BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

FEDERATED SERVICES MANAGEMENT
APPLICATION

APLIKACE PRO SPRAVU FEDEROVANYCH SLUZEB

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR JAN PAVLICEK
AUTOR PRACE
SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.

VEDOUCI PRACE

BRNO 2025

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Bachelor's Thesis Assignment Il Il

Institut: Department of Intelligent Systems (DITS) 164372
Student: Pavli¢ek Jan

Programme: Information Technology

Title: Federated Services Management Application

Category: Security

Academic year: 2024/25

Assignment:

1

2.

4.

5

. Learn about federated login technologies such as Security Assertion Markup Language (SAML) and
OpenlID Connect (OIDC).

Learn about the architecture and technologies of the RCIAM Federation Registry application for
registering and managing services.

. Design extensions to the RCIAM Federation Registry application to include at least three selected
functionalities from the following list:

i) a new service model - the service will combine some appropriate features of the clients that will be
interfaced with it,

i) extension of the agent set with a configurable agent, for forwarding SAML and OIDC client
registration data to Apereo Central Authentication Service (CAS),

iii) interfacing with an access control management system called Perun,

iv) providing propagation support from multiple integration environments into a single proxy,

v) enable SAML registration by manually filling in service information,

vi) support of service registration for "just in case" provisioning by Perun, Support of automatic
approval of URL path changes for an already approved domain.

Implement selected suggestions from the previous point in the relevant technologies. Document the
implementation properly.

. Perform a deployment to a test server and test the implementation.

Literature:

RCIAM Federation Registry: https://github.com/rciam/rciam-federation-registry
openlD Specifications https://openid.net/developers/specs/
SAML V2.0 Specifications: https://saml.xml.org/saml-specifications

Requirements for the semestral defence:

Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Malinka Kamil, Mgr., Ph.D.

Consultant: Brousek Pavel

Head of Department: Ko¢i Radek, Ing., Ph.D.

Beginning of work: 1.11.2024

Submission deadline: 14.5.2025

Approval date: 31.10.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

Abstract

This thesis extends the Federation Registry application to improve integration with modern
identity infrastructures. It introduces support for Perun AAI, enabling automatic synchro-
nization of services with Perun IDM, and adds a deployer agent for Apereo CAS. A feature
for service registration from all deployment environments into a single identity infrastruc-
ture instance was also implemented. All extensions were tested in a real-world-like envi-
ronment and demonstrated improved interoperability and flexibility for service registration
within academic and research federations.

Abstrakt

Tato prace rozsifuje aplikaci Federation Registry o podporu modernich infrastruktur pro
spravu identit. Pridava integraci s Perun AAI pro automatickou synchronizaci sluzeb s Pe-
run IDM a nového nasazovaciho agenta pro registraci sluzeb do systému Apereo CAS.
Soucésti je i podpora pro registraci sluzeb ze vSech integracnich prostfedi do jedné instance
infrastruktury identit. VsSechna rozsifeni byla otestovana v prostfedi simulujicim realny
provoz a prokazala zlepseni interoperability a flexibility pri registraci sluzeb v akademick-
ych a vyzkumnych federacich.

Keywords

Federation Registry, Perun AAI, Apereo CAS, identity management, service registration,
federated identity

Klicova slova

Federation Registry, Perun AAI, Apereo CAS, sprava identit, registrace sluzeb, federovana
identita

Reference

PAVLICEK, Jan. Federated Services Management
Application. Brno, 2025. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Mgr. Kamil Malinka, Ph.D.

Rozsireny abstrakt

V dnesni digitalni dobé je sprava digitalnich identit klicovym prvkem zajistujicim bezpecny
a efektivni pristup k online sluzbam. Zvlasté v prostredi akademickych a vyzkumnych in-
stituci nabyva na dulezitosti koncept federované spravy identit, kterd umoznuje uzivatelam
pristupovat k raznym sluzbam v ramci federace pomoci jediné identity vydané jejich do-
movskou instituci. Tim se zjednodusuje uzivatelska zkusenost, snizuje administrativni zatéz
a zaroven se zvysuje bezpecnost celého systému. Aby bylo mozné tyto identity efektivné
vyuzivat, je nutné zajistit nastroje pro spravu registrace sluzeb do infrastruktury.

Jednim z takovych nastroja je webova aplikace Federation Registry, kterou vyviji fecka
organizace GRNET. Aplikace zjednoduSuje proces registrace sluzeb podporujicich pro-
tokoly SAML a OpenlID Connect do federovanych infrastruktur. I presto, ze Federation
Registry jiz podporuje nékolik platforem proxy/IdP (naptiklad Keycloak, MITREid nebo
SimpleSAMLphp), jeji funkénost nebyla dostatecnd pro specifické potieby infrastruktur
postavenych nad Perun AAI Cilem této préce proto bylo rozsiteni schopnosti Federation
Registry tak, aby podporovala integraci s Perun AAI a také pridani podpory pro dalsi
proxy/IdP feseni Apereo CAS.

V prvni fazi byla provedena analyza zakladnich konceptii spravy identit, pouzivanych au-
tentizacnich a autorizacnich protokoll, a rovnéz architektury systému Federation Registry.
Byly identifikovany klicové komponenty systému a analyzovany jeho registra¢ni procesy.
Na zakladé ziskanych poznatkti byly navrzeny t¥i hlavni{ rozsiteni.

Prvnim z nich je rozsifeni nasazovacich agenti Federation Registry o podporu regis-
trace sluzeb do Perun IDM, komponenty systému Perun AAI pro spravu identit a pristupu.
Po uspésné registraci sluzby do proxy/IdP je provadéna synchronizace s Perun IDM, ktera
zahrnuje vytvoreni odpovidajici entity (facilita) reprezentujici sluzbu, pfitazeni atributi
a vytvoreni spravcovské skupiny. Tato funkcionalita je plné konfigurovatelna a implemen-
tovana jako rozsititelny modul.

Druhym pfinosem je implementace podpory pro slu¢ovani registracnich prostiedi (napf.
vyvojové, testovaci, produkéni) do jedné instance insfrastruktury identit. Toto rozsiteni re-
flektuje pozadavek, aby vSechny sluzby bez ohledu na prostiedi byly registrovany do jedné
instance proxy/IdP a Perun IDM. Tim se vyrazné snizuje ndrofnost na spravu infrastruk-
tury.

Tretim rozsifenim je vyvoj nového nasazovaciho agenta pro Apereo CAS, moderniho
a flexibilni feSeni poskytovatele identit, které je planovano jako ndhrada za soucasnou
proxy vrstvu v Perun AAI. Tento agent vyuzivdi REST API, které Apereo CAS nabizi
od verze 7.1.0, a umoznuje registraci, aktualizaci i deregistraci sluzeb jak na bazi SAML,
tak OpenlD Connect.

Vsechna navrzena rozsifeni byla implementovana jako modularni a konfigurovatelné
celky. Jejich funkcénost byla ovéfena nasazenim do testovaciho prostiedi, které bylo reali-
zovano na dvou serverech provozovanych v rdmci e-INFRA CZ Cloudu. Jeden server hos-
toval Federation Registry a testovaci sluzbu, druhy server pak Apereo CAS a prislusného
deployovaciho agenta. Propojeni s ARGO Messaging Service bylo zajisténo pomoci vyvo-
jové instance poskytnuté GRNETem a napojeni na Perun IDM probihalo vuci vyvojové
instanci provozované CESNETem.

Testovani bylo provedeno manuélné formou realistickych scénait, které simulovaly bézné
procesy registrace, aktualizace a deregistrace sluzeb. Ovérena byla i funkénost pti vyskytu
chyb, stejné jako chovani pfi nasazeni sluzby do riznych integracnich prostiedi a jejich
vzajemném slouceni.

Vysledky testovani prokézaly, ze implementovana rozsiteni zajistuji spolehlivou regis-
traci sluzeb do Perun IDM a Apereo CAS, aniz by narusovala piivodni logiku a registracni
procesy. Nova funkcionalita vyrazné zlepsuje interoperabilitu mezi systémy spravy iden-
tit a prinasi vyssi flexibilitu pro spravu sluzeb v prostredi vyzkumnych a akademickych
federaci.

Federated Services Management
Application

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Mgr. Kamil Malinka, Ph.D. The supplementary information
was provided by Mr. Mgr. Pavel Brousek. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Jan Pavlicek
May 12, 2025

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Mgr. Kamil Malinka,
Ph.D., and my consultant, Mgr. Pavel Brousek, for their expert guidance, valuable advice,
and continuous support through the assignment. I am also thankful to my family and
girlfriend, who supported me throughout my studies.

Contents

1 Introduction

2 Identity management Basics
2.1 Identity and Identity management
2.2 Singlesign-on
2.3 Federated identity management
2.4 Protocols
2.5 Service provider registration 0oL
2.6 Perun AAT e

3 Federation Registry
3.1 Architecture
3.2 Main application
3.3 ARGO messaging service
3.4 Deployer agents L e
3.5 Components communication schema
3.6 Provided use cases
3.7 Service registration flow L oL

4 Design of Federation Registry extensions
4.1 Design of integration with Perun IDM
4.2 All deployment environments to single proxy/IdP registration
4.3 Propagation to Apereo CASo

5 Implementation
5.1 Implementation of integration with Perun IDM
5.2 Implementation of all deployment environments to single proxy/IdP regis-

tration

5.3 Implementation of Propagation to Apereo CAS

6 Deployment and testing
6.1 Federation Registry deployment
6.2 Apereo CAS deployment
6.3 CAS deployer agent deployment

6.4 Testing
6.5 Testing

7 Conclusion

service deployment Lo Lo

—_
— O oo ot W\

—_

12
13
14
14
15
16
17

19
19
22
24

26
26

29
31

33
34
35
35
36
36

41

Bibliography
A Nginx configuration for Federation Registry

B Testing service configuration

43

47

49

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2

6.1

Components of Federated identity management system. Taken from [1]. . . 7
Federation Registry architecture schema 13
Federation Registry components schema 15
Federation Registry use cases schema 16
Service registration flow schema oo 17
Service registration flow schema with Perun IDM integration 21
Part of database schema relevant to service deployment 23
Deployment schema L Lo 33

Chapter 1

Introduction

In today’s digital landscape, identity management plays a crucial role in ensuring secure
and seamless access to online services. Federated identity systems have become essential in
research and academic environments, allowing users to authenticate with a single identity
across multiple services and institutions. These systems improve user experience, reduce
administrative overhead, and enhance security and privacy [32]. However, maintaining such
federations requires robust tools for managing the registration and configuration of services
within the identity infrastructure.

One such tool is the Federation Registry, a web-based application developed by GR-
NET to simplify the registration and lifecycle management of SAML and OIDC-based
services [13]. While the Federation Registry already supports integration with several iden-
tity proxy platforms, including Keycloak, MITREid, and SimpleSAMLphp [14], additional
enhancements are needed to address broader use cases and improve compatibility with
identity management infrastructures.

This thesis extends the capabilities of the Federation Registry to support integration
with Perun AAI, an identity and access management solution developed by CESNET and
Masaryk University [8]. Specifically, the work enables automatic propagation of service
metadata to Perun IDM, the core identity management component of Perun AAI [18]. In
addition, the thesis introduces support for Apereo CAS, a modern and feature-rich identity
provider solution, by developing a dedicated deployer agent for service registration. It also
introduces support for merging service deployments from different integration environments
(development, demo, production) into a single identity infrastructure instance.

To meet these goals, several key extensions were designed and implemented. The inte-
gration with Perun IDM for service synchronization, the support for merged deployment
environments, and a new deployer agent enabling service registration with Apereo CAS
through its REST APT [4].

All extensions were implemented as configurable modules to ensure flexibility and com-
patibility with diverse deployment scenarios, and the functionality was validated through
comprehensive manual testing using a development environment that closely mirrors real-
world production infrastructure.

To improve the overall language quality of the thesis, selected sections were rephrased
using the ChatGPT model by OpenAl, and grammar and spelling were checked using the
Grammarly tool.

Chapter 2

Identity management Basics

This chapter provides essential information about identity management, including key con-
cepts, commonly used protocols, and an overview of the Perun AAI system. This foundation
is necessary to understand the integration of the Federated Services Management applica-
tion into the authentication and authorization infrastructure built on top of Perun AAI,
which is the focus of this work.

Like in the real world, in the digital world, every person needs their identity, which
uniquely distinguishes them from others. These digital identities allow users to authenticate
themselves and gain access to applications and resources to which they are authorized.
Here is where Identity Management Systems come into play. Identity management is the
method by which these identities are organized, verified, and managed in digital systems.
It is about ensuring that the right individuals or entities have access to the appropriate
resources in a network or system [12].

