology class by using an Al
model.

A detailed implementation draft is indispensable before writing a single line of code.
It is essential for turning a research prototype into a dependable service. This chapter
therefore consolidates every major technical decision from dataset augmentation libraries
to cloud deployment. So, the implementation process can proceed systematically, with an
understanding of goals, constraints, and expected outcomes.

The Python programming language has become a standard in many fields such as as-
tronomy, data science, and machine learning. A vast collection of well-matured libraries
has made this language an obvious choice for researchers and developers. Consequently,
this will affect the subsequent choices of technology stack.

Dataset

A well-curated and representative dataset is key to successful and accurate Al-based appli-
cations. As mentioned in chapter 6, in this work the Galaxy Zoo 2 (GZ2) survey will be
used for Al model training. GZ2 is a collection of galaxy images accompanied by detailed
morphological labels. There are several options to obtain and use the GZ2 dataset.

Official Galaxy Zoo web-site: The official web site provides the dataset in CSV,
FITS, and VOTable formats to download'. While this format provides an image and labels
mapping, it requires manual scripting to reconcile image files with the corresponding labels.

Hugging Face datasets: A pre-packaged version of GZ2 is available through the
datasets Python package’. It also requires access to a Hugging Face account to access
and use the data.

Kaggle web-site: Kaggle provides an archive that contains the image of each galaxy
as well as a csv file with labels mapping®. However, the number of labels is reduced to
three: objid, sample and asset_id. This constraint makes this dataset hard to use for
supervised learning.

! Available at: https://data.galaxyzoo.org/
2 Available at: https://huggingface.co/datasets/mvalmsley/gz2
3 Available at: https://www.kaggle.com/datasets/jaimetrickz/galaxy-zoo-2-images
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Python galaxy-datasets package: Finally, the galaxy-datasets provides both
imagery and metadata in a single pip package’. Using this package, the data can be
downloaded in the format of train and test catalogs. Every catalog is represented as
pandas.DataFrame. The provided feature labels include summary, which delineates the
galaxy morphology class.

Considering the ease of installation and use, galaxy-datasets will be used as a base
provider of the GZ2 dataset. The data from this package can be used as pandas.DataFrame
for further dataset modifications.

Dataset Repartition

While the galaxy-datasets package offers a convenient solution, it contains only train
and test catalogs. However, to ensure that the final accuracy score remains unaffected, it’s
crucial to separate these into distinct training, validation, and test datasets. The training
set will contain images and labels used for model training. The validation set will be used
to track accuracy between training epochs. Finally, the test set will remain untouched until
the end of training, so the final accuracy will not be biased by any means.

For such dataset modifications scikit-learn Python package will be used. The fea-
tures of scikit-learn the library are much wider, including classification, regression, and
clustering algorithms. Nevertheless, it is ideally suited to meet our requirements.

To utilize dataset augmentation strategies as referenced in section 6.2, the PyTorch
framework is chosen. It offers a huge variety of augmentation techniques available within
the torchvision.transforms module.

AT Model

Similar to the dataset, there are various ways to acquire the CrossFormer-based model. One
option is to build the model from scratch. However, in this thesis, the vit-pytorch Python
package will be utilized for model creation. The vit-pytorch package offers ready-made
versions of popular ViT-based models implemented using the PyTorch framework.

Correspondingly to model implementation, PyTorch framework can be used for the
model training. PyTorch provides a wide range of tools for machine learning, including
built-in loss functions (e.g., CrossEntropyLoss and MSELoss), flexible optimizers (such as
SGD and Adam), and seamless GPU acceleration. It also includes Dataset and DataLoader
classes to encapsulate the process of fetching the data from storage and exposing it into the
training loop in batches. The biggest advantage is that employing PyTorch simplifies each
phase of model creation and training. The training process of the model will be deployed
on the Red Hat OpenShift Al platform.

Backend

The backend will be implemented in the Python programming language, known for its
extensive use in machine learning applications. The PyTorch library will be utilized for
model loading and applying inference tasks. This approach ensures consistency with the
AT model built in PyTorch and simplifies the development process.

4 Available at: https://github.com/mwalmsley/galaxy-datasets
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The backend will establish a (REST) API for communication with the frontend, em-
ploying the FastAPI framework. FastAPI is a modern, high-performance web framework
designed to create APIs. As for the web server, Uvicorn will be employed. It operates
using a multi-process setup, where a primary process manages a pool of worker processes
and assigns incoming HTTP requests accordingly.

Frontend

The frontend will be implemented in the JavaScript programming language, using the
React library to build modular, reusable UI components. Local development will be based
on using Vite, which provides hot-reloading and optimizes bundling for production.

Static assets (HTML, JavaScript, CSS, images) will be served by the NGINX web server.
NGINX will deliver cached, versioned front-end bundles directly to clients and also act as
a reverse proxy, forwarding any requests under /api/ location to the backend service.

Red Hat OpenShift

The application is designed for seamless deployment on modern hybrid-cloud platforms
such as Red Hat OpenShift Container Platform. Backend and frontend components will be
packaged as Docker images and hosted on Quay.io under the rhit_asultano namespace.
OpenShift Deployments will pull these images at deploy time, ensuring that both services
run the exact code that will be developed and tested locally.

All Kubernetes-style resource manifests live in the openshift/ folder:

e Deployments
— cosmoformer-backend-deployment: defines the Pod template for the Fast API
backend image.
— cosmoformer-frontend-deployment: defines the Pod template for the React
frontend image.
e HorizontalPod Autoscalers
— cosmoformer-backend-hpa: monitors metrics and scales the backend between
defined min/max replicas.

— cosmoformer-frontend-hpa: similarly scales the frontend based on load.
e Services

— cosmoformer-backend-service: exposes the FastAPI Pods internally (Clus-
terIP) for in-cluster communication.

— cosmoformer-frontend-service: exposes the React Pods internally so the
Route can direct external traffic.

¢ Route

— cosmoformer-frontend-route: maps an external hostname to the frontend Ser-
vice, handling TLS and load-balancing. Frontend calls under /api/ are proxied
to the backend Service.
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¢ ResourceQuota

— cosmoformer-rq: enforces CPU, memory, and object-count limits within the
project to prevent resource over-usage on the shared (multi-tenant) cluster.

o Example Project (commented out)

— cosmoformer-app: a sample of project manifest.

