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Abstract

Automatic label placement is a crucial aspect of data visualization, essential for enhancing
the clarity and readability of visual representations across various domains such as car-
tography, medical imaging, and emergency response management. Label, in this context,
refers to textual or symbolic annotation that identifies or explains specific point feature
within a visualization, such as the name of the city on a map, measurement on a medical
scan, or position of AED in a schematic map for emergency response dispatchers. The
work covered in this dissertation aims to advance the field by developing novel techniques
addressing the inherent challenges associated with internal and external label placement in
complex visualizations. Internal label placement refers to placing labels close to the point
features they describe within the boundaries of the visualization. External label placement,
on the other hand, involves placing labels outside the main visualization area, connected
to the relevant features by lines.

Our research focuses on three key areas: achieving temporally stable and visually coher-
ent boundary label placements, leveraging machine learning to improve the completeness
of internal label placements, and optimizing label positioning by integrating perceptual
insights. The dissertation begins with a comprehensive review of existing techniques, iden-
tifying significant gaps in handling dynamic environments and maintaining visual coherence.
The literature review also highlights that the label placement quality is not entirely and pre-
cisely defined, as many cartographic guidelines rely on best practices rather than empirical
studies. Building on these insights, we introduce novel optimization methods for bound-
ary label placement in dynamic panoramic visualizations, minimizing label movement and
reducing user cognitive load. Experimental results demonstrate the effectiveness of these
approaches in maintaining label stability without compromising readability or clarity. In
the context of internal label placement, we explore the relevance of deep reinforcement
learning and propose a novel method that significantly improves label completeness, partic-
ularly in dense and complex scenarios. Furthermore, we introduce a perceptual study that
determines user-preferred label positions, challenges conventional placement strategies, and
demonstrates the importance of considering user preferences in label placement design. Our
supplementary study on users’ preferred label density, a topic scarcely explored in existing
literature, further confirms that integrating perceptual insights into the label placement
process significantly enhances the overall user experience, leading to more intuitive and
compelling visualizations.

While the proposed methods offer substantial improvements over existing techniques,
we acknowledge several limitations, including the complexity of implementing the boundary
label optimization in real-time scenarios and the computational demands of the reinforce-
ment learning approach. Future research directions include the development of mixed label
placement models for 3D visualizations, optimization of computational efficiency, and fur-
ther exploration of user perception to refine label placement techniques.



Abstrakt

Automatické umistovani popisu je klicovym aspektem vizualizace dat. Popis je zdsadni pro
zvyseni srozumitelnosti a ¢itelnosti vizualnich reprezentaci napri¢ ruznymi oblastmi, jako
jsou kartografie, 1ékarské zobrazovani a krizovy management. Popisek, v plurdalu popis,
v tomto kontextu odkazuje na textovou nebo symbolickou anotaci, ktera identifikuje nebo
vysvétluje konkrétni bodovy prvek v ramci vizualizace, jako je ndzev mésta na mapé, hod-
nota meéreni na lékarském snimku nebo pozice defibrilatoru v situa¢ni mapé pro krizovy
managment integrovaného zachranného systému. Tato disertace si klade za cil prohloubit
tuto oblast vyvojem novych metod, které fesi inherentni vyzvy spojené s umistovanim in-
terniho a externiho popisu v komplexnich vizualizacich. Interni popis spociva v umisténi
textovych nebo symbolickych anotaci pobliz bodovych prvki uvniti hranic vizualizace. Ex-
terni popis naopak odkazuje na umisténi mimo hlavni vizualizaci, kde jsou bodové prvky
propojeny s prislusnym popisem pomoci car.

N&as vyzkum se zaméruje na tfi klicové oblasti: dosazeni Casové stabilniho a vizualné
koherentniho umisténi popisu na okraji vizualizace, vyuziti strojového uceni ke zvyseni
uplnosti popisu a optimalizaci umisténi popisu s vyuzitim percepc¢nich poznatkt. Diser-
tace poskytuje komplexni prehled stavajicich pristupt, ktery identifikuje vyznamné mezery
v TeSeni dynamickych vizualizaci a udrzovani vizualni koherence. Literarni prehled také
ukazuje, ze kvalita umisténi popisu neni zcela a presné definovana a mnohé kartografické
doporuceni se spoléhaji na zazité postupy spiSe nez na empirické studie s uzivateli. Na zak-
ladé téchto poznatku jsme predstavili nové optimaliza¢ni metody umistovani popisu na okraj
dynamickych panoramatickych vizualizaci, které minimalizuji pohyb popisu a snizuji kog-
nitivni zatéz uzivatele. Experimentalni vysledky demonstruji signifikantni zlepseni vizualni
koherence popisu bez negativniho vlivu na jeho ¢itelnost nebo jednoznacnost. V kon-
textu interniho umistovani popisu jsme prozkoumali vyznam hlubokého posilovaného uceni
a na tomto zékladé jsme predstavili novou metodu, kterd vyrazné zlepsuje iplnost popisu,
zejména v hustych a komplexnich vizualizacich. Déle jsme usporadali percepéni studii,
kterd identifikuje uzivatelsky preferované pozice popisu kolem vyznacnych bodu, zpochy-
briuje konvencéni doporuceni a vyzdvihuje dilezitost zohlednéni uzivatelskych preferenci pri
umistovani popisu. Nase naslednd studie zabyvajici se preferovanou hustotou popisu, coz
je téma v existujici literature ziidka zkoumané, dédle potvrzuje, zZe integrace percepc¢nich
poznatkl do procesu umistovani popisu vyrazné zlepsuje celkovy uzivatelsky zazitek, coz
vede k intuitivnéjsim a prehlednéjsim vizualizacim.

Ackoli predstavené metody poskytuji podstatna zlepsSeni oproti stavajicim technikdm, je
potfeba zminit také jejich limitace, jako je komplexni implementace optimaliza¢ni metody
umistovani popisu v dynamickych vizualizacich a vypocetni naro¢nost umistovani popisu
s vyuzitim posilovaného uceni. Budouci sméry vyzkumu zahrnuji vyvoj smisenych modeli
umistovani popist pro 3D vizualizace, optimalizaci vypocetni efektivity a dalsi prohlubovani
znalosti o vniméani popisu uzivatelem.
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Rozsireny abstrakt

Automatické umistovani popisu je klicovym aspektem vizualizace dat. Popis je zasadni pro
zvysSeni srozumitelnosti a c¢itelnosti vizualnich reprezentaci napri¢ rtiznymi oblastmi, jako
jsou kartografie, 1ékafské zobrazovani a krizovy management. Popisek, v plurdlu popis,
v tomto kontextu odkazuje na textovou nebo symbolickou anotaci, kterd identifikuje nebo
vysvétluje konkrétni bodovy prvek v ramci vizualizace, jako je ndzev mésta na mapé, hod-
nota méreni na lékarském snimku nebo pozice defibrilatoru v situacni mapé pro krizovy
managment integrovaného zachranného systému. Tato disertace si klade za cil prohloubit
tuto oblast vyvojem novych metod, které fesi inherentni vyzvy spojené s umistovanim in-
terniho a externiho popisu v komplexnich vizualizacich. Interni popis spociva v umisténi
textovych nebo symbolickych anotaci pobliz bodovych prvka uvnitt hranic vizualizace. Ex-
terni popis naopak odkazuje na umisténi mimo hlavni vizualizaci, kde jsou bodové prvky
propojeny s prislusnym popisem pomoci car.