2.1 Identity and Identity management

Identity refers to the unique set of attributes and characteristics associated with an indi-
vidual, organization, or device that can be used to distinguish it from others in a system.
Identity is central to both personal interactions and digital transactions, as it defines the
roles, permissions, and capabilities of the entity in various contexts [35].

Identity management systems play a crucial role in the digital world. They are respon-
sible for establishing, maintaining, and validating user identities. Therefore, they control
access to resources, data, and applications. These systems ensure that the right people have
the right level of access based on verified identities, and they help to increase the efficiency
of the process of managing these identities across various platforms and environments [31].

Identity management systems perform several key functions. The main ones are authen-
tication, authorization, and user management. Authentication is a function that verifies
the identity of a user. It is usually achieved by verifying credentials, such as usernames
and passwords, biometric scans, or other verification methods. Authorization is a function
that determines whether a user has the right to access certain resources or perform spe-
cific actions within a system. User management means handling tasks related to the user’s
identity lifecycle, such as creating new user accounts, managing user roles, and handling
permissions. The identity management system can also monitor and log user activities for
compliance, security, and operational purposes [31].

In today’s interconnected digital world, identity management systems are vital to pro-
tect sensitive information and systems from unauthorized access, efficiently manage user
access, and ensure compliance with various regulatory requirements. They have become
an integral part of any organization’s security infrastructure [27].

2.2 Single sign-on

Websites and applications view user identities as user accounts that they manage. Big
organizations usually provide multiple services for their users and employees, and they
must have an account for each service. This is problematic for users because they have
to remember all the credentials, and also for the organization when they are performing
account synchronization [27].

Single sign-on (SSO) is a solution to this problem. It allows users to log in once with
a single set of credentials, like a username and password, and then access all the connected
services without having to log in again. The SSO system keeps track of who the user is,
when they logged in, and how they were authenticated, and shares this information with the
different services. This information is usually called user attributes and can allow complex
authorization [32].

SSO improves user experience and productivity with fewer login processes. It can also
increase security by integrating more robust security policies and multifactor authentica-
tion [32].

2.3 Federated identity management

Federated identity management is a framework that enables organizations to connect to-
gether into a federation and allows the use of one identity to obtain access to the services
or networks of all organizations in the federation. Individual organizations are responsible
for the authentication of their users and granting them access [1].

The federated identity management is based on four logical components [22]:

e The user is a person who uses his digital identity and interacts with the network
application.

e The user agent is a software application or browser that can run on different plat-
forms, such as a computer or mobile phone. The user agent can mediate the identity
information flow or only allow it. The user’s online interaction always takes place
through an agent.

o The service provider (SP) site is an application that will request user authentication
from a third party. The third-party providing authentication might also send user
attributes back to the SP. SP is often called a relying party (RP) because it relies on
third-party information.

o The Identity Provider (IdP) site is an application that provides user authentication
and often holds user attributes to share with various SPs.

Figure 2.1 shows the connection between the components for a better understanding.

User authenticated
by IdP
IdP
o @
QU .
< .
v .
e
2 i . G
o User connect
e 5 E
% :‘* with internet "5 =="
= : User Agent via User Agent
v
User wish to
access SP's site
SP

Figure 2.1: Components of Federated identity management system. Taken from [1].

In federated identity management, the user’s credentials are always stored by the IdP,
and the identification data and user attributes flow from the IdP to the SP. When accessing
the service, the user does not have to provide his credentials to SPs. SP redirects the user
to the IdP and trusts the IdP to verify the user’s credentials. After authentication, the IdP
can decide if the user can access the service. If the user is authorized, IdP provides the
user’s identity and attributes to the SP. SP can also perform its authorization processes
and decide if the user will be allowed to access the service [22].

Both users and stakeholders benefit from federated identity management. It offers
single sign-on for users between multiple organizations within the federation without sharing
credentials. It delegates the cost of managing credentials and user attributes from SPs to
IdPs, which can focus on authentication methods and the addition of attractive features.
It also provides better scalability [9].

However, there are also disadvantages and challenges. Federation is based on mutual
trust. Each participating member must follow the federation’s policies and security pro-
tocols. There is no guarantee that user identity information will not be misused, and the
system can also be very complex for users. There are also multiple security risks. The most
serious concern is identity theft, which affects all partners in the federation. Identity theft
can be performed by stealing the user’s security token after successful authentication. The
stolen token can be used to access resources within the entire federation [1].

2.4 Protocols

The communication between identity providers and service providers is established using
standard authentication and authorization protocols. The commonly used protocols are
SAML, OAuth 2.0, and OpenID Connect [34]. These protocols define how identity and
authentication data are exchanged securely between parties. Each is designed for different
use cases. SAML is used for establishing education and enterprise federations, OAuth 2.0

is useful to protect APIs, and OpenlID Connect is used for the integration of new web or
mobile applications [28].

It is necessary to understand the protocols as they are used for the service provider
integration into the identity infrastructure.

Security Assertion Markup Language

Security Assertion Markup Language (SAML) is a standard that defines rules and syntax
for data exchange. It provides a secure XML-based solution to exchange user security
information between an IdP and an SP. It is flexible and, when needed, allows custom
data transmission to the external SP. The main goal behind SAML is to form an XML
framework to allow authentication and authorization from a single sign-on perspective,
supporting W3C XML encryption for privacy requirements [19].

The SAML transaction consists of three roles. An asserting party, a relying party, and
a subject. The asserting party is the IdP, which provides information about the user. The
relying party is the SP, which trusts the user information provided by the IdP and provides
the service application to the user. The user with his identity involved in the transaction
is the subject of the transaction [19].

The SAML standard comprises four components: assertions, protocols, bindings, and
profiles. All components can be customized for specific business case needs. The assertion
is a transaction from the asserting party (IdP) to the relying party (SP). The relaying
party counts on the validity of the assertion data. The XML schema defines the assertion
structure and consists of header information, subject, and information about the subject in
the form of attributes and conditions. Protocols define the form of requests and responses
to communicate the assertion between SP and IdP. Bindings define the communication
protocol used in the network. For example, the HI'TP redirect binding uses an HTTP
redirect message, and the HT'TP POST binding uses base64-encoded content to transport
assertions. Profiles is the highest SAML component and defines how the assertions protocol
and bindings will work together to provide single sign-on [19].

For entities to work in a federation, the partner entities must share their flexible con-
figuration. This is achieved by exchanging SAML metadata, which can be uploaded to the
federation software without additional configurations. This process reduces the possibility
of errors and also saves time. The metadata file contains an EntityDescriptor to specify
the type of entity and an EntityID to clearly identify the entity. It can also contain many
different elements and attributes that can be optional or required.

More information about SAML configuration can be found in the official documenta-
tion [26].

OAuth 2.0

OAuth 2.0 is the standard protocol for authorization. It primarily solves the access del-
egation problem. When a user wants to share a resource with a third-party application,
he would need to provide his credentials to the resource. This is called delegation by cre-
dential sharing. The problem with this solution is that the third-party application can use
user credentials to do whatever it wants. OAuth 2.0 solves this problem by sharing a tem-
porary time-bound token instead of user credentials, which can only be used for specific,
well-defined purposes [30].

In OAuth 2.0 flow, there are four typical actors [30]:

e The resource owner owns the resources. For example, a user who owns his profile
information.

e The resource server is a place that hosts protected resources and shares them with
authorized parties.

e The client is the application that wants to access a resource in the name of the resource
owner.

e The Authorization server is an entity that provides OAuth 2.0 access tokens to client
applications. It also validates provided access tokens.

A grant type defines the method by which a client application obtains an authorization
grant from the resource owner, enabling access to protected resources. The scope specifies
the level of access requested by the client and represents a clearly defined set of permissions
that determine which actions the client is allowed to perform on the resource [30].

The core specification of OAuth 2.0 defines six grant types [30]:

e Authorization code grant type is recommended for applications with web browser
access. It can be extended with a Proof Key for Code Exchange to prevent CSRF
and authorization code injection attacks.

e Implicit grant type is mostly used by JavaScript clients running in web browsers and
is not recommended in favor of authorization code due to security issues.

e Resource owner password credentials grant type, providing credentials to the client
application based on trust.

o With client credentials grant type, the client becomes the resource owner by providing
his Client ID and client secret.

e Device authorization grant type designed for browserless devices such as smart TVs,
smart speakers, printers, etc.

e Refresh grant type is a special type for issuing a refresh token with an access token.
The refresh token can be used to obtain a new access token after the lifetime expiration
of the previous one without the involvement of the resource owner. The grant type can
be combined with the authorization code and the resource owner password credentials
grant types.

The OAuth 2.0 specification is built around three types of clients. Web applications
are considered to be confidential clients running on a web server. End users or resource
owners can access these applications through a web browser. Applications based on the
user agent are considered public clients. These applications download the code from a web
server and run it on the user agent, for example, a JavaScript running in the browser.
Public clients cannot protect their credentials because the end user can see anything in the
JavaScript. Native applications are also considered public clients. Native applications are
under the control of the end user, and any confidential data stored in those applications can
be extracted. Examples of native applications are native Android and iOS applications [30].

OpenlID Connect

OpenID Connect (OIDC) provides a lightweight framework for identity interactions. It
was developed under the OpenlD Foundation based on OpenlD and is built on top of
OAuth 2.0. OpenID Connect is the most popular identity management protocol, and most
of the applications developed in recent years support it [30].

OIDC is an extension of OAuth 2.0, adding an identity layer to the existing OAuth 2.0
protocol. This identity layer is represented by an ID token. OAuth 2.0 authorization server
supporting OIDC provides an ID token along with the access token. While OAuth 2.0 is
focused on access delegation and authorization, OIDC is focused on user authentication.
Securing an API with OIDC is more related to the client or application level than to the
APT or resource server level. OIDC enables the client application to ascertain the user’s
identity, but the API or resource owner expects only the access token, and in this case, the
user’s identity is meaningless [30)].

The ID token is the primary add-on. It is typically a JSON Web Token and provides
the transport of the information about an authenticated user from the authorization server
to the client application [30]. JSON Web Token is a compact and self-contained way to
securely transmit information between parties as a JSON object. This information can be
verified and trusted because it is digitally signed. JW'Ts can be signed using a secret with
the HMAC algorithm or a public/private key pair using RSA or ECDSA.

OIDC, independently of OAuth 2.0 grant types, defines a set of flows to authorization
code flow, implicit flow, and hybrid flow. The flows differ by the value of the parameter
response_type, which is always included in the request to the authorization endpoint.
The response_type also defines the expected type of response from the authorization
endpoint [30].

The OpenlD Connect Identity provider can share its configuration to make it accessible
to relaying parties on the metadata endpoint. The route to the metadata endpoint must be
/.well-known/openid-configuration. In most cases, the endpoint is not secure, but it is
accessible to anyone. The provider configuration can be retrieved by HTTP GET request
and is usually in JSON format.

2.5 Service provider registration

Service provider registration is a key process in federated identity management systems
as it facilitates the integration of SPs into the identity infrastructure. The registration
process begins with the SP applying to join the infrastructure, providing essential details
such as the nature of the service offered, domain specifics, and technical contact information.
Adherence to infrastructure standards is a critical requirement for SPs.

An essential aspect of the registration process is the submission of the SP’s metadata
based on the selected protocol, usually SAML and OIDC. These metadata are a collec-
tion of vital SP information, including a unique identifier, service endpoints, and security
credentials, such as public keys. This information plays a key role in enabling secure com-
munication and interaction within the infrastructure [25].

After the metadata submission, the infrastructure or its constituent IdPs work on in-
tegrating the SP into the system. This phase is where the authentication protocols and
user information exchange mechanisms are set up and tested. Successful integration implies
that the SP can authenticate users via connected IdPs, using a streamlined process that
improves user experience and security.

10

Maintenance and updates are an ongoing part of being a registered SP in the infrastruc-
ture. SPs must regularly update their metadata, renew security certificates, and comply
with the evolving infrastructure policies. This ongoing process ensures the infrastructure
remains secure and efficient in managing identities across various platforms.

The service provider registration can be provided by another service provider that is
already part of the infrastructure. This service provider is usually a web-based application
that provides a user-friendly interface not only for users who want to register and manage
their SPs, but also for infrastructure administrators who are handling these registrations.
Behind the scenes, there can be automated processes to build SP metadata and propagate it
to configured identity providers. These applications are very important because SP owners
do not have to be experts in the area of federated identity management to register their
services, and they also simplify the work for infrastructure administrators [21, 20].

