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Abstract
The prevalent use of user tracking on the Web has stimulated the development of privacy-
preserving tools such as browser extensions and privacy-oriented browsers. However, com-
paring their effectiveness remains challenging due to the dynamic and complex nature of
the Web. This work focuses on evaluating and comparing tools that prevent user tracking
in web browsers, specifically those tools that block web requests. Consistent conditions
are ensured across tests by capturing and replaying real web traffic in a controlled envi-
ronment. The proposed system utilizes directed trees to recreate request structure and
identifies blocked connections, providing deeper insights into indirectly blocked requests.
The results reveal significant differences in blocking effectiveness across the tested tools,
with substantial discrepancies observed even when using the same extension in Chrome
and Firefox.

Abstrakt
Rozšířené sledování uživatelů na webových stránkách vedlo k vývoji nástrojů na ochranu
soukromí, jako jsou speciální prohlížeče či jejich rozšíření. Srovnání efektivity těchto
nástrojů je však náročné kvůli dynamické a komplexní povaze webových stránek. Tato práce
se zabývá testováním a srovnáním nástrojů, které brání sledování uživatelů v prohlížeči.
Konkrétně se zaměřuje na nástroje, které blokují webové požadavky. Zachycením a opě-
tovným přehráním reálného webového provozu v kontrolovaném prostředí jsou zajištěny
konzistentní podmínky pro testování. Navržený systém využívá orientované stromy k rekon-
strukci struktury zachycených požadavků a identifikaci zablokovaných spojení, což umožňuje
detailně zkoumat nepřímo zablokované požadavky. Výsledky ukazují výrazné rozdíly v efek-
tivitě blokování mezi jednotlivými nástroji, přičemž významné odchylky byly zaznamenány
i mezi verzemi stejného rozšíření pro prohlížeče Chrome a Firefox.
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Rozšířený abstrakt
Sledování uživatelů na internetu je dnes běžnou praxí sloužící primárně pro účely navýšení
relevance zobrazovaných reklam. Kromě relevantních reklam to ale pro uživatele znamená,
že třetí strany mají přehled o jejich aktivitách na internetu, například o stránkách, které
navštěvují. Mnoha uživatelům je však ztráta soukromí nepříjemná a proto volí nástroje,
jakými lze toto sledování omezit. Mezi nejčastěji používané patří různé blokátory reklam
a nevyžádaného obsahu.

Nástrojů blokujících obsah je k dispozici mnoho. Jejich efektivita z hlediska toho, kolik
nevyžádaného obsahu dokáží zablokovat, se ovšem liší. Používané nástroje často posky-
tují uživatelům statistiky, kolik domén či síťových požadavků bylo na navštívené stránce
zablokováno. Neexistuje však ucelená metrika, kterou by se poskytované statistiky řídily
a je tedy obtížné nástroje mezi sebou srovnávat.

Tato diplomová práce se zaměřuje na zmíněné blokátory obsahu a klade si za cíl na-
vrhnout a implementovat systém, který umožní opakovatelné a determinstické srovnání jak
existujících, tak i budoucích nástrojů blokujících obsah. Kromě toho, že navržený systém
dokáže srovnávat počty zablokovaných požadavků různými blokátory, dokáže aproximovat
i jejich efektivitu z hlediska zamezování sledování uživatelů. Pro jednotlivé vyžádané zdroje
jsou zaznamenány přístupy k webovým API, které lze potenciálně zneužít pro sledování
uživatele prohlížeče. Na základě toho, které požadavky testovaný nástroj zablokuje, lze
zjistit, kolika potenciálním pokusům o sledování bylo touto blokací zamezeno.

Různé požadavky jsou různě důležité. To znamená, že jeden požadavek může tranzi-
tivně vyvolat další požadavky, zatímco jiný požadavek nevyvolá žádnou další komunikaci.
Tato diplomová práce umožní srovnávat nástroje i z hlediska tranzitivně zablokovaných
požadavků zachováváním návaznosti mezi těmito požadavky. Návaznost je replikována
s využitím orientovaných stromů, které reprezentují strukturu požadavků.

Navržený systém pro porovnání blokátorů obsahu a vyhodnocení jejich efektivity je
složen ze čtyř částí. Úkolem první části je vytvořit dataset, který je použit pro pozdější
analýzu chování blokátorů. Nástroj prochází webové stránky a na nich sbírá tři druhy dat
– síťové požadavky, DNS odpovědi na tyto požadavky a volání webových API potenciálně
zneužitelných pro sledování uživatele s využitím nástroje JShelter Fingerprint Detector.
V rámci druhé části systém vytváří orientované stromy, které reprezentují strukturu, kterou
požadavky na navštívených stránkách měly. Přiřazuje k jednotlivým požadavkům také
zaznamenaná volání webových API.

Třetí část systému simuluje blokování požadavků. Nástroj nainstaluje do simulovaného
prohlížeče vybraný blokátor obsahu a navštíví vlastní webový server, který zopakuje všechny
zaznamenané požadavky. Na každý požadavek je zopakována zaznamenaná DNS odpověď,
kterou poskytuje vlastní BIND 9 DNS server. Následně systém extrahuje z prohlížeče
informace o tom, které stránky byly zablokovány. Je podporován prohlížeč Google Chrome,
libovolné prohlížeče založené na Chromiu a také prohlížeč Mozilla Firefox a libovolné jejich
rozšíření ve formátu .crx pro Chromium a .xpi pro Firefox.

V rámci poslední části systém zpracuje výsledky simulace a zaznamenané blokace ap-
likuje do vygenerovaných stromů požadavků. Tyto stromy jsou následně analyzovány a jsou
spočítány metriky popisující přímé i tranzitivní vlastnosti testovaného blokátoru.

S využitím implementovaného systému byly otestovány a porovnány vybrané blokátory
obsahu. Nástroj byl validován s využitím jednotkových testů a bylo dosaženo pokrytí kódu
100 %. Byly také identifikovány limitace navrženého nástroje. Hlavní limitace spočívají
v nedostatcích orientovaného stromu, který byl pro reprezentaci struktury požadavků zv-
olen. Další limitace jsou důsledkem zvolené metody simulování požadavků.
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Chapter 1

Introduction

Today, tracking is widespread across the web. Over 90 % of websites incorporate some form
of user tracking [9]. Among the 10,000 most popular websites, more than 2,000 include 10 or
more trackers1. This pervasive presence of tracking raises valid privacy concerns, as users
may not want third parties to monitor their browsing habits.

Website owners are highly motivated to track user activity online to understand better
who visits their pages. Advertisers, in particular, rely on tracking to identify who sees their
ads, allowing them to serve more targeted content and increase the likelihood of a purchase
being made by the viewer [8].

A variety of privacy-enhancing tools has been developed to combat the tracking is-
sue. These tools include browser extensions and specialized browsers designed to reduce or
prevent tracking. Many of these tools block outgoing HTTP requests to known tracking
domains, enhancing privacy and slightly improving page load times and data usage [7, 24].

However, because these tools are developed independently, they vary significantly in
their effectiveness. As a result, users must choose between different tools, often without
clear guidance on which is most suitable for their needs. This thesis aims to help with that
decision by focusing on content-blocking tools that block requests to potentially privacy-
invasive trackers and comparing their performance.

This thesis introduces a deterministic, repeatable testing environment to ensure a fair
and reliable comparison. It accounts for the structure of websites, recognizing that a single
request may lead to several others. Since blocking one request can indirectly block others,
the thesis models these relations using directed trees to maintain the underlying request
structure.

Chapter 2 provides background on tracking techniques and methods used to counter
them. Chapter 3 reviews existing evaluation tools and comparison strategies. New eval-
uation methods are proposed in Chapter 4 based on the existing approaches. The imple-
mentation of the proposed evaluations is described in Chapter 5. Chapter 6 presents and
analyzes the evaluation results. Finally, Chapter 7 outlines the limitations of the proposed
approach and discusses possible directions for future work.

1https://www.ghostery.com/whotracksme
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Chapter 2

User Tracking and
Countermeasures

When a person visits a website, their activity is tracked for various reasons. These reasons
can range from enhancing the user experience by remembering display preferences (e.g.,
selecting white or dark display mode) to delivering personalized advertisements tailored to
the user’s interests. The pieces of code responsible for tracking user activity are referred to
as trackers [4]. While the internal mechanisms of each tracker may differ, their fundamental
objective remains the same: identifying the user who accessed the page.

This chapter introduces several tracking methods. Each method is presented along
with possible ways to mitigate them. Afterward, the chapter explains general methods of
tracking prevention and presents selected privacy-oriented web browsers and extensions.

2.1 Tracking Techniques
A wide variety of techniques exists to track users across the Internet. These techniques
typically operate without the user’s knowledge. They can be classified into two basic
categories, namely stateful and stateless, according to how they work [19].

Stateful tracking techniques are methods that store information, such as user identifi-
cation, on the user’s computer for the specific purpose of tracking. Upon subsequent visits
to the page, the identification is sent to the server, allowing the page, for instance, to recall
that the user is already logged in.

On the other hand, stateless techniques attempt to uniquely identify the user without
explicitly storing any data on the user’s computer. The identification is based solely on
the user’s computer and browser properties, which are unintentionally shared with the re-
mote server. This section presents specific techniques used to identify users. Furthermore,
it explains how to counter these techniques and how the usage of countermeasures might
affect the functionality of web pages.

2.1.1 Cookies

Cookies [3] are small data units stored on the user’s device to provide the stateless Hypertext
Transfer Protocol (HTTP) with a method to retain information across multiple visits.
Only the originating site can access data stored in its cookies. Cookies can be classified
as either persistent or session-based. Persistent cookies remain stored on the device even
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after the browser is closed and expire after a predefined period. In contrast, session-based
cookies are only stored until the browser or website is closed.

Cookies can enhance user experience by storing user preferences, eliminating the need for
manual adjustments to the page on each visit. Another potential application is maintaining
user authentication status, preventing users from having to re-enter credentials on every
page visit. The use cases mentioned above represent the intended functionality of cookies.
However, cookies can also be misused for tracking users by storing a unique identifier that
serves no other purpose beyond user recognition. This identifier is provided to the page
each time the user revisits it.

First and Third-Party Cookies

Cookies can be classified into two categories – those originating from a first-party and those
originating from a third-party [12, 23]. When a user accesses a domain that employs cookies,
the cookies set by that particular domain are called first-party cookies. However, a page
may also contain resources originating from third parties. Suppose a page incorporates
elements with third-party content originating from another page with a different domain
name, which sets its own cookies. In that case, these cookies are designated as third-party
cookies. Many elements may be used to load third-party content. Two example elements
that can utilize third-party content are the img1 element, which can show remotely-hosted
images, and the iframe2 element, which allows a page to contain another page [20, 23].

Cookie Blocking

Many browsers block all third-party cookies by default [23], as they are primarily employed
to track user activity across multiple websites to offer more precise targeted advertising.
Nevertheless, trackers can overcome this issue by utilizing first-party cookies [23]. For ex-
ample, a page may share its first-party cookie with a third party by appending the identifier
as a part of an HTTP request sent to a third-party tracker. However, linking arbitrary iden-
tifiers to a single user would be difficult. Identifiers such as the user’s email address handle
this problem. Users provide their email address to a web page to log in, and later, when
they log in using the same email on another site, both sites may share the email address
with a third-party tracker, which allows the tracker to recognize that the user has visited
both sites.

One way to prevent first-party cookie tracking is to block all cookies entirely. However,
this approach may severely limit the functionality of many websites. Alternatively, it would
be possible to permit the usage of cookies but to delete them each time the browser is closed.
However, this approach might not work for users who rarely close their browsers.

2.1.2 Evercookies

Evercookies [5] function differently from conventional cookies. Upon removing a conven-
tional cookie, it cannot be recovered unless the originating site sets it again. Removing
evercookies is significantly more challenging since they use unconventional storage mech-
anisms. If one instance is deleted, as long as at least one other instance remains, it may
restore itself to all the storage mechanisms from which it was deleted.

1https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
2https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
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Evercookies exploit browser mechanisms to store themselves that were not designed for
such purposes. Consequently, it becomes more challenging for users to remove the tracking
data, as they may not be aware that it is being stored through such mechanisms. These
mechanisms may include classic HTTP cookies, browser local storage, DOM properties,
or browser cache. Historically, these storage methods included Flash cookies or Silverlight
[5]. Removing data from all possible storage locations or limiting access to specific storage
mechanisms is necessary to mitigate the evercookies issue.

2.1.3 Browser Fingerprinting

Browser fingerprinting involves collecting data from the user’s browser or the HTTP com-
munication [19]. Contemporary fingerprinting techniques rely heavily on browser APIs
to extract distinctive information, which is then employed to identify the user accurately.
The final fingerprint is derived from the collective data obtained through this process. To
prevent fingerprinting, three distinct approaches [26] may be employed:

• Creating homogenous fingerprints: All generated fingerprints are identical, and no
individual can be considered distinctive, thus thwarting any potential for tracking.

• Modifying fingerprints on each visit: All fingerprints are modified (e.g., by random-
ization) to be different on every visited domain, preventing trackers from linking
the fingerprints to a single user.

• Blocking fingerprinting attempts: Properties commonly utilized for fingerprinting are
monitored, and should they be utilized by a tracker, network communication with
such tracker is blocked. Another method is pre-emptively blocking all communication
with known trackers.

Fingerprinting techniques can be divided into two categories [26]: passive fingerprinting,
which relies on the extraction of information from the HTTP headers or the communication
between a user and a server, and active fingerprinting, which extracts information from
various browser APIs by using JavaScript or other technologies.

2.1.4 Passive Fingerprinting

The term passive fingerprinting is derived from the fact that the fingerprinting process
does not require the utilization of any additional means of data collection. Upon accessing
a website via a web browser, the user initiates an HTTP request, which is then sent to
the server. However, an HTTP packet also contains other data, such as the user’s IP
address. The HTTP and other protocol data are transmitted each time the user connects
to a site, regardless of the user’s intention. Without this data, the user would be unable
to access the site. A passive fingerprint may, for example, be comprised of the following
elements [19, 36]:

• IP Address: Used to identify a device in the network layer of TCP/IP model.

• User-Agent3: HTTP header used to identify client’s browser, operating system, and
other information for compatibility purposes.

3https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
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• Accept4: HTTP header to indicate what content the client can process.

• Accept-Language5: HTTP header to indicate the client’s preferred language settings.