Automatické umistovani popisu nachdzi uplatnéni v Sirokém spektru oblasti, kde pres-
nost a rychlost rozhodovani hraje klicovou roli. V lékaiském zobrazovani automaticky
popis vyrazné usnadnuje anotaci anatomickych struktur, coz je nezbytné pro diagnos-
tiku, planovani 1écby a vzdélavaci ucely. Anotace pomdhaji radiologim v diagnostice
obrazovych dat, zaznamenavani diagnostickych zjisténi a usnadnuji diskuse pii schizkach
lékarskych tymu [134]. V Fizeni krizovych situaci, jako jsou napiiklad operace integrovaného
zadchranného systému, je spravné a rychlé rozhodovani ¢asto otazkou zZivota a smrti. Jasné
a presné informace na mapéach, které dispeceri pouzivaji, jsou proto nezbytné. Automatizo-
vané umistovani popisu muze zlepsit rychlost a presnost poskytovanych informaci, ¢imz se
snizuje riziko chyb a zvySuje efektivita rozhodovani v nouzovych situacich [58]. V oblasti
kartografie a fizeni letového provozu jsou popisky nezbytné pro presnou identifikaci ge-
ografickych bodt nebo informaci o letadlech. V téchto aplikacich je dilezité, aby se popis
co nejméné prekryval a byl snadno ¢itelny, nebotf jakakoliv nejasnost muze vést k vaznym
chybdm v rozhodovani [76]. V technickych vykresech, které se pouzivaji ve strojnim nebo
stavebnim inzenyrstvi a drzbovych manualech, jsou popisky zasadni pro poskytovani in-
formaci o soucastech a jejich funkcich. Presné a efektivni oznacovani v téchto vykresech
je klicové pro zajisténi bezpecnosti a efektivity pri montézi a tddrzbé [101]. Koneéné,
ve sportovnich vizualizacich, napfiklad pfi zobrazovani real-time informaci o tcastnicich
zavodli nebo sportovnich utkani, je dynamické umistovini popisu klicové pro rozsireni
diviackého zazitku. Vizudlni popis sportovnich prenosu zvysSuje pochopeni dané udalosti
a zapojeni divaku do déje.

N&s vyzkum se zaméfuje na tii klicové oblasti: dosazeni ¢asové stabilniho a vizualné
koherentniho umisténi popisu na okraji vizualizace, vyuziti strojového uceni ke zvysSeni
uplnosti popisu a optimalizaci umisténi popisu s vyuzitim percepc¢nich poznatkt. Diser-
tace poskytuje komplexni prehled stdvajicich pristupt, ktery identifikuje vyznamné mezery
v TeSeni dynamickych vizualizaci a udrzovani vizudlni koherence. Literarni prehled také
ukazuje, ze kvalita umisténi popisu neni zcela a presné definovana a mnohé kartografické
doporuceni se spoléhaji na zazité postupy spise nez na empirické studie s uzivateli. Na zak-
ladé téchto poznatku jsme predstavili nové optimaliza¢ni metody umistovani popisu na okraj
dynamickych panoramatickych vizualizaci, které minimalizuji pohyb popisu a snizuji kog-
nitivni zatéz uzivatele. Experimentédlni vysledky demonstruji signifikantni zlepseni vizudlni
koherence popisu bez negativniho vlivu na jeho citelnost nebo jednoznacnost. V kon-
textu interniho umistovani popisu jsme prozkoumali vyznam hlubokého posilovaného uceni
a na tomto zakladé jsme predstavili novou metodu, kterd vyrazné zlepsuje iplnost popisu,
zejména v hustych a komplexnich vizualizacich. Daéle jsme uspotradali percepc¢ni studii,



ktera identifikuje uzivatelsky preferované pozice popisu kolem vyznacnych bodu, zpochy-
bnuje konvenc¢ni doporuceni a vyzdvihuje dulezitost zohlednéni uzivatelskych preferenci pti
umistovani popisu. Nase nésledna studie zabyvajici se preferovanou hustotou popisu, coz
je téma v existujici literatute ziidka zkoumané, dédle potvrzuje, Ze integrace percepc¢nich
poznatka do procesu umistovani popisu vyrazné zlepsuje celkovy uzivatelsky zazitek, coz
vede k intuitivnéjsim a prehlednéjsim vizualizacim.

Ackoli predstavené metody poskytuji podstatna zlepseni oproti stavajicim technikam, je
potfeba zminit také jejich limitace, jako je komplexni implementace optimaliza¢ni metody
umistovani popisu v dynamickych vizualizacich a vypocetni ndro¢nost umistovani popisu
s vyuzitim posilovaného uceni. Budouci sméry vyzkumu zahrnuji vyvoj smisenych modela
umistovani popist pro 3D vizualizace, optimalizaci vypocetni efektivity a dalsi prohlubovani
znalosti o vnimani popisu uzivatelem.
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Chapter 1

Introduction

In today’s data-driven world, visualizations play a pivotal role in transforming complex data
into understandable insights, thereby facilitating effective communication and informed
decision-making. These visual representations are omnipresent across various domains,
including cartography, medical imaging, emergency response, and many other fields where
precise and clear information presence is critical. At the heart of effective visualization
lies the use of labels, which serve to annotate features with essential information such
as names, measurements, or explanations, enhancing the viewer’s understanding of the
underlying data.

The challenge of label placement, or labeling in short, arises from the need to balance
functional clarity with aesthetic appeal. Labels must be positioned in a way that avoids am-
biguity and overlap, ensuring they are easily readable and accurately associated with their
corresponding features. As the underlying data grows in complexity and density, the man-
ual placement of labels becomes impractical, labor-intensive, and prone to inconsistencies,
thus highlighting the necessity for automated solutions. This necessity drives the research
focus of this thesis: the development of novel methods for automatic label placement.

Automatic label placement involves algorithmically determining the optimal positions
for labels in visualizations to maintain readability and clarity without causing overlaps or
visual clutter. Despite significant advancements in visualization techniques, the problem
of automatic label placement remains a challenging task due to its inherent computational
complexity. Specifically, achieving optimal label placement is an NP-hard problem, re-
quiring sophisticated heuristic and optimization methods to find feasible solutions within
reasonable timeframes. Moreover, dynamic environments, such as interactive applications
or real-time tracking systems, add another layer of complexity, demanding label placement
techniques to adapt to data changes while maintaining clarity and coherence.

The effectiveness of label placement is also influenced by how users perceive and in-
teract with visual information. Perceptual considerations, such as the placement within
a visual hierarchy and the label’s alignment with corresponding features, are crucial for
optimizing user experience and comprehension. These perceptual insights can guide the
development of label placement techniques that prioritize user experience, ensuring labels
enhance understanding without sacrificing visual appeal.