2.6 Perun AAI

Perun Authentication and Authorization Infrastructure (AAI) is the system developed col-
laboratively by CESNET and Masaryk University. It is based on the Authentication and
Authorisation for Research and Collaboration (AARC) blueprint architecture', and it is
used in multiple national and international research e-infrastructures [8]. Perun AAI is
built from two main components: Proxy IdP and Perun IDM [6].

Proxy IdP is built on top of MITREid Connect, providing support for the OIDC pro-
tocol, and SimpleSAMLphp, providing support for the SAML protocol. Proxy IdP can act
both as a proxy and an IdP. It provides the authentication layer with SSO for the connected
services, and with the usage of the discovery service, it integrates IdPs from the federation
or separately connected IdPs. Proxy IdP is using Perun IDM as an additional source of
authentication and authorization data [7].

Perun IDM is an application designed for the management of virtual organizations
(projects), users, groups, facilities, and resources. A virtual organization is a well-known
concept from the computational grids, and it is a core unit for user management in Pe-
run. This concept can be effectively applied beyond the grid environment, as it estab-
lishes membership restrictions and delegates responsibilities among organization members.
Groups and resources exist within the virtual organization. Users can become members
of the virtual organization and can be organized into groups. These groups of users can
be allowed to utilize the resources. Resources are assigned to the facilities and constitute
a binding between facilities and groups, and facilities are the Perun representation of the
services. This connection between the facility, resources, and groups of users can represent
the authorization to the service and can be released in user attributes. These attributes
can also be used to map specific user roles within the service [23].

Perun IDM offers a wide range of advanced functionalities like user registration, user
identity consolidation, management of user lifecycles, data propagation to another system,
and many more. Additionally, it is highly flexible and can be tailored to meet specific use
cases [23].

! AARC blueprint architecture: https://aarc-community.org/architecture/

11

https://aarc-community.org/architecture/

Chapter 3

Federation Registry

This chapter presents an analysis of the Federation Registry, covering its architecture, pro-
vided use cases, service registration, and deployment flows. This analysis provides the
necessary background for designing extensions to the Federation Registry to enable inte-
gration with Perun AAI. Most of the information in this chapter was acquired by studying
documentation' and code’ of the Federation Registry, code® of Deployer agents and by
studying documentation® of the ARGO messaging service (AMS).

As mentioned in the previous chapter, the registration of service providers is a critical
process in the area of federation identity management, which can be simplified by specialized
web-based applications. One of these applications is the Federation Registry developed by
GRNET [13].

GRNET is one of the largest public-sector technology companies operating in Greece.
Since August 2019, it has operated under the auspices of the Ministry of Digital Gov-
ernance. GRNET provides networking, cloud computing, data management services, e-
infrastructures, and services to academic and research institutions, educational bodies at
all levels, and public sector agencies. GRNET is also part of the EGI federation, like CES-
NET and many other organizations. EGI is a federation of computing and storage resource
providers united by a mission to support research and development [16].

Federation Registry provides a secure web interface. This interface can be used by
Service Owners to register and manage their OpenlD Connect and SAML-based Services.
Service owners can view and manage their services by creating and submitting service
requests. Once a request is submitted, users with reviewing privileges are notified by
email and can view and review it. When the service request is approved, the service
deployment process is executed, and the service is deployed to the requested integration
environment [13].

3.1 Architecture

The architecture is based on three together interacting applications. The first is the main
web-based application named Federation Registry, which interacts with the service admin-
istrators who want to register their services with the identity infrastructure. The second
one is the ARGO messaging service, which serves as a layer for exchanging messages with

!Federation Registry docs: https://federation.rciam.grnet.gr

2Federation Registry code: https://github.com/rciam/rciam-federation-registry
3Deployer agents code: https://github.com/rciam/rciam-federation-registry-agent
4AMS docs https://argoeu.github.io/argo-messaging/docs

12

https://federation.rciam.grnet.gr
https://github.com/rciam/rciam-federation-registry
https://github.com/rciam/rciam-federation-registry-agent
https://argoeu.github.io/argo-messaging/docs

information about the services. The last one is a set of deployer agents that read the mes-
sages from the ARGO messaging service, parse them into the specific format required by the
proxy/IdP software used by the identity infrastructure, and register the service metadata
with the identity infrastructure. The architecture is shown in the figure 3.1.

The Federation Registry supports multiple integration environments, so the services can
be tested before integration into production. The number of integration environments is
configurable, and the service validation process can also be different for each integration
environment. There are three supported validation processes for the service registration
request.

e Service can be registered without any validation. This can be used for development.

e With one-step approval, an authorized user must validate the service registration
request

o With two-step approval, an operator with technical knowledge can approve the tech-
nical details of the service, and then the administrator validates general information
about the service. This is usually used for production.

There must be an individual ARGO messaging topic for each integration environment.

Federation registry

Storing service deployment
tasks and receiving results

Argo messaging service
(queue)

Reading service deployment
tasks and storing results

Deployer agents
Service registration to identity
I infrastructure
Production proxy Demo proxy Development proxy

Figure 3.1: Federation Registry architecture schema

3.2 Main application

The Federation Registry is built from three components: the frontend, the backend, and
the ARGO messaging service agent.

13

The frontend is an application based on the React framework, and it is built and di-
rectly served by the Nginx web server. The Nginx web server must have correctly con-
figured HT'TPS for proper functioning. Without the correct HT'TPS configuration, the
login functionality won’t work. The backend provides a RESTful API and is created us-
ing the Express.js application framework. ARGO messaging service agent is a JavaScript
application that initializes topics and subscriptions in the ARGO messaging service, reads
the deployment tasks using specialized backend endpoints, and pushes them to the desired
topics.

The PM2 process manager runs the backend and the ARGO messaging service agent.
PM2 is widely used because it provides a simple and efficient way to manage Node.js
application processes, including load balancing, logging, monitoring, and clustering features.

User authentication is provided by the OIDC identity provider, and the role of the
authenticated user is evaluated by the OIDC eduPersonEntitlement claim. The eduPerso-
nEntitlement is a URL representation of the set of rights to a specific resource [11].

The PostgreSQL database provides the backend data storage. The SQL script for
creating the correct database schema can be found in the GitHub repository’. The database
has to be filled with roles and their assigned actions, the deployer agent’s specifications
for creating relevant topics in the ARGO messaging service, and the OIDC registration
information of the Federation Registry, since it is registered as a service provider in the
identity infrastructure.

3.3 ARGO messaging service

The ARGO Messaging Service facilitates real-time communication between separate appli-
cations by allowing them to send and receive messages. This service operates on a Pub-
lish/Subscribe model. In this framework, publishers are individuals or systems capable of
sending messages to designated channels, known as a topic, and the subscribers are in-
dividuals or systems that set up Subscriptions to these specific topics in order to receive
messages. The benefits of this architecture are durability, scalability, and availability [15].

3.4 Deployer agents

Deployer agents are Python scripts designed to run as system services. The deployer agent
periodically calls the ARGO Messaging Service API and pulls new messages from the spe-
cific topic. The idea is that there should be one deployer agent for each AMS topic. After
pulling the new message from the topic, the message is parsed into the format desired by
the software used by the proxy/IdP. When the message is in the desired format, it is prop-
agated to the proxy/IdP, and the service can start using the proxy/IdP for authentication.
After the propagation, the agent parses the result and pushes it to the AMS topic intended
for the deployment results. AMS then calls the Federation Registry backend API endpoint
to store the service deployment result.

There are three implementations of deployer agents. Each of them is intended to support
deploying the service data to the following software that can power the proxy/IdP in the
identity infrastructure.

®Database schema: https://github.com/rciam/rciam-federation-registry/blob/master/db_schem
a.sql

14

https://github.com/rciam/rciam-federation-registry/blob/master/db_schema.sql
https://github.com/rciam/rciam-federation-registry/blob/master/db_schema.sql

e SimpleSAMLphp is an application written in native PHP that mainly focuses on
supporting identity provider and service provider over SAML2 protocol [29].

e« MITREid Connect implements a relying party and an OIDC Provider over the OIDC
and OAuth 2.0 protocols. It is built using Java, Spring framework, and Spring Security
framework [33].

e Keycloak is an identity and access management software. This means that it im-
plements the identity provider over SAML2 and the OIDC Provider over OIDC and
OAuth 2.0 protocols. Keycloak is written in Java programming language [17].

3.5 Components communication schema

The schema in the figure 3.2 shows the communication between all of the components.

Federation registry
pushing service
information to
specific topics

Deployer agents pushing
services to proxy and sending
responses back to deployer
agents

Deployer agents
periodically checking for
changes in assigned topic

Federation registry Argo.messagmg
service (queue)

Deployer agents Production proxy

Nginx webserver) : . : SimpleSAMLphp
} production topic SimpleSAMLphp
Subscritption production agent
Frontend (react) P
f—J <
MITREid Connect
I Mitreid production
p topic MITREid Connect
+ production agent
Backend Subscritption
(express.js) + ° —
Development proxy
PM2 t > SSP development topic < SimpleSAMLphp
Subscritption developpentagent ‘1} SimpleSAMLphp
Ams agent —_ —
Mitreid development MITREid Connect .
<4—» MITREdC t
[topic < development agent laonnec
»
> PSQL database Subscritption —
Keycloak production saml
——) <_< agent
Demo proxy
AMS pushing Deployment results
deployment result to pioy! - Keycloak demo OIDC Keycloak
federation registry N P < agent
Subscritption

Deployer agents pushing
deployment results to
result topic

Figure 3.2: Federation Registry components schema

The Federation Registry frontend calls backend endpoints to interact with the server
side. The Backend stores and reads the data from the PostgreSQL database. The ARGO

15

messaging service agent interacts with specialized backend endpoints to read and update
deployment tasks, and then pushes the service information to the appropriate ARGO mes-
saging service topics. ARGO messaging service topics are just storing the data. Deployer
agents read the data from the topics, parse it, and register services with the proxy/IdP.
After service registration, deployer agents push the registration status to the special topic
to store the result of the deployment. This special topic is configured to call the federation
registry backend endpoint, which is designed to gather and parse the deployment result
data.

3.6 Provided use cases

Figure 3.3 shows actors with actions they can perform in the federation registry.

&

Identity
provider

N
_ Review own service in I ~ List all service requests

testing environment

Shown own personal
information

. . ~~ View service owners
View own service

request - User login (OIDC)
‘ ~ Add tag to any service
_ Update own service
Create service request request

Send review response

Manage owners of any
Email '~ View own services service
service
Send notification when _ . . Troubleshot
List own services

new service request is deployment errors

submitted v
_ List own service View deployment
% requests errors '
Send notification to .
‘ I w— R Cancel own service . X Deployer
service owners Review service request
request X A agent
- in restricted
: : environment
View any service)
request — Export services
,_Q
_ List all services
— View any service .~ Review service request

"

Figure 3.3: Federation Registry use cases schema

The Federation Registry has four main actors. These actors are the identity provider,
users, email service, and deployer agents. The identity provider provides the user login
through the OIDC protocol. The users can have different roles. Roles and assigned actions
are fully configurable, but from the application design, there should be at least two roles.
A role for regular users and the administrator’s role. Regular users can view, create,

16

update, and delete their own service requests and registered services. The administrator
role is enriched by managing all services and their owners, reviewing the service requests,
the ability to notify the service owners, exporting services, tagging services, and managing
the service deployment. The email service is responsible for sending email notifications
regarding service requests. The deployer agent is responsible for deploying the service when
the registration request is accepted and also for propagating the result of the deployment.

3.7 Service registration flow

Figure 3.4 shows the service registration process.

Admin rejects service

T

. Notify Reviewers Admin approves SERVICE
Creat t
reate service reques (Admins) > service > PROTOCOL
User updates service E Admin requests SAML J
request changes
oIbC
v
SAML service data OIDC service data

AMS push updates

from deployment result l J
topics to Federation E |
Registry backend ¢

ERROR RESPONSE e\ H SUCCESS RESPONSE AMS agent requests
state = error iES e state = deployed federation registry
- ERROR) backend for service
RESPONSE changes
1 N2

AMS agent push

Deployer agent pushes
service data to Argo

response to AMS ! !
deployment result messaging service
topic (queue)
Deployer agent Deployer agent reads

service data from Argo

___ Deployer agent invokes E updates file used by

SSP metadata refresh. metarefresh with new messaging service
service.