In real-world applications, trackers collect a greater quantity of such data. Given that
all of this data originates from the client, it is relatively straightforward to render them
unusable, should the possible consequences be disregarded, by simply modifying them to
another value. Such consequences may arise, for example, from modifying the IP address.
If a client were to alter their IP address when sending a packet, simply changing it with-
out implementing any additional modifications would break the routing protocols used to
determine the destination for each packet, leading to communication failure.

To alter the IP address, tools such as Virtual Private Networks (VPNs) [14] can be
utilized. Rather than communicating directly with the website (or any other entity), all
data is redirected to a VPN provider. This provider then effectively acts as an intermediary,
directing each packet to its intended destination, thereby preventing third parties from
discerning the original IP address, which the VPN provider’s IP address would instead
replace.

It can be reasonably assumed that correctly modifying an IP address does not signifi-
cantly change a site’s functionality. However, modifying HTTP headers may have a more
pronounced impact on the behavior of a site. For instance, modifying the Accept-Language
header, should the site support it, may result in the site being displayed in a different
language.

2.1.5 Active Fingerprinting

Unlike passive fingerprinting, active fingerprinting involves executing code within the user’s
browser. Actively acquiring browser data involves misusing various technologies provided
by web browsers to create a fingerprint. One example is using the JavaScript navigator6

interface to collect information about the device. This subsection presents several technolo-
gies that can be employed in the fingerprinting process.

Canvas Fingerprinting

A canvas element7 is a programmable area that can be populated with graphics or text
by the programmer. However, the same graphics drawn onto the element may appear
differently, depending on the user’s system configuration, such as the installed Graphical
Processing Unit (GPU ). This slight difference is the basis of canvas fingerprinting [22].
The canvas element also provides programmers with multiple API methods that can be
employed in the process of fingerprint creation. These include getImageData()8, which
returns information about each pixel of the image, and toDataURL()9, which returns an en-
coded representation of the canvas content. Extracting these data provides a strong and
consistent fingerprint independent of other fingerprinting techniques.

4https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
5https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language
6https://developer.mozilla.org/en-US/docs/Web/API/Navigator
7https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
8https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/getImageData
9https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/toDataURL
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The canvas fingerprinting methods work with WebFonts10, which provide web pages with
a simple method to include fonts [22]. Even when using the same browser and operating
system on multiple machines, the results of rendering text on the canvas can vary due
to minor differences in rendering engines. These subtle variations are what contribute to
the generation of unique fingerprints. Acar et al. [1] revealed that this method could
be extended even further by, for example, incorporating an additional graphic element or
overlaying another text on the original.

Regarding countermeasures, the most straightforward approach with the most signif-
icant drawbacks is to disable the element, or even JavaScript itself, entirely. However,
the canvas element’s missing support may be an identifiable event. If the user wishes to
retain the canvas functionality, they would need to utilize more sophisticated techniques
to modify the results returned by the methods associated with the canvas element. These
techniques, for instance, involve making minor random alterations to the RGB values of
chosen pixels, which, in the ideal scenario, should not even be perceptible to the user [30].

WebGL Fingerprinting

WebGL11 technology allows users to render three-dimensional images. Fingerprinting based
on this technology is similar to the Canvas fingerprinting described above, as it also em-
ploys the canvas element, thus enabling the same techniques to be utilized for fingerprint
calculation [22].

Yinzhi et al. [6] have demonstrated that a significant proportion of WebGL rendering
features can enhance fingerprint quality. Additionally, WebGL itself provides a method12

for retrieving data about the user’s GPU, which may potentially constitute an additional
component of the fingerprint. The techniques for preventing WebGL fingerprinting and their
impact on the user experience remain the same as those employed for canvas fingerprinting.
Additionally, some WebGL methods could be prevented from functioning, such as making
it impossible for the page to acquire additional information about the user’s system, such
as the mentioned GPU.

Font Fingerprinting

Fifield and Egelman [16] have demonstrated that individual letters or symbols utilizing
the same font may be rendered differently depending on the browser used. Even when
using the same browser and operating system, discrepancies can be observed depending
on the system configuration. This method involves increasing the size of fonts drawn in
the background and taking measurements of individual symbols. While it is less accurate
than previous fingerprinting methods, it can still be used as a part of the final fingerprint.
Mitigation may include randomizing the reported properties of shown symbols [16]. Another
method would be disabling JavaScript, which is used for measurements or obtaining the list
of fonts, and complete disabling of Cascading Style Sheets (CSS).

Another way to fingerprint users based on fonts is by obtaining the list of fonts installed
on the user’s system. Eckersley [13] has shown that the installed fonts can be extracted
using JavaScript and present a highly identifiable metric. It can be mitigated by forcing
the web browser to work only with a predefined set of fonts shipped with the browser, thus
limiting variability.

10https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts
11https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
12https://developer.mozilla.org/en-US/docs/Web/API/WEBGL_debug_renderer_info
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The mitigation methods may impact the user experience. For example, disabling both
JavaScript and CSS would result in a significant change in the visual appearance of the ma-
jority of websites while also limiting their functionality. Similarly, using a predefined set of
fonts may adversely affect the visual appearance of certain pages designed with a specific
font in mind.

Cascading Style Sheets Fingerprinting

CSS can be utilized to recognize the browser the user is using. Takei et al. [34] have
demonstrated that by employing CSS in conjunction with remotely hosted content, it is
feasible to find distinctive properties that are specific to different browsers. This method
defines CSS properties, such as background-image13, with data hosted remotely – an URL
of an image in this case. Because the implementation of CSS may differ across browsers,
some CSS properties may not be supported. Different browsers then send the server requests
for different combinations of supported elements. The server that hosts these data can then
analyze received requests and determine which browser they came from.

An alternative approach is the utilization of media queries, which specify the width
of the user’s device and send requests to the server based on the user’s screen size. This
serves as an additional method for identifying the user [34]. Another potential strategy
is the usage of distinct fonts for the rendering of text. Initially, the font would try to
be sourced locally. If this were not feasible because the font was absent, a request to
the server would be initiated, which could serve as an additional identification method by
differentiating the fonts the user has installed.

In contrast to earlier techniques, the deactivation of JavaScript does not impact the vi-
ability of this fingerprinting approach. The previously mentioned method of limiting sup-
ported fonts described in the Font Fingerprinting subsection may diminish the accuracy of
this fingerprinting technique. However, it only renders it somewhat ineffective. The sole
option would be to prevent the execution of CSS entirely. However, this would inevitably
result in the disruption of the majority of web pages’ functionality and severely impact user
experience.

AudioContext Fingerprinting

AudioContext14 is part of the Web Audio API 15. This API controls audio within the web
browser, for example, by selecting audio sources or modifying audio properties. Audio-
Context is used as a graph representation of multiple audio sources and offers methods for
manipulating the audio processing.

The methods provided by AudioContext can be utilized to create a unique fingerprint
of a given device [17]. This fingerprinting method is possible because each browser has
a distinct implementation of AudioContext. A potential fingerprinting method may be
based, for instance, on measuring the latency between the output of AudioContext being
passed to the system audio.

The most straightforward method for preventing this fingerprinting is entirely disabling
the Web Audio API. However, this may break some websites that rely on this API for
functionality. An alternative approach is similar to the previously described method for

13https://developer.mozilla.org/en-US/docs/Web/CSS/background-image
14https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
15https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
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mitigating canvas fingerprinting and involves introducing random noise into the output
[29].

Extension Fingerprinting

The presence of browser extensions can be used as another fingerprinting method. Several
methods can be employed to confirm whether or not an extension is present. Many browser
extensions modify the visited page, for instance, by removing unwanted advertisements or
tracking elements. Starov et al. [32] have demonstrated that such alterations can be used
as a fingerprint. If an extension removes a Hypertext Markup Language (HTML) element,
the Document Object Model (DOM ) is altered. The same is true should an extension
add a new element into the DOM to, for example, provide additional functionality. This
fingerprinting method is based on the analysis of the DOM. As different users employ
different extensions, the changes they introduce to the DOM may serve as a fingerprint,
providing further information towards the final identification of the user.

A method of preventing this fingerprinting technique would be introducing random,
artificial changes to the DOM structure [32], making it difficult to distinguish whether
the changes are caused by a specific extension or only artificially mimicked. A downside is
that it could result in a decline in user experience.

2.2 Pre-Emptive Tracking Prevention
There are multiple methods for blocking tracker functionality. Some of them were already
presented in the previous Section 2.1. The methods described in this section work not by
blocking specific user identification methods, which were explained in the previous section,
but rather by preventing trackers from launching in the first place. Due to their broad
approach, however, they may occasionally block more than just trackers, or fail to block
some entirely.

One common strategy involves identifying the domains that host trackers and blocking
any outgoing HTTP requests to them. Another method focuses on disabling JavaScript,
dynamic browser functionality, or specific HTML elements to limit how trackers can operate.

2.2.1 Content Blocking

Before code embedded in a web page can execute, it must first be downloaded. This begins
with an HTTP request to the server hosting the content. The server responds by sending
the web page along with all of its resources, including scripts and other executable code.

Content blocking works by filtering potentially malicious outgoing HTTP requests. If
a request is identified as targeting a a Uniform Resource Locator URL known to host track-
ing elements, it is blocked [31]. This prevents scripts and other resources from being loaded,
often without noticeably affecting the core functionality of the website. However, results
may vary. If a page component includes both useful content and a tracking mechanism,
blocking that component can break the page. Likewise, if a site relies heavily on third-party
resources and those are blocked, it may become unusable.

This technique is valued for its simplicity. It allows users to block content from known
trackers and is also used by ad blockers to prevent the display of unwanted advertisements.
Since many ads include tracking components [20], even basic ad blockers, those not specifi-
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cally designed to enhance privacy, can indirectly offer enhanced user privacy by preventing
trackers from loading.

The decision to block or allow requests typically depends on predefined lists. While
a whitelist approach of only allowing traffic to approved sites is technically possible, it is
not practical for everyday use. Instead, blacklists are used, which contain patterns or rules
used to detect and block unwanted traffic.

Existing Blacklists

Given the considerable number of trackers and other unwanted content, capturing them in
a single list is not feasible – not only would it affect performance, but maintaining such a list
would be impractical. Consequently, multiple blacklists exist, often maintained by individ-
uals who usually use their intuition or experience rather than a systematic approach [31].
This means that what one person considers unwanted, another might view as harmless.

Some blacklists are focused on a specific subset of unwanted domains, for example,
domains from particular countries, while others take a more general approach. Examples
of general blacklists include EasyList16 and EasyPrivacy16. While EasyList is targeted
towards blocking advertisements and other such unwanted content, EasyPrivacy is explicitly
oriented towards blocking trackers. These lists can become quite extensive – as of October
2024, EasyList had over 71,000 entries.

Nevertheless, the implementation of address filtering has its own set of challenges.
To best utilize content blocking, it is essential to have a comprehensive understanding
of the specific pages and domains that should be blocked. Otherwise, even valid non-
tracking content might be blocked. However, it is impossible to create a blacklist of all
addresses that contain undesirable content. Consequently, if a page contains a tracker but
is not included in the blacklist, it is not blocked. Because of that, it is essential to update
the blacklists regularly. Furthermore, the blacklists must be updated if a tracker or other
unwanted content changes its address.

2.2.2 Element and JavaScript Blocking

Even if a page contains no trackers, they may still be present because of elements such
as iframes or others. This third-party tracking can be mitigated by blocking such HTML
elements, thus preventing any code inside them from executing. Trackers also use JavaScript
and other dynamic browser functionalities, as described in Subsection 2.1.3. However,
differentiating between a tracker and a legitimate code is complicated. One way to solve
this problem is to block all JavaScript [31] and other such dynamic browser functionality.
Blocking all JavaScript could, however, pose a problem because according to a survey17, as
of October 2024, 98.8 % of all pages available on the Internet use JavaScript in some way.
Thus, blocking all JavaScript code would probably impact the functionality of many sites,
rendering them unusable.

16https://easylist.to/
17https://w3techs.com/technologies/details/cp-javascript
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2.3 Anti-Tracking Tools
This section presents a selection of existing tools that can be used to block fingerprinting
methods described in previous Sections 2.1 and 2.2. These tools are in the form of both
browser extensions and browsers with natively implemented anti-fingerprinting measures.

2.3.1 Browsers

The presented browsers all offer a variety of privacy-enhancing measures by default. Con-
sequently, installing additional privacy-oriented extensions is not as crucial as in different
browsers that lack native anti-tracking measures. All the presented browsers are free of
charge, meaning there is no cost associated with using them. However, some may offer
additional functionality for a payment.

Brave

Brave18 is a privacy-oriented browser that natively provides various anti-tracking and ad-
blocking techniques. The browser is developed by Brave Software Inc., a privately held
company. Brave is open-source and based on the Chromium19 browser, which is itself open-
source. While Brave is free by default, it also offers a paid built-in VPN. The browser’s
default settings block trackers, third-party cookies, and fingerprinting techniques. Addi-
tionally, the browser can be configured to block JavaScript, upgrade HTTP connections to
HTTPS when available, or block all cookies.

To prevent the display of advertisements and the tracking of user activity, Brave employs
a content-blocking method described in Subsection 2.2.1. Furthermore, Brave randomizes
browser API calls to prevent the functioning of specific API-based fingerprinting techniques,
such as canvas fingerprinting or WebGL fingerprinting, as discussed in Section 2.1.

Avast Secure Browser

Avast Secure Browser20 is a browser that prioritizes the protection of user privacy and
security. It is a proprietary product developed by Gen Digital Inc., utilizing the Chromium
browser as its core. Avast Secure Browser is provided free of charge, while a paid Avast Se-
cure Browser Pro version is also available, offering improved functionality such as a built-in
VPN. It incorporates content-blocking and anti-tracking capabilities and includes an ex-
tension guard, preventing the installation of untrusted extensions. One of the filtering
lists used is EasyList. Furthermore, it performs randomization and generalization of API
responses for elements such as canvas or the navigator interface.

Mozilla Firefox

Mozilla Corporation, a subsidiary of the non-profit Mozilla Foundation, is responsible for
the development of the Firefox21 browser. The software is open-source, with the code avail-
able online. It is based on the Gecko engine, which the Mozilla Foundation also develops.
It offers third-party cookie blocking, crypto-mining software blocking, and fingerprinting

18https://brave.com/
19https://www.chromium.org/
20https://www.avast.com/secure-browser
21https://www.mozilla.org/firefox/
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protection by default. The fingerprinting protection is based on blocking requests to third
parties and may be configured further to alter specific browser APIs.