By addressing these multifaceted challenges, this research aims to advance the field
of automatic label placement, leading to the development of more powerful and versatile
visualization instruments.



Significance of Automated Label Placement

The applications of automatic label placement are vast and varied, playing a crucial role
in many fields where accurate and efficient information presentation is essential. Labels
enhance visual comprehension and support critical decision-making processes across several
domains.

Medical Imaging. Automatic labeling aids in annotating anatomical structures, which
is crucial for diagnostics, treatment planning, and educational purposes. Labeling in med-
ical visualizations has a long history, traditionally seen in medical textbooks and anatomy
atlases; see Figure 1.1(a). As noted by Oeltze-Jafra and Preim [134], the advent of modern
medical imaging and computerized medicine has expanded the range of label placement ap-
plications. Annotations assist radiologists in diagnosing image data, recording diagnostic
findings, and facilitating discussions in medical team meetings. Moreover, interactive label-
ing allows radiologists to add comments and measurements directly to segmented pathologic
structures, streamlining the diagnostic process and improving the clarity of medical visual-
izations. In their research, Niedermann et al. [133] interviewed two illustrator artists of the
well-known Sobotta Atlas of Human Anatomy [137], which has approximately 1200 figures
across 384 pages. The artists mentioned that label placement is a mechanical but exten-
sively time-consuming task mainly done by hand. It takes around two hours to create a
double-page layout for anatomy books. These facts demonstrate the potential time-saving
benefits of automated labeling solutions. Automated label placement in medical imaging
can reduce the time and effort required for manual annotation but also enhance the pre-
cision and consistency of medical documentation and contribute to more effective medical
education.

Emergency Response. Emergency response services rely heavily on real-time geograph-
ical information to make critical decisions. Dispatchers must interpret maps that display
the locations of emergency vehicles and incidents, necessitating labels that are clear, accu-
rate, and devoid of clutter; see Figure 1.1(b). Gedicke et al. [58] highlights that clarity of
information is essential for emergency response dispatchers, as their work requires them to
make quick, life-saving decisions. They spend much of their time monitoring these maps,
and the difference between a fast, accurate decision and a delayed or incorrect one can
be critical. Therefore, the map views must not contain unnecessary clutter and should
clearly convey the necessary information, especially in high-stress situations such as se-
vere accidents where numerous emergency vehicles are deployed. By enhancing the speed
and accuracy of information presentation, automated label placement helps save valuable
time and human resources during emergency operations, potentially contributing to more
effective incident planning and response strategies.

Cartography. In cartography, labels are essential for accurately identifying geographical
features on maps, where precision and non-overlapping labels are crucial to prevent mis-
interpretation; see Figure 1.2(a). Manual placement of labels is a labor-intensive process
that can consume a significant portion of map production time — sometimes up to 50%
or more [185]. Human cartographers typically place about 20 to 30 labels per hour [42],
highlighting the inefficiency of manual methods. Despite half a century of research and
thousands of publications, a recent study by Harrie et al. [68] notes that the automation
level for label placement during map production remains low. The study provides insight



1

It E o

(a) Vessels and nerves of the head from (b) Emergency response map that creates situational
the well-known Sobotta Atlas of Human awareness and provide crucial information to emer-
Anatomy [137]. gency responders [58].

Figure 1.1: Label placement in medical education and emergency planning: (a) lateral view
of vessels and nerves in the head and (b) emergency response map.

into T-Kartor, a mapping company, where an entirely satisfactory labeling solution has not
been found despite efforts to increase automation. Cartographers at T-Kartor often begin
with a labeling solution where all labels, including overlaps, are present and then rely on
manual adjustments to resolve issues. Effective automation of label placement in cartogra-
phy can address these bottlenecks, improving efficiency, reducing the workload, and freeing
cartographers to focus on more creative and analytical tasks.

Air Traffic Control. In air traffic control, labels convey crucial information about air-
craft, such as altitude, velocity, and identification; see Figure 1.2(b). Due to air traffic
safety regulations, these labels must be present to ensure controllers have continuous access
to critical data for quick decision-making [76]. Moreover, the complexity of label placement
in air traffic control increases as aircraft dynamically move through the airspace. For in-
stance, in high-density environments where numerous aircraft are tracked simultaneously,
maintaining clear and distinct labels is necessary to prevent errors and ensure quick com-
prehension. However, the effectiveness of these labels can be compromised by overlaps.
Higashikawa et al. [76] emphasize that minimizing label overlaps is essential because any
overlap can obscure critical information, forcing controllers to manually rearrange labels
to maintain readability. Such a task is time-consuming and poses a significant obstacle
to efficient operations, potentially impacting safety and decision-making in high-pressure
environments. Automated label placement enhances air traffic operations by ensuring la-
bels remain clear and uncluttered. By optimizing label positions and minimizing overlaps,
automated systems allow controllers to focus on managing air traffic rather than adjusting
labels. This approach reduces the cognitive load on controllers and enhances situational
awareness, ultimately contributing to safer and more efficient air traffic management.

Technical Drawings. In mechanical engineering and maintenance manuals, labels are
crucial in annotating technical drawings; see Figure 1.2(c). These labels provide essen-
tial information about components and their functions, aiding engineers and technicians in
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(a) Map of Central Europe generated by MapKit JS provided by Apple [7], showcasing an intricate network
of cities and natural reserves. The map illustrates the importance of precise and non-overlapping labels in
cartography to ensure clear and accurate reading.
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(b) Air traffic control (ATC) radar and onboard radar beacon transponders work together to display aircraft
information on a radar screen. Each aircraft is represented by a symbol indicating direction and status.
Information shown includes call sign, altitude, speed, origin, destination, and type. Symbols indicate if
the aircraft is climbing or descending. Different colors represent arrivals, departures, and traffic to nearby
airports [164].
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(¢) Technical drawing illustrating a complex piping assembly, manually annotated with labels to identify
component parts and dimensions, as discussed by Lehtinen [101].

Figure 1.2: Examples of label placement in various domains: (a) cartographic label place-
ment in a map, (b) air traffic control radar visualization, and (c) technical drawings with
detailed annotations.
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(a) Women’s double sculls rowing broadcast during (b) Basketball games with dynamic labels featured
Olympics Games Paris 2024 [52]. in the ESPN App for NBA playoffs [135].

Figure 1.3: Examples of dynamic label placement in sports visualizations: (a) rowing com-
petition and (b) basketball game.

understanding complex assemblies. Accurate and efficient labeling in technical drawings
is vital for facilitating clear communication, ensuring safety, and supporting maintenance
processes. The complexity of technical drawings often requires annotating intricate details,
where clarity and precision are paramount. Despite advancements in software tools, manual
labeling remains prevalent in the industry. This process is time-consuming and susceptible
to human error, particularly in large-scale industrial projects like shipbuilding and process
plant design, where labeling can take thousands of hours [101]. As highlighted by Lehti-
nen [101], many existing labeling tools in technical drawing software lack the sophistication
needed to tackle the challenges presented by complex assemblies and high-density drawings.
These tools often fail to optimize label placement, resulting in overlaps and ambiguities that
require extensive manual adjustments. Like previous applications, automated label place-
ment can reduce the time and effort spent on manual labeling, improve consistency, and
lead to more efficient design and maintenance workflows, potentially contributing to higher
safety standards. Clear and precise labeling can ensure that critical safety information is
easily accessible, which can prevent misunderstandings or mistakes during manufacturing,
assembly, or maintenance.