Deployer agent sends L SimpleSAMLphp I

_ request with new
service data to DEPLOYMENT
Keycloak Keycloak =

TARGET
Deployer agent sends
request with new
— e &—————— MITREID Connect Q
service data to
MITREid Connect

Figure 3.4: Service registration flow schema

17

It starts with the user creating the service registration request. After the registration re-
quest submission, the administrators who will be validating the request will receive an email
notification. The administrator can approve or reject the registration request or return the
request back to the user with a description of the properties the user must change. When the
administrator validates the registration request, the user gets an email notification about
the request status. When the registration request is approved, the deployment task will be
created, and the AMS agent will propagate service data to the ARGO messaging service.
The deployer agent will then read and parse the service data from the ARGO messaging
service and register the service with the proxy/IdP. At the end of the flow, the deployer
agent, using the ARGO messaging service, will propagate the registration result back to
the Federation Registry.

18

Chapter 4

Design of Federation Registry
extensions

This chapter describes the extensions of the Federation Registry required for integration
with the Perun AAT solution.

The first extension enables service registration to both the proxy/IdP and the Pe-
run IDM system, including automatic synchronization of registered services and manage-
ment of their corresponding representations in Perun IDM. This requires authenticated
communication with the Perun API, correct mapping of service properties to Perun en-
tities, and reliable handling of provisioning errors. This extension will enable centralized
identity and access management for services integrated within the Perun AAIL

The second extension allows services from different integration environments (such as
development, testing, and production) to be registered within a single proxy/IdP and Pe-
run IDM instance and adds the ability to move services within integration environments.
This consolidation reduces operational complexity, but requires unique service identifiers
across integration environments, and support for merged-environment configuration in the
Federation Registry frontend, backend, and the AMS agent. This extension is necessary
because the Perun AAI solution operates all integration environments within a single in-
stance.

The final extension adds support for registering services to a proxy/IdP powered by
Apereo CAS. This functionality uses the CAS REST API to perform service registration,
updates, and deregistration for both SAML and OpenlID Connect services. It requires
authenticated access to the CAS REST API, compatibility with CAS-specific service repre-
sentations, and integrates the functionality provided by the first extension. This extension
ensures that the Federation Registry remains compatible with the Perun AAI system fol-
lowing its Perun Proxy IdP migration from MitrelD and SimpleSAMLphp to Apereo CAS.

All of the proposed designs are configurable, giving Federation Registry administrators
the ability to enable or disable them according to their specific use cases.

4.1 Design of integration with Perun IDM

The service registration to the proxy/IdP using the Federation Registry was described
in the previous chapter. The same process is used when registering the service with Pe-
run Proxy IdP. However, Perun Proxy IdP is getting additional attributes and authorization

19

data from Perun IDM, and for this reason, there must also be a service representation in
Perun IDM.

The main goal of the integration is to create a facility (Perun IDM service representation)
with the right attributes, create a group intended for users who should have the right to
manage the facility, and add the user who requested the service registration as a member
of this group.

Possible approaches

The most suitable stage for interaction with Perun IDM in the service registration flow
from the Federation Registry to the proxy/IdP is within the deployer agents.
There are two main design questions:

1. Should the interaction with Perun IDM occur before or after service registration to
the proxy/IdP?

2. What should happen if a task within the Perun IDM interaction fails?

The first question can be answered by examining the service registration process for
MITREid and Keycloak. In both cases, the OIDC client_id is automatically generated
during service registration to the proxy/IdP when not manually specified by the user. After
registration, the client_id is included in the registration response and returned to the
Federation Registry, where it is assigned to the service. Based on this, the correct approach
is to interact with Perun IDM after successful service registration to the proxy/IdP.

The second question has two possible approaches:

1. Roll back the service registration changes in the proxy/IdP, and upon retrying de-
ployment, repeat all registration tasks.

2. Store the fact that the service registration to the proxy/IdP was successful and skip
it when retrying deployment.

The first approach is problematic due to its complexity. When updating or deleting the
registered service, there would have to be a mechanism to persist previous states to allow the
rollback functionality. Furthermore, if the rollback mechanism fails, subsequent deployment
retries could lead to inconsistent or unexpected behavior. Rollback implementation would
also vary across proxy/IdP software.

The second approach is simpler. An additional property in the deployment response
sent back to the Federation Registry could signal the result of the service registration to
the proxy/IdP. This signal would be included in any retry deployment task, allowing the
deployer agent to decide whether to skip the service registration to the proxy/IdP and
perform only interaction with Perun IDM. The only drawback is the need to update the
Federation Registry’s database schema to store this information.

Considering the advantages and drawbacks of both approaches, the second approach
will be used.

Updated service registration flow

Figure 4.1 shows the service registration flow introduced in the section 3.7 extended with the
Perun IDM integration. The updated flow introduces a new decision point before service
registration to the proxy/IdP, as well as an additional branch of tasks executed by the

20

deployer agent after successful registration. The new decision state handles the scenario of
retrying service deployment after failure with the ability to skip service registration to the
proxy/IdP. The added task branch includes storing a property in the deployment response to
indicate successful registration to the proxy/IdP, and interacting with Perun IDM to create
a corresponding facility (service representation in Perun) with the appropriate attributes.

It also involves creating a managers group associated with this facility.

Admin rejects service

T

Notify Reviewers

Create service request
q (Admins)

Admin approves
service

—

ﬁ

User updates service
request

H

AMS push updates
from deployment result
topics to Federation
Registry backend

ERROR RESPONSE
state = error

“

YES
ERROR

RESPONSE

/I\

Deployer agent pushes
response to AMS
deployment result

topic

Create facility and
group with facility
managers

NO

Deployer agent invokes

"SSP metadata refresh.

SUCCESS

S

Deployer agent sends
request with new
service data to
Keycloak

N

YES

Deployer agent sends
request with new
service data to
MITREid Connect

Deployment to proxy
success into the
deployment response

—

Admin requests

changes

SAML service data

)

SUCCESS RESPONSE

g ; state = deployed
NO ploy
Deployer agent
E updates file used by

metarefresh with new
service.

T

SERVICE
PROTOCOL

.
C

—

OIbC
v

OIDC service data

L)
N

AMS agent requests
federation registry
backend for service
changes

\2

AMS agent push
service data to Argo
messaging service
(queue)

s

Deployer agent reads
service data from Argo
messaging service

SimpleSAMLphp E—

L Keycloak =

DEPLOYMENT
TARGET

&—————— MITREID Connect g

TRUE

FALSE

Deployment to
proxy success

Figure 4.1: Service registration flow schema with Perun IDM integration

21

Communication with Perun IDM

The standard way of communication with Perun IDM is through the Perun RPC API.
Perun RPC is not a traditional REST API, so it is required to be used according to the
documentation [24].

Authentication against Perun RPC can be done with the identity provided by Kerberos,
Shibboleth IdP, Certificate, Remote user (basic authentication), or OIDC using device code
flow. Since the authentication against Perun RPC will be performed by the deployer agent,
which is an application and not a real person, the best approach is to create a Perun service
account with the Perun admin role intended for integration with the Federation Registry
and use the Remote user authentication type. The other types would be much harder to
implement without security benefits, as the credentials would still be stored on the machine
running the Federation Registry software. The authorization is done by checking the rights
of the authenticated user who has an existing account in Perun IDM. Regarding the request
type, it is recommended to use POST requests all the time with JSON format. The JSON
format will also be used for the responses [24].

4.2 All deployment environments to single proxy/IdP regis-
tration

The Federation Registry architecture allows service registration across multiple integration
environments, such as production, development, and demo. The number and names of
these integration environments are configurable. Each integration environment requires
a dedicated ARGO messaging service topic and a corresponding proxy/IdP. This archi-
tecture generally makes sense, but Perun AAI can manage all integration environments
with a single instance. This greatly reduces operational costs and complexity because all
the information is in one place. This is achieved by Perun IDM storing the integration
environment attribute on the facility and providing access control features. From this abil-
ity of Perun AAI came up the request to create a design for service registration from all
deployment environments to a single proxy /IdP.

Service deployment within Federation Registry and AMS agent

The database schema 4.2 contains tables and bindings within the Federation Registry rel-
evant to service deployment.

When a service registration request is approved, the Federation Registry stores service
information in service_details table (there are many more tables related to this, but
they are not shown for simplicity). Then it stores the create state in service_state table
and sets the deployment task to deployment_tasks table. The tenant_deployer_agents
represents the deployer agents used for the service registration to the proxy/IdP. The AMS
agent is using them to create relevant ARGO messaging service topics and subscriptions
and to send deployment tasks to these topics. The service_errors table stores the service
registration errors.

22

service_errors

*

service_details

service_id bigint ;—r—|1— id 2 SERIAL
date 2 timestamp external_id VARCHAR(258)
error_code bigint website_url VARCHAR(258)

error_description VARCHAR(2048)

archived BOOLEAN

service_state

service_name
group_id

service_description

VARCHAR(258)
INTEGER

VARCHAR(1024)

o T logo_uri VARCHAR(2048)
id 2 bigint »—
policy_uri VARCHAR(2048)
state VARCHAR(2586)
integration_environment VARCHAR(258)
deployment_type VARCHAR(256)
country VARCHAR(258)
outdated BOOLEAN
requester VARCHAR(258)
last_edited timestamp
protocol VARCHAR(258)
created_at timestamp
aup_uri VARCHAR(258)
deployment_tasks deleted BOOLEAN
%* 1 1 - =
service id 2 INTEGER 3 organization_id INTEGER
*
deployer_name VARCHAR(256) (< temant WA ARLIEEL,
error BOOLEAN

agent_id &2

integration_environment

tenant_deployer_agents

%
INTEGER 3-———|1— id 2

SERIAL

VARCHAR(256)

name £ VARCHAR(256) E'1::;-1—: tenant VARCHAR(258)
client_id VARCHAR(256) entity_type WVARCHAR(256)
client_secret VARCHAR(1054) hostname VARCHAR(258)

issuer_url VARCHAR(2586)

base_url VARCHAR(256)

entity_protocol

deployer_name

VARCHAR(2586)

VARCHAR(2586)

dbdiagram.io

Figure 4.2: Part of database schema relevant to service deployment

Required updates

Merging multiple service integration environments into one deployment requires multiple
updates. The first is to create a configuration option to turn it on and a configuration
option to identify the tenant deployer agent used for merged deployment. The next one is to
extend the OIDC Client ID and SAML Entity ID uniqueness checking between integration
environments. Since the registration to proxy/IdP would result in an error. The third is
to change the creation of deployment tasks to associate them with tenant deployer agents
for merged deployment and update the AMS agent to push service data to the merged
deployment topic. The fourth is to clear the Client ID and Entity ID when copying the

service to different integration environments when merged deployment is turned on. The
last one is to add functionality to move the service to another integration environment
when merged deployment is turned on. The process will behave the same as the service
registration update since services from all deployment environments are registered with
a single proxy/IdP, and the integration environment is represented as a facility attribute in
Perun IDM.

4.3 Propagation to Apereo CAS

The Apereo Central Authentication Service (CAS) is a multilingual enterprise-grade single
sign-on solution and identity provider for the web, designed to serve as a comprehensive
platform for authentication and authorization. CAS is an open, well-documented authen-
tication protocol. Its primary implementation is an open-source Java server component of
the same name, offering support for a wide range of authentication protocols and additional
features [3].

As mentioned earlier, the Federation Registry supports integration with Keycloak,
MITREid Connect, and SimpleSAMLphp proxy/IdP software. This design and the fol-
lowing implementation will add the possibility of integrating the Federation Registry with
Apereo CAS. This is particularly relevant for Perun AAI, as the current objective is to
replace the existing Perun Proxy IdP software stack, which combines SimpleSAMLphp and
MITREid, with Apereo CAS. The goal is to design and implement a new type of deployer
agent that will be able to register, update, and deregister both SAML and OIDC services,
as both protocols are supported by Apereo CAS [3]. The new deployer agent also has to
be compatible with Perun IDM integration.

Possible approaches

There are two possible ways to manage registered services in Apereo CAS.
1. By updating service information directly in the storage used by Apereo CAS.
2. By using Apereo CAS API for service management.

Apereo CAS supports multiple options for storing registered services, such as in-memory,
JSON file, MongoDB, or relational database [5]. The problem with this approach is that
for full support, there would have to be an implementation for each of the storage options,
or at least for the most commonly used ones. Fortunately, Apereo CAS version 7.1.0 in-
troduced new API methods for registering and updating services included in the Palantir
Admin Console update, enhancing service management capabilities [2]. This allows imple-
mentations to manage registered services through a standardized API, without worrying
about the underlying storage method used in Apereo CAS. The only drawback of this ap-
proach is that the deployer agent would be compatible only with Apereo CAS versions
higher than 7.1.0. However, this will not affect the Perun Proxy IdP software stack update,
as it will use the latest software with regard to new features and the highest level of security.