2.3.2 Extensions

Many privacy-oriented extensions are currently available for download. For this thesis,
a selection of them has been chosen for comparison. As of October 12, 2024, all selected
extensions are available for download from the Chrome Web Store and the Mozilla Addons
page. All the described extensions are free to download, although some may offer paid
upgrades.

uBlock Origin

uBlock Origin22, developed by Raymond Hill, is a content-blocking extension. It is an open-
source software. It employs the content-blocking method with numerous pre-configured
filter lists, including EasyList and EasyPrivacy. Consequently, it can block advertisements,
trackers, pop-ups, and other undesired content.

It will soon be removed from the Chrome Web Store and cease to be functional on
Chromium-based browsers due to its failure to comply with the latest Manifest v323 rules
as set out by Google. A Manifest v3-compliant version, uBlock Origin Lite, is a replacement
with limited functionality. However, the original will remain available on Firefox.

Privacy Badger

Privacy Badger24 is designed to block third-party trackers. It is open-source software
developed by the non-profit organization Electronic Frontier Foundation. The software is
primarily designed to block trackers and does not interfere with advertisements unless they
contain trackers. The software is provided with a set of pre-existing lists of trackers, which
are blocked by default. This list can be extended algorithmically through the analysis of
trackers, and only when a tracker is identified as such, it is blocked.

Adblock Plus

The primary function of Adblock Plus25 is to facilitate the blocking of advertisements.
A premium version is available for purchase and offers additional features. It is open-
source and developed by Eyeo GmbH. It employs the content-blocking method, which may
offer limited tracker-blocking functionality as was described in Section 2.2.1, thus partially
enhancing the user’s privacy. However, Adblock Plus does not block all ads. By default,
the developers have chosen some acceptable ads that are allowed.

22https://ublockorigin.com/
23https://github.com/uBlockOrigin/uBlock-issues/wiki/About-Google-Chrome’s-%22This-exten

sion-may-soon-no-longer-be-supported%22
24https://privacybadger.org/
25https://adblockplus.org/
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Ghostery

Ghostery26 is an extension designed to prevent tracking and block advertisements. Ghostery
GmbH develops the software. The code is open-source. Ghostery can block advertisements,
cookies, trackers, and other content, including various pop-ups.

JShelter

JShelter27 is a privacy-oriented extension developed by Libor Polčák and Giorgio Maone.
By default, JShelter provides anti-fingerprinting methods, such as randomizing the canvas
fingerprint. Additionally, the software employs a heuristic monitoring system to detect
the use of browser APIs commonly associated with fingerprinting techniques. Upon detect-
ing such fingerprinting activity on a given website, a notification is generated and displayed
on the user’s computer. JShelter can be configured to prevent further HTTP requests
to such websites. However, Manifest v3 restricts its functionality on Chromium-based
browsers.

26https://www.ghostery.com/
27https://jshelter.org/
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Chapter 3

Existing Solutions for Evaluating
Anti-Tracking Tools

Establishing a stable and reproducible testing environment is essential to ensure fair and
meaningful comparisons between anti-tracking tools. Such an environment should include
an automated system that minimizes human interaction and allows for fair and repeatable
evaluations of the anti-tracking capabilities of different browsers and extensions. Since
trackers are loaded on web pages accessed through the browser, the environment must
replicate user activity, such as visiting the tracking sites with an automated browser. This
chapter presents an overview of existing tools used to compare the anti-tracking capabilities
of privacy-enhancing tools.

3.1 Evaluation Environment
The purpose of a dedicated environment is to make the results easily replicable. There
are two ways to set up such an environment: following a detailed set of setup instructions
or deploying a pre-configured environment that is ready to use. Pre-built environments
typically come in two forms: through virtualization or containers.

3.1.1 Virtualization

One of the ways to create a replicable environment is by using virtualization [2]. An exam-
ple of virtualization software is VMware Workstation Pro1. Virtualization allows multiple
virtual machines to run concurrently on a single physical machine. Virtual machines are
emulated physical computers that do not need their own hardware to run but instead rely
on the hardware of the host machines. Host hardware can be shared among multiple virtual
machines.

Virtual machines are controlled by a hypervisor – software designed to provide a level
of abstraction from the host system. It also manages the resources allocated to each virtual
machine and prevents virtual machines from affecting each other by isolating them. Fig-
ure 3.1 (left) visualizes the virtualization process. Each virtual machine can run its own
operating system, such as Linux or Windows. Besides that, each virtual machine can be
configured for specific purposes, such as running a web server or, for this thesis, a compar-

1https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion/
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ison of anti-tracking tools. While virtualization is viable, using a whole virtual operating
system may be unnecessarily complex for certain purposes.

3.1.2 Containers

Another method of creating environments is through the use of containers [33]. An ex-
ample of container software is Docker2. Containers are software that can be executed to
run an application (or multiple applications) they contain. The code and configuration of
each application are included in the container, together with libraries the application uses
and other required dependencies. Containers rely on operating system-level virtualization,
isolating processes from each other and controlling what resources each process can access.
Figure 3.1 (right) shows the container technology. A practical difference from the previ-
ously mentioned virtualization approach is that containers do not need their own operating
system. Instead, they rely on the host computer’s operating system, which makes them less
isolated than virtual machines but offers better performance. Relying on the host operating
system makes them more lightweight in terms of both actual size and the overhead, which
is lesser than with virtualization.

Figure 3.1: Illustration3 of virtualization (left) and containers (right).

3.2 Existing Evaluation Methods
This section presents several tools and methods that are used to evaluate the effectiveness of
anti-tracking technologies. These tools and methods commonly rely on browser automation
to simulate real user activity, such as visiting websites or interacting with elements on
a page. Visiting websites is necessary to trigger tracking scripts and collect data on whether
trackers are blocked or whether a unique and consistent fingerprint can still be generated.
A widely used tool for browser automation in this context is Selenium4.

2https://www.docker.com/
3“Docker Container vs. Virtual Machine” by Mehr, I. E. et al. is licensed under CC BY 4.0. Retrieved

from https://www.researchgate.net/figure/Docker-Container-vs-Virtual-Machine_fig2_36906112
8/ (accessed on April 16, 2025).

4https://www.selenium.dev/
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3.2.1 Straightforward Approach

The first presented method for benchmarking anti-tracking browser extensions was proposed
and implemented by Traverso et al. [35] in 2017. Their method compares anti-tracking
performance based on the number of known trackers contacted during browsing. Their
setup uses Selenium to simulate the Firefox browser. A list of URLs is used to specify which
pages to visit. Each page is visited ten times, with the browser cache cleared after every
visit to ensure consistency. Different privacy-focused extensions are installed and tested one
at a time, each forming a unique configuration for the crawl. All HTTP communication
between the browser and the websites is logged for analysis. The collected data includes
the number of bytes downloaded, page load times, third-party requests, and contacts with
known trackers. These statistics are then used to compare how effectively each extension
blocks tracking. The process moves to the following URL only after the current page fully
loads, as indicated by the JavaScript onLoad event. If a page fails to load correctly, it is
skipped and not included in the results.

3.2.2 Open-WPM

Open-WPM [15], released in 2016 and still actively maintained as of 2024, is an open-
source tool designed for large-scale web privacy measurements, with its code available at
GitHub5. The tool is built to simulate the user’s activity and record data from the simu-
lated interactions. This data may include cookies, response metadata, and script activity,
indicating that the tool can observe stateful and stateless tracking methods. In addition,
OpenWPM can store the state of the browser over multiple measurements, allowing it to
observe tracking techniques such as cookie respawning, which may be used by evercookies
which were described in Subsection 2.1.2. OpenWPM consists of three modules: multi-
ple browser managers, task manager, and data aggregator. Figure 3.2 shows the system’s
design.

Figure 3.2: High-level design of OpenWPM, retrieved from [15].

Browser managers run separate instances of full-fledged Firefox web browsers via Sele-
nium. Managers are run in parallel to improve performance. When a new browser manager
is created, a specified configuration is applied. This allows each session to use a different

5https://github.com/openwpm/OpenWPM
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configuration, such as a different combination of browser extensions, which may themselves
be further configured. In addition, each manager can be configured to perform different
tasks. These tasks may consist of, for example, visiting different websites. These man-
agers can also be launched in headless mode, using a virtual frame buffer for the graphical
interface without displaying it to the user.

Task manager controls multiple instances of browser managers. Commands for each
browser are stored in an execution thread unique to each browser. If the browser manager
encounters an error, such as a timeout or crash, the current state of the browser is archived.
The archived state allows the browser to be restarted later in the same state (e.g., with
cookies stored from visited sites).

Data aggregator stores data received from browser managers. This includes compressed
web content, such as all types of cookies (e.g., regular cookies or Flash cookies on legacy
systems), HTTP (and HTTPS) request and response headers, and finally, access to var-
ious JavaScript prototypes such as storage, canvas, or navigator. The data is stored in
a structured way, allowing it to be traced back to a specific browser and page from which it
originated. Upon completion, this data can be analyzed to determine, for example, which
extension blocked the most tracking attempts.

3.2.3 PETInspector & FPInspector

PETInspector and FPInspector [11] are used together to form a benchmarking system,
where FPInspector evaluates the results provided by PETInspector. PET stands for Pri-
vacy Enhancing Technology, and FP stands for Fingerprint. It was developed in 2019 but
has not been updated since. PETInspector is available on GitHub6. The system can be
used to compare different privacy-enhancing extensions and browsers. PETInspector serves
as a tool to experimentally calculate the anti-fingerprinting capabilities of a given privacy-
enhancing tool, which then forms a mask of how the tool behaves. This mask is then used
with actual observed fingerprints to simulate how a browser would behave if everyone were
using the given privacy-enhancing tool. The resulting traceability is then measured, which
is the purpose of the FPInspector. This experimental and observational approach forms
the hybrid benchmarking system. The output of the system is the effectiveness of a given
tool.

The system consists of four parts. These parts are the client simulator, fingerprinting
server and analysis engine, which form the PETInspector, and the FPInspector, which is
the fourth part. This is illustrated in the Figure 3.3.

Client simulator simulates users via Selenium. The simulator allows the configuration of
different fonts, time zones, and other properties. Each simulated user has various privacy-
enhancing tools installed. Additionally, a client with no privacy-enhancing tools is used
to isolate each tool’s changes. These simulated users visit the fingerprinting server, trig-
gering various fingerprinting scripts. The visits consist of accessing different pages, idling
on the pages, reloading them, and browsing across sessions separated by 45 minutes of
downtime.

The fingerprinting server uses various fingerprinting techniques to compute the finger-
prints of visiting clients. The analysis engine uses information from both the client simulator
and the fingerprinting server to measure how a particular client configuration affects a fin-
gerprint by observing whether the data the browser passed to the fingerprinting server was
changed by generalization or randomization. Suppose the result of the fingerprinted prop-

6https://github.com/tadatitam/pet-inspector
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Figure 3.3: Benchmarking system design showcasing how PETInspector and FPInspector
interact, retrieved from [11].

erty is altered by the privacy-enhancing tool, either by generalization or randomization.
In that case, the property is modeled as masked in the generated mask and unmasked if
not changed. This approach overestimates the effectiveness because it treats any change to
the property values as unrecoverable, rendering the property useless for tracking.

FPInspector receives two fingerprint datasets as input. The first dataset consists of
actual measured fingerprints with no privacy-enhancing tool installed. The second dataset
consists of simulated fingerprints, which show what the first dataset would look like if
everyone used a particular privacy-enhancing tool. The masks created by PETInspector
are used to obtain the second data set. These datasets are then compared for uniqueness
to calculate effectiveness.

3.2.4 Browser Extension Testing Environment by Jana Petráňová

This Browser Extension Testing Environment [25] has built-in methods for testing privacy-
oriented browser extensions. It does not directly compute the effectiveness of a given
privacy-oriented tool but returns information about how it affects tracking. It has no official
name. The environment was proposed as part of the master’s thesis by Jana Petráňová [25].
While the environment is mainly designed to test the JShelter extension, it also supports
testing other privacy-oriented extensions. The extensions can be tested in two supported
browsers: Google Chrome and Firefox. It uses the designs and implementations proposed
by Open-WPM and PETInspector described above. The environment consists of two main
parts: integration testing and system testing. Its high-level design, together with the tech-
nologies used, is shown in Figure 3.4.

Integration testing is based on the PETInspector tool, described in Subsection 3.2.3.
It uses Selenium to simulate a browser client with privacy-oriented extensions installed.
This client visits a locally hosted website that uses several tracking techniques to generate
a fingerprint. The server can be customized, though a default setup is provided. The server
collects various attributes from the browser, which are stored for later analysis to understand
how a given extension affects the results returned by various browser methods.

System testing measures how different extensions impact visited web pages. The
Selenium-controlled browser visits a list of predefined pages, both with and without the ex-
tensions installed. For each visit, the console output is logged, and a screenshot is taken
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before and after applying the extension. These outputs are then compared to measure how
much the extension changed the visual layout and behavior of the page.

Figure 3.4: Architecture of the testing environment for anti-tracking tools, retrieved
from [25].
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Chapter 4

Designing Privacy Enhancing Tools
Comparison Environment

As outlined in Chapter 2, multiple methods for user tracking exist. Consequently, privacy-
preserving tools that prevent tracking have been developed. However, these tools are mainly
independent of each other and thus differ in both the anti-tracking methods they provide
and their effectiveness.

Since not all anti-tracking tools have their source code publicly available, comparing
their functionality by studying the code is impossible. Consequently, specialized solutions
have been developed to compare their effectiveness. Several of these solutions are described
in Chapter 3. The main objective of this thesis is to improve existing comparisons of anti-
tracking tools. This chapter presents a testing environment and the comparisons that will
be performed since they are the primary focus of this thesis.

4.1 Environment and Comparison System Design
To design an environment for the comparisons, it is first necessary to establish the require-
ments. The basic requirements are summarized in the following list:

• The environment should be documented and easy to replicate.
• The environment should support multiple anti-tracking tools.
• The environment should support the addition of new tools developed in the future.
• Comparison methods should be clearly defined, accompanied by their respective lim-

itations.
• Comparison methods should be deterministic, making the results replicable.

One of the requirements for the environment is to ensure its replicability, which can be
accomplished by employing the technologies presented in Section 3.1. However, the envi-
ronment could also be set up manually by following steps that prepare a system to support
the comparison methods. Furthermore, the environment should support multiple anti-
tracking tools, including existing tools presented in Section 2.3, and additional tools that
may emerge. Overall, the environment only serves as a container for the proposed compar-
ison methods.