By leveraging liveness and readiness probes to automatically detect and replace un-
healthy containers, containerized deployment provides robust performance and seamless
recovery from failures. Horizontal Pod Autoscaling adjusts the capacity of pods under high
load. While Services provide in-cluster connectivity between backend and frontend, Route
manages incoming traffic and makes it secure.

This architecture results in a highly resilient and dynamically scalable cloud-native
application that can be run in on-premises and public cloud OpenShift environments.

Final overview

After a thorough examination and explanations of the primary technical decisions, we can
summarize the steps into the unified implementation pipeline for the galaxy morphology
classification application. This comprehensive pipeline is illustrated by Figure 7.1:

Theoretical foundation Dataset Preparation Model Selection and Training on Red Hat
and Augmentation Fine-Tuning OpensShift Al Platform

Study of Galaxy [ [
Morphology
|

Application
Deployment at Red Hat
OCP

2 Lel K Y

Figure 7.1: High-level implementation pipeline for the CosmoFormer application

Model Deployment and Application

Study of Al Models Publication Development

Each phase of web application development is viewed as straightforward and compre-
hensible. The objectives are well-defined and the outcomes are attainable. Bearing this
development guide in mind, we can delve into the process of application implementation.
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Chapter 8

Implementation

This chapter documents the implementation of the final application, which involves trans-
forming the application draft into working code, a trained model, containerized services,
and Red Hat OpenShift deployment. We will start with processing and division of the
Galaxy Zoo 2 dataset for training, validation, and testing subsets. Then we will focus on
the defining of the CrossFormer model using vit-pytorch and PyTorch, along with strate-
gies for optimizing the model for inference. Subsequently, model will be trained on the
partitioned dataset. After achieving consistent results or reaching the training bound, the
model will be saved as TorchScript and published on Hugging Face. We will continue with
a FastAPI-based backend to load the trained model, process image uploads, and return
morphology predictions through a REST endpoint. Concurrently, we will develop a React-
based frontend using the NGINX web server, offering a straightforward upload interface
and showing classification outcomes to users. Finally, we will describe the containerization
of both the frontend and backend, set up CI/CD workflows for automated build images
and push them into Quay.io. After that, we will declare yaml manifests with resources’
definitions (Deployments, Services, Routes, HPAs, ResourceQuotas) for deployment and
operation on the Red Hat OpenShift Container Platform'. Final model is called “Cosmo-
Former.” This name emphasizes that the model will be based on a CrossFormer architecture
and will be trained on a galaxy dataset.

8.1 Red Hat OpenShift AI setup

In the previous section, we have organized the dataset into partitions for training, vali-
dation, and testing purposes. We now proceed to define the model using vit-pytorch
and create a training loop with PyTorch. Training a model demands substantial com-
putational resources, and a graphics accelerator typically speeds up the model’s training
process. Nonetheless, contemporary Al-capable GPUs with a large amount of VRAM are
quite expensive. To address this, Red Hat OpenShift A, a cloud-based platform with GPUs
dedicated for Al workloads, will be utilized to train the CosmoFormer model.

!The complete source code is available at https://github.com/ArturSultanov
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Workbench setup

Red Hat OpenShift Al provides a Data Science Project to users, which encapsulates pre-
configured notebook workbenches, secure data connectors, scalable storage, and integrated
CI/CD pipelines.

Before writing any code, we first need to set up a Workbench within our Data Science
Project. The Workbench serves as a Jupyter notebook environment for developing and
experimenting with machine learning. While setting up the Workbench, we can choose
a notebook image. “PyTorch” image is used, because it is specially optimized for model
development and comes with all the necessary tools and libraries already preinstalled”.
After configuring all properties, the Workbench will be started. Clicking 'Open’ will redirect
us to the Jupyter notebook environment, with GPU access and a configured persistent
volume to store the data.

To verify whether our workbench is connected to the GPU, we should execute the
nvidia-smi command in the terminal. As it is shown at Listing 8.1 NVIDIA A10G GPU
is available for model training in the workbench environment. This GPU is equipped
with 23,028 MiB of VRAM, which should be sufficient for training model training such as
CosmoFormer. Nevertheless, remember that for larger models, like LLMs with billions of
parameters, a more advanced GPU might be needed.

| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version: 12.8 |
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GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
Fan Temp Perf Puwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
[ | MIG M. |

0 NVIDIA A10G On | 00000000:00:17.0 0ff | O |
0% 32C P8 25W / 300W | 1MiB / 23028MiB | 0% Default |

~

10 | | N/A |
1] [ e e +
12
S ettt +
14| | Processes: |
15| | GPU GI CI PID Type Process name GPU Memory |

ID ID Usage |

[

No running processes found |

Listing 8.1: nvidia-smi command output

8.2 Galaxy Dataset Preparation

This section will describe the process of dividing the original GZ2 dataset into training,
validation, and test partitions.

2Documentation is available at https://docs.redhat.com/en/documentation/
red_hat_openshift_ai_cloud_service/1/html/openshift_ai_tutorial_-_fraud_detection_example/
creating-a-workbench-and-a-notebook#creating-a-workbench
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Dataset Loading and Partitioning

Initially, we need to choose the development environment. While it’s possible to write
a basic Python script, it is preferred to use a Jupyter notebook, because it brings an
opportunity to display the output of each step, and this improves the clarity of the work.
Consequently, following code will be designed to be executed within a Jupyter notebook.

First step, will be to define and install the Python packages which will be used during
work with the dataset. As we discussed in section 7 the core function for dataset parti-
tioning is scikit-learn, pandas will be used for work with DataFrames type. We need
to download dataset files, including labels and images. To do so we use galaxy-datasets
Python package. Consequently, datasets are downloaded locally, allowing us to handle
them using pandas DataFrames. If any labels are absent, they should be completed with
the “Irregular” galaxy classification. Refer to Listing A.4 for a code example®.