Based on the evaluation of the available options, the second approach, using API
calls for integration with Apereo CAS, proves to be the better choice and will be used in
the deployer agent implementation.

24

Apereo CAS deployer agent details

The communication between the ARGO messaging service is provided by the implementa-
tion used by other deployer agents. This implementation relies on the argo-ams-library’,
which handles the interaction with the AMS, including authorization, message publication,
subscription management, and error handling.

After retrieving the service management message from the ARGO messaging service,
the Apereo CAS deployer agent parses the service properties and constructs a new JSON
message in the format required by Apereo CAS. During this process, the deployer agent
maps property names, transforms values as needed, and discards any properties that are
not supported by Apereo CAS. The property mapping implementation will be according to
the service management”, SAML service®, OAuth2.0 client” and OIDC client® Apereo CAS
documentations.

For communication with Apereo CAS, the deployer agent can use the following CAS
Actuator API endpoints:

e /cas/actuator/registeredServices/{id} [GET, DELETE]
e /cas/actuator/registeredServices/type/{type} [GET]
o /cas/actuator/registeredServices [GET]

e /cas/actuator/registeredServices/export/{id} [GET]

e /cas/actuator/registeredServices/export [GET]

e /cas/actuator/registeredServices/import [POST]

e /cas/actuator/registeredServices [POST, PUT]

For authentication, Basic Auth can be used with the Authorization header in the format:
Authorization: Basic base64(username:password). The API supports multiple con-
tent types for requests and responses, including the commonly used application/json.
The response codes follow standard HT'TP conventions [4].

After the deployer agent receives and validates the response from the Apereo CAS API,
it will then perform the tasks related to integration with Perun IDM described in the
section 4.1.

The last task of the deployer agent is to create and push the deployment result message
to the ARGO messaging service topic used for propagation of the deployment result to the
Federation Registry.

largo-ams-library: https://pypi.org/project/argo-ams-library/

2Service management: https://apereo.github.io/cas/7.1.x/services/Service-Management.html

3SAML service: https://apereo.github.io/cas/7.1.x/services/SAML2-Service-Management .html

40OAuth2.0 client: https://apereo.github.io/cas/7.1.x/authentication/0Auth-Authentication-C
lients.html

SOIDC client https://apereo.github.io/cas/7.1.x/authentication/0IDC-Authentication-Clien
ts.html

25

https://pypi.org/project/argo-ams-library/
https://apereo.github.io/cas/7.1.x/services/Service-Management.html
https://apereo.github.io/cas/7.1.x/services/SAML2-Service-Management.html
https://apereo.github.io/cas/7.1.x/authentication/OAuth-Authentication-Clients.html
https://apereo.github.io/cas/7.1.x/authentication/OAuth-Authentication-Clients.html
https://apereo.github.io/cas/7.1.x/authentication/OIDC-Authentication-Clients.html
https://apereo.github.io/cas/7.1.x/authentication/OIDC-Authentication-Clients.html

Chapter 5

Implementation

This chapter details the implementation of the key extensions made to the Federation
Registry to enable seamless integration with Perun AAI. These extensions support service
management, including registration, updates, and deregistrations, across multiple systems,
including Perun IDM and various proxy/IdP solutions. The implementation is based on
the designs introduced in the previous chapter and focuses on three major areas:

e Integration with Perun IDM, which ensures that service metadata is consistently syn-
chronized between the Federation Registry and Perun identity management system.

e Support for merged deployment environments, allowing services from different integra-
tion environments (e.g., development, production, demo) to be registered to a single
proxy/IdP and Perun IDM instance.

e Development of a new deployer agent for Apereo CAS, expanding the Federation Reg-
istry’s support to include service registration to the Apereo CAS proxy/IdP solution.

Each section in this chapter describes the corresponding implementation details, includ-
ing changes to deployer agents and the Federation Registry’s components. Together, these
updates enhance the Federation Registry’s flexibility across different identity infrastructure
architectures.

5.1 Implementation of integration with Perun IDM

This section describes the implementation of the Federation Registry integration with Pe-
run IDM. It is based upon the design introduced in the previous chapter, ensuring reli-
able communication between the systems and supporting service registration, updates, and
deletions. The main part of integration is realized as an extension of the deployer agents,
which coordinates deployments to both the proxy/IdP and Perun IDM. The additional
modifications required for repeated deployment after Perun IDM deployment failure are
implemented in the Federation Registry backend.

The deployer agents extension is implemented in Python and is structured into several
key components. The components are Perun RPC Adapter and Perun Client API. The
extended deployers are Deployer Keycloak, Deployer MitrelD, and Deployer SSP. Part of
the implementation also involves generic methods in a common utils.

The federation registry backend modifications are implemented in JavaScript, and up-
date service deployment error handling.

All of the implementation details are described in the following subsections.

26

Perun RPC Adapter

The Perun RPC Adapter is implemented to handle communication with the Perun RPC
API. This adapter abstracts the complexities of the Perun RPC interface and provides a sim-
plified interface for higher-level operations. The adapter implements specialized methods
and, through them, provides functionality for:

o Facility management: creating, updating, retrieving, and deleting facilities

e« Group management: creating, deleting, and assigning administrative groups asso-
ciated with facilities

e User and membership management: Resolving user identities based on external
authentication sources (IdPs) and managing group memberships.

e Attribute management: Setting and retrieving Perun attributes associated with
facilities (e.g., service identifiers, group IDs).

All of these methods are built on top of a core call_perun_api method that constructs
HTTP POST requests and interacts with the Perun RPC API using the Python requests
library'. Additionally, the call_perun_api method includes error handling logic to dis-
tinguish between known Perun-specific exceptions and unexpected or connection-related
failures. This ensures that the integration can gracefully recover from predictable errors
while surfacing critical issues.

The configuration must include the API URL and, if needed, the username and password
for basic authentication with the Perun RPC APIL.

Perun Client API

Perun Client API is built on top of the RPC Adapter. It orchestrates the business logic
for service registration, update, and deletion operations. It translates Federation Registry
service metadata into Perun IDM objects and ensures consistency across systems. The
component provides three core methods for managing service metadata in the Perun IDM.
These core methods rely on several supporting methods that handle internal logic, such as
mapping service properties to perun attributes. The core methods are register_new_-
service_in_perun, update_service_in_perun, and delete_service_in_perun.

The key operations done by register_new_service_in_perun method are:

e Creating a facility in Perun to represent the service.
e Creating a dedicated administrative group for managing the facility.
o Adding the requesting user as a member of the administrative group.

e Setting facility attributes based on service properties mappings configured within the
deployer agent.

The key operations done by update_service_in_perun method are:

e Locating the facility via its unique service identifier attribute.

'Python requests library: https://pypi.org/project/requests/

27

https://pypi.org/project/requests/

e Synchronizing the facility’s name, description, and attributes with updates from the
Federation Registry.

The key operations done by delete_service_in_perun method are:

e Locating the facility via its unique service identifier attribute.
e Removing the facility’s associated administrative group from Perun IDM.

e Removing the facility from Perun IDM.

Each of these methods receives a deployment message as a parameter and parses the rel-
evant service information from it. The mapping of service properties to facility attributes is
handled dynamically based on the properties_mapping configuration option. This allows
administrators to define how service properties correspond to facility attributes, including
the possibility to map a single property to multiple facility attributes. Additionally, value
mapping is supported, enabling the translation of service property values into different
facility attribute values as needed. The static_attributes configuration option is also
available to define static values for specific facility attributes. These general mappings are
essential, as attribute definitions may vary across different Perun IDM instances.

The example configuration with the configuration options description is provided in the
README.md file.

Deployer agents changes

As mentioned earlier, there are three types of deployer agents: the SSP, Keycloak, and
MitreID. All of them can newly include perun configuration option in their config with
configuration for the Perun Client API and enable Perun IDM integration features. If
enabled, deployer agents create an instance of the Perun Client API, and after successful
deployment to the proxy/IdP use it together with the new common function deploy_to_-
perun to trigger deployment to Perun IDM.

The deployer agents are now signaling the result of deployment to the proxy/IdP
in a dedicated property proxy_deploy_success in the deployment response. The Key-
cloak and MitrelD deployers are now working with this signal, which is also included in
the deployment messages, and based on this, are performing or skipping deployment to the
proxy/IdP to prevent the emergence of inconsistencies. The SSP deployer does not need to
work with this signal as it works with a metadata file, not the API, and the deployment is
idempotent.

Since integration with Perun IDM increased the complexity of the process_data func-
tions, which control deployments to both the proxy/IdP and Perun IDM and offer similar
functionality for both the Keycloak and MitrelD deployer agents, these functions have been
refactored and the shared logic has been extracted into a common utility method called
process_data_generic.

Federation Registry backend changes

The Federation Registry backend was extended to handle the signaling of successful ser-
vice deployments to the proxy/IdP. Specifically, the service_errors database table was
modified to include two new columns:

o proxy_deploy_success (BOOLEAN, default FALSE): Indicates whether the service de-
ployment to the proxy/IdP succeeded.

28

o solved (BOOLEAN, default FALSE): Tracks whether the service deployment error has
been resolved.

These changes required updates to the Service Error Repository, which now handles the
population of the proxy_deploy_success column when inserting new service errors. Ad-
ditionally, the repository now provides a method to mark all deployment errors related to
a specific service as resolved. This step is crucial, as unresolved service deployment er-
rors would prevent subsequent deployments to the proxy/IdP from being triggered in the
deployer agent.

The deploymentUpdate function, which processes and records service deployment re-
sults, was updated to handle the new logic. It now stores the proxy_deploy_success flag
as part of the deployment error and invokes the repository method to mark related service
errors as resolved upon a successful deployment.

Finally, the deployment message sent to the ARGO Messaging Service (AMS) was
extended to include two additional fields:

e requester: The identifier of the user who registered the service.

o proxy_deploy_success: The deployment success status for the proxy/IdP, derived
from the current unresolved service deployment errors.

To support this, the getPending.sql query was enhanced to retrieve the requester and
determine the proxy_deploy_success status specifically from unresolved deployment er-
rors related to the service.

5.2 Implementation of all deployment environments to single
proxy/IdP registration

This section describes the implementation of the ability to register services from all de-
ployment environments to a single proxy/IdP instance (integration environments merge),
together with the ability to move services between integration environments when this
feature is turned on. The implementation is based on the design introduced in the sec-
tion 4.2 in the previous chapter. The merging of multiple service integration environments
is realized in the Federation Registry backend and ARGO messaging service agent. The
service movement between integration environments is implemented only in the Federation
Registry frontend, as it uses the service edit functionality on the backend. The following
subsections describe the implemented updates across the Federation Registry components.

ARGO messaging service agent updates

The AMS agent is responsible for periodically obtaining pending service deployment tasks
and publishing them to the appropriate AMS topics. One of the key criteria for selecting
the target topic is the service’s integration environment.

The new implementation introduces the ability to override this behavior when merged
deployment is enabled. Instead of selecting the topic based on each service’s integration
environment (one of several selection criteria), the agent uses the environment name speci-
fied in the merged_integration_environment_name configuration property. This ensures
that all deployment tasks, regardless of their original integration environment, are routed
to a single AMS topic.

29

This behavior is controlled by the merge_environments_on_deploy configuration op-
tion, which activates the merged deployment mode for AMS topic selection when set
to true.

Federation Registry backend updates

To prevent conflicts during registration to the proxy/IdP, the federation registry enforces the

uniqueness of the OIDC Client IDs and SAML Entity IDs within integration environments.
The Federation Registry must force the uniqueness of OIDC Client IDs and SAML

Entity IDs across all integration environments when merged deployment is enabled. This

ensures that identifiers are globally unique, avoiding potential collisions that could disrupt

service registrations.

The implementation achieves this through the following updates:

e Addition of two SQL queries at the database level:

— checkClientIdAl1Environments.sql — verifies the uniqueness of OpenlD Con-
nect Client IDs across all integration environments.

— checkEntityIdAllEnvironments.sql — verifies the uniqueness of SAML En-
tity IDs across all integration environments.

e Integration of the new queries into the ServiceDetailsProtocolRepository, allow-
ing the backend to perform these global checks as part of its standard operations.

o Update of the isAvailable function to utilize the new repository methods, ensuring
that identifier availability checks respect the merged deployment configuration.

o Modification of the service validators to incorporate the new repository methods, en-
suring that submitted service data is validated against global uniqueness constraints
across all integration environments when merged deployment is enabled. This vali-
dation occurs at the API endpoint level, preventing conflicting identifiers from being
accepted into the system.