Selected methods of comparing anti-tracking tools are described in Section 3.2. Open-
WPM is a tool often used in existing anti-tracking research [24, 18, 21]. While OpenWPM
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is explicitly designed for web privacy research and is still maintained even in 2024, it lacks
one crucial feature: the support of other browsers. OpenWPM can only be used with
the Firefox browser, which is insufficient for this thesis, as it also aims to compare the anti-
tracking performance of different browsers presented in Section 2.3. Alternative comparison
tools are usually outdated or incompatible with the stated requirements. Thus, a custom
system needs to be designed. However, the system adapts and integrates certain concepts
and approaches from existing solutions.

4.2 Proposed Evaluation Methods
Following a discussion with the thesis supervisor, this work focuses only on evaluating
content blockers, i.e., privacy-enhancing tools that block network requests for content that
may also include trackers. This section describes two proposed evaluation methods. There
are many approaches to evaluate the effectiveness of content blockers. However, no single
comparison can definitively determine which tool is the most effective. While the methods
presented here aim to provide meaningful insights, it is essential to understand the inherent
limitations of each approach.

4.2.1 Ensuring Determinism Across Evaluations

It is necessary to compare the content blockers on the same dataset for a fair and deter-
ministic comparison. Simply visiting a set of pages multiple times to test different content-
blocking tools does not ensure determinism, as the pages may request different content each
time they are visited.

Because of this variability, comparing the number of blocked requests across multiple
page visits can be misleading. One tool might appear more effective simply because it
encountered more blockable requests, not because it is inherently better at blocking them.
For instance, a request to a specific tracker might be present in one test run but not in
another, which would unfairly skew the results.

This issue of non-determinism can be partially mitigated by increasing the number of
page visits. For example, Mazel et al. [21] visited each page multiple times and averaged
the results to smooth out inconsistencies. However, this still does not guarantee determin-
ism.

A truly deterministic approach involves capturing and saving the network traffic from
each visited page to build a consistent dataset. Once this dataset is created, it can be
replayed with different content-blocking tools under the same conditions. This allows for
a deterministic comparison, as each tool can block the same set of requests.

4.2.2 Evaluation of Requests Blocked by Content-Blocking Tools

The first evaluation method measures how effectively each content blocker prevents outgoing
network requests by calculating the number of blocked requests from a given dataset. It
also considers the structure of the requests, accounting for cases where one request depends
on another.

Performance Metrics

A simple comparison might rely on the built-in reports from each tool. However, such
an approach is unreliable since the reports may not be precise, or the tool might not
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provide any reports at all. Thus, such a comparison is not feasible. Instead, a custom
evaluation system is used, applying uniform metrics across all tools. Requests are replayed
using the previously mentioned dataset, and the number of requests blocked by each tool
can be directly compared, as the blockings occurred on the same data.

Tree-like Request Structure

However, a simple comparison of the number of blocked requests still presents a problem:
web requests often have a tree-like structure. Therefore, some requests act as the entry
point of other requests, meaning that blocking one parent request may prevent many child
requests. For example, suppose a user visits page A, which includes a tracker from page B.
B may then load additional content from C and D. Consequently, when a user visits page
A, pages B, C and D are also requested.

Two requests are marked as blocked if one content blocker blocks C and D. Another tool
might only block page B, thereby also transitively preventing requests for C and D. However,
this second tool only blocked one request, even though its action effectively blocked three
requests. A simplistic count would incorrectly suggest that the first tool was more effective
in such a scenario.

The evaluation preserves the directed request tree to address the abovementioned issue.
Figure 4.1 illustrates a simple request tree. The tree structure has been used to model
request relations before. For example, Sanchez-Rola et al. [28] used a tree-like structure
to model how requests create cookies. The parent-child relations between requests are
obtained from the network logs. If a parent request is blocked, all its children are also
considered blocked, which more accurately reflects the impact of blocking a request.

Visited Page
A

Page
B

Contacts

Contacts

Page
C

Contacts

Page
D

Figure 4.1: Illustration of a tree-like request chain which allows for accurate measurement
of number of requests blocked.
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Limitations

Despite its advantages, this evaluation has limitations. It only reflects behavior based on
the pages and resources that were observed. Consequently, it is impossible to determine
how the extension would behave on unvisited pages, which may contain different requests.

Another limitation lies in the subjectivity of filter lists, as discussed in Section 2.2.1.
These lists are created by people, often with different priorities. For example, a tool might
block more requests simply because its filter lists include more pages, even though other
people would not block these requests. Therefore, a higher number of blocked requests
does not necessarily imply one tool is better than another. A deeper analysis would require
manual inspection of blocked requests to ascertain the validity of the blocking action. Even
so, this evaluation method still offers insight into the general behavior of different content-
blocking tools.

4.2.3 Evaluation of Anti-Tracking Capabilities of Content-Blocking Tools

The second method builds on the previous one by focusing on the anti-tracking capabilities
of the content blockers. It measures how many JavaScript fingerprinting API calls were
blocked due to blocking the resources that attempted to initiate them. These calls can reveal
unique information about the user’s browser and device, as discussed in Subsection 2.1.3.

Observing Fingerprinting API Calls

The JShelter browser extension, presented in Subsection 2.3.2, can be used to capture
the API calls. JShelter includes a Fingerprint Detector based on Marek Saloň’s master’s
thesis [27], which can detect the calls of APIs misused for fingerprinting in real-time. These
API calls represent potential fingerprinting attempts since they may be used in the finger-
print calculation process.

No content blockers are active during the dataset creation, and JShelter’s protections
are disabled to avoid interference. The Fingerprint Detector logs fingerprinting API calls
on each visited page, which can be matched with the associated network traffic logs.

Performance Metrics

This evaluation intends to quantify the anti-tracking capabilities of a given content-blocking
tool. It uses the same tree-like request structure described in the previous evaluation in
Subsection 4.2.2, but with additional information. Each node (i.e., each contacted resource)
is assigned the number of fingerprinting API calls it caused during the visit. This allows
using request trees and their transitive properties to obtain the number of fingerprinting
attempts that could be prevented by blocking a specific request.

For example, if page A loads page B, which then loads C and D, and fingerprinting
attempts are observed on all of them, a content blocker that blocks B would also prevent
the subsequent calls from C and D as they would not be loaded. This would reduce the total
number of fingerprinting API calls by all the calls caused by pages B, C and D. Figure 4.2
illustrates a request tree with associated fingerprinting attempts.

Limitations

This method inherits the limitations of the first evaluation. Additionally, it cannot con-
firm whether observed fingerprinting API calls were used for tracking. These APIs have
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Visited Page
A

2 Attempts Logged

Page
B

1 Attempt Logged

Contacts

Contacts

Page
C

1 Attempt Logged

Contacts

Page
D

1 Attempt Logged

Figure 4.2: Illustration of a request tree where each node is assigned its API calls that can
be misused for fingerprinting.

legitimate uses, so not all calls represent tracking behavior. Consequently, blocking more
API calls that are potentially usable for fingerprinting might not be inherently better than
blocking less. However, this evaluation still provides a way to compare how well differ-
ent tools prevent potential fingerprinting, complementing the first request-based evaluation
with a more privacy-oriented metric.
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Chapter 5

Implementation of the Proposed
Evaluation Methods

This chapter describes the implementation of the two evaluation techniques proposed in
Section 4.2. The two evaluations are implemented as a single, comprehensive evaluation.
The source code is available on GitHub1. The chapter outlines the technologies used and
describes the implementation logic. In this chapter, various limitations are mentioned.
Additional limitations are presented in Chapter 7.

To support comparison of privacy-oriented browsers, such as the Avast Secure Browser,
which is available only on Mac and Windows desktop operating systems, Windows 11 was
selected as the operating system for the evaluation of the content-blocking tools. Docker
was not used to containerize the system since running a Windows OS inside a Docker is not
officially supported. Instead, the implementation can be run natively on a Windows machine
or within the included virtual environment, provided the host machine supports nested
virtualization since Docker is utilized to run a custom DNS server. The implementation is
written in Python2, chosen for its easy access to many libraries.

Given the objective of simulating user behavior, such as visiting web pages using
a browser with or without privacy-preserving extensions, Selenium is employed for au-
tomation. Additional technologies used in the evaluation are discussed in their respective
sections. The program can operate on either previously stored traffic or newly acquired data
to ensure reproducibility and determinism across multiple evaluations. Figure 5.1 depicts
the high-level overview of the evaluation system.

Traffic Logger Traffic Parser Request
Trees

Simulation EngineLogged
Traffic

Blocked
Requests

Analysis Engine

Request
Trees

Figure 5.1: High-level overview of content-blocking tool evaluation system.
1https://github.com/Aenariss/DIP
2https://www.python.org/
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The overview shows that the system consists of four primary components, each indepen-
dently executable. The modularity ensures that the system can, for example, be configured
to collect traffic data without performing any subsequent parsing.

5.1 Traffic Logger
The objective of the traffic logger is to collect data from designated sites or to load previously
gathered data. The collected data for each page are network traffic, fingerprinting API calls
and Domain Name System (DNS)3 responses.

Logged network traffic allows the evaluation of a content-blocking tool’s effectiveness by
measuring the number of blocked requests. Observed fingerprinting API calls are used to
determine a content-blocking tool’s inherent anti-tracking capabilities. Additionally, DNS
responses are utilized to ensure determinism.

Users can specify the pages from which the traffic logger should collect data to maximize
configurability. The collection process is performed for each specified page and consists of
the following steps:

• Start the DNS Response Monitor to capture DNS responses.
• Create a Selenium-driven Google Chrome browser instance4.
• Load a custom configuration of the JShelter extension into the browser.
• Visit the specified page and collect data for user-defined duration. If the page fails to

load within the user-specified maximum time, skip it and continue with the next.
• Quit the browser and the DNS Response Monitor and save the logged data.

5.1.1 DNS Responses and Logs

Logging DNS responses allows the evaluation to save the IP address and possibly CNAMEs
associated with each request. This data can be utilized to repeat the response later, ensuring
determinism, since some content-blocking tools can use the IP address associated with
a domain to block the request5. The DNS Monitor uses the Scapy6 Python module.

CNAME Cloaking

Another reason for logging DNS responses is to address the issue of CNAME cloaking [10].
Figure 5.2 depicts how a DNS resolution should proceed for domain tracker.example.com.
Suppose our content-blocking tool includes a rule that blocks tracker.example.com. In
that case, the content-blocking tool would block the request before any DNS query could
even be created.

To illustrate the CNAME cloaking issue, suppose a page requests data from domain
not-a-tracker.example.com. Under normal circumstances, the DNS server would re-
turn an A record, as in the previous Figure 5.2. However, if a CNAME record exists for
the domain instead of an A record, the resolution of not-a-tracker.example.com could,

3https://www.ietf.org/rfc/rfc1035.txt
4Traffic logging could theoretically work with other Chromium-based browsers, but traffic logger is im-

plemented to utilize Google Chrome
5Tested with uBlock Origin 1.63.0 using a custom filter in Firefox. Also tested in Brave Browser

(Chromium-based) with the same configuration – only works in Firefox.
6https://scapy.net/

28

https://www.ietf.org/rfc/rfc1035.txt
https://scapy.net/


https://tracker.
example.com

Browser Request

tracker.example.com

DNS Query

192.168.0.1

DNS ResponseDNS A-record
found

Figure 5.2: DNS resolution for domain tracker.example.com with no CNAME records
present.

in reality, lead to tracker.example.com, which only then leads to the A record. Figure 5.3
depicts this situation.

https://not-a-
tracker.example.com

Browser Request

not-a-tracker.example.com

DNS Query

tracker.example.com

DNS Query
DNS CNAME-record

found

192.168.0.1

DNS Response
DNS A-record

found

Figure 5.3: DNS resolution for domain not-a-tracker.example.com with a CNAME
record present.

Suppose that the tested content-blocking tool does not block not-a-tracker.example.
com, even though it resolves into the unwanted tracker.example.com. If the tool does not
see the intermediate step in the resolution process, it does not block the request. CNAME
responses are logged to replicate these situations. To replicate the DNS responses later,
all A and CNAME responses are stored for each domain and its subdomains. Examples of
observed DNS responses are shown in Listing A.1 in Appendix A.

5.1.2 Default JShelter Version

As previously mentioned, JShelter is used to collect fingerprinting logs for each page. By de-
fault, JShelter includes functionality to protect users from browser fingerprinting. However,
since this would affect visited sites, it must be disabled.

In the pre-compiled version of JShelter, fingerprinting API calls are only logged should
the user explicitly choose to do so. The button to start the logging is located inside
a submenu, which is located in the extension menu. The submenu location is shown in
Figure 5.4. After activation, tracing the callers causes a page reload and the submenu to
populate with observed callers.
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Figure 5.4: JShelter Fingerprint Detector button is located in the extension menu. A red
line underscores the button. The menu must be opened to track callers of potentially
fingerprintable APIs.

However, the page reload breaks the network logging. It leads to repeated entries
in the logs, making it difficult to distinguish the original request tree. Additionally, if
the initially visited page redirects the user to another page, the reload only affects the final
page. Therefore, the repeated network logs would be incomplete since the original redirects
would be lost.

Another issue with the default version of JShelter is that it exposes the caller data
inside a submenu, which can only be opened by manually clicking the extension button.
The submenu location is shown in Figure 5.4. Since Selenium does not support interacting
with extension menus7, automating the clicking process is not feasible.

5.1.3 Custom JShelter Version

I created a custom version of JShelter 0.19 with all anti-tracking functionality disabled to
address the limitations of the default JShelter version. In the custom version, API caller
tracking is enabled by default. Therefore, each time a page is visited, JShelter automat-
ically tracks the callers by inserting the required JavaScript wrappers and populating its
internal callers list. To obtain the fingerprinting data, JShelter is modified to automatically
download a JSON fingerprinting report five seconds after a page was accessed. Therefore,
a browser must remain on the page for at least five seconds to successfully download the re-
port.

However, this approach has one severe limitation – JShelter sometimes fails to insert
the wrappers correctly. The issue is present only in Selenium, which is used to create
the dataset. It makes the results in the fingerprinting report empty. Testing with a newer
version of JShelter (0.20) resulted in an even higher failure rate in the Selenium environment.
This ultimately led to using the previous version 0.19.

Despite the abovementioned limitation, the JShelter Fingerprint Detector can still be
used, albeit with limited results. Since all content-blocking tools are evaluated on the same
dataset, missing fingerprinting data for some pages is equivalent to those pages not using
any fingerprinting API calls. That is, in turn, equivalent to a smaller dataset being used.