Sports Visualization. In sports events such as basketball, football, car racing, or rowing,
dynamic label placement is essential for displaying real-time information about participants;
see Figure 1.3. These labels provide viewers with interesting details such as position, speed,
and rankings, enhancing the spectator experience by delivering exciting and relevant up-
dates. For instance, during a basketball match, labels might highlight the player currently
possessing the ball and their recent performance metrics. Dynamic automated label place-
ment offers real-time updates crucial for maintaining viewer engagement. By providing
context-aware information, dynamic labeling systems create a more engaging experience
for viewers and enhance their understanding of the event.

Scope and Research Objectives

The scope of this research primarily focuses on point-feature label placement, which refers to
the placement of labels for distinct, often small, objects or locations within a visualization,
such as cities on a map or specific data points in a graph. The research objectives aim to



advance the field of automatic label placement by developing novel methods that address
the challenges associated with both internal and external labeling. Internal label placement
refers to placing labels close to the point features they describe within the visualization,
ensuring immediate association with their corresponding features. In contrast, external
labeling involves placing labels outside the main visualization area, connected to the relevant
features by lines, which is especially useful in dense visualizations to avoid clutter.

Specifically, the objectives are as follows. First, the research seeks to develop novel
techniques that ensure temporally stable and visually coherent external label placements,
particularly in dynamic and interactive visualizations. Second, explore the relevance of
machine learning in internal label placement and propose an approach to enhance the
completeness of labeled data and computation efficiency.

Third, investigate the perceptual aspects of label positioning to optimize user experience
and comprehension.

Contributions and Structure

The contributions of this thesis are as follows. Chapter 2 provides a comprehensive literature
review, detailing existing techniques and identifying gaps in the field of automatic label
placement. Chapter 3 introduces novel approaches to temporally stable optimization of
boundary labeling, presenting both offline and interactive methods. Chapter 4 explores the
application of deep reinforcement learning for internal point-feature labeling, detailing the
methodology and evaluation results. Chapter 5 examines perceptual prioritization in label
positioning, offering insights into user preferences and optimizing placement strategies.
Chapter 6 concludes the thesis by summarizing key findings, discussing limitations, and
proposing directions for future research.
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Chapter 2

Literature Review

At its core, label placement involves positioning textual or symbolic labels in a way that
optimally augments features within visualization, such as maps or charts, without causing
conflict or confusion. A conflict occurs when two or more labels overlap with each other
or interfere with other essential elements in the visualization, obstructing their visibility
and making the labels difficult to read. Effective label placement aims to minimize these
conflicts to ensure readability and usability.

Automatic label' placement is a broad topic consisting of many different variations.
The most general classification of label placement techniques is based on the position of the
label relative to its associated feature. In internal labeling, the labels are placed closely next
to the features within the visualization space itself. Common applications include maps
and charts where labels must be immediately associated with geographic or data points
(e.g., cities or data markers) without extending beyond the visualization’s boundaries. In
external labeling, the labels are placed outside the visualization boundary. This approach
is often seen in medical atlases, where anatomical labels are placed outside the illustration,
or in panoramic views of city or mountain skylines. Combining both internal and external
labeling can be beneficial in specific applications, such as technical drawings, where clarity
and space optimization are crucial. Both internal and external labeling can be further
categorized based on the type of features they annotate: point features (e.g., cities or
mountain peaks), line features (e.g., roads or rivers), and area features (e.g., countries,
forests or lakes).

Given the breadth of the topic, the following text will specifically focus on point fea-
tures. We review internal and external labeling concerning the point-feature label place-
ment (PFLP), publications regarding dynamic label placement, and the label placement
guidelines.

2.1 Internal Labeling

Internal label placement involves positioning labels within the visualization space, close
to their corresponding features; see Figure 2.1. The field of internal labeling techniques
closely relates to the centuries-old discipline of cartography. Cartography, traditionally
known as both an art and a science, involves the creation and study of maps. In the early
1950s, cartography was primarily a manual process, where cartographers meticulously drew
maps by hand, often incorporating aesthetic elements to enhance readability and visual

'In the older literature also denoted as name placement.
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Figure 2.1: Examples of internal label placement in (a) web-based maps generated by
MapKit JS provided by Apple [7] and (b) visualization of multi-scale and multi-instance
3D biological environments proposed by Koufil et al. [97].

appeal [147]. The manual process required a deep understanding of geography, graphic
design, and spatial relationships, blending technical skills with artistic creativity.

The paradigm of cartography began to shift in the 1970s with the beginning of digital
technologies. A significant milestone in this transition was the work of Pinhas Yoeli [185],
an Israeli cartographer, who in 1972 introduced and published the first automated map
lettering system. Yoeli’s system represented a significant shift from manual to automated
processes, utilizing computer algorithms to place labels to maps. Yoeli’s pioneering work
catalyzed a wave of research and development in automated cartography. Throughout the
late 20th century, researchers worldwide began exploring various methods to enhance and
automate the label placement process. The proposed methods included the development of
semi-automated systems, where human operators would still play a role in overseeing and
adjusting the placement of labels, as well as fully automated systems that could indepen-
dently determine optimal label positions based on predefined criteria.

During more than a half-decade-long research, two branches of internal label placement
were formed. The fized-position model works with a set of fixed candidates for each feature;
see Figure 2.2(a)-(b). Candidate, or candidate position, refers to the predefined potential
location where a label can be placed relative to its feature. On the other hand, in the slider
model, the label can slide along the defined direction; see Figure 2.2(c). Table 2.1 provides
a comprehensive overview of internal point-feature label placement methods and their key
properties across different objectives and techniques.

Objectives. Several optimization criteria have emerged in the course of research on au-
tomated label placement, each aiming to address different aspects. The most prevalent
objective is label number mazimization (LNM), where the goal is to place as many labels
with defined dimensions as possible without conflicts. Therefore, several labels can be
omitted in the label placement solution. This formulation can be extended to weighted la-
bel number mazimization (WLNM) that also considers weights of features, where the labels
of features with large weight should not be missing in the solution. In contrast, features
with lower weight can be removed. An alternative objective that is less common is label size
mazimization (LSM) to determine the scale factor that makes labels as large as possible
while all features must be labeled without conflict [48,54,94,170, 186]. Another objective,
coming from air-traffic safety regulations, which require labels for all airplanes at all times,

12
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Figure 2.2: An illustration of the most commonly used label position models. The abbrevi-
ations of positions are as follows: top right (TR), top left (TL), bottom right (BR), bottom
left (BL), top (T), left (L), bottom (B), and right (R). (a) shows the 4-position model,
(b) shows the extended positions in the 8-position model, and (c) shows the slider model.
The slider model can be further categorized into 1- (slides along the top of the feature), 2-
(slides along the top and bottom of the feature), and 4- (slides along all possible positions
of the feature) slider models.

is conflict-free label maximization (CFLM). In this case, the conflicts among the labels are
allowed, but the number of conflicts-free labels is maximized while all features must be
labeled [24,123,143]. Finally, label conflict minimization (LCM) also, alternatively denoted
as label overlap minimization (LOM), appeared in the label placement research. In this
problem, the conflicts among the labels are allowed, but the number of conflicts is mini-
mized while all features must be labeled [6,76,144,145]. Interestingly, research shows that
the difference between LCM and CFLM often leads to similar outcomes, as noted by Chris-
tensen and Marks [39]. Moreover, in a counterintuitive discovery, Ribeiro and Lorena [145]
and Cravo et al. [43] observed that LCM outperformed the CFLM objective in maximizing
the number of conflict-free labels.