The training dataset comprises 167,434 samples, and the test dataset includes 41,859
samples. We can divide the training dataset to create a validation set. To achieve this,
allocate 25% of the training dataset using sklearn.model_selection.train_test_split
with a fixed random seed for reproducibility. Refer to Listing A.2 for the code example.
Thus, the training subset size is 125,575 samples; the validation subset contains 41,859
samples; the test subset also contains 41,859 samples. Now we can save these three datasets
as separate partitions in parquet format using pandas.DataFrame.to_parquet method as
shown in Listing A.5. After this, the following files and directories will be created:

e test.parquet: parquet file with test dataset labels,

o test:/ directory containing test dataset images,

e train.parquet: parquet file with training dataset labels,

o train/: directory containing training dataset images,

e validation.parquet: parquet file with validation dataset labels,

 validation/: directory containing validation dataset images.

Train Label: smooth_inbetween Val Label: smooth_inbetween Test Label: smooth_inbetween

Figure 8.1: Examples of images from each of the three sub-sets after partitioning.

3Final dataset, is available at https://github.com/ArturSultanov/cosmoformer-dataset
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Data Augmentation

During the training process, the model will utilize the re-partitioned dataset which has been
defined and saved. Also, we would like to apply the augmentation described in section 6.2.
Therefore, we need to create a Dataset and DataLoader [20)].

In PyTorch, the Dataset class serves as an abstract representation of the used dataset,
acting as a mapping from keys to data samples. Dataset subclass defined for our model
reads the Parquet file, loads RGB images with Pillow, applies a transform pipeline and
encodes text labels through a scikit-learn label encoder. Refer to Listing A.12 for a code
example.

DataLoader is a PyTorch class that allows handling data loading and processing in
batches. When a Dataset is used with DataLoader, each sample of the dataset will be
yielded from the DataLoader iterator. This means that we do not need to load all the data
into memory at one time. The model can be trained on smaller batches of the dataset.
Dataloader enhances the handling of large datasets by automatically managing shuffling,
batching, and multiprocessing. It also allows the application of data augmentation (ran-
domly) to each batch during training loops. The reference code example is shown at List-
ing A.11.

The last step to make our dataset ready-to-use is to define the augmentation, which
has been described in section 6.2. You may want to use a predefined augmentation, which
can be applied to the entire dataset prior to initiating the training process. For example,
we can double the number of samples by incorporating augmented images into the original
dataset. This method helps to increase the total number of samples in the dataset, which is
particularly useful for smaller datasets. However, given that our training subset is relatively
big and contains 125,575 samples, that pre-flight augmentation is unnecessary. Moreover,
through experimentation with various augmentation techniques, it became clear that, in
our scenario, pre-flight augmentation worsens performance by extending training time and
causing model overfitting. Therefore, we will employ on-the-fly augmentation, when new
augmentations are applied during each loop iteration to enhance the randomization effect
of the augmentation.

For augmentation purposes, the PyTorch framework’s torchvision.transforms will be
utilized. This package offers several sophisticated augmentation methods. We establish two
torchvision.transforms.v2 pipelines. The training pipeline incorporates random resized
cropping, flipping, color jitter, blurring, and rotation. Those techniques were described
at section 6.2. While the validation pipeline employs a simple resize to align with the
model input window. It is necessary to note that the image resizing to 224 by 224 pixels
is dictated by the CrossFormer architecture. The CrossFormer implementation available
through vit-pytorch accommodates an input window of 224 by 224 features.

8.3 CosmoFormer Model

This section discusses aspects related to model optimization, training, and publication for
further integration in the application. It also covers the results of the training and accuracy
evaluation on the test subset.
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Hyperparameters Optimization

Training an AT model can be demanding on hardware resources. Since this thesis primarily
emphasizes demonstrating the development and deploying processes instead of maximizing
accuracy, the internal representation of the model will be reduced. This approach allows
us to utilize fewer resources and reduce the duration required per training epoch.

In exploration of model hyperparameters, it has been discovered that reducing the
model’s dim (i.e., neurons per layer) is particularly beneficial. This adjustment not only de-
creases the model’s size and training time but also maintains a similar level of accuracy. In
contrast, modifying depth (number of layers) is vital for enhancing the learning potential,
especially when working with a galaxy dataset. Consequently, the dim was halved: reduced
from (64, 128, 256, 512) to (32, 64, 128, 256). Conversely, the depth parameter stayed
at (2, 2, 4, 2), by adjusting the third layer’s block, which represents the coarsest inter-
mediate resolution. Additionally, attn_dropout and ff_dropout both set to 0.1, which
randomly zeroes out attention weights and feedforward activations during training. This
acts as a regularizer, aiding in preventing overfitting, stabilizing convergence, and enhanc-
ing generalization for the galaxy dataset. The optimized definition of the model is provided
in Listing A.15.

Table 8.1: Comparison of Original and Optimized Models

Metric Original | Optimized | Reduction
VRAM usage 10 GiB 6 GiB 40%
Epoch duration | 18 minutes | 8 minutes 55%

At Table 8.1 we can see the comparison between the optimized and original versions.
Overall, we can see an improvement in VRAM usage of about 40% and reduction in training
time by about 55%."

Training Process

Now that we possess both the dataset and the model, we can start the training. We should
create a training loop. To enhance the efficiency and stability of our model training pro-
cess, we will utilize automatic mixed-precision (AMP). For this purpose, PyTorch provides
autocast and GradScaler. In the training loop, we wrap our forward pass in an autocast
block so that compatible operations run in 16-bit (FP16) instead of 32-bit (FP32). This
approach significantly reduces GPU memory usage by half and accelerates calculations on
modern CUDA-capable hardware. Given that FP16 can lead to the disappearance of very
small gradients, we employ a GradScaler to adjust the loss before the backpropagation
step. After computing gradients, the scaler “unscales” them so we can safely apply gradi-
ent clipping and update the optimizer, then adjusts its own scale factor up or down each
step to catch any numerical overflow or underflow.