5.1.4 Network Logs

I selected Google Chrome for traffic logging as it provides a convenient way to obtain network
logs. Network logs are later used to create request trees. For each specified page, a new

7https://github.com/seleniumhq/selenium-google-code-issue-archive/issues/7805
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instance of Google Chrome is created and configured to log performance events8, including
network logs. Listing 5.1 shows the command to enable performance logging.

chrome_options.set_capability("goog:loggingPrefs", {"performance": "ALL"})
Listing 5.1: Command to configure the browser to log performance events

Afterward, network logs are obtained by parsing each record and identifying whether it
matches a Network.requestWillBeSent9 event. If the record matches this event, the traffic
logger saves it. Internal browser requests (e.g., requests starting with chrome://) are not
included. For each requestWillBeSent event, three key attributes are logged:

• documentURL, renamed as requested_for: The URL of the document the request is
loaded for.

• request.url, renamed as requested_resource: The URL of the requested data.
• initiator: The entity that initiated the request.

5.2 Traffic Parser
The traffic parser is responsible for reconstructing request trees from the logged data.
The trees are created from the fingerprinting logs and network logs. The process is summa-
rized in the following steps:

• Load fingerprinting groups from the JShelter FPD settings.
• Retrieve all wrapped APIs from the FPD settings and assign each API a primary

group. The current implementation requires the FPD logs to originate from a Chro-
mium-based browser.

• Parse fingerprinting logs for each visited site and count fingerprinting API calls of
each resource. Assign the fingerprinting API calls to the primary groups.

• Construct a request tree for each network log. Assign fingerprinting API calls to each
resource in the tree.

5.2.1 Fingerprinting Groups and APIs

The goal of parsing fingerprinting logs is to determine the number of fingerprinting API
calls caused by each resource. According to the JShelter FPD groups configuration file10,
the API calls are divided into three main groups. Information about the group configuration
and other parts of JShelter Fingerprint Detector is explained in great detail in the original
thesis by Marek Saloň [27].

Each wrapped fingerprinting API belongs to a specific group, but the configuration file
specifies many groups. If all groups were used as-is, the fingerprinting results would be
overly detailed and challenging to understand. Each main group has multiple associated
subgroups, which may also have their own subgroups. To improve readability, only the three
main groups are used. These groups are:

8https://developer.chrome.com/docs/chromedriver/logging/performance-log
9https://chromedevtools.github.io/devtools-protocol/tot/Network/#event-requestWillBeSent

10https://pagure.io/JShelter/webextension/blob/main/f/common/fp_config/groups-lvl_0.json,
accessed on March 4, 2025
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• BrowserProperties: APIs that use browser properties representing the state of
the browser, such as the Navigator object.

• AlgorithmicMethods: APIs that need to be dynamically calculated, such as the Canvas
API.

• CrawlFpInspector : APIs identified by Iqbar et al. [18] as mostly used for fingerprinting
purposes. It consists of APIs from both previous categories and some new ones.

As mentioned, each wrapped API belongs to a specific group. The APIs are defined
in the JShelter FPD wrapper configuration. Each observed API’s associated subgroup is
changed to one of the three primary groups. For example, the API Navigator.prototype.
userAgent belongs to a group NavigatorBasic, which in turn belongs to the primary group
BrowserProperties. Therefore, the group assigned to this API is changed to BrowserProp-
erties. Should the API also be included in the CrawlFpInspector category, this group, too,
is associated with that API. This way, no group information is lost, only reduced.

The configuration for both groups and wrapped APIs was obtained directly from
the JShelter project11. This ensures that future updates to JShelter FPD can be easily
integrated by replacing the configuration files.

5.2.2 Associating Fingerprinting API Calls to a Resource

For each fingerprinting API call, the complete call stack is logged. However, only the fi-
nal caller in the call stack is used to associate a call with a resource. For example, if
script A calls script B, which then calls script C, and C uses a potentially fingerprint-
able API, this call is attributed to script C. If the callers of an API are not listed,
the calls are skipped. Such calls have been observed to come mainly from the property
CSSStyleDeclaration.prototype.fontFamily, which often reports thousands of calls but
no callers.

5.2.3 Request Trees

Request trees are a vital part of the evaluation process since they facilitate the transitive
properties of the evaluation. Request trees are created using both network and fingerprint-
ing logs. The trees have a limitation, however. If a resource is requested multiple times,
duplicate nodes are created, which distorts the analysis results. The duplication issue is
explained further in Section 7.2. To partially address this issue, each resource in the tree
can include any given follow-up resource only once among its list of children. Although this
reduces the distortion caused by duplicate resources requested by the same parent, it also
introduces a different kind of inaccuracy, as these resources are excluded from the analysis.

The process of associating fingerprinting statistics to each resource has already been
discussed; the statistics are assigned to the corresponding node in the tree. If a resource
is already present in the tree, the new node’s fingerprinting API calls are assigned twice,
distorting the results further. Each node in the tree has the following attributes:

• resource: The resource URL represented by the node.
• children: A list of nodes requested by this resource.
• fp_attempts: The number of fingerprinting API calls made by this node.

11https://pagure.io/JShelter/webextension/blob/main/f/common/fp_config/

32

https://pagure.io/JShelter/webextension/blob/main/f/common/fp_config/


• blocked: Whether this node was blocked by a content-blocking tool. It is only used
during the analysis phase (described in Section 5.4).

• root_node: Whether the node is a root node or not.
• parents: The resources that requested this node.

The request trees are constructed using three attributes from network logs – requested_
for, requested_resource and initiator. The network logs are parsed chronologically.
During the construction process, two types of nodes can be observed, as illustrated in
Figure 5.5, which represents a real example12.

requested_for:
idnes.cz/nastaveni-souhlasu

requested_resource:
1gr.cz/css/neblokuj.css
initiator.type: parser

requested_for:
idnes.cz/nastaveni-souhlasu

requested_resource:
1gr.cz/js/uni/uni.js

initiator.type: parser

requested_for,
requested_resource:
www.idnes.cz/zpravy
initiator.type: other

Legend

Root node

Regular node

requested_for,
requested_resource: 

idnes.cz/nastaveni-souhlasu
initiator.type: other

requested_for,
requested_resource: 

zpravy.idnes.cz
initiator.type: other

Figure 5.5: Illustration of root and regular nodes. For root nodes, requested_resource
and requested_for must match while also having initiator.type as other and
initiator.url not set. Regular nodes are all other nodes.

12The initially accessed URL was https://zpravy.idnes.cz on March 12, 2025. Part of the observed
structure was omitted, and URL addresses were shortened for clarity.
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5.2.4 Root nodes

The root nodes are characterized by the requested_for and requested_resource at-
tributes being identical and the initiator.type being other. initiator.url must also
not exist. These nodes represent main pages loaded in the browser (e.g., pages with URL
shown in the address bar), including any redirects leading to the final page (i.e., the page
URL of which is shown in the address bar). The last node in the sequence of root nodes
is used as the parent node of all anonymous nodes (i.e., the nodes with no known parent).
All unidentifiable fingerprinting API calls are also assigned to the last root node.

Root nodes have the previous root node set as their parent. If no previous root node
exists, it was the very first root node observed – in such case, the node has no parent and
represents the root of the whole tree. When one of the root nodes is loaded multiple times,
i.e., two Network.RequestWillBeSent events have the exact attributes requested_for,
requested_resource and initiator.type, the second such event is added as a child of
the current root node as a regular node. The duplicate node has its associated fingerprinting
API calls set to zero since they are already associated with the primary node.

5.2.5 Regular Nodes

Any node that does not match the specific characteristics of a root node is classified as a reg-
ular node. The root nodes have special parentage rules described above. The traffic parser
uses three methods to determine the parentage of the regular nodes. However, since the trees
may contain duplicate nodes, child nodes may be assigned to multiple parents, leading to
redundant parent-child relations, which affect the subsequent analysis. The methods to
determine the regular nodes parentage are described in the following subsections.

Initiator URL

When the attribute initiator.url is available, the tree is searched for matching parent
nodes (i.e., nodes with the resource attribute matching this initiator.url).

Initiator Call Stack

When initiator.url is not available, the final record of the JavaScript call stack is uti-
lized. Each record in the call stack has url specified, which represents the URL of the re-
source that caused the event. Nodes representing this URL are selected as parents.

This approach has another limitation in addition to the one described above. The limi-
tation is that calls may have come from a dynamically generated code, such as from eval13,
which would show the url attribute as an empty string. This situation is illustrated in List-
ing 5.3. It was caused by calling eval as shown in Listing 5.2. In this case, the call stack is
traversed until a valid URL is obtained. This URL is then set as the parent, even though
it may not reflect the actual parent. The current root node is selected as the parent if no
valid URL exists.

eval("const script2 = document.createElement('script'); script2.src = '/
script2.js'; document.body.appendChild(script2);")

Listing 5.2: Loading a script using eval which resulted in empty url parameter in the call
stack.

13https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
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"initiator": {
"stack": {

"callFrames": [
{

"functionName": "eval",
"url": ""

},
{

"functionName": "",
"url": "http://localhost:8000/script1.js"

}
]

},
"type": "script"

}

Listing 5.3: Example of empty url attribute in the call stack caused by the use of eval,
which was called by script1.js, but the empty url attribute of the record does not reflect
it. The first record in the list of call frames represents the final call. This presented call
stack is edited and does not contain all logged attributes.

Other

If none of the above is applicable, the current root node is selected as the parent. In case
a valid parent could not be found for any reason (e.g. because an iframe with defined
srcdoc14 property was opened, so the initiator.url was specified as about:srcdoc),
the parent is also set as the current root node.

5.3 Simulation Engine
The simulation engine simulates which of the requests from the initial dataset would have
been blocked by a specified content-blocking tool. The simulation attempts to partially
replicate the conditions of the initial visit. To understand what requests a given content-
blocking tool would block, several steps are taken:

• Set up the simulation. The simulation includes a custom DNS server to replicate DNS
responses and a custom web server to request all the resources.

• Configure a client with the content-blocking tool to be tested. Visit the custom web
server with the client.

• Obtain results indicating what requests were blocked.

Each of these steps is described in greater detail in the following subsections. The sim-
ulation engine also creates firewall rules to prevent requests from leaving the machine to
save network bandwidth.

14https://developer.mozilla.org/en-US/docs/Web/API/HTMLIFrameElement/srcdoc
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5.3.1 Custom DNS Server

A custom DNS server is utilized to resolve DNS requests as they were observed to reproduce
the conditions present during the initial visit. It allows the tested tools to block requests
depending on the IP address to which they were resolved. As mentioned in Subsection 5.1.1,
this step also allows the tested tools to use methods allowing them to block requests utilizing
CNAME cloaking. However, CNAME cloaking can only be prevented in Firefox since
Chromium does not provide the necessary API.

I chose BIND 915 server for this purpose. It runs inside a Docker container, built
using an existing image16. To configure the system to use the custom DNS server as its
default, the Set-DnsClientServerAddress17 Powershell command is executed from within
the program. After the simulation ends, the same command is used to reset Windows
settings back to the default state, using the DNS server address provided by Dynamic
Host Configuration Protocol (DHCP) – however, any custom configuration used before
the simulation launch is lost in the process.

Zone Files

Zone18 files are used to define how domain names should be resolved. A separate zone file
is created for each observed second-level domain19.

All DNS logs are merged to generate zone files correctly, and duplicates are removed.
The merging is possible since the DNS responses remain valid for a specified period of time.
Therefore, during dataset creation, repeated DNS queries should return identical responses.
However, a DNS reply may have changed during dataset creation. The merging erases this
change, slightly limiting the correctness of DNS replies.

If a DNS response contains multiple IPv4 addresses, only the first address is used in
the zone file. This ensures that all queries for a given domain are resolved into the same
address. Similarly, if a response contains multiple CNAMEs, only the first CNAME is
added to the zone file. However, no information is lost, as artificial records for all observed
CNAMEs are present in the logs. These artificial records ensure that every CNAME has
its corresponding zone file, as illustrated in Listing A.1 in Appendix A20.

The simulation engine appends a record to custom named.conf file for each zone file.
named.conf is used to configure the BIND 9 server to use the created zone files. After all
the zone files are created and included in the named.conf, the zone files and the named.conf
are uploaded to the Docker container, and the server is restarted to apply the changes.

15https://www.isc.org/bind/
16https://hub.docker.com/r/internetsystemsconsortium/bind9
17https://learn.microsoft.com/en-us/powershell/module/dnsclient/set-dnsclientserveraddres

s
18https://datatracker.ietf.org/doc/html/rfc1035
19e.g., for observed address tracker.example.com, zone file example.com is created, containing a record

for tracker. The record can either be a CNAME pointing to another domain or an A record specifying
an IPv4 address.

20The accessed domain was ads.pubmatic.com. Response for this domain only was observed. The other
records were automatically added to be used with CNAMEs. Each of the primary records has its own zone
file.
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5.3.2 Custom Web Server

The custom web server is responsible for repeating the requests for all resources observed
during dataset creation. Flask21 is used to build a simple locally hosted webpage that
dynamically loads recorded resources using JavaScript fetch22.

To monitor request completion, fetch is overridden to track how many resources have
already been loaded and how many are still waiting. These values are stored in the window23

object, allowing the connected client to obtain these values to determine whether all requests
have been loaded.

However, calling fetch to load tens of thousands of resources, depending on the size of
the dataset, may be too intensive in terms of required computing power. Thus, the requests
are fetched in batches to improve performance.

5.3.3 Firewall Rules

To minimize network bandwidth usage and to prevent unnecessary spam towards the servers
that host the observed content, firewall rules are configured to block all outgoing TCP traffic
on ports 80 and 443, effectively blocking all outgoing HTTP and HTTPS requests. After
the simulation ends, these firewall rules are removed.

An additional benefit of this approach is that since all requests are blocked immediately
due to the firewall, the simulation can proceed much faster since the simulation engine does
not need to wait for the server to answer. Content-blocking tools apply their blocking rules
even before a request is sent24. Thus, if a request is blocked by a content-blocking tool, it
happens before the firewall may intercept it, ensuring correct results.

5.3.4 Client Setup

A Selenium driver is created based on the user-specified configuration to load a selected
content-blocking tool. Users can choose whether to use Firefox or Google Chrome. Users
can also use a custom browser. This browser, however, needs to be compatible with Sele-
nium Chrome WebDriver. If a custom browser is used, users also need to specify the binary
file that launches the custom browser and the correct Chromedriver25 path. Unfortunately,
selecting the correct Chromedriver using Selenium Manager26 does not work when using
a custom browser. Depending on the browser used, users may also need to specify the path
to the profile. This setting is necessary for Avast Secure Browser.