Complexity. The point-feature label placement problem is characterized by the expo-
nential combination explosion, computed as candidates? ¥ s indicating the vast number
of possible label configurations as the number of features and candidate positions increases.
To understand the computational challenges associated with PFLP, it is essential to delve
into computational complexity theory. This field helps classify problems based on the re-
sources needed to solve them. The class NP (nondeterministic polynomial time) includes
decision problems for which a given solution can be verified in polynomial time by a de-
terministic Turing machine. Within this context, N P-completeness pertains to decision
problems, such as determining if a label placement exists without conflicts. If a decision
problem is N'P-complete, it indicates that the problem is as hard as any problem in N'P.
On the other hand, AP-hardness involves problems that are at least as hard as the hardest
problems in NP, typically optimization problems like maximizing the number of placed
labels without conflicts. Therefore, if a decision problem is N'P-complete, then the corre-
sponding optimization problem is N'P-hard [39]. The early research has shown that even
simplified versions of the PFLP with unit-square labels are AN/P-hard for most objectives,
as established in various studies [54,88,94,95,121,171]. For a small number of labels,
exact algorithms exist, but they are computationally expensive and impractical for large-
scale problems [94,96,169]. Consequently, heuristics are essential for finding optimal label
positions in real-world scenarios. Common heuristic techniques include mathematical pro-
gramming, dynamic programming, genetic algorithms, and greedy approaches, which will
be elaborated on in the following section.
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2.1.1 Fixed-position Model

Fixed-position models, a major category within internal label placement, restrict label
positions to a predefined set of candidates relative to each feature; see Figure 2.2(a)-(b). The
predefined set of positions considerably narrows the search space, making the problem more
tractable while still presenting significant challenges that are NP-hard. In the following
sections, we categorize and review the related work on internal label placement with fixed
models according to the various approaches that have emerged over time to address the
PFLP problem.

Optimization Approach

The optimization approach to point-feature label placement encompasses a range of tech-
niques designed to find optimal or near-optimal solutions to the labeling problem. A com-
mon feature of these techniques is the mathematical formulation of an objective function,
which outlines the goals for a target solution and helps differentiate which of the two
solutions is superior. This approach includes mathematical programming methods, such
as integer linear programming (ILP) and linear programming (LP), which provide globally
optimal solutions by defining precise objective functions and constraints. While these meth-
ods ensure optimality, they require specialized solvers and can result in high computational
times, limiting their practicality for large-scale applications.

In addition to mathematical programming, heuristic-based optimization methods such
as genetic algorithms, simulated annealing, and tabu search offer faster and more flexible
alternatives. These techniques utilize iterative processes and probabilistic rules to explore
the solution space, often delivering high-quality solutions within reasonable timeframes.
Genetic algorithms, for instance, apply evolutionary principles to iteratively refine label
placements, balancing exploration and exploitation of the search space. Simulated anneal-
ing (SA) mimics the cooling process of metals, allowing the system to escape local optima
and potentially discover a global minimum. Tabu search employs memory structures to
guide the search process and avoid cycles, effectively navigating complex solution spaces.
While not guaranteeing global optimality, these heuristic optimization methods offer prac-
tical solutions for real-world scenarios where computational efficiency is crucial. They are
particularly valuable for applications where approximate solutions are acceptable and com-
putation time is a constraint.

An example of mathematical programming is the work of Zoraster [190,192], who pro-
posed an integer linear programming formulation of label placement in maps specific to
the oil industry. The objective function is defined as the sum of position penalty given by
weights of individual candidates and indicator variable (denotes whether the label is placed
at a given position or not) with respect to two constraints: the label can be placed only in
one candidate position, and restriction of label overlap.

Christensen and Marks [39] proposed an extensive empirical study of algorithms for
PFLP and introduced two optimization methods: first based on a discrete form of gradi-
ent descent and second based on simulated annealing (SA). The discrete form of gradient
descent produces a higher-quality layout by allowing the continuous change of the posi-
tion of already placed labels to an alternative position. However, the optimization can be
stuck in local optima. The second method, based on simulated annealing, can escape from
the local optima depending on the so-called temperature that gradually decreases over the
annealing process. At higher temperatures, a wider range of the space can be explored.
Therefore, the surrounding regions with possibly better local minima (and even the global
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Figure 2.3: A comparison of map of 750 features with labels placed by integer linear pro-
gramming algorithm of Zoraster [190, 192] and simulated annealing of Christensen and
Marks [39] (origin of this visualization). Labels shown in dark gray are in conflict with
other labels or features. The number in the description presents a number of conflicts.

minimum) may be found. The objective function in their study is defined by the number
of obstructed labels, with an optional extension to consider the number of removed labels.
Therefore, the method allows conflicts and focuses on label conflict minimization while op-
tionally minimizing label removals. The empirical results of their study suggest that despite
the quality-time tradeoff, the discretized gradient descent, the methods of Zoraster [190]
and Hirsch [77] are reasonable choices. In quality-critical cases, the best results provide a
simulated annealing method; see Figure 2.3.

Edmondson et al. [51] extended the simulated annealing approach to include other
types of features beyond points and defined a numeric quality metric ¢ € [0, 1], where 0
corresponds to ideal label placement and 1 to a borderline case where the label placement is
poor but barely acceptable. For the PFLP, the quality is defined as the number of overlaps
among labels and anchors.

Zoraster [193] enhanced the simulated annealing approach by incorporating a conflict
elimination mechanism, prioritizing the resolution of label-label and label-feature conflicts.
The method imposes higher costs on conflicts, ensuring they are resolved before other
considerations, such as label deletion or repositioning. Additionally, Zoraster expanded the
fixed-position model to include external labels by introducing 24 candidate positions. These
positions, including additional external labels, are located in the same directions from the
point feature as in the original model but at two additional distance levels, offering greater
flexibility in label placement.

Verweij and Aardal [169] proposed an exact technique for provably optimal labeling.
The authors reduced the fixed-position model PFLP to finding a maximum independent
set? (MIS) in a graph posed as linear programming and solved it using a branch-and-
cut algorithm. The proposed method can label up to 800 features within a moderate
computation time of 20 minutes.