The last update of the Federation Registry backend is related to the endpoint for up-
dating the service state and storing a new deployment task in the database. Previously, the
service’s integration environment was one of the criteria for assigning a deployment task to
the deployer agent representation in the Federation Registry. However, with merged inte-
gration environments enabled, the integration environment is no longer considered in this
selection process. Instead, deployment tasks are assigned directly to the merged deployer
agent.

Federation Registry frontend updates

The primary objective within the Federation Registry frontend is to introduce functionality
that allows services to be moved between integration environments when the merged de-
ployment environments feature is enabled. This feature is activated by setting the merge_-
environments_on_deploy configuration option to true in the frontend configuration.
The implementation achieves this functionality through the following updates:

e Addition of a new route in Routes. js that renders the page for editing service infor-
mation during the service move process.

30

e Introduction of the new MoveDialog.js component, which presents the user with
available integration environment options for moving the service. Once an environ-
ment is selected, the user is redirected to the move service page, allowing them to
adjust the service information as needed to meet the requirements of the target inte-
gration environment.

e The ServiceForm. js component, which handles viewing, editing, and updating ser-
vices. By default, when viewing a registered service, the form includes a button that
opens the copy dialog. With merged deployment enabled, this button instead opens
the move dialog.

e The ServiceList.js component, which presents the list view of the service regis-
trations that the user can manage. Each service entry includes a dropdown menu
with available actions. When merged deployment is enabled, this menu is extended
with an additional action for moving the service between integration environments.
Selecting this action opens the move dialog.

« Update of condition in the data preparation logic for the service copy form to always
remove the OIDC Client ID and SAML Entity ID from the data when merged de-
ployment. Keeping these identifiers would violate the enforced uniqueness across all
integration environments and result in submission errors.

5.3 Implementation of Propagation to Apereo CAS

A new deployer agent was implemented to enable the Federation Registry to propagate
service registrations to the Apereo CAS. This agent leverages the Apereo CAS REST API,
available from version 7.1.0, to manage the registration, update, and deregistration of ser-
vices for both SAML and OIDC protocols. The deployer agent architecture follows the
design introduced in the previous chapter in the section 4.3, the existing design for other
deployers (e.g., Keycloak, MITREid, SimpleSAMLphp), and integrates seamlessly with the
ARGO Messaging Service (AMS) via the argo-ams-library.

Additionally, the deployer agent incorporates integration with Perun IDM as described
in the section 5.1. After completing service registration to Apereo CAS, the agent up-
dates service metadata within Perun IDM, ensuring service synchronization between the
Federation Registry and Perun IDM.

The example configuration with the description is provided in the README.md file.

Deployer Agent Workflow

The core logic for the CAS deployer agent is encapsulated in the deployer_cas script. The
workflow proceeds as follows:

1. Receiving Messages from AMS: The agent continuously polls AMS for service
deployment messages using the existing Pul1Publish mechanism. Each message con-
tains service metadata and deployment instructions (create, update, or delete).

2. Message Transformation: Upon receiving a message, the agent translates the
service metadata into the JSON format required by Apereo CAS. This transformation
handles both OIDC and SAML service types.

31

3. Interaction with Apereo CAS API: The agent communicates with the CAS
Actuator API endpoints to manage registered services. Authentication is performed
via Basic Auth, using credentials provided in the configuration.

4. Handling API Responses: After performing the API operation, the agent parses
the CAS response and constructs a deployment result message. The response includes
key identifiers such as id (external service ID) and Client ID (for OIDC services).

5. Integration with Perun IDM: The agent updates service metadata in Perun IDM
according to the implementation described in the section 5.1, ensuring synchronization
between the Federation Registry and the Perun IDM.

6. Result Propagation to AMS: Finally, the deployment result message is published
back to AMS, signaling the outcome of the operation to the Federation Registry
backend.

Supporting Components

The deployer_cas script relies on the following supporting components to perform its
functionality:

e CasClientApi: a new dedicated Python module that wraps interactions with the
CAS REST API, including service lookup, creation, update, and deletion operations.

e Unified HTTP Request Handling: The http_request function was extracted
from MitrelD and Keycloak deployer agents into a common utility. It standardizes
API calls across deployers, handling errors, timeouts, and response parsing. This func-
tion improves code maintainability and consistency across different deployer agents.

o Systemd Service: a new systemd unit file (deployer_cas.service) manages the
lifecycle of the CAS deployer agent, ensuring it runs continuously and restarts on
failure.

e Common data processing function: Common utils function process_data_-
generic introduced in the section 5.1 is used for controlling deployment to both the
proxy/IdP and Perun IDM.

32

Chapter 6

Deployment and testing

This chapter outlines the deployment process and testing strategies used to validate the
implemented extensions of the Federation Registry. It describes the steps required to
deploy the updated Federation Registry and CAS deployer agent, integrating them with
Apereo CAS, Perun IDM, and the ARGO Messaging Service (AMS). Additionally, it covers
the deployment of the Apereo CAS and testing service to demonstrate service registration
to Apereo CAS.

The schema 6.1 illustrates all applications after deployment together with their inter-
actions.

e-INFRA CZ Cloud GRNET
Federation registry + testing service | ARGO Messaging Service (AMS)
development instance

Nginx webserver

Frontend (react) Testing service =~ —— CAS merged topic ¢
Subscritption
Deployment
; messages Deployment results

- topic
> Backend ’ o
(express.js) Deployment Subscritption
. result deployment
f messages
o from topic
Ams agent _— e-INFRA CZ Cloud

Apereo CAS + deployer agent

CAS deployer agent —
yment

N 2 PSQL database 1
to CAS Login through
service deployment °d oug

CESNET to Perun IDM CAS
Perun IDM development instance

Embedded tomcat

Apereo CAS v7.1.2 4+
Perun IDM

M e o W N Gathering authorization
data (Future)

Figure 6.1: Deployment schema

33

For the deployment, two Debian-based servers running in the e-INFRA CZ Cloud oper-
ated by MetaCentrum were used [10]. One server hosts the Federation Registry and testing
service, while the second hosts Apereo CAS and the CAS deployer agent. Integration with
the ARGO Messaging Service was carried out using the development instance provided
by GRNET, while integration with Perun IDM was performed against the development
instance provided by CESNET running at https://gui-dev.perun-aai.org/login.

The chapter also presents the testing methodology applied to verify the correctness
and reliability of the new features, including integration with Perun IDM, the handling of
merged deployment environments, and the operation of the newly developed Apereo CAS
deployer agent.

All testing was performed manually, simulating real-world scenarios to confirm the cor-
rectness of the implementation. This approach ensures that Federation Registry extensions
meet the intended functional requirements and operate smoothly in production environ-
ments.

6.1 Federation Registry deployment

The Federation Registry was deployed on a Debian-based server running in an Open-
Stack platform. The deployment began with the installation of the PostgreSQL relational
database', and creating a database which is used for storing Federation Registry data.

The next step involved obtaining an SSL certificate for the server. Initially, a certificate
from Let’s Encrypt” was used. However, due to validation issues encountered by the ARGO
Messaging Service (AMS) development instance, the certificate was later replaced with one
issued by the Trusted Certificate Service (TCS) provided by the CESNET Certification
authority’.

Following this, the Nginx web server was installed and configured. The configuration
covers redirection from HT'TP to HTTPS, SSL setup, routing for the backend and frontend,
as well as support for a test service endpoint. It also includes a special redirect to support
AMS push endpoint verification by forwarding requests to the appropriate backend handler.
The complete Nginx configuration is provided in the appendix A.

The next step was to register the Federation Registry as a service within the Czech
national e-infrastructure e-INFRA CZ° in order to enable user authentication via feder-
ated login. Once the service registration was completed, the necessary credentials were
then used in the Federation Registry configuration to allow integration with the identity
infrastructure, providing authenticated access.

The final step involved deploying the Federation Registry backend, frontend, and AMS
agent. This was accomplished using the federation-registry.yml Ansible’ playbook
together with the federation-registry role, both provided as part of the RCIAM Ansible
playbook collection rciam-deploy’. All variables and configuration files associated with the
federation-registry role had to be filled with real values specific to the target deployment
environment.

'PostgreSQL: https://www.postgresql.org/

2Let’s Encrypt: https://letsencrypt.org/

S3CESNET Certification authority: https://pki.cesnet.cz/en/intro.html
4Nginx: https://nginx.org/en/

5e-INFRA CZ: https://www.e-infra.cz/

6 Ansible: https://docs.ansible.com/

"RCIAM deploy collection: https://github.com/rciam/rciam-deploy

34

https://gui-dev.perun-aai.org/login
https://www.postgresql.org/
https://letsencrypt.org/
https://pki.cesnet.cz/en/intro.html
https://nginx.org/en/
https://www.e-infra.cz/
https://docs.ansible.com/
https://github.com/rciam/rciam-deploy

The source code used for the deployment was obtained from a fork of the official Fed-
eration Registry GitHub repository®, specifically from the thesis branch’, which contains
the implementation of the extensions described in the previous chapter.

After the deployment was completed, the Federation Registry became accessible at
https://federation-registry.dev.perun-aai.org/cesnet/home.

6.2 Apereo CAS deployment

Apereo CAS was deployed on a second Debian-based server operated within the OpenStack
platform. The initial step involved obtaining an SSL certificate for the server using Let’s
Encrypt, issued via the Certbot utility'".

Subsequently, an Apereo CAS overlay was generated using the CAS Initializr''. The
tool was configured to include all required dependencies, such as support for OIDC and
SAML protocols and an embedded Tomcat web server. The generated overlay project
included a Dockerfile used to build the CAS Docker image.

Following the overlay generation, the main CAS configuration file, cas.yaml, was cre-
ated and populated with the necessary settings, including enabling API endpoints for
service registration and connection to e-INFRA CZ (IdP) as SP. Additionally, a Docker
Compose'” configuration file was prepared to manage the deployment. This file han-
dles tasks such as copying configuration files into the Docker container and mapping
the required ports for external access. The Apereo CAS became available at https:
//cas.dev.perun-aai.org/cas/login after running Docker Compose. The Apereo CAS
was running in memory mode, and every restart clears all of the data.

6.3 CAS deployer agent deployment

The CAS deployer agent, responsible for registering services in both Apereo CAS and
Perun IDM, was deployed on the same server as the Apereo CAS instance. The deploy-
ment process followed a similar approach to the deployment of the Federation Registry.
It utilized the same RCIAM Ansible playbook collection, rciam-deploy'?, but uses the
fedregagents.yml Ansible playbook along with the fedreg-agent role. The configura-
tion for the CAS deployer was extended according to the implementation requirements
and populated with variables to enable integration with the already deployed Federation
Registry, Apereo CAS, and the development instance of Perun IDM and ARGO messaging
service.

The source code used for the deployment was obtained from a fork of the official RCTAM
Federation Registry Agent GitHub repository'®, specifically from the thesis branch!’,
which contains the implementation of the CAS deployer agent and the Perun IDM extension
described in the previous chapter.

8Federation Registry repository: https://github.com/rciam/rciam-federation-registry

9Federation Registry thesis fork: https://github.com/xpavlic/rciam-federation-registry/tree/t
hesis

10Certbot: https://certbot.eff.org/

'L CAS Initializr: https://getcas.apereo.org/ui

2Docker Compose: https://docs.docker . com/compose/

I3RCIAM deploy collection: https://github.com/rciam/rciam-deploy

MRCIAM Federation Registry Agent: https://github.com/rciam/rciam-federation-registry

ISRCIAM Federation Registry Agent thesis fork: https://github.com/xpavlic/rciam-federation-reg
istry-agent/tree/thesis

35

https://federation-registry.dev.perun-aai.org/cesnet/home
https://cas.dev.perun-aai.org/cas/login
https://cas.dev.perun-aai.org/cas/login
https://github.com/rciam/rciam-federation-registry
https://github.com/xpavlic/rciam-federation-registry/tree/thesis
https://github.com/xpavlic/rciam-federation-registry/tree/thesis
https://certbot.eff.org/
https://getcas.apereo.org/ui
https://docs.docker.com/compose/
https://github.com/rciam/rciam-deploy
https://github.com/rciam/rciam-federation-registry
https://github.com/xpavlic/rciam-federation-registry-agent/tree/thesis
https://github.com/xpavlic/rciam-federation-registry-agent/tree/thesis

6.4 Testing service deployment

To test service integration with Apereo CAS, a simple test service'® was deployed. The
service enables users to authenticate via Apereo CAS and displays the received user at-
tributes after a successful login. It utilizes an embedded Tomcat server, is exposed through
an Nginx endpoint, and runs as a systemd service. The service is accessible at https:
//federation-registry.dev.perun-aai.org/dev-services/login. It is configured to
integrate with the deployed Apereo CAS instance using both OIDC and SAML protocols.
The corresponding testing service configuration is included in Appendix B.