Users can specify the list of extensions to be loaded into the selected browser. Any
extension in the .crx format for Google Chrome and .xpi format for Firefox is supported.
If the user selects Google Chrome, they can specify the version to be used, which is loaded
using Selenium Manager. For Firefox, users can choose to disable its inherent anti-tracking
functionality.

Some tools require manual activation after browser launch. Automating this process is
not viable due to UI changes or using an unknown content-blocking tool. After the browser

21https://flask.palletsprojects.com/en/stable/
22https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
23https://developer.mozilla.org/en-US/docs/Web/API/Window
24This has been tested with extensions for both Google Chrome and Firefox browsers. uBlock Origin

can also filter content later, but at that point, an initial request would have already been sent https:
//github.com/gorhill/uBlock/commit/6acf97bf51.

25https://developer.chrome.com/docs/chromedriver
26https://www.selenium.dev/documentation/selenium_manager/
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is launched, users are given time to enable all the settings their configuration may require.
Initializing some tools also takes time, and the wait period provides it.

5.3.5 Server Visit and Result Collection

The firewall and DNS server are activated just before the client connects to the server.
Activating them at this point ensures that the browser or extension has enough time to
download everything it may need to function correctly.

As mentioned, during the visit, the client fetches all observed resources. After all of
the resources have been loaded, the client leaves the server. The loading status is indicated
by variables stored in the window object. After all requests are complete, the logs from
the visit are saved. Depending on the type of browser used, the logs can have different form
and purpose. However, both are used to establish what resources have been blocked.

Google Chrome

For Google Chrome, blocked requests are logged in the console. If a request were blocked
by a content-blocking tool, it should show in the console as net::ERR_BLOCKED_BY_CLIENT
or net::ERR_BLOCKED_BY_ADMINISTRATOR error, depending on the implementation. Either
way, both these errors mean the request was not sent. Since the logs contain all required
information, they are extracted from the Selenium driver and saved.

Mozilla Firefox

For Firefox, the situation is more complex. Unlike Google Chrome, Firefox does not log
the blocked requests into the console. Instead, the information is available in the Network
Monitor27. The problem with Firefox is that this data is not easily accessible to Selenium.

I developed a custom extension to work around the problem. This extension utilizes
webRequest28 API to track which requests were successfully sent. Specifically, a listener is
added to the onSendHeaders event. For each such event, the URL of the requested resource
is logged. After all requests have been loaded, Selenium accesses and saves the logs. Blocked
requests are not logged since they never trigger the onSendHeaders event. Based on this
logic, blocked requests are computed as the difference between the list of all resources and
the list of logged resources.

5.4 Analysis Engine
The analysis engine uses the results from the simulation to assess the behavior of a selected
content-blocking tool. Request trees are analyzed one by one. If a resource was blocked
during simulation, this block is projected into the request tree. After all the trees have
been analyzed, the partial results are aggregated to form the final evaluation result.

As previously mentioned, simulation logs determine which pages the selected content-
blocking tool blocked. The logs are parsed differently, depending on whether they originate
from Google Chrome-based browser or Firefox, as explained in Subsection 5.3.5 – how-
ever, in both cases, the log parsing returns a list of pages that have been blocked during
the simulation.

27https://firefox-source-docs.mozilla.org/devtools-user/network_monitor/
28https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
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The analysis computes several metrics that describe the behavior of the tested content-
blocking tool. The results include both content-blocking and anti-tracking performance.
The anti-tracking performance is based on the number of prevented potential fingerprinting
API calls. All metrics are explained using the example request tree in Figure 5.6.

In the figure, each node is marked as blocked, transitively blocked or loaded. A blocked
node is one that a content-blocking explicitly blocked. A transitively blocked node was
indirectly blocked due to its parent node being blocked. A loaded node represents a resource
that was not blocked. Each node is labeled with the corresponding resource address and
the number of observed fingerprinting API calls for which this resource is responsible.

A
0, 0, 0

B
1, 2, 1

C
1, 1, 1

E
2, 3, 1

F
0, 1, 1

D
1, 3, 1

G
1, 1, 1

H
1, 1, 1

Legend

Loaded resource

Blocked resource

Transitively blocked
resource

A
2, 3, 1

Resource URL and
browser fingerprinting

attempts (three
primary categories)

Figure 5.6: Visualization of a request tree with assigned fingerprinting API calls and block
statuses as a visual aid to explain the measured metrics. Each node contains its URL
(represented by a single letter in the node) and number of observed fingerprinting API
calls, split into three primary categories as described in Subsection 5.2.1.

5.4.1 Requests Analysis

For the request blocking analysis, most metrics consist of only a single number, with one
exception. All the metrics are explained below in the same format as in the created results
file.

requests_observed This metric should be consistent for all tools tested on the same
dataset. It represents the total number of requests that were observed in the dataset.
In Figure 5.6, this metric corresponds to the number of nodes, 8.

requests_blocked_directly Directly blocked requests are those that were explicitly
blocked by a content-blocking tool. None of their parent nodes is blocked. This
metric represents the total number of such nodes in the request tree – in Figure 5.6,
it is 2.
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requests_blocked_transitively Transitively blocked requests are those blocked due to
any preceding parent node being blocked. Since the parent was blocked, these requests
would have never occurred if the tested browser visited the page. In Figure 5.6, there
is only one such node, F, which was blocked because C, its parent, was blocked. Thus,
this metric would be 1.

requests_blocked_in_total The sum of requests_blocked_directly and requests_
blocked_transitively. For figure 5.6, this number is 3.

The following metrics are experimental, meaning their results are not as easy to grasp
as the previous metrics. They primarily measure the aggresiveness of a content-blocking
tool, with more aggressive tools blocking parent requests before any child request can be
loaded. The metrics may help distinguish between similarly performing tools and quantify
the tool’s aggressiveness.

blocked_requests_with_followup_requests This metric represents the number of
directly blocked requests that have at least one child node associated, i.e., they were
responsible for at least one follow-up request. In Figure 5.6, there is only one node
that was blocked that also has at least one child node – node C, making this metric
1.

average_request_block_level The average request block level represents the average
level at which blocking occurred in the tree. Only the first block in each subtree is
considered. The root of the tree is considered as level 1. In Figure 5.6, node A would
be level 1, node B would be level 2, nodes C, D, E would be level 3 and nodes F,
G, H would be level 4. Since only the first blocked node in each subtree is taken into
account, this number is counted from nodes C and G, which is 3+4

2 = 3.5. This metric
is only counted for websites that include at least one blocked request.

blocked_subtrees_data This metric is composed of five numbers. It describes blocking
of primary subtrees in the request tree. In the context of this metric, subtrees are
defined by the following procedure: A given request tree is traversed until the first
node with at least two child nodes is found. Each child node then serves as a root of
its primary subtree.
In Figure 5.6, the tree is traversed until node B is reached. Since node B has three
children, nodes C, D and E, these child nodes are used as root nodes of three primary
subtrees. Five numbers are measured as part of this metric:

subtrees_fully_blocked The number of primary subtrees blocked at the root level.
In Figure 5.6, only subtree with root node C is fully blocked, making this metric
1.

subtrees_partially_blocked The number of primary subtrees that include a
blocked node anywhere but at the root level. In Figure 5.6, only subtree com-
posed of nodes E, G and H is partially blocked since one of its nodes, the node
G is blocked, making this value 1.

subtrees_not_blocked The number of primary subtrees with no blocked nodes.
In Figure 5.6, only subtree D includes no blocked nodes. Thus, the metric is 1.

subtrees_in_total The total number of primary subtrees observed. It is the sum
of the three metrics above – subtrees not blocked anywhere and those blocked
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partially or fully. In Figure 5.6, this metric is 3. This metric should be consistent
for all tools evaluated on the same dataset.

trees_with_blocked_root_node The number of times the whole request tree
was blocked due to a root node being blocked. In this context, root nodes mean
those described in Subsection 5.2.4. If any root node were blocked in a tree,
this metric for such a tree would be 1. No root blocking occurs in Figure 5.6,
making this metric 0. However, if node A or B were blocked, this metric would
be set to 1, and all three primary subtrees would be considered fully blocked. If
a request tree was blocked because a root node was blocked, the page would be
inaccessible, and the user would be presented with an error page. The user must
manually interact with the error page to access such a page.

5.4.2 Fingerprinting Analysis

The fingerprinting analysis consists of four metrics, listed in the same format as in the pro-
duced results file. As described in Subsection 5.2.1, the fingerprinting API calls are split
into three categories. Therefore, each fingerprinting metric is composed of three numbers,
with each number describing the corresponding category – BrowserProperties, Algorith-
micMethods and CrawlFpInspector.

fpd_attempts_observed This metric should be consistent for all content-blocking tools
evaluated on the same dataset. It represents the total number of fingerprinting API
calls observed across all pages in the dataset. In Figure 5.6, this metric is the sum of
attempts logged for each category for each node – (7, 12, 7).

fpd_attempts_blocked_directly Directly blocked fingerprinting attempts represent
the fingerprinting API calls associated with nodes that were blocked directly, as
described above. In Figure 5.6, this metric is the sum of fingerprinting API calls
observed for nodes C and G, which is (2, 2, 2).

fpd_attempts_blocked_transitively Transitively blocked fingerprinting attempts are
the API calls associated with transitively blocked nodes, as explained above. If a par-
ent node was blocked, none of its child nodes would be loaded, and their correspond-
ing fingerprinting API calls would be prevented. In Figure 5.6, this metric is (0, 1, 1),
which corresponds to the F node, which is the only transitively blocked node.

fpd_attempts_blocked_in_total The number of fingerprinting attempts blocked in
total is the sum of fpd_attempts_blocked_directly and fpd_attempts_blocked
_transitively. In Figure 5.6, this metric is (2, 3, 3).
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Chapter 6

Results of the Evaluation and
Comparison of Selected Tools

This chapter presents the results of the evaluation process described in Chapter 5. The re-
sults are displayed in tables and discussed. The evaluated tools are described in Section 2.3,
except for JShelter, which is not evaluated as it is not a content-blocking tool but is used
only for dataset creation. The evaluation uses the metrics presented in Subsections 5.4.1
and 5.4.2. All tools were tested in their default state. The only manual interaction in-
volved enabling the Ghostery extension, activating the content-blocking functionality of
Avast Secure Browser after it was installed, and deactivating its Web Shield functionality
that interfered with the test page.

The implementation was validated through unit testing using the unittest1 Python mod-
ule. Code coverage analysis, performed with the coverage2 module, reported that 100 %3

of the code was executed during testing.
Logging times were recorded across a sample of 100 web pages using the Measure-

Command4 utility to assess the performance of the data collection process. The measurement
was performed on a system with an 8-core Ryzen 7 9800X3D CPU and 32 GB RAM.
The traffic logger was configured to remain on a page for 7 seconds, with a timeout set to
10 seconds. Of the 100 pages tested, 99 loaded successfully, and the entire collection process
took 2,574 seconds. This corresponds to an average of 25.74 seconds per page to complete
all data collection, including overhead from browser automation and traffic capture.

The dataset was collected on March 18, 2025 and consists of 937 pages, with fingerprint-
ing statistics successfully gathered from 833 of them. The dataset is based on pages obtained
from the Top 1000 Websites – DataForSEO5 list for Czechia. The evaluated browsers (i.e.,
browsers with content-blocking capabilities and no additional content-blocking extensions
present) are:

1https://docs.python.org/3/library/unittest.html
2https://coverage.readthedocs.io/en/7.8.0/
3The coverage configuration excluded the if __name__ == ”__main__” block, which only runs when

the script is executed directly (e.g., with python start.py). This block only launches the initial start
function, which was tested separately. If this block were included, overall coverage would be only 99 %.

4https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measu
re-command

5https://dataforseo.com/free-seo-stats/top-1000-websites
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• Avast Secure Browser, version 136.0.29662.17. The development version was used
due to compatibility issues with Selenium. Chromedriver 136 was used for automa-
tion.

• Brave browser, version 1.76.82. Chromedriver 134 was used for automation.
• Mozilla Firefox, version 136.0.3.

All extensions were tested in both Firefox and Google Chrome, the only exception
being uBlock Origin, which is not available in Google Chrome anymore due to its lack of
Manifest 3 support. uBlock Origin Lite was used instead. The extensions evaluated in
Google Chrome are:

• Adblock Plus, version 4.15.0.
• Ghostery, version 10.4.25.
• Privacy Badger, version 2025.1.29.
• uBlock Origin Lite, version 2025.3.2.1298.

For Firefox, the evaluated extensions are:

• Adblock Plus, version 4.15.0.
• Ghostery, version 10.4.25.
• Privacy Badger, version 2025.1.29.
• uBlock Origin, version 1.62.0.

6.1 Effectiveness in Blocking Requests
This section presents the results of the request-blocking evaluation. The metrics used
for analyzing requests are detailed in Subsection 5.4.1. A total of 100,753 requests were
analyzed. Blocked requests serve as a metric for evaluating the effectiveness of content-
blocking tools, as it reflects their capability to prevent the loading of third-party content,
tracking scripts, and other potentially unwanted resources.

However, a higher number of blocked requests does not necessarily indicate better per-
formance, as some of the blocked content may not have been considered undesirable by
all users. Additionally, the results do not take into consideration the reaction of the page
to blocking the requests, as described in Section 7.1. The results are also affected by the
duplication issue described in Section 7.2.

The analysis of the results begins with statistics on blocked root nodes, as this metric
highlights an important limitation of the evaluation method. Root nodes are described
in Subsection 5.2.4. The evaluation is designed to work correctly with tools that rely on
static filter lists. However, if a tool uses another method, such as heuristic-based blocking,
the results may not be entirely accurate due to how the simulation is designed. The issue
is further discussed in the next chapter, in Section 7.3.

6.1.1 Trees With Blocked Root Node

Avast Secure Browser, Brave browser, and the Privacy Badger extension blocked some
pages at the root level. However, manual verification showed that these pages loaded
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properly in an actual browser visit. This suggests that these tools use internal heuristics or
dynamic filtering rules that triggered the blocking behavior based on how the simulation
loaded resources. Privacy Badger, for example, explicitly states that it uses an algorithmic
approach, which aligns with this behavior. The issue might be present even with other
tools. However, it is not apparent from the results.