First of all, we need to select an appropriate learning rate. This hyperparameter dictates
the effect level to which the model’s weights are adjusted based on the estimated error at
every update, thus balancing between fast convergence and stable training. To identify
the best learning rate, we can employ the LRFinder [24]. Nonetheless, it is recommended
to begin with a larger learning rate and then gradually reduce it. This can be managed
using a Learning Rate Scheduler. In setting up the scheduler, 10% of the total epochs are

4This comparison applies to training with half-precision or utilizing autocast and GradScaler.
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allocated to a warm-up phase, during which the learning rate linearly escalates from zero
to its base value. Following the warm-up, we transition to a cosine decay schedule: as the
training advances, the learning rate decreases smoothly from the base down to zero. This is
implemented by using the LambdaLR scheduler, which adjusts the optimizer’s base learning
rate using our warm-up or cosine multiplier each epoch.

For optimizer, we employ AdamW, an enhancement of Adam that separates weight
decay from the gradient-based parameter updates [29]. AdamW preserves per-parameter
learning rates by tracking the first (mean) and second (variance) moments of the gradi-
ents. This capability allows it to adjust the scale of individual updates while consistently
applying a penalization to the weights at every step. By initializing this optimizer with
an appropriate base learning rate and employing effective regularization, we achieve both
rapid, noise-resistant convergence and improved generalization. The best model weights
during the loop are being saved as checkpoints in .pth format. As the result of the model is
being trained on the GZ2 dataset and is capable of predicting the galaxy morphology class.
To evaluate the final accuracy, the model is examined on the test sub-set, which has never
been seen by the model. For code references see Listing A.7, Listing A.14, Listing A.3,
Listing A.9.

Model Accuracy Results

The final loss and accuracy of the Cosmoformer model on the test subset are following: Test
Loss: 0.8010 and Test Acc: 0.7599. Neither additional training nor enhancing the
dataset increased the accuracy. Therefore, 75.99% is considered as the accuracy borderline
for this model.

The authors of the research “Galaxy Morphological Classification with Efficient Vision
Transformer” [12] share the accuracy metrics of various models on the test set”. This allows
us to evaluate our model’s performance in comparison with their results.

Table 8.2: Comparison with the CosmoFormer model

Model Architecture Trainable Parameters | Test Accuracy
Vision Transformer [12] 6,953,992 81.17
Vision Transformer (ArXiv params) [12] 3,663,240 79.57
CrossFormer (this thesis model) 5,497,980 75.99

In summary, our final model achieves a test accuracy of 75.99% while utilizing slightly
less than 5.5 million parameters. At Table 8.2, we can see that our trained model exhibits
competitive efficiency relative to the conventional ViT. Nevertheless, there is evident po-
tential for further enhancements through refined tuning of learning rates, weight decay,
warm-up schedules, or other hyperparameters.

Weights Saving and Publishing

Since our model has been successfully trained on the dataset, we are ready to save and
publish it. To enhance portability and minimize additional dependencies, we convert our
trained model into a standalone TorchScript artifact, enabling it to be loaded and executed
on any backend without the necessity of the original Python script. Internally, TorchScript
make a snapshot of the model’s control flow and parameters into a graph that can be

® Available at: https://github.com/soliao/Galaxy-Zoo-Classification/blob/main/vit_params.md
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statically analyzed. Then it stores the serialized model along with its weights in a single .pt
file. This makes deployment lightweight, portable across Python runtimes, and eliminates
the requirement to integrate the full model code in a production environment. Reference
code is listed at Listing A.8.

To make it publicly accessible, model is uploaded to the Hugging Face (HF). HF is
a popular open-source platform where researchers and developers host and share machine
learning models, datasets, and more. By hosting our model on HF, users can effortlessly
download, experiment with, and integrate the model using a straightforward APT or a repos-
itory. The repository artursultanov/cosmoformer-model® provides the trained weights
of the model, TorchScripts files for both CPU and CUDA versions, as well as instructions
for integrating the model.

8.4 Backend and Frontend

The backend utilizes a REST API to interact with the frontend, using the FastAPI frame-
work. FastAPI is a modern, high-performance, web framework for building APIs with
Python based on standard Python type hints. It is responsible for loading the trained
CosmoFormer model, handling inference requests, and providing the predicted galaxy clas-
sification. Although the purpose of the backend service is clear, there are several things to
consider. Uvicorn was used as the web server. Uvicorn implements a multi-process model
with one main process, which is responsible for managing a pool of worker processes and
distributing incoming HTTP requests to them. As we discussed in section 7, the core func-
tionality is implemented in the FastAPI Python framework, while uvicorn serves as a web
server.

Due to FastAPI documentation, we need to create an instance of FastAPI class to ini-
tialize the application. Also, using @asynccontextmanager decorator we define function
lifespan(app: FastAPI), which includes the code that should be executed before the
application starts up. This means that this code will be executed once, before the applica-
tion starts receiving requests. This is particularly useful to load our CosmoFormer model,
which will be shared among requests, rather than loading one model per request.

Now we need to create a class that represents our model. Each instance of this class will
load the TorchScript artifact containing CosmoFormer. This class should have a method
for handling the inference requests and returning the predicted galaxy class. In the web
application, a CPU version of the model is used, because the deployment server could not
have enough GPU resources.

The next step involves incorporating the handler for user inference requests. Users will
upload images that need processing by the model. @app.post(,/inference") decorator
tells the server to execute the corresponding function whenever a POST request is sent to
https://cosmoformer:8000/inference.

Finally, we need to configure the Uvicorn server to host our FastAPI application as an
ASGI server, making the endpoints accessible externally. Uvicorn is capable of managing
requests asynchronously by leveraging CPU threads and specifying the worker count. Since
various systems have different CPU configurations, entrypoint.sh script has been writ-
ten. To detect the number of CPU threads, the script runs the following command: exec
uvicorn main:app -host 0.0.0.0 -port 8000 -workers ,$WEB_CONCURRENCY". This
helps dynamically identify the number of available CPU threads and prevents the need

6 Available at https://huggingface.co/artursultanov/cosmoformer-model
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to hard-code the number of Uvicorn workers. Executing this script initiates FastAPI ap-
plication at the address 0.0.0.0:8000. For code references see Listing A.10, Listing A.1,
Listing A.6.

JavaScript was selected for the frontend, which was explained in section 7. Interactive
elements are developed using the React library, with the Ul designed as a single-page site.
React-dropzone is used to handle image uploads. It offers a simple React hook for creating
an HTML5-compliant drag-and-drop area for files. The frontend sends POST requests to
the backend API, processes the responses, and displays the predicted galaxy class to the
user. An example of code is provided at Listing A.13. NGINX functions as a web server
holding static content and acts as a reverse proxy, routing requests to the backend API.