6.5 Testing

From a performance perspective, the implemented extensions are not expected to impact
the overall performance of the Federation Registry, as they do not alter its underlying
architecture. The only potential source of additional latency arises when service registration
to Perun IDM is enabled, since it involves multiple API calls. However, this additional delay
is expected to remain within a few seconds.

Given that service registration is not a time-critical process, unlike, for example, identity
provider login availability, and that service administrators can typically tolerate delays of
even several minutes for data propagation from the registration system to the proxy/IdP,
performance will not be considered as a factor in the testing scenarios.

The testing scenarios simulate the real-world service registration process and, due to
the involvement of multiple interacting components, are performed manually. The primary
objective of these scenarios is to verify the correctness of the implementation.

All implemented extensions were tested according to the following testing scenarios, and
the system behaved as expected in all cases.

Scenario one

This scenario simulates the successful registration process for both SAML and OIDC ser-
vices with the use of the testing service. The result is that the user is able to log in to the
testing service through connected Apereo CAS.

Scenario steps for SAML service:

1. Login to the federation registry.

2. Create SAML service registration and use testing service SAML metadata available
at: https://federation-registry.dev.perun-aai.org/dev-services/saml2/se
rvice-provider-metadata/dev-saml.

3. Approve the service request and wait for the deployment result.

4. Check service registration through Apereo CAS endpoint at https://cas.dev.peru
n-aai.org/cas/actuator/registeredServices.

5. Find facility by service name or Entity ID in Perun IDM GUI at https://gui-dev
.perun-aai.org/facilities and check the managers group and facility attributes.

16Test, service: https://gitlab.ics.muni.cz/469355/dev-test-service

36

https://federation-registry.dev.perun-aai.org/dev-services/login
https://federation-registry.dev.perun-aai.org/dev-services/login
https://federation-registry.dev.perun-aai.org/dev-services/saml2/service-provider-metadata/dev-saml
https://federation-registry.dev.perun-aai.org/dev-services/saml2/service-provider-metadata/dev-saml
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities
https://gui-dev.perun-aai.org/facilities
https://gitlab.ics.muni.cz/469355/dev-test-service

6.

Login in to the testing service at https://federation-registry.dev.perun-aai
.org/dev-services/login using SAML.

Scenario steps for OIDC service:

1.

2.

Log in to the Federation Registry.
Create SAML service registration with

e Client ID: ef3fd914-11fb-4965-aaad-5e6438047c10
o client secret: 89ef8bb8-c385-41e8-a50c-12e9728fc211

e redirect uri: https://federation-registry.dev.perun-aai.org/dev-servi
ces/login/oauth2/code/dev-oidc

. Approve the registration request and wait for the deployment result.

. Check service registration through Apereo CAS endpoint at https://cas.dev.peru

n-aai.org/cas/actuator/registeredServices.

. Find facility by service name or Client ID in Perun IDM GUI at https://gui-dev

.perun-aai.org/facilities and check the managers group and facility attributes.

. Login in to the testing service at https://federation-registry.dev.perun-aai

.org/dev-services/login using OIDC.

Similar steps can be used for the updating service registration and service deregistration
processes.

Scenario two

This scenario tests the merge of the integration environments and deployment to the single
proxy/IdP and Perun IDM instances. It also tests the service identifier uniqueness check
between the integration environments. This scenario requires having already registered both
SAML and OIDC services. The result is that service from different integration environment
is registered in the same proxy/IdP and Perun IDM instance.

37

https://federation-registry.dev.perun-aai.org/dev-services/login
https://federation-registry.dev.perun-aai.org/dev-services/login
https://federation-registry.dev.perun-aai.org/dev-services/login/oauth2/code/dev-oidc
https://federation-registry.dev.perun-aai.org/dev-services/login/oauth2/code/dev-oidc
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities
https://gui-dev.perun-aai.org/facilities
https://federation-registry.dev.perun-aai.org/dev-services/login
https://federation-registry.dev.perun-aai.org/dev-services/login

Scenario steps for both SAML and OIDC services:

1.

Copy the service identifier from an existing service and initiate a new service registra-
tion request using the same protocol, but within a different integration environment
than the one associated with the original service.

. Paste service identifier into the identifier field. The registration form should show

an error, and submitting will not proceed.

. Use a different identifier and complete the registration request.

. Approve the registration request and wait for the deployment result.

Service registration should be visible through the Apereo CAS endpoint at https:
//cas.dev.perun-aai.org/cas/actuator/registeredServices.

. Find facility by service name or service identifier in Perun IDM GUI at https:

//gui-dev.perun-aai.org/facilities and check the managers group and facility
attributes.

Scenario three

This scenario verifies the functionality of moving services between integration environments
when the merging of environments is enabled. It assumes that a service has already been
registered. The objective is to move an existing service to a different integration environ-

ment.

Scenario steps:

1.

Select an existing service that should be moved, and in its action menu, choose the
Move service option.

. In the move dialog, select the target integration environment: choose production if

the current environment is demo or dev, or select demo/dev if the service is currently
in production.

. Fill all required fields in the service form and submit the move request.
. Approve the submitted request and wait for the deployment process to complete.

. Verify that the updated service registration appears via the Apereo CAS API endpoint

at https://cas.dev.perun-aai.org/cas/actuator/registeredServices.

. In the Perun IDM GUI at https://gui-dev.perun-aai.org/facilities, locate the

facility by service name or identifier and verify that the Is test service attribute
is:

e mnot set for services in the production environment

¢ set to true for services in the dev or demo environment

38

https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities
https://gui-dev.perun-aai.org/facilities
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities

Scenario four

This scenario verifies that the copying service registration always removes the service iden-
tifier in service copy form, improving the user experience when the merging of environments
is enabled. It assumes that a service has already been registered.

Scenario steps:

1. Select an existing service that should be copied, and in its action menu, choose the
Copy service option.

2. Verify that the service copy form has an empty Client ID for the OIDC service and
an Entity ID for the SAML service.

This scenario verifies that when the merging of integration environments is enabled,
copying a service registration automatically removes the service identifier (Client ID or
Entity ID) in the copy form to improve the user experience. It assumes that a service is
already registered.

Scenario five

This scenario verifies error handling during the deployment process. If the deployment to
Apereo CAS fails, the subsequent deployment to Perun IDM must be skipped. Addition-
ally, if the deployment to Apereo CAS succeeds but the deployment to Perun IDM fails,
an appropriate error message should be displayed in the Federation Registry. In this case,
service redeployment should be possible without triggering a repeated deployment to the
proxy /I1dP.

Scenario steps for error handling of the failing deployment to proxy/IdP:

1. Turn off the Apereo CAS docker container.

2. Create new service registration.

3. Approve the service registration and initiate the service deployment.
4. The service deployment should fail with an appropriate message.

5. Start the Apereo CAS docker container.

6. Retry service deployment.

7. Verify that service registration is visible through the Apereo CAS endpoint at https:
//cas.dev.perun-aai.org/cas/actuator/registeredServices.

8. Find facility by service name or service identifier in Perun IDM GUI at https:
//gui-dev.perun-aai.org/facilities and check the managers group and facility
attributes.

9. Create a new service registration with the same service name as for first service.
10. Approve the service registration and initiate the service deployment.

11. The service deployment should fail when trying to deploy to Perun IDM with an ap-
propriate message. The reason for the error is that the facility name must be unique
within Perun IDM.

39

https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities
https://gui-dev.perun-aai.org/facilities

12.

13.
14.

15.

16.

17.

18.

19.

Verify that service registration is visible through Apereo CAS endpoint at https:
//cas.dev.perun-aai.org/cas/actuator/registeredServices

Create the deregistration request for the first service.
Approve the deregistration request and wait for the deployment to complete.

Verify that service is not visible through the Apereo CAS endpoint at https://cas.
dev.perun-aai.org/cas/actuator/registeredServices.

Verify that the facility with the service name does not exist in Perun IDM and check
that the managers group with the service name does not exist as a subgroup of the
SP_Managers group.

Retry the previously failed service registration deployment and wait for the result.

Verify that service was not registered again through the Apereo CAS endpoint at
https://cas.dev.perun-aai.org/cas/actuator/registeredServices.

Find facility by service name or service identifier in Perun IDM GUI at https:
//gui-dev.perun-aai.org/facilities and check the managers group and facility
attributes.

40

https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://cas.dev.perun-aai.org/cas/actuator/registeredServices
https://gui-dev.perun-aai.org/facilities
https://gui-dev.perun-aai.org/facilities

Chapter 7

Conclusion

This thesis focused on extending the capabilities of the Federation Registry application and
its related components to enable integration with Perun AAI identity infrastructures and
to add support for the Apereo CAS solution. The work began with an analysis of identity
management concepts and protocols to better understand the challenges involved in service
registration within identity infrastructures. This foundational knowledge was then applied
to examine the architecture, use cases, and service deployment workflows of the Federation
Registry and its associated systems. Based on this analysis, three key extensions were
designed and implemented. The extension that enables integration with Perun identity
management system to support automatic synchronization of registered services with the
Perun IDM, the support for merged deployment environments that allows services from all
environments (development, demo, production) to be registered to a single proxy/IdP and
Perun IDM instance and the Apereo CAS deployer agent that enables service registration
to Apereo CAS via its REST API.

All extensions were implemented as configurable modules, allowing Federation Registry
administrators to selectively enable them according to the needs of their specific infras-
tructure. The extended system was deployed on two Debian-based servers within the e-
INFRA CZ Cloud platform. The first one hosted the Federation Registry and test service,
and the other ran Apereo CAS along with the CAS deployer agent. Integration with the
ARGO Messaging Service was performed using a development instance provided by GR-
NET, and communication with Perun IDM was tested against the development instance
operated by CESNET.

The implementation was validated through manual testing, simulating real-world service
registration workflows. The testing results confirm that the extended Federation Registry
can reliably register services to both Perun IDM and Apereo CAS, while maintaining the
expected behavior of existing deployment processes. The tested scenarios demonstrated the
robustness, configurability, and adaptability of the solution, improving the interoperabil-
ity of identity federation systems and simplifying service integration within research and
academic infrastructures.

The implemented extensions are planned to be merged into the upstream repositories of
the Federation Registry, as agreed with the maintainers. The extended Federation Registry
will be integrated into identity infrastructure solutions based on the Perun AAI, replacing

41

the currently used service registration application'. This integration will include the Czech
national infrastructure e-INFRA CZ, the Life Science Login infrastructure, and others.

'SP registration application: https://gitlab.ics.muni.cz/perun/perun-proxyidp/v1/perun-spReg
istration-app

42

https://gitlab.ics.muni.cz/perun/perun-proxyidp/v1/perun-spRegistration-app
https://gitlab.ics.muni.cz/perun/perun-proxyidp/v1/perun-spRegistration-app

Bibliography

1]

ALDOSARY, M. and ALQAHTANI, N. A Survey on Federated Identity Management
Systems Limitation and Solutions. International Journal of Network Security & Its
Applications (IJCNC) online. Riyadh: AIRCC Publishing Corporation, may 2021,
vol. 13, no. 3, p. 43-59. ISSN 0974-9330. Available at:
https://doi.org/10.5121/ijnsa.2021.13304. [cit. 2024-01-13].

APEREO FOUNDATION. 7.1.0-RC6 Release Notes online. 2025. Available at: https:
//apereo.github.io/cas/7.1.x/release_notes/RC6.html#palantir-admin-console.

[cit. 2025-02-21].

APEREO FOUNDATION. Apereo CAS — Identity € Single Sign-On online. 2025.
Available at: https://apereo.github.io/cas/7.1.x/index.html. [cit. 2025-02-09)].

APEREO FOUNDATION. Service Management online. 2025. Available at:

https://apereo.github.io/cas/7.1.x/services/Service-Management.html. [cit.
2025-02-22].

APEREO FOUNDATION. Service Management online. 2025. Available at:

https://apereo.github.io/cas/7.1.x/services/Service-Management.html. [cit.
2025-02-20].

CESNET, z. s. P. 0.. Login process online. 29. june 2020. Available at:
https://aai.cesnet.cz/en/index/documentation/sp/proxy/federated_login. [cit.
2025-01-31].

CESNET, z. s. p. 0.. Prozy IdP architecture online. 07. october 2020. Available at:
https://aai.cesnet.cz/en/index/documentation/sp/proxy/proxy-architecture. [cit.

2025-01-31].

CESNET, z. s. p. 0.. The Perun AAI online. 2025. Available at:
https://www.cesnet.cz/en/services/identity-6/the-perun-aai-25. [cit. 2025-01-31].