Due to the abovementioned issue, this metric is not reliable for these tools. Furthermore,
when these tools blocked root pages in the simulation, the analysis engine subsequently
marked all requests within the corresponding request trees as blocked, which distorted
the results of all subsequent comparison. Removing the problematic pages from the dataset
would not fix the issue, as the tools may have also blocked other requests they normally
would not, or conversely, they may have missed requests they otherwise would have blocked
– the results would remain distorted. Consequently, all evaluation results for these tools,
particularly for Privacy Badger, are unreliable. Due to this distortion, the results of Privacy
Badger are excluded from the comparison and are not commented on, but they are included
in the tables for completeness. Avast Secure Browser and Brave are still included, as their
result distortion might not be as severe. Table 6.1 shows the number of root nodes blocked
by each tool. Apart from the three mentioned, no other tools blocked any root nodes.

Tool Trees With Blocked Root Node
Avast Secure Browser 3
Brave browser 1
Firefox browser 0
Chrome Adblock Plus 0
Firefox Adblock Plus 0
Chrome Ghostery 0
Firefox Ghostery 0
Chrome Privacy Badger 31
Firefox Privacy Badger 31
Chrome uBlock Origin Lite 0
Firefox uBlock Origin 0

Table 6.1: Results of the evaluation of the number of trees with blocked root node per tool.
The results of Privacy Badger are unreliable as the tool uses an algorithmic approach to
block requests. Similarly, Avast Secure Browser and Brave browser blocked several root
nodes incorrectly, as manual verification showed that in regular browsing session, those
pages are not blocked.

6.1.2 Directly and Transitively Blocked Requests

Table 6.2 summarizes the number of requests blocked directly, transitively, and in total.
Firefox’s built-in content blocking functionality blocked the fewest requests by a consid-
erable margin, indicating significantly weaker default performance. This outcome can be
attributed to Firefox not blocking tracking content by default6.

6https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop#w_wha
t-enhanced-tracking-protection-blocks
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Across all evaluated tools, more requests were blocked transitively than directly, with
the exception of the Firefox browser. Furthermore, all evaluated extensions blocked an
equal or higher number of requests in Firefox compared to their Chrome counterparts when
considering transitively blocked requests.

Adblock Plus exhibited identical performance in both browsers. In other extensions,
performance across browsers slightly varied. Interestingly, uBlock Origin Lite in Chrome
blocked more requests in total than the regular uBlock Origin extension in Firefox. In
practice, blocking more requests should reduce page load times and network bandwidth
usage, as blocked resources are not downloaded.

Tool Requests Blocked
Directly

Requests Blocked
Transitively

Requests Blocked
in Total

Avast Secure Browser 4,484 8,375 12,859
Brave browser 9,513 13,908 23,421
Firefox browser 147 17 164
Chrome Adblock Plus 4,132 6,011 10,143
Firefox Adblock Plus 4,132 6,011 10,143
Chrome Ghostery 9,286 13,425 22,711
Firefox Ghostery 9,133 15,596 24,729
Chrome Privacy Badger 8,476 14,519 22,995
Firefox Privacy Badger 8,491 14,520 23,011
Chrome uBlock Origin Lite 9,238 15,070 24,308
Firefox uBlock Origin 9,202 15,085 24,287

Table 6.2: Results of the evaluation of requests blocked directly, transitively, and in total.
The low Firefox results are caused by it not blocking tracking content by default.

6.1.3 Blocked Requests with Follow-Up Requests

Table 6.3 presents the number of blocked requests that triggered at least one follow-up
request. Firefox’s performance was again the weakest, consistent with previous results. In
contrast, Ghostery for Firefox blocked the highest number of parent requests that caused
further network activity, followed by Brave.

Avast Secure Browser and Adblock Plus blocked fewer parent requests compared to
the best-performing tools, indicating a more conservative blocking strategy. For example,
Adblock Plus blocked only 41 % of the total number of requests blocked by Ghostery for
Firefox but only 31.7 % of the parent requests. Similarly, Avast Secure Browser blocked
52 % of Firefox Ghostery’s total blocked requests but only 38 % of the parent requests.
These results suggest that Adblock Plus and Avast Secure Browser allow more initiating
requests to pass through, potentially resulting in more unwanted content being partially
loaded.

6.1.4 Average Request Block Level

In addition to the number of blocked parent requests, Table 6.3 also presents the aver-
age request block level. As previously noted, Firefox blocked the fewest requests overall.
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Additionally, these requests tended to be deep within the request tree. Nevertheless, Fire-
fox blocked at least one request in only 81 out of 937 collected trees, making this metric
statistically less reliable for Firefox.

Among all evaluated tools, Ghostery for Firefox achieved the lowest average block level,
indicating that it blocked requests closest to the root of the request tree. It was closely
followed by both versions of uBlock Origin. Blocking requests near the root of the tree is
more effective, as it prevents entire chains of unwanted requests from being made. This
strategy enhances privacy by transitively blocking more requests and also improves the
tool’s overhead by reducing the number of subsequent requests that require evaluation
against blocking lists.

Tool Blocked Requests with
Follow-Up Requests

Average Request Block
Level

Avast Secure Browser 750 3.548
Brave browser 1,872 3.454
Firefox browser 5 4.131
Chrome Adblock Plus 626 3.735
Firefox Adblock Plus 626 3.735
Chrome Ghostery 1,790 3.433
Firefox Ghostery 1,972 3.283
Chrome Privacy Badger 1,697 3.579
Firefox Privacy Badger 1,698 3.577
Chrome uBlock Origin Lite 1,843 3.298
Firefox uBlock Origin 1,853 3.301

Table 6.3: Results of the evaluation of blocked requests with follow-up requests and average
block level.

6.1.5 Subtree Blocking

Table 6.4 shows how many subtrees were fully or partially blocked. In total, 60,837 sub-
trees were observed in the dataset. Both versions of uBlock Origin and Ghostery for Firefox
fully blocked the most subtrees, indicating more aggressive blocking behavior than other
tools. Brave and Avast Secure Browser’s fully blocked subtrees results are distorted, as they
blocked pages at the root level, which resulted in all subtrees on those pages being counted
as fully blocked. Nevertheless, Brave partially blocked the most subtrees. Interestingly,
Ghostery for Chrome partially blocked many more subtrees compared to its Firefox coun-
terpart. Aggressive subtree blocking can enhance privacy and reduce page load times by
preventing large sections of content from loading, as the subtrees are blocked at the root.

6.2 Anti-Tracking Performance
This section presents the results of the evaluation of blocked API calls often misused for fin-
gerprinting. However, each individual call may not necessarily represent an actual attempt
to compute a user’s fingerprint. Blocking potential fingerprinting API calls is essential for
preserving user privacy, as these techniques can uniquely identify and track users across
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Tool Subtrees Fully
Blocked

Subtrees Partially
Blocked

Subtrees Not
Blocked

Avast Secure Browser 2,716 561 57,560
Brave browser 5,949 1,014 53,874
Firefox browser 42 52 60,743
Chrome Adblock Plus 1,814 528 58,495
Firefox Adblock Plus 1,814 528 58,495
Chrome Ghostery 5,851 944 54,042
Firefox Ghostery 6,447 636 53,754
Chrome Privacy Badger 6,727 1,027 53,083
Firefox Privacy Badger 6,733 1,028 53,076
Chrome uBlock Origin Lite 6,487 673 53,677
Firefox uBlock Origin 6,454 671 53,712

Table 6.4: Results of the evaluation of subtrees blocking.

sites. In practical terms, the more potential fingerprinting API calls a tool blocks, the more
likely it is to prevent actual tracking, making these tools more reliable choices for privacy-
oriented users.

As discussed in Subsection 5.1.3, JShelter occasionally fails to log fingerprinting API
calls correctly. The issue was observed on 11.1 % of the visited pages. While this could indi-
cate that no fingerprinting API calls were present on those pages, manual testing confirmed
that fingerprinting did occur on the tested pages, and JShelter failed to log it.

The metrics used to analyze fingerprinting API calls are described in Subsection 5.4.2.
The same limitations outlined in Section 6.1 for evaluating blocking effectiveness also apply
here. Privacy Badger is again excluded from the commentary due to its distorted results,
although it is left in the results for completeness. Brave and Avast Secure Browsers’s anti-
tracking results are also slightly distorted due to their root node blocking, which caused
indirect blocking of all fingerprinting API calls on those pages. The total fingerprinting
API calls observed per category across the dataset are:

• Browser Properties: 307,226
• Algorithmic Methods: 16,011
• Crawl Fp Inspector : 7,460

The results do not include API calls caused by unknown callers, as discussed in Subsec-
tion 5.2.2. Should such calls be included, the attempts in categories Browser Properties and
Crawl Fp Inspector would remain the same, but the total attempts in Algorithmic Methods
would increase 13.5×, while the number of blocked Algorithmic Methods by the tools would
largely remain the same.

6.2.1 Directly Blocked Calls To APIs Misused For Fingerprinting

Table 6.5 shows the number of potential fingerprinting attempts each tool blocked directly.
Ghostery for Firefox blocked the most API calls in the Browser Properties category, closely
followed by both versions of uBlock Origin. Both versions of uBlock Origin blocked the most
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Algorithmic Methods, slightly outperforming Ghostery for Firefox. For Crawl Fp Inspector,
Brave blocked the most calls, surpassing all other tools in this category.

Tool Browser
Properties

Algorithmic
Methods

Crawl Fp
Inspector

Avast Secure Browser 29,556 877 635
Brave browser 55,453 1,183 1,175
Firefox browser 136 25 36
Chrome Adblock Plus 22,723 621 640
Firefox Adblock Plus 22,723 621 640
Chrome Ghostery 54,228 1,184 764
Firefox Ghostery 65,235 1,273 711
Chrome Privacy Badger 37,480 1,266 666
Firefox Privacy Badger 37,499 1,266 666
Chrome uBlock Origin Lite 64,717 1,276 708
Firefox uBlock Origin 64,972 1,276 707

Table 6.5: Results of the evaluation of directly blocked calls to APIs potentially usable for
fingerprinting.

6.2.2 Transitively Blocked Calls To APIs Misused For Fingerprinting

Table 6.6 presents the results for transitively blocked fingerprinting API calls. Again,
Ghostery for Firefox blocked the most calls in the Browser Properties category, with both
versions of uBlock Origin following closely. For the Algorithmic Methods, Ghostery for
Firefox again performed best, slightly ahead of both uBlock Origin versions. In the Crawl
Fp Inspector category, Brave achieved the highest number of blocked calls.

Tool Browser
Properties

Algorithmic
Methods

Crawl Fp
Inspector

Avast Secure Browser 51,025 1,990 812
Brave browser 114,959 3,179 1,840
Firefox browser 7 0 0
Chrome Adblock Plus 39,832 1,597 468
Firefox Adblock Plus 39,832 1,597 468
Chrome Ghostery 113,912 3,058 1,476
Firefox Ghostery 139,537 5,010 1,490
Chrome Privacy Badger 88,486 4,811 1,844
Firefox Privacy Badger 88,487 4,811 1,844
Chrome uBlock Origin Lite 136,687 4,985 1,332
Firefox uBlock Origin 136,691 4,985 1,332

Table 6.6: Results of the evaluation of transitively blocked calls to APIs potentially usable
for fingerprinting.
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6.2.3 Total Blocked Calls To APIs Misused For Fingerprinting

Table 6.7 combines directly and transitively blocked fingerprinting API calls. Ghostery for
Firefox blocked the most API calls in the Browser Properties category, outperforming its
Chrome counterpart, with both uBlock Origin versions following closely. For the Algorith-
mic Methods, Ghostery for Firefox again led, but both versions of uBlock Origin achieved
nearly identical results. In the Crawl Fp Inspector category, Brave blocked the most calls,
followed by both versions of Ghostery, with the Chrome version slightly outperforming the
Firefox version.

All evaluated extensions blocked an equal or greater number of Browser Properties and
Algorithmic Methods calls in Firefox compared to Chrome. In contrast, for the Crawl Fp
Inspector category, all extensions in Chrome blocked an equal or greater number of calls
than their Firefox counterparts.

Interestingly, while Ghostery for Firefox blocked 24.5 % of all network requests, it re-
duced Browser Properties API calls by 66.6 %, and blocked 39.2 % of Algorithmic Methods
calls. Its 29.5 % blocking rate for Crawl Fp Inspector was closest to its network request
blocking rate. Similar patterns appeared for other tools, indicating that blocked requests
were responsible for the majority of Browser Properties API calls and an above-average
amount of Algorithmic Methods and Crawl Fp Inspector API calls.

Tool Browser
Properties

Algorithmic
Methods

Crawl Fp
Inspector

Avast Secure Browser 80,581 2,867 1,447
Brave browser 170,412 4,362 3,015
Firefox browser 143 25 36
Chrome Adblock Plus 62,555 2,218 1,108
Firefox Adblock Plus 62,555 2,218 1,108
Chrome Ghostery 168,140 4,242 2,240
Firefox Ghostery 204,772 6,283 2,201
Chrome Privacy Badger 125,966 6,077 2,510
Firefox Privacy Badger 125,986 6,077 2,510
Chrome uBlock Origin Lite 201,404 6,261 2,040
Firefox uBlock Origin 201,663 6,261 2,039

Table 6.7: Results of the evaluation of total blocked calls to APIs potentially usable for
fingerprinting.
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Chapter 7

Limitations and Future Work

While request trees provide a way to evaluate the transitive consequences of request block-
ing, the approach has limitations. Many of the issues are discussed in previous chapters
in their respective sections. This chapter highlights additional limitations not previously
addressed and discusses possible future work that could improve the evaluation process.

7.1 Page Behavior That Changes When Content-Blocking
Tool Is Present

The method of replaying observed requests and checking which ones are blocked by a given
content-blocking tool does not correctly capture how an actual page would behave. It
assumes that blocking the requests does not impact the page’s behavior. However, in a real
scenario, the presence of the content-blocking tool during a page visit could influence how
the page responds. For example, if a request is blocked, the page might detect the failure
and load the resource from another source. This blocking could lead to a different request,
possibly with the same fingerprinting API calls as the blocked original request. The current
evaluation does not consider this and assumes nothing else follows if a request is blocked.

This dynamic behavior is impossible to capture for a deterministic evaluation, which
requires a fixed dataset, as even if a content-blocking tool were present during the logging
visit, another tool would behave differently. Since the dataset cannot account for every
possible situation, this issue cannot be resolved.

7.2 Limitations of Tree-Based Request Modeling in the Pres-
ence of Cyclic Dependencies

Throughout the thesis, the request structure was referred to as a request tree. However,
in practice, the structure of resources that load on a web page is not always a directed
tree. Instead, it can form a regular directed graph that includes loops. For example, a page
may load three scripts A, B and C. However, each script may re-request the other scripts.
The situation may look as follows, with requests ordered chronologically:

• The initial page Z requests scripts A and B.
• Script B requests script A, even though it has already been loaded.
• Script A requests script C.
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• Script A requests script B, creating a cycle.