2The maximum independent set (MIS) problem involves finding the largest set of vertices (label po-
sitions) with no edges between them, meaning no overlaps. Since the MIS problem is A'P-hard, various
heuristics or optimization techniques, such as greedy algorithms, simulated annealing, or integer linear
programming, are used to find solutions.
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Figure 2.4: An example map of 13,206 features, identifiers of Switzerland road network,
placed by technique proposed by Alvim et al. [6]. The number of conflicts for each label is
color-coded as described in the legend in the upper left corner.

Yamamoto et al. [183] introduced the combinatorial optimization method based on Tabu
Search, where conflicts in the final label placement are allowed. The idea is to step out of
the local optima concerning the Tabu List of previously visited solution candidates within
a short period. The presented study showed that Tabu Search provides better results of
labeling quality, concerning a number of overlaps among labels and the priority of candidate
positions, than other described methods [39,77,190].

Alvim et al. [6] proposed a point-feature labeling method to minimize the number of
overlapping labels based on the application of the POPMUSIC (Partial Optimization Meta-
heuristic under Special Intensification Conditions) metaheuristic. The POPMUSIC meta-
heuristic divides the PFLP into subproblems that are optimized with Tabu Search. The
framework leverages the strengths of Tabu Search for local optimization while managing
large-scale problems through the partitioning mechanism of POPMUSIC. The methodol-
ogy begins with a constructive procedure to generate an initial solution, which is then
iteratively improved by solving smaller, overlapping subproblems. Each subproblem is op-
timized using Tabu Search until no further improvements can be made. The experimental
results demonstrated that the POPMUSIC approach is highly efficient and significantly
faster than previously published methods, achieving high-quality solutions with minimal
computational effort; see Figure 2.4. However, while the technique minimizes the number
of overlapping labels, it encounters challenges when addressing specific cartographic con-
siderations, indicating room for further enhancements to integrate cartographic preferences
into the optimization process fully.

Mauri et al. [123] proposed a new mathematical formulation and a Lagrangian decom-
position technique for the PFLP. The formulation uses a 0-1 integer linear programming
approach to maximize the number of conflict-free labels (i.e., conflicts are allowed). Addi-
tionally, the authors presented an alternative objective focused on minimizing the number

17



CL1, CL2 E CL13 CL2

S T iy s Label 2+ » (] : (]

i . E=THN Y =T

Poor ' 3
-------------------------------------- Label 2 dmin' § Label 2 Amin
o Label 1 © ! @

Gine '

o ® Label 2 (@] o : i

At |

Good Poor ! Good

(a) (b)

Figure 2.5: An example of ambiguity between two labels proposed by Rylov and
Reimer [148]. For each label pair, the distance among label boundaries d,,;, and also
the distance among horizontal and vertical centers d%,. . and dY . = are combined to mea-
sure ambiguity. When the distances exceed a given threshold, the ambiguity term does not

penalize the objective function.

of conflicts. The Lagrangian decomposition involves partitioning the conflict graph®, into
several sub-graphs (clusters). To mitigate the impact on the global optimal solution, some
vertices of the conflict graph (i.e., candidate positions) are copied into clusters to be fully
defined globally. The authors propose to duplicate the vertices with the greatest number of
inter-cluster edges. Finally, the local solutions of individual clusters are synchronized using
additional constraints. The solution for 1000 labels takes, on average, over 3 hours, while
the optimality gap (i.e., a measure of the solution’s quality compared to the optimal) is
0.48%. The solution without Lagrangean decomposition is an order of magnitude faster (2
hours) but has an optimality gap of 10.64%.

Rylov and Reimer [148] proposed mathematical formulation using an 8-position model
that considers cartography rules and guidelines. The objective function is constructed as
a weighted sum of simple metrics corresponding with cartographic rules. Among common
PFLP requirements, such as conflict-free placement or label candidate priority, the authors
include guidelines such as labels of coastal places should be placed on water bodies instead
of land, and the relationship between the label and feature should be unambiguous and
cluttered. The ambiguity measure is based on the Euclidean distance of each label pair
considering distance among label boundaries d,,;, and also distance among horizontal and
vertical centers d%,. ~and d” .  as shown in Figure 2.5. When the distances exceed a given
threshold, the ambiguity term does not penalize the objective function. The objective func-
tion was optimized in experiments using greedy, discrete gradient descent and simulated
annealing. Consistently with Christensen and Marks [39] they found that simulated an-
nealing outperforms the other techniques in the achieved quality of label placement.

Haunert and Wolff [72] proposed ILP formulation using an arbitrary n-position model
considering label-feature ambiguity and clutter, extending the formulation of Rylov and
Reimer [148] that is not strictly ILP. The technique is based on inference graph. Contrary
to the conflict graph, the inference graph contains edges for label positions that are conflict-

3 A conflict graph, initially proposed by Ahn and Freeman [3,55] and later extended by Agarwal et al. [1],
is a conceptual tool used to manage and resolve label overlaps in the fixed-position model. In this graph
representation, each node corresponds to a candidate label position, and each edge represents a conflict
between two labels, indicating that the labels overlap if placed simultaneously. The problem of selecting
the maximum subset of non-overlapping labels can be formulated as a maximum independent set (MIS)
problem in the conflict graph as proposed by Agarwal et al. [1].
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free but ambiguous. The ambiguity is expressed by edge weight in the graph, which is a
user-selectable parameter. Label positions are added to the graph only when within a
distance of X is located in a feature unrelated to the label. Therefore, the relation of two
label positions is considered for the ambiguity in the objective function. Moreover, contrary
to common label number maximization (LNM), the authors argue that LNM is not practical
as it is not the goal to completely overlap the visualization with densely packed labels, as is
typically the case of LNM. Instead, they defined a shape (e.g., round disk or square) that at
any position in the visualization can be intersected by at the most K. This allows authors
to control the label density of the final solution.

Similarly, Marin and Pelegrin [122] proposed an ILP formulation that addresses ambi-
guity in map labeling based on the proximity of labels to unrelated features. They argue
that ambiguity arises when labels are close to features they do not relate to, considering the
minimum distance between the four vertices of a rectangular label and other features as a
measure of label position ambiguity. Therefore, they formulated the problem using objec-
tive functions that minimize the distance-based ambiguity measure, subject to constraints
ensuring label placement feasibility and conflict resolution. Unlike the former approach,
they define ambiguity for a single label, not for a pair of labels. They presented two ILP
formulations, each allowing for placing all labels, including those with conflicts, and modi-
fication for only placing labels without conflict. Compared to other PFLP techniques, they
use an unusual 8-position model based on a typical 4-position model while extended with
the same positions rotated 45 degrees counterclockwise. Additionally, they comprehensively
reviewed ILP techniques for point-feature label placement.