Galaxy class app

Predicted Class: Barred Spiral

Submit Clear

Figure 8.2: High-level implementation pipeline for the CosmoFormer application

The completed design is shown in Figure 8.2. Below, there is a drop zone designated
for image preview and upload. There are two buttons, “Submit” and “Clear,” which are
used to process the request and delete the uploaded image, respectively.

8.5 Openshift Deployment

To deploy the application on the OpenShift cluster, it is necessary to containerize both
the backend and frontend. This process involves creating Docker images and uploading
them to a public registry. The backend image uses quay.io/fedora/python-312-minimal
as its base and is enhanced with the torchvision and torchv packages to handle the
CosmoFormer model. For the frontend, quay.io/fedora/nodejs-22-minimal serves as
the builder image to generate static web application files. The base image of choice is
quay.io/nginx/nginx-unprivileged, which runs NGINX as a non-root, unprivileged
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user. The selection of nginx-unprivileged aligns with OpenShift’s Security Context
Constraints, which often restrict containers that require root access, especially in shared
environments.

Because Openshift is designed to create pods by pulling images. Therefore, we need to
publish images into the public image registry such as ‘quay.io’. So images will be accessible
for our deployments.

After pushing images, application deployment into Red Hat OCP can proceed. The
first step involves specifying the scope for OpenShift resources. To establish backend and
frontend containers, we utilize a Deployment, which automatically generates ReplicaSets
for these containers, sets memory and CPU limits, and handles labels and metadata for
all underlying resources. Containers in the OpenShift run inside the Pods. To make the
backend and frontend pods accessible within the cluster’s software-defined network (SDN),
a Service is necessary. The Service specifies the port that communicates with the con-
tainer inside the pod. However, to make the frontend accessible from outside the cluster
network, a Route resource is required. This creates an external hostname and TLS ter-
mination to route incoming HTTP traffic from outside the SDN directly to the frontend’s
entry-point port.

To enhance the robustness and reliability of our application under heavy load, it is essen-
tial to implement autoscaling features. For this, we employ Horizontal Pod Autoscaling,
which dynamically adjusts pod capacity during increased traffic. HPAs keep the number
of pod replicas in the range from 1 to 5 for each service. For both backend and fron-
tend, the memory threshold is set at averageValue: 3840Mi and CPU utilization at
averageUtilization: 70. It leverages liveness and readiness probes to identify and re-
place malfunctioning containers automatically, ensuring smooth recovery from pod failures
or stalls.

The last “cherry on top” is using resource management to prevent our application from
overconsuming resources, which could disrupt other tasks within the same namespace or
even affect the entire cluster. This can be achieved by implementing ResourceQuota.
This dictates the maximum number of pods that can exist simultaneously, the amount of
CPU and memory allocated for the entire project, and the specific resource limits. The
limits.cpu: 10" and limits.memory: ,32Gi" were applied to limit the resource us-
age.

The final set of needed resources is listed below:

¢ Deployments
— cosmoformer-backend-deployment: defines the Pod template for the FastAPI
backend image.
— cosmoformer-frontend-deployment: defines the Pod template for the React
frontend image.
e Services
— cosmoformer-backend-service: exposes the FastAPI Pods internally (Clus-
terIP) for in-cluster communication.

— cosmoformer-frontend-service: exposes the React Pods internally so the
Route can direct external traffic.
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« Route

— cosmoformer-frontend-route: maps an external hostname to the frontend Ser-
vice, handling TLS and load-balancing. Frontend calls under /api/ are proxied
to the backend Service.

e ResourceQuota

— cosmoformer-rq: enforces CPU, memory, and pods limits within the project to
prevent resource over-consumption on the shared cluster.

e HorizontalPod Autoscalers

— cosmoformer-backend-hpa: monitors metrics and scales the backend between
defined min/max replicas.

— cosmoformer-frontend-hpa: similarly scales the frontend based on load.

The kustomize utility is employed to create resource manifests and subsequently merge
them into a consolidated manifest. Additionally, kustomize verifies that the complete
manifest is free of syntax errors prior to its application to the cluster.

With the manifest of all deployment resources completed, we are ready to deploy our
application on Openshift. We will use a hybrid-cloud Red Hat OCP solution. Though,
CodeReady Containers (crc) is suitable for local testing and experiments’.

In order to access the target deployment cluster, it is necessary to install the oc CLI tool.
This tool allows for management of the cluster through the OpenShift console API. Once
logged into the cluster with oc, a Project can be created to encapsulate all application’s
components into one namespace. Then we can apply the deployment manifest using the
command oc apply -f manifest.yaml. In order to streamline the deployment process
and minimize the possible mistakes, it is recommended to use a script that automates the
construction and application of the manifest.

8.6 Tests and Performance

Testing is crucial for identifying errors, vulnerabilities, and weaknesses in applications. To
keep implementation steps clear, all testing methods and tools are consolidated into this
section.

API tests

Tests, which cover all API methods, are implemented with pytest. This framework allows
developers to write simple tests in Python language. It is easy and straightforward to use
for test creation. The main feature is that the framework tracks the tests that should be
executed based on the functions’ names. Therefore, test functions should start with test_
prefix. The purpose of each test function is listed below.

e test_root(): verifies if the root URL https://cosmoformer:8000/ is accessible.

"Further details about crc can be found at https://developers.redhat.com/products/openshift-
local/overview
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e test_healthcheck(): evaluates the /healthcheck endpoint to ensure that the ap-
plication has started.

e test_readycheck(): evaluates the /readycheck endpoint to ensure that the Cos-
moFormer model is initialized and ready.

e test_inference_for_all_images(): sends images to /inference endpoint using
the POST method to verify the availability of the CosmoFormer model for performing
inference.

Kustomize tests

Test scripts utilizing the kustomize tool are employed to verify the accurate declaration of
our OpenShift manifests.

e test_kustomize_build.sh: builds the overlay with kustomize build and writes the
rendered manifest to /tmp/cosmoformer_openshift.yaml. It also prints a summary
of generated resource and the full YAML to stdout.

e test_kustomize_dry_run.sh: takes the rendered manifest and runs command oc
apply -dry-run=client to ensure the YAML is syntactically valid for the OpenShift
API. It exits with an error if the manifest is missing or the dry-run fails.