CHADWICK, D. W. Federated Identity Management. In: ALDINI, A.; BARTHE, G.
and GORRIERI, R., ed. Foundations of Security Analysis and Design V: FOSAD
2007/2008/2009 Tutorial Lectures online. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, vol. 5705, p. 96-120. Lecture Notes in Computer Science. ISBN
978-3-642-03829-7. Available at: https://doi.org/10.1007/978-3-642-03829-7_3.
[cit. 2025-05-09].

E-INFRA CZ. E-INFRA CZ OpenStack in Brno online. 2025. Available at:
https://brno.openstack.cloud.e-infra.cz/. [cit. 2025-05-01].

43

https://doi.org/10.5121/ijnsa.2021.13304
https://apereo.github.io/cas/7.1.x/release_notes/RC6.html#palantir-admin-console
https://apereo.github.io/cas/7.1.x/release_notes/RC6.html#palantir-admin-console
https://apereo.github.io/cas/7.1.x/index.html
https://apereo.github.io/cas/7.1.x/services/Service-Management.html
https://apereo.github.io/cas/7.1.x/services/Service-Management.html
https://aai.cesnet.cz/en/index/documentation/sp/proxy/federated_login
https://aai.cesnet.cz/en/index/documentation/sp/proxy/proxy-architecture
https://www.cesnet.cz/en/services/identity-6/the-perun-aai-25
https://doi.org/10.1007/978-3-642-03829-7_3
https://brno.openstack.cloud.e-infra.cz/

[11]

[12]

[21]

[22]

[23]

EDUCAUSE, INTERNET2, AND THE NATIONAL SCIENCE FOUNDATION. EduPerson
2020-01 online. 13. august 2020. Available at:
https://wiki.refeds.org/display/STAN/eduPerson+2020-01. [cit. 2025-01-16].

GAREY, L. What Is Digital Identity? online. 19. september 2024. Available at:
https://www.oracle.com/uk/security/identity-management/digital-identity/. [cit.
2025-03-27].

GRNET. Federation Registry Documentation online. 2022. Available at:
https://federation.rciam.grnet.gr. [cit. 2024-01-14].

GRNET. Rciam-federation-registry-agent online. 08. may 2023. Available at: https:

//github.com/rciam/rciam-federation-registry-agent/blob/master/README.md. [cit.
2025-05-08].

GRNET. AMS - The Service online. 2024. Available at:
https://argoeu.github.io/argo-messaging/docs. [cit. 2024-01-15].

GRNET. Company online. 2025. Available at: https://grnet.gr/en/company/. [cit.
2025-03-28].

KEYCLOAK AUTHORS. Open Source Identity and Access Management online. 18.
october 2024. Available at:
https://github.com/keycloak/keycloak?tab=readme-ov-file#readme. [cit.
2025-01-14].

KuBa, M. Perun AAI online. 10. may 2022. Available at:
https://www.e-infra.cz/file/d44b6a06£6c77e2224b241aa67db4870/629/Kuba.pdf. [cit.
2025-05-08].

Lewis, K. D. and LEwis, J. E. Web Single Sign-On Authentication using SAML.
International Journal of Computer Science (IJCSI) online. 1JCSI Press, september
2009, vol. 2, p. 41-48. ISSN 1694-0784. Available at:
https://doi.org/10.48550/arXiv.0909.2368. [cit. 2024-01-13].

LiampoOTIS, N. and FERNANDEZ, E. Service Providers online. 03. march 2024.
Available at: https:

//docs.egi.eu/providers/check-in/sp/#service-provider-integration-workflow.

[cit. 2025-05-09)].

LINDEN, M. and Bucik, D. F. Documentation — How to connect a service to the Life
Science AAT online. 25. march 2024. Available at: https:
//docs.google.com/document/d/17pNXM_psYOP5rWF3020bAJACsfYnEWhjvxAHzcjvEIE. [cit.
2025-05-09].

MALER, E. and REED, D. The Venn of Identity: Options and Issues in Federated
Identity Management. IEEE Security € Privacy online. IEEE, april 2008, vol. 6,
no. 2, p. 16-23. ISSN 1558-4046. Available at:
https://doi.org/10.1109/MSP.2008.50. [cit. 2024-01-13].

MASARYK UNIVERSITY. About Perun online. 2025. Available at:
https://perun-aai.org/about-perun/overview. [cit. 2025-01-31].

44

https://wiki.refeds.org/display/STAN/eduPerson+2020-01
https://www.oracle.com/uk/security/identity-management/digital-identity/
https://federation.rciam.grnet.gr
https://github.com/rciam/rciam-federation-registry-agent/blob/master/README.md
https://github.com/rciam/rciam-federation-registry-agent/blob/master/README.md
https://argoeu.github.io/argo-messaging/docs
https://grnet.gr/en/company/
https://github.com/keycloak/keycloak?tab=readme-ov-file#readme
https://www.e-infra.cz/file/d44b6a06f6c77e2224b241aa67db4870/629/Kuba.pdf
https://doi.org/10.48550/arXiv.0909.2368
https://docs.egi.eu/providers/check-in/sp/#service-provider-integration-workflow
https://docs.egi.eu/providers/check-in/sp/#service-provider-integration-workflow
https://docs.google.com/document/d/17pNXM_psYOP5rWF302ObAJACsfYnEWhjvxAHzcjvfIE
https://docs.google.com/document/d/17pNXM_psYOP5rWF302ObAJACsfYnEWhjvxAHzcjvfIE
https://doi.org/10.1109/MSP.2008.50
https://perun-aai.org/about-perun/overview

[24]

28]

MASARYK UNIVERSITY. How to use Perun RPC online. 22. january 2025. Available
at: https:
//perun-aai.org/documentation/technical-documentation/rpc-api/index.html. [cit.

2025-02-02).

OASIS. Security Assertion Markup Language (SAML) V2.0 Technical Overview
online. 25. march 2008. Available at: https:
//docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html.

[cit. 2024-05-09)].

OASIS. OSASIS SAML Wiki online. 26. june 2020. Available at:
https://wiki.oasis-open.org/security/FrontPage. [cit. 2024-01-13].

PiMENIDIS, E. Digital Identity Management. In: JAHANKHANI, H.; WATSON, D. L.;
ME, G. and LEONHARDT, F., ed. Handbook of Electronic Security and Digital
Forensics online. 1st ed. World Scientific Books, March 2010, p. 279-294. ISBN
978-981-283-703-5. Available at: https://doi.org/10.1142/9789812837042_0015. [cit.
2025-05-09].

SECURITY JOURNEY. Common Federated Identity Protocols: OpenlD Connect vs
OAuth vs SAML 2 online. 27. december 2019. Available at:
https://www.securityjourney.com/post/analysis-of-common-federated-identity-p
rotocols-openid-connect-vs-oauth-2.0-vs-saml-2.0. [cit. 2025-03-27].

SIMPLESAMLPHP. SimpleSAMLphp online. 02. december 2024. Available at:
https://simplesamlphp.org. [cit. 2025-01-14].

SIRIWARDENA, P. Advanced API Security: OAuth 2.0 and Beyond. 1st ed. New
York: Apress Berkeley, CA, december 2017. 449 p. Books for professionals by
professionals, no. 2. ISBN 978-1-4842-2049-8.

SWEENEY, P. and GITTLEN, S. What is identity and access management? Guide to
IAM online. December 2024. Available at: https://www.techtarget.com/searchsecur
ity/definition/identity-access-management-IAM-system. [cit. 2025-03-27].

THAKUR, M. A. and GAIKWAD, R. User identity and Access Management trends in
IT infrastructure- an overview. In: Institute of Electrical and Electronics Engineers
(IEEE). 2015 International Conference on Pervasive Computing (ICPC) online.
January 2015, p. 1-4. ISBN 9781479960545. Available at:
https://doi.org/10.1109/PERVASIVE. 2015.7086972. [cit. 2025-05-09)].

THE MITRE CORPORATION. About MITREid Connect online. 09. february 2018.
Available at: https://mitreid-connect.github.io. [cit. 2025-01-14].

WaLuyo, T. and SUTARMAN. Comparative Analysis of the Performance of Single
Sign-On Authentication Systems with OpenID and OAuth Protocols: Application of
Single Sign-On (SSO) in Information Systems at the University of Technology
Yogyakarta. International Journal of Computer and Information Technology
(2279-0764) online. Lucknow: International Journal of Computer and Information
Technology, august 2022, vol. 11, no. 3. ISSN 2279-0764. Available at:
https://doi.org/10.24203/ijcit.v11i3.277. [cit. 2025-05-09)].

45

https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://wiki.oasis-open.org/security/FrontPage
https://doi.org/10.1142/9789812837042_0015
https://www.securityjourney.com/post/analysis-of-common-federated-identity-protocols-openid-connect-vs-oauth-2.0-vs-saml-2.0
https://www.securityjourney.com/post/analysis-of-common-federated-identity-protocols-openid-connect-vs-oauth-2.0-vs-saml-2.0
https://simplesamlphp.org
https://www.techtarget.com/searchsecurity/definition/identity-access-management-IAM-system
https://www.techtarget.com/searchsecurity/definition/identity-access-management-IAM-system
https://doi.org/10.1109/PERVASIVE.2015.7086972
https://mitreid-connect.github.io
https://doi.org/10.24203/ijcit.v11i3.277

[35] WINDLEY, P. J. Defining Digital Identity. 1st ed. O’Reilly Media, august 2005.
814 p. ISBN 978-0-596-00878-9.

46

Appendix A

Nginx configuration for Federation
Registry

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name federation-registry.dev.perun-aai.org;

Redirect all HTTP requests to HTTPS
return 301 https://$host$request_uri;
}
server {
listen 443 ssl;
listen [::]:443 ssl;
server_name federation-registry.dev.perun-aai.org;

ssl_certificate /etc/ssl/federation-registry/server.crt;
ssl_certificate_key /etc/ssl/federation-registry/server.key;
ssl_password_file /etc/ssl/federation-registry/password;

root /var/www/rciam-federation-registry/federation-registry-frontend;
index index.html index.htm index.nginx-debian.html;

location /dev-services {
proxy_pass https://127.0.0.1:8080/dev-services;
proxy_http_version 1.1;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

3

location / {
try_files $uri $uri/ /index.html;

3

location = /ams_verification_hash {
return 302 /federation-backend/ams/ams_verification_hash;

47

location = /federation-backend {
return 302 /federation-backend/;
}

location /federation-backend/ {
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_pass http://localhost:5000/;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection ’upgrade’;
proxy_cache_bypass $http_upgrade;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header DN $ssl_client_s_dn;

Listing A.1: Nginx configuration for federation-registry.dev.perun-aai.org

48

Appendix B

Testing service configuration

server:
port: 8080
servlet:
context-path: "/dev-services"
ssl:
key-store: "/etc/ssl/federation-registry/keystore.pl2"
key-store-password: "<ANONYMIZED>"
spring:
application:
name: Saml2TestService
security:
saml2:
relyingparty:
registration:
dev-saml:
signing:
credentials:
private-key-location: classpath:local.key
certificate-location: classpath:local.crt
singlelogout:
binding: POST
url: "{baseUrl}/saml2/logout"
response-url: "{baseUrl}/logout/saml2/slo"
assertingparty:
metadata-uri: "https://cas.dev.perun-aai.org/cas/idp/metadata"
oauth2:
client:
registration:
dev-oidc:
provider: cas-local
client-id: ef3fd914-11fb-4965-aaad-5e6438047c10
client-secret: 89ef8bb8-c385-41e8-a50c-12e9728fc211
authorization-grant-type: authorization_code
scope: openid,profile,email
provider:
cas—local:
issuer-uri: https://cas.dev.perun-aai.org/cas/oidc

Listing B.1: Testing service configuration

49

	Introduction
	Identity management Basics
	Identity and Identity management
	Single sign-on
	Federated identity management
	Protocols
	Service provider registration
	Perun AAI

	Federation Registry
	Architecture
	Main application
	ARGO messaging service
	Deployer agents
	Components communication schema
	Provided use cases
	Service registration flow

	Design of Federation Registry extensions
	Design of integration with Perun IDM
	All deployment environments to single proxy/IdP registration
	Propagation to Apereo CAS

	Implementation
	Implementation of integration with Perun IDM
	Implementation of all deployment environments to single proxy/IdP registration
	Implementation of Propagation to Apereo CAS

	Deployment and testing
	Federation Registry deployment
	Apereo CAS deployment
	CAS deployer agent deployment
	Testing service deployment
	Testing

	Conclusion
	Bibliography
	Nginx configuration for Federation Registry
	Testing service configuration