Rabello et al. [143] presented a clustering search metaheuristic (CS) for the point-
feature labeling with the objective to maximize the number of conflict-free labels as a new
alternative to solve the PFLP problem. The CS can detect promising areas of the search
space and prevent more intense searches in poor areas or areas that have already been
sufficiently explored. The authors conducted a case study that shows that the percentage of
conflict-free labels obtained by CS is the highest among the other compared methods. Lu et
al. [114] proposed a hybrid approach combining discrete differential evolution and genetic
labeling algorithm (DDEGA) with the objective to minimize the number of overlapping
labels for all the different types of features (i.e., point, line, area). Further, the conducted
experiment shows that the fitness function converged more quickly than a genetic algorithm
(GA) and discrete differential evolution (DDE) alone. Nevertheless, the proposed approach
only uses some of the most basic rules (e.g., label conflict, label-feature conflict, label non-
ambiguity, and label priority).

Higashikawa et al. [76] proposed an integer linear programming approach for minimizing
label overlap, where all features must be labeled. The goal is to find a placement of
labels such that the maximum overlap at any point p in the plane is minimized; see the
difference between Figure 2.6(a) and 2.6(b). The authors divide the visualization plane
into cells. A cell is a smaller region of the plane formed by the intersection of horizontal
and vertical lines drawn through the edges of label candidates. These lines partition the
plane into horizontal and vertical strips, and the intersections of these strips create cells; see
Figure 2.6(c). By using cells, instead of considering every possible point p in the plane, the
problem only needs to consider the overlap within each cell. Within each cell, the overlap
remains constant for all points p in that cell. Finally, they propose linear programming
relaxation and rounding 4-approximation.

Lessani et al. [102] proposed an MPI-based parallel genetic algorithm for the placement
of multiple geographical feature labels with the objective of label conflict minimization.
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Figure 2.6: Examples of optimal solutions of (a) free-label maximization, (a) overlap min-
imization and (c¢) division of the visualization plane into cells proposed by Higashikawa et
al. [76]. Using cells simplifies the problem as it only needs to consider the overlap within
each cell rather than evaluating every possible point p in the plane.

The approach addresses point, line, and area features. Point features have 24 candidate
label positions across three distance levels from the feature. The quality function includes
binary detection for label-label conflicts, a constant value for label-feature conflicts, and a
normalized distance from the center of the label to the feature for label association. The
optimization uses a combination of genetic algorithms and discrete differential evolution
(DDE) based on Lu et al. [114]. Post-optimization, a refinement step slides labels along
four directions (in an X-shape), with up to 20 attempts per conflicted label, further reducing
label-feature conflicts. Experimental results show improvements in both label placement
quality and computational efficiency.

Gedicke et al. [59] investigated labeling methods for zoomless maps specifically designed
for small-screen devices such as smartwatches. They proposed an approach that distributes
labels over multiple pages, allowing users to navigate through pages without overlapping la-
bels or the need for zooming. The approach involves a two-phase strategy: a pre-processing
phase that uses an optimization approach to pre-compute labelings at the city level, called
global labelings, and a query phase for on-demand retrieval of individual labelings at a more
local level, called local labelings; see Figure 2.7. The optimization criteria include mini-
mizing the number of pages, prioritizing important labels to appear earlier, and ensuring a
spatially balanced distribution of labels. The authors used an integer linear programming
formulation to solve the problem, treating it as a graph coloring problem. The number
of restaurants contained in the cities’ experiment frames ranges from 2070 in Calgary to
5349 in Las Vegas. Most instances were solved within a few minutes up to one hour at
maximum.

Exhaustive (Rule-based) Search Approach

The exhaustive search approach to point-feature label placement systematically explores
all possible configurations to find an optimal solution, leveraging predefined rules to guide
the search process. This approach performs well in small-scale problems where the search
space remains manageable. However, the exponential growth of the search space limits the
practicality of exhaustive search in larger instances of the PFLP problem.

Ahn and Freeman [3,55] proposed a graph-based approach, where a node represents a
label and nodes are connected by an edge if the corresponding labels overlap. The graph,
nowadays commonly called a conflict graph, is divided into individual connected components
(a graph that contains only nodes that can be reached mutually by traversing the edges)
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Figure 2.7: An example of a small-screen device approach consisting of three global labeling
pages with an illustration of two local labelings (A, B) proposed by Gedicke et al. [59]. Time-
consuming global labelings are pre-computed during a preprocessing phase, done once, and
then local labelings are extracted during a query phase. In the query phase, local labeling
is achieved by sampling all labels contained in the frame representing the current region of
interest for each page.

that can be processed individually, as a node in one component can not affect the label in
another. The placement process employs a modified A* algorithm, prioritizing nodes with
the smallest degree of freedom to minimize backtracking. If it becomes impossible to place
a label, the algorithm backtracks, aided by update records that track changes in free-space
blocks and node degrees of freedom.

Cook and Jones [42,86] proposed a rule-based algorithm for label placement using the
logic programming language Prolog. The strategy for resolving label conflicts involves a
systematic search for possible positions, utilizing several heuristics. Labels are processed
in descending order of importance. Labels are placed in decreasing order of placement
difficulty, starting with those having fewer options in dense areas. Among labels with
equal placement prospects, those with the most potential overlaps are placed first. If a
label cannot be placed, the algorithm backtracks to previously placed labels to find an
alternative position until another candidate position is available. If no such position exists,
the label that caused the backtracking is removed.

Doerschler and Freeman [49] introduced a rule-based algorithm for dense-map label
placement. The authors build upon the backtracking approach but extend it using the
quality-evaluation rule, which provides a normalized value ¢ € [0,1]. When the quality
exceeds the threshold, the other candidate positions are evaluated, or backtracking occurs.
The threshold is initially set to 1 and gradually decreases with each rule evaluation, meaning
that initially unacceptable placements may become acceptable if better placements cannot
be found easily. After a label is placed, the quality of neighboring labels is reevaluated,
potentially resulting in their repositioning.
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Greedy Approach

The greedy approach to point-feature label placement offers a straightforward and efficient
method for addressing the labeling problem. Unlike exhaustive or optimization techniques,
which aim to explore a larger portion of the solution space or guarantee global optimal-
ity, greedy methods focus on making locally optimal choices at each step. This approach
involves applying algorithms like the sweep-line algorithm to sequentially label point fea-
tures based on immediate, short-term criteria. Greedy algorithms evaluate potential label
positions and select the best option available at each stage without considering the broader
implications or allowing backtracking to correct previous choices. As a result, while greedy
methods may not always find the optimal overall solution, they can produce a satisfac-
tory label layout with significantly reduced computational time, often in milliseconds. This
speed advantage makes greedy algorithms particularly suitable for time-critical applica-
tions such as real-time mapping and dynamic visualization tasks. However, the absence
of backtracking or limited backtracking depth means that greedy methods may miss more
optimal configurations, especially in densely packed or complex label placement scenarios.
Consequently, while these methods are efficient and practical, they typically result in fewer
labels being placed compared to former approaches.

Ebinger and Goulette [50] proposed a simple greedy approach for label placement for
the 1990 United States Decennial Census maps. The method sequentially attempts to place
the label at the candidate positions defined by the 4-position model. If the label cannot
be placed at any of these candidate positions, only the anchor is retained, and the label is
discarded. Among the optimization techniques, Christensen and Marks [39] also proposed
a greedy-based method where the label is placed in the best available position considering
all previously placed labels. The position of already placed labels can not be changed.
Consequently, the label is hidden if no position is available.