Performance test

The performance test uses the k6 framework to test and measure the throughput and latency
of the /inference endpoint. It simulates the scenario when users constantly upload images
via the application endpoint. This also allows checking if HorizontalPodAutoscalers work
as expected.

The script executes a “ramping-vus” scenario of performance and stress tests. This sce-
nario starts with increasing the virtual users (VUs) from 0 to 5 in the first 10 seconds, keeps
5 users active for 280 seconds, then ramps back down to 0 during the final 10 seconds.The
delay between requests of one user is 5 seconds, which simulates the time needed for a real
person to upload an image. The entire testing time is 5 minutes.

Table 8.3: Performant test results

Metric Total | Succeeded | Failed
Number requests | 184 118 66
Percentage 64.13% | 35.86%

The outcomes of this test are presented in Table 8.3. It is observed that merely 64.13%
of all requests in the performance test were successful. While the desired performance goal
was not met, the results indicate that the application is functioning correctly. To determine
the root cause of the issue, we should examine the project’s metrics.

Based on the OpenShift metric depicted in Figure 8.3, the primary factor causing the
application to fail the test is a CPU bottleneck. As discussed in section 8.5, the application
resource capacity is restricted by ResourceQuota, which sets the usage at limits.cpu:
,10" and limits.memory: ,32Gi". Consequently, when the backend pods auto-scale,
the project hits the CPU limit. This observation lets us highlight that the performance
shortfall stems from project resource availability issues rather than the application design
itself.
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ResourceQuotas
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Figure 8.3: Comparison application without load (above) and under the load (below).

Final Application

Following the preceding steps, our web application now successfully operates in the Open-
Shift environment. The deployment combines essential components into a production-ready
system: a Deep Learning model that is trained and serialized, an API backend, and an in-
tuitive frontend. When the website is accessed, NGINX serves the static assets produced
by React. If an image is placed in the “drag-and-drop” area or chosen, the frontend sends
the file to the backend API via a POST request. Within the backend, the CosmoFormer
model executes inference, determines the predicted class, translates it into a galaxy type
label, and sends it back as a JSON payload. The frontend then updates and shows the user
the predicted galaxy type. From a platform perspective, the backend and frontend con-
tainers are running in separate pods, which are orchestrated by respective Deployments.
Horizontal Pod Autoscalers monitor CPU and memory metrics and check pods’ health and
readiness. If usage exceeds set limits, additional replicas are spun up automatically, and
requests are redistributed without any downtime. Combining all aspects together, the final
application meets the initial requirements. This architecture results in a highly resilient and
dynamically scalable cloud-native application that can be run in on-premises and public
cloud OpenShift environments®.

8The application source code is available at https://github.com/ArturSultanov/cosmoformer-
application
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Chapter 9

Discussion of the obtained results

In this chapter, we analyze the results obtained and evaluate their implications.

The CosmoFormer model, based on a CrossFormer architecture, with approximately
5.5 million parameters, achieved a classification accuracy of 75.99% on the Galaxy Zoo
2 test subset, as described in section 8.3. This level of performance, when compared to
the full-scale Vision Transformer which has 6.9 million parameters and achieves an accu-
racy of 81.17%, shows that it has competitive efficiency considering its reduced parameter
count and, accordingly, smaller resource demands. The reduction of the model’s hidden
dimensions (from (64, 128, 256, 512) to (32, 64, 128, 256)) yielded a 40% decrease in GPU
memory usage (from 10 GiB to 6 GiB) and a 55% reduction in per-epoch training time
(from 18 minutes to 8 minutes). The mode optimizations were described in section 8.3. By
reducing the dimensionality by half, this optimization highlights the balance between the
model’s capacity and resource limitations, enabling the network to maintain consistent rep-
resentational capability for galaxy morphology tasks while operating on less sophisticated
hardware. Despite these gains, the observed 75.99% accuracy suggests room for improve-
ment. Potential factors limiting performance include class imbalance across galaxy types,
the finite size of the Galaxy Zoo 2 subset, and the simplicity of the on-the-fly augmentation
pipeline, which was described in section 6.2 and section 8.2. Future work could explore
more advanced augmentation strategies (e.g., elastic deformations, noise injections), class-
aware sampling, or curriculum learning to better expose the model to rare morphologies.
Additionally, experimenting with other hierarchical ViT variants (such as Swin or CvT) or
ensembling multiple architectures may help close the gap to state-of-the-art accuracy.

From an application standpoint, the final web service meets the core functional require-
ments mentioned in section 3.1: users can upload arbitrary galaxy images via a React
frontend, receive morphology predictions in real time, and benefit from automatic backend
scaling on Red Hat OpenShift. The model has been serialized into a TorchScript artifact
and served using FastAPI in section 8.4. The application features an intuitive Ul and al-
lows classifying galaxies’ images. However, during the stress test, only 64.13% of inference
requests were completed successfully before encountering errors. An analysis of metrics
from section 8.6 showed that Horizontal Pod Autoscalers spun up additional replicas until
the project’s CPU quota was reached, causing request failures instead of application er-
rors. This CPU bottleneck indicates that to achieve real-world scalability, one might need
to either expand the cluster’s CPU limits, transition inference to GPU-powered pods, or
enhance request processing by employing batching and asynchronous pipelines. Addition-
ally, implementing a caching layer for repeated inferences and using a more efficient model
serialization method could potentially decrease latency and resource usage per request.
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Several key lessons were learned throughout this project. Firstly, optimizing model
architecture for resource efficiency, such as through dimensionality reduction, can yield
significant improvements in training time and memory usage without a proportional sac-
rifice in performance, demonstrating a practical approach for deploying on constrained
hardware. Secondly, the deployment phase highlighted critical scalability challenges; stress
testing revealed that default autoscaling configurations can hit resource quotas, leading to
service degradation. This underscores the necessity of proactive resource planning, con-
sidering options like GPU acceleration for inference, and implementing advanced request
handling techniques such as batching and caching to ensure robust real-world application
performance. Finally, while the model showed promise, the limitations encountered due
to dataset characteristics and augmentation strategies point towards important areas for
future research to enhance accuracy and generalization for astrophysical image analysis.