Cycle such as 𝐵 → 𝐴 → 𝐵 may execute 1 to 𝑛 times, depending on how the scripts
invoke one another. But even if it executes only once, the resulting requests still constitute
a loop within the graph. Figure 7.1 illustrates this situation. The proposed approach cannot
correctly capture these cycles.

Visited Page
Z

Script
A

Script
B

Load
<script>

Load
<script>

LoadScriptA()

Script
C

LoadScriptC()

LoadScriptB()

Figure 7.1: Example of a request structure containing a cycle, which makes it a directed
graph that is not a tree.

7.2.1 Duplicating Nodes to Ensure Tree Structure

The proposed evaluation method transforms the structure into a tree by introducing du-
plicate nodes to handle the loop scenario depicted in Figure 7.1. This strategy, referred
to as the upper bound approach, was used to evaluate and compare the selected tools as
presented in Chapter 6. However, it overestimates the number of requests, fingerprinting
API calls, and possible blocking results. Each valid event in the logs results in a new node,
even if it is a duplicate of an already existing node1.

For example, in the situation described in the list at the beginning of this section and
captured in Figure 7.1, script A appears twice. Once as a direct child of the page and once
as a child of script B. Similarly, script B also appears twice, as a direct child of the page
and as a child of script A. Suppose the script B calls a function from script A that leads to
requesting script C. Script C appears only once in the logs, but it is assigned two parents –
both instances of script A, as both were already present in the tree and the current approach
does not differentiate between them. Figure 7.2 shows the graph transformed to tree.

1As mentioned in Subsection 5.2.3, the exceptions are duplicate follow-up requests loaded by the same
parent (i.e., when page Z loads the resource Y n times, only one copy of Y is preserved). These requests
are not included in the upper bound approach as keeping them would further worsen the issues described in
this Section.
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Visited Page
Z

Script
A

Script
B

Load
<script>

Load
<script>

LoadScriptA()Duplicate
Association

Script
B

LoadScriptB()

Script
A

Script
C LoadScriptC()

Figure 7.2: Transformed request structure from Figure 7.1 with resolved loop by introducing
duplicate nodes, ensuring the structure is a tree. Script C is present only once, as only
a single network request for it exists. However, as it has two parent scripts A, during
the evaluation, it is counted as if it was present twice due to the tree traversal method.

7.2.2 Node Duplication Overestimates Requests

The duplication causes the overestimation of observed requests and possible blocking results.
In Figure 7.2, script C, although requested only once, is effectively counted twice, as it is
linked to two different parent nodes. Should a duplicated node be blocked, although it
correctly represents two separate requests, the blocking results might get distorted due to
the duplicated child requests. Also, if script A in Figure 7.2 is directly blocked, the analysis
engine blocks both instances, and their child nodes are blocked transitively. As such,
the analysis engine would mark one instance of script B as blocked, even though it would
still be present on the page as a child of the root node representing the page itself.

However, the main issue lies within script C. Therefore, the analysis engine handles it
more carefully. Since it is linked to both copies of script A, it is only transitively blocked if
all of its parent nodes are blocked. All nodes with multiple parent nodes are only transitively
blocked if all their parents are blocked. Despite this logic, if script C is blocked, it is still
incorrectly counted as two blocked requests, which distorts the results.

7.2.3 Impact on Measurements of Access to Fingerprinting APIs

Another consequence of node duplication is the distortion of total fingerprinting API calls.
The fingerprinting API calls are assigned to all corresponding nodes – for example, if script
A is responsible for 100 fingerprinting API calls, both instances are assigned 100 API calls,
resulting in 200 API calls in total.

The duplication is necessary as it is unclear which instance of script A was responsible
for the fingerprinting API calls. For example, when script B requested script A, it may
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have caused script A to call 100 fingerprinting APIs, while the root node requesting script
A did not cause it to use any. Suppose the traffic parser assigned the API calls to only one
instance, and that particular node was blocked. In that case, it might be wrongly assumed
that all fingerprinting API calls caused by script A were either entirely prevented or not
prevented at all, depending on the assignment. The upper bound approach assigns them to
all copies to avoid underestimating prevented fingerprinting API calls.

7.2.4 Avoiding Duplicate Requests

The request loops are not common. A lower bound approach can be used, which allows
each resource to appear only once in the tree. If the same script is requested multiple
times, the traffic parser includes only the first instance in the request tree. If an existing
node appears multiple times in the logs, the traffic parser marks it as repeated. Should
a repeated node be blocked, the evaluation would not transitively block any of its child
nodes, as blocking them could lead to overestimating the effectiveness in terms of blocked
potential fingerprinting API calls.

Visited Page
Z

Script
A

Repeated:
True

Script
B

Repeated:
True

Load
<script>

Load
<script>

Initially Duplicate
Association

Script
C

Figure 7.3: Request tree created from the same data as the tree in Figure 7.2, but using
the lower bound approach. Script B requested by script A is missing, same as script
A requested by script B. Both remaining instances of A and B are marked as repeated.
Should script A be blocked, C would not be blocked transitively as its original connection
to A is missing.

Figure 7.3 illustrates a request tree created from the same data as the request tree shown
in Figure 7.2, but using the lower bound approach. It also explains why the repeated nodes
are not blocked in this approach. Since the events are parsed chronologically and the lower
bound approach does not allow duplicates, the copy of script B requested by script A is
missing, same as the copy of script A that was initially requested by script B.

As a result, the missing instance of script A never gets the opportunity to request
script C and make it call any fingerprinting APIs. Script C is still in the tree because it
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is connected to the other instance of script A, and that instance is marked as repeated.
However, since their association was originally only a duplicate, it could not have been
responsible for any fingerprinting API calls. However, the calls are still associated with
the script C. But since script A is marked as repeated, if it were blocked, none of its
children would be transitively blocked, keeping the number of blocked fingerprinting calls
caused by script C as zero.

Additional limitation of the lower bound approach is, that it discards valid but repeated
requests, as seen with scripts A and B in Figure 7.3. Therefore, their associations are lost
since each script is only associated with its first parent. For example, if script A loads B
but B is already in the tree as a child of the original page, the relation between A and B is
not created. If script A is then blocked, its link to B is ignored, even if this instance of B
made fingerprinting API calls caused by A. The reason why the request trees do not reflect
the missing parentage is to avoid cycles. For instance, if script A loads script B, which then
loads A again, it would introduce a cycle and break the logic of the trees.

7.2.5 Summary and Comparison

Table 7.1 compares the results of both the lower and the upper bound approaches in terms
of observed requests and Fingerprinting API calls. Solving the described problems would
require using a different internal request model that correctly captures all relations between
requests without creating duplicates or endless cycles.

Total Metric Lower Bound
Approach

Upper Bound
Approach

Observed Requests 98,244 100,753
Browser Properties Fingerprinting API Calls 293,498 307,226
Algorithmic Methods Fingerprinting API Calls 15,048 16,011
Crawl Fp Inspector Fingerprinting API Calls 6,706 7,460

Table 7.1: Comparison of total observed requests and fingerprinting API calls in the dataset
between the lower and upper bound approaches. The number of observed requests and
fingerprinting API calls is the same for all tested tools, as they were tested on the same
data, depending on whether the lower or upper bound approach was used.

7.3 Simulation Limitations
The way the simulation is designed introduces several limitations. First limitation con-
cerns request schemes and the other limitation concerns the functionality of the tested
content-blocking tools. The issues are challenging to solve, as replicating the environment
of the original pages from which the traffic logger collected the dataset would be required.

7.3.1 Request Schemes

Many web pages use data2 and blob3 URL schemes. These schemes behave uniquely and
introduce complications during the evaluation.

2https://developer.mozilla.org/en-US/docs/Web/URI/Reference/Schemes/data
3https://www.w3.org/TR/FileAPI/#url
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In the case of blob scheme, the issue is that such resources can only be accessed from
the same domain on which they were created4. Thus, if a custom server requests a blob
from another origin, it fails to load, returning an error. However, on the original page
where the traffic logger observed the request, it may have either loaded successfully or been
blocked by a content-blocking tool. Since the custom server does not replicate the exact en-
vironment of the original page, it cannot correctly reflect whether a given content-blocking
would block this request, as the request fails before any blocking can occur. In Fire-
fox, an additional issue stems from the fact that the failed blob requests do not trigger
the onSendHeaders event from the webRequest API. As such, the custom logging extension
described in Section 5.3.5 always considers the blob requests blocked, even though it is not
necessarily true.

The data scheme presents another issue, as these requests do not generate actual network
requests to the Internet. Therefore, they do not trigger the onSendHeaders event either,
and the custom Firefox logging extension always considers them blocked, even though that
may not be the case, same as the blob requests.

To solve the described issues, the current approach in Firefox skips the blob and data
requests during evaluation, i.e., they are always considered successfully loaded. While this
partially solves the problem, it does not capture the situation where a content-blocking tool
would have blocked these requests. Firefox logging would need to be improved to handle
these situations correctly. The blob scheme problem is unsolvable with the current approach
since these requests always fail as they cannot be loaded from different domains.

7.3.2 Resource Fetching

The other limitation concerns the method the simulation loads the observed resources.
During the simulation, resources are loaded using fetch() API. However, this approach
may cause some requests to be blocked or allowed incorrectly because the simulation engine
made them under conditions different from those on an actual page. For instance, a content-
blocking tool may rely on internal heuristics that decide to block a request in the simulated
environment, even though it would have been allowed during an actual page load. There is
also the possibility that some tools detect they are being tested in a simulated setting and
change their behavior.

Another issue stems from the fact that some content-blocking tools apply rules that
block requests based on whether the requests originate from a first or third-party context5.
Since the simulation makes requests from a custom server, these rules are not applicable.

The issues with resource fetching can distort the evaluation results. For example,
the tested tool may falsely block a root node. As discussed in Subsection 6.1.1, the analysis
engine counts all requests on a page as blocked if a requested root node were blocked, even
though it might have loaded correctly in an actual visit.

7.4 Future Work
The issues presented in the thesis could be quantified based on how much they impact
the results to improve the evaluation. Once better understood, the limitations could be
addressed to ensure results are more closely aligned with the real-world behavior of the eval-
uated tools.

4https://www.w3.org/TR/FileAPI/#url
5https://github.com/gorhill/ublock/wiki/Dynamic-filtering:-rule-syntax
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The dataset creation process could be optimized to utilize parallelization, as visiting
each site one by one takes considerable time. Data collection and the construction of
request models could also be improved to handle the issues described in Section 7.2 properly.
Enhancing the JShelter Fingerprint Detector could also solve the logging issues described
in Subsection 5.1.3, ensuring complete and accurate fingerprinting data collection across
all sites. The simulation could be enhanced to replicate the environment of the original
pages, which could solve the limitations of dynamic filters, heuristics and the blob scheme,
described in Section 7.3.

Beyond dataset creation, other parts of the evaluation could also be optimized for
parallel execution, which would be especially beneficial when working with large datasets
or multiple tools. Only Firefox, Google Chrome, and Chromium-based custom browsers are
currently supported. Support for other browsers could be added. New deterministic metrics
could also be introduced to analyze different aspects of content-blocking tools. Additionally,
the current metrics could be studied further to understand tool behavior and performance
better. Finally, future evaluations could also examine the broader impact of the tools, for
example, whether they disrupt website functionality or affect page load times.
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Chapter 8

Conclusion

This thesis introduced a deterministic and repeatable method for evaluating privacy-
enhancing tools that block network requests. The proposed method preserves the structure
of network requests, enabling the assessment of transitive blocking effects. The method was
implemented, validated through unit testing, and then applied to selected content-blocking
tools.

The evaluation used data from 937 visited web pages, capturing network requests and
DNS responses. Potential fingerprinting was also detected using the JShelter Fingerprint
Detector. Request structures were reconstructed as directed trees, linking each resource
to any associated fingerprinting activity. A BIND 9 DNS server was employed to replay
the original DNS responses using custom-generated zone files. The tools were tested via
a simulation server replaying recorded requests. Blocked requests were logged, and blocking
outcomes were propagated through the request trees to compute metrics.

The blocking performance of three browsers, Avast Secure Browser, Brave, and Firefox,
was evaluated along with five content-blocking extensions: Adblock Plus, Ghostery, uBlock
Origin, uBlock Origin Lite and Privacy Badger. These extensions were tested in their Fire-
fox and Chrome versions when available; in cases where only one version existed, only that
version was tested. Ghostery for Firefox delivered the best overall blocking effectiveness,
achieving the highest scores in most evaluation metrics. uBlock Origin and uBlock Origin
Lite also performed well, with results similar to but slightly below those of Ghostery for
Firefox. Although the evaluation included Privacy Badger, its results are unreliable due
to the limitations of the request simulation process. All tools were tested in their default
state, meaning the results might significantly change if a user changes their configuration.
Notably, many tested tools blocked over 20 % of all network requests, underscoring the sig-
nificance of using content blockers to reduce unnecessary or potentially invasive web traffic.

Several limitations of the proposed approach were identified. The most significant limi-
tation is that the structure of real-world web requests does not always conform to a directed
tree. In some cases, the requests form a general graph with loops, affecting the evaluation’s
accuracy as the proposed approach solves the loops by introducing artificial duplicates. An-
other limitation is that the simulation does not replicate the original environment, which
limits the effectiveness of evaluating tools that rely on heuristics or dynamic blocking rules.
Future work could address these limitations, refine the evaluation methodology, expand
the set of metrics, and improve the evaluation system’s overall performance.
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Appendix A

JSON Example of DNS Traffic

{
"pubmatic.com": {

"ads": {
"A": ["23.75.64.240"],
"CNAME": [

"pubmatic.edgekey.net",
"e6603.g.akamaiedge.net"

]
}

},
"edgekey.net": {

"pubmatic": {
"A": [],
"CNAME": ["e6603.g.akamaiedge.net"]

}
},
"akamaiedge.net": {

"e6603.g": {
"A": ["23.75.64.240"],
"CNAME": []

}
}

}

Listing A.1: Example of a logged DNS response for ads.pubmatic.com with both A and
CNAME records. For each logged CNAME for ads.pubmatic.com, another separate record
is made, containing only the record for the following CNAME in the original list. The record
for the last CNAME in the original list has the same A response as the original request for
ads.pubmatic.com.
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