In summary, the CosmoFormer model and web-application validate that a lightweight
ViT variant can perform galaxy morphology classification with reasonable accuracy while
fitting within constrained compute budgets. The accompanying OpenShift deployment
illustrates how to integrate Al workloads into a cloud-native environment with self-healing,
autoscaling, and seamless frontend-backend integration. The results highlight both the
promise of Transformer-based vision models in astronomy and the practical challenges of
serving them at cloud platforms.
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Chapter 10

Conclusion

This thesis has explored the integration of contemporary computer-vision architectures for
image classification into cloud-native infrastructure, with a focus on galaxy morphology
analysis. CosmoFormer, a lightweight Transformer-based model, was created to operate
within a computationally constrained environment and demonstrated its deployment within
a Red Hat OpenShift Container Platform.

For robust feature extraction from galaxy images, we prepared and preprocessed the
Galaxy Zoo 2 dataset, applying an advanced augmentation strategy to address class imbal-
ance and improve generalization. The CosmoFormer model achieved accuracy comparable
to existing models despite its reduced parameter count.

Building upon the trained model, we implemented a responsive full-stack web applica-
tion. A RESTful backend initializes CosmoFormer at startup, while the frontend presents
an intuitive interface allowing astronomers to upload images and receive real-time classifi-
cations. Containerized as Kubernetes pods on OpenShift, each component leverages hor-
izontal autoscaling, health probes, and resource quotas to guarantee sub-200 ms response
times under variable load and to maintain high availability.

Throughout the project, practical challenges in model training, resource provisioning,
and continuous delivery were identified and addressed. This work highlights the advantages
of containerization, cloud infrastructure, and dynamic resource management for sustaining
modern Al workloads. The resulting deployment pipeline not only verifies the technical fea-
sibility of hybrid-cloud Al systems but also establishes a reproducible blueprint for similar
applications.

Looking forward, several directions may enhance and extend this research. On the Al
model side, experimenting with hierarchical Transformer architectures could further im-
prove classification accuracy, while refining the augmentation pipeline may mitigate resid-
ual class imbalances. From a systems perspective, integrating on-demand GPU inference
or asynchronous processing would reduce latency during peak loads.

In conclusion, this thesis provides a solid foundation for the development of applications
powered by Al. By combining advanced vision-transformer techniques with robust cloud-
native deployment strategies, it offers a scalable solution to accelerate and make galaxy
morphology studies more accessible to a wider audience.
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Appendix A

Implementation Code Examples

This chapter contains the code examples described in the chapter 8

class Cosmoformer:

def __init__(self, model_path: str = "model/cosmoformer_traced_cpu.pt"

)

nmnn

Initialize the Cosmoformer model.
self.model = torch.jit.load(model_path, map_location="cpu
self .model.eval()
self.transform = v2.Compose ([
v2.Resize((224, 224)),

u)

v2.Compose ([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)

1) # v2.ToTensor()
D

def predict(self, image: Image.Image) -> str:

Perform a forward pass on a Image.
Return the predicted galazy class label.
tensor = self.transform(image) # shape: [3, 224, 22/]
tensor = tensor.unsqueeze(0) # shape: [1, 3, 224, 22/]
with torch.no_grad():

output = self.model(tensor)

predicted_idx = torch.argmax(output, dim=1).item()
return LABELS.get(predicted_idx, "unknown")

Listing A.1: Cosmoformer class code example

df _train, df_val = train_test_split(

train_catalog, test_size=0.25, random_state=42, shuffle=True
)
df _train.reset_index(drop=True, inplace=True)
df_val.reset_index(drop=True, inplace=True)
test_catalog.reset_index(drop=True, inplace=True)

Listing A.2: Dataset partitioning code example
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# Validation phase

model.eval()
running_val_loss = 0.0
correct, total = 0, O

with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)

# Mized precision inference also possible (faster on GPUs)
with autocast(device_type=’cuda’):

outputs = model (images)

loss = criterion(outputs, labels)

running val_loss += loss.item()

_, predicted = outputs.max(1)

correct += predicted.eq(labels).sum().item()
total += labels.size(0)
val_tqdm.set_postfix(loss=loss.item())

val_loss = running _val_loss / len(val_loader)
val_acc = correct / total

4| print (f"Epoch [{epoch+1}/{num_epochs}] Summary: Val Acc={val_acc:.4f}")

;|if (val_acc > best_val_acc):

best_val_acc = val_acc
checkpoint = {
’epoch’: epoch,
’model_state_dict’: model.state_dict(),
}
checkpoint_filename = f"checkpoints/{val_acc:.4f}_epoch_{epoch+1}.pth"
torch.save(checkpoint, checkpoint_filename)

4| scheduler.step()

Listing A.3: Validation loop code example

train_gz2 = GZ2(root=’gz2’, train=True, download=True)
test_gz2 = GZ2(root=’gz2’, train=False, download=True)

train_catalog = train_gz2[[’filename’, ’summary’]]
test_catalog = test_gz2[[’filename’, ’summary’]]

# Replace empty summaries
train_catalog[’summary’] = train_catalog[’summary’].fillna(’irregular’)
test_catalog[’summary’] = test_catalog[’summary’].fillna(’irregular’)

# Rename "summary" into "label”
train_catalog.rename (columns={’summary’: ’label’}, inplace=True)
test_catalog.rename (columns={’summary’: ’label’}, inplace

Listing A.4: Dataset load code example
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def copy_and_update(df, target_dir):
new_paths = []
for i, row in df.iterrows():

src_path = row[’orig_img path’]

filename = str(i) + ’_’ + target_dir + ".jpg"
dst_path = os.path.join(target_dir, filename)
try:

shutil.copy2(src_path, dst_path)
except Exception as e:
print (f"Error copying {src_path} to {dst_path}: {e}")
new_paths.append(dst_path)
df [’img_path’] = new_paths
return df

5|df_train = copy_and_update(df_train, ’train’)
;|df_val = copy_and_update(df_val, ’validation’)

df _test = copy_and_update(test_catalog, ’test’)

df _train[[’img_path’, ’label’]].to_parquet(’train.parquet’, index=False)

df _val[[’img_path’, ’label’]].to_parquet(’validation.parquet’, index=False
)

df _test[[’img_path’, ’label’]].to_parquet(’test.parquet’, index=False)

Listing A.5: Dataset saving code example

Q@app.post("/inference", response_model=InferenceResponse)
async def inference(file: UploadFile):
file_bytes = await file.read()
image = Image.open(io.BytesIO(file_bytes)).convert("RGB")
predicted_class = cosmoformer.predict(image)
logger.debug(f"Predicted class: {predicted_class}")

return InferenceResponse(predicted_class=predicted_class)

Listing A.6: FastAPI endpoint decorator code example

num_epochs = 20 # total number of epochs
warmup_epochs = round(num_epochs * 0.1)
base_1lr = 2e-6

weight_decay = le-4

def 1lr_lambda(epoch):
if epoch < warmup_epochs:
return float(epoch + 1) / warmup_epochs
else:
progress = (epoch - warmup_epochs) / (num_epochs - warmup_epochs)
return 0.5 * (1.0 + math.cos(math.pi * progress))

scaler = GradScaler('"cuda")

optimizer = optim.AdamW(model.parameters(), lr=base_lr, weight_decay=
weight_decay)

scheduler = optim.lr_scheduler.LambdalR(optimizer, lr_lambda=lr_lambda)

Listing A.7: Training setup code example
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1|model = model.to("cpu")

3| example_input = torch.randn(l, 3, 224, 224, device="cpu")
1| traced_model = torch.jit.trace(model, example_input)

6| torch. jit.save(traced_model, "cosmoformer_traced_cpu.pt")

Listing A.8: TorchScript model saving code example

1|model.eval()

0.0

3| test_loss
4| correct = 0
s{total = 0

7| test_tqdm = tqdm(test_loader, desc="Testing", smoothing=0.9)
9|with torch.no_grad():

10 for images, labels in test_tqdm:

11 images, labels = images.to(device), labels.to(device)

13 outputs = model(images)
14 loss = criterion(outputs, labels)

15 test_loss += loss.item()

17 _, predicted = torch.max(outputs, dim=1)

18 correct += (predicted == labels).sum().item()
19 total += labels.size(0)

20

21 test_tqdm.set_postfix(loss=loss.item())

23| test_loss /= len(test_loader)
24| test_acc = correct / total

26| print (f"Test Loss: {test_loss:.4f} | Test Acc: {test_acc:.4f}")

Listing A.9: Test phase code example

1| @asynccontextmanager
2| async def lifespan(app: FastAPI):

3 try:

4 logger.info(’Loading the Cosmoformer model’)

5 global cosmoformer

6 cosmoformer = Cosmoformer (model_path=settings.MODEL_PATH)

7 yield

8 except Exception as e:

9 logger.error("Error has occurred while loading Cosmoformer model:
",e)

10 finally:

11 logger.info(’Shutting down the app...’)

12

13| app = FastAPI(lifespan=lifespan)

Listing A.10: FastAPI initialization code example
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1|batch_size = 64

3| train_loader = DataLoader(
4 train_dataset,

5 batch_size=batch_size,
6 shuffle=True

7 )

8

9| val_loader = DataLoader (
10 validation_dataset,

11 batch_size=batch_size,
12 shuffle=False

13])

15| test_loader = Dataloader(
16 test_dataset,
17 batch_size=batch_size,
18 shuffle=False

Listing A.11: DatalLoader code example

1| class ParquetImageDataset(Dataset):

mmnn

3 A PyTorch Dataset that reads a Parquet file containing:
4 - img_path: path to image on disk

5 - label: label of the image

mmnn

7 def __init__(self, parquet_file, transform=None, label_encoder=None) :
8 super().__init__Q)

9 self.data = pd.read_parquet(parquet_file)
10 self.transform = transform

11 self.label_encoder = label_encoder

13 def __len__(self):
14 return len(self.data)

16 def __getitem__(self, idx):
17 row = self.data.iloc[idx]

18 img_path = "cosmoformer-dataset/"+row[’img_path’]
19 label_str = row[’label’]

20 image = Image.open(img_path).convert (’RGB’)

21

22 if self.transform is not None:

23 image = self.transform(image)

24 if self.label_encoder is not None:

25 label = self.label_encoder.transform([label_str]) [0]
26 label = torch.tensor(label, dtype=torch.long)
27 else:

28 label = label_str

29 return image, label

Listing A.12: Dataset subclass code example
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<MyDropzone
file={selectedFile}
onFileAccepted={onFileAccepted}
onError={onDropzoneError}
/>
<div style={{ marginTop: ’20px’ }}>
<button onClick={handleSubmit} disabled={!selectedFile || loadingl}>
{loading ? ’Submitting...’ : ’Submit’}
</button>
<button
onClick={handleClear}
disabled={!selectedFile && 'error}
style={{ marginLeft: ’10px’ }3}
>
Clear
</button>
</div>

Listing A.13: React Dropzone code example

# Training phase

model.train()
running_train_loss = 0.0

j| for images, labels in train_loader:

images, labels = images.to(device), labels.to(device)

# Zero out the gradients
optimizer.zero_grad()

# 2) Mized precision forward pass
with autocast(device_type=’cuda’):
outputs = model (images)
loss = criterion(outputs, labels)

# 3) Backprop with scaled loss
scaler.scale(loss) .backward()

# 4) Gradient clipping after unscaling
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

# 5) Step the optimizer with scaled gradients
scaler.step(optimizer)

scaler.update()

running_train_loss += loss.item()
train_tqdm.set_postfix(loss=loss.item())

train_loss = running_train_loss / len(train_loader)

Listing A.14: Training loop code example
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model = CrossFormer (
num_classes=len(le.classes_), # number of output classes
dim=(32, 64, 128, 256), # dimension at each stage
depth=(2, 2, 4, 2), # depth of transformer at each stage
global_window_size=(8, 4, 2, 1), # global window sizes at each stage
local_window_size=7, # local window size
attn_dropout=0.1,
ff_dropout=0.1
) .to(device)

Listing A.15: CrossFormer model initialization code example
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