Yamamoto et al. [182] proposed an algorithm for point-feature label placement, where
conflicts in the final label placement are allowed, for real-time screen maps, aiming to
balance label placement quality and processing time. The algorithm uses a precomputed
conflict graph to identify overlapping label positions and applies a three-step approach:
maximum non-conflict labeling, conflict minimization for remaining labels, and local search
for further refinement. Each node in the conflict graph represents a candidate position,
and the edge denotes a conflict with the other node, i.e., candidate position. In the first
step, the algorithm iteratively places the label with the smallest number of conflicts. Later,
all unsolved labels are placed in the position with the least conflicts. Finally, local search
is applied to labels that are in conflict, and the modification of the candidate position is
accepted if the number of conflicts is reduced. Mote [128] introduced a greedy method that
divides the screen into a 2-dimensional grid and determines a simplified version of a conflict
graph of the point features. Only point features in neighboring cells need to be checked for
conflict with a given point feature. The technique assigns a cost to every label candidate to
find the label layout and selects the least expensive set of non-conflicting candidates.

Cravo et al. [43] proposed a greedy randomized adaptive search procedure (GRASP),
a metaheuristic consisting of two phases: a constructive phase and a local search phase.
In the constructive phase, a feasible solution is iteratively built by blending greedy and
random selection methods to form a restricted candidate list (RCL) of label positions. The
vertex degrees of the conflict graph, representing potential overlaps, are used to order the
candidate positions. The solution is constructed by iteratively selecting and placing the
candidate position with the least conflicts from the RCL. The local search phase explores
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Figure 2.8: An example of US airports and direct flights to Seattle-Tacoma Interna-
tional Airport (denoted by red labels) labeled by the method proposed by Pavlovec and
Cmolik [138]. Red labels are not allowed to intersect lines and features. Labels denoted by
black color are not allowed to intersect lines, features, or boundaries of US states.

the neighborhood of the current solution, attempting to improve it by reassigning candi-
date positions to reduce conflicts. The algorithm checks each feature for alternative valid
candidate positions and accepts changes that improve the solution.

Kittivorawong et al. [92] addressed the performance problem of particle-based labeling
(PBL) proposed by Luboschik et al. [115] (see in Section 2.1.3) with an occupancy bitmask
that allows faster evaluation of label overlaps with complex visual features that cannot be
occluded. Nevertheless, the computation time required to determine overlap for a label still
depends on the size of the label and the resolution of the screen. Pavlovec and Cmolik [138]
introduced Rapid labels (RAPL), an approach leveraging the power of GPU. They allow
labeling several point features in each iteration using a 2-dimensional grid. Further, they
evaluate the overlaps of labels with important visual elements, the conflicts between the
labels, and the ambiguity of the labels to position the labels in suitable order; see Fig-
ure 2.8. They utilize Summed Area Table to evaluate the overlaps, conflicts, and ambiguity
independently of label size and screen resolution.

Singh et al. [156] introduced a greedy heuristic that separates the 8-position model
into two 4-position models (TR, TL, BL, BR and T, L, B, R); see Figure 2.2. The solution
involves creating a conflict graph of candidate labels and finding an independent set through
geometric sweep-line methods in different directions (top-to-bottom, left-to-right, bottom-
to-top, right-to-left). Subsequently, they merged the solutions from these directions using
a bipartite graph approach to maximize labeled points.
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Formal Algorithm Approach

The point-feature label placement problem has also attracted significant attention from the
formal algorithm community. Researchers in this domain focus on developing algorithms
that provide theoretical guarantees of solution quality and computational efficiency. These
formal algorithms often aim to find solutions that are provably close to optimal, typically
within a factor f of the best possible outcome (e.g., f = % indicates the solution is at least
half as good as the optimal one). Formal algorithms are characterized by rigorous proofs of
runtime complexity, which provide insights into their performance and scalability. However,
these algorithms often rely on simplifying assumptions to manage complexity and facilitate
analysis. For instance, many formal approaches assume uniform label dimensions, such as
unit square rectangles or labels with consistent height.

For instance, Formann and Wagner et al. [54] proved that maximizing the size of uni-
form axis-parallel square labels (i.e., all labels having same dimensions which is highly
uncommon in geographical maps, but can be the case of technical maps as denoted by au-
thors), where n is the number or anchors while using the 4-position model for candidates, is
NP-complete, and proposed an O(nlogn) approximation. Among others, the authors also
proved that no polynomial-time approximation algorithm can exceed a guarantee factor
f= % Later, Wagner [172] proved that the same problem has Q(nlogn) lower bound on
the approximation runtime.

Wagner and Wolff [170] claimed that the previous algorithm is the best possible from
a theoretical point of view but is useless in practice as it typically produces non-optimal
solutions that are not much better than 50% of the optimum. To address this, they proposed
a heuristic for label size maximization of uniform axis-parallel square labels with the same
guarantee and complexity, but the practical results are closer to the optimum. The results
were compared with random and real-world samples where the exact optimum is known.
Agarwal et al. [1] proposed an O(nlogn)-time factor—% approximation based on divide-and-
conquer algorithm and dynamic programming” for unit height and varying width labels label
number maximization.

Wagner et al. [171], similar to Kakoulis and Tollis [87], proposed a two-phase approach
for arbitrary axis-aligned labels. In the first phase, the number of possible candidates is
reduced by three rules while the optimality (7.e., maximum number of labels that can be
placed) is not reduced. In the second phase, the authors reintroduced a conflict graph,
initially proposed by Ahn and Freeman [3,55], to detect conflicts and effectively reduce the
number of candidates for each feature to one. The idea of the algorithm is to start with
features that have the maximum number of candidates. For each feature, the candidate
with the maximum number of conflicts (i.e., number of edges) is removed. The authors
show that the proposed method is faster than simulated annealing but performs slightly
worse regarding a number of labeled features.

2.1.2 Slider Model

Unlike fixed-position models, slider models provide greater label placement flexibility by
allowing continuous label movement around their corresponding features. Consequently, the

“Dynamic programming is an optimization strategy that simplifies complex problems by dividing them
into smaller, manageable subproblems. Each subproblem is solved only once, and its solution is stored
for future reference. This approach eliminates redundant computations and is particularly practical for
problems characterized by overlapping subproblems and an optimal substructure, where the best solution
can be derived from the best solutions of the subproblems.
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Figure 2.9: An example of conflict graph types used in technique proposed by Petzold et
al. [140]. (a) Static conflict graph for a given scale. (b) Scale-independent conflict graph
extended by the attributed edges with a scale interval (c).

slider model offers the potential for reducing overlaps and improving readability. However,
slider models have not received much attention from the scientific community, and only a
few approaches have been proposed.

In particular, Hirsh [77] proposed a forced-based approach® for conflict-free label max-
imization where the translation vectors are repeatedly computed based on repelling forces
for overlapping labels. Doddi et al. [48] introduced a slider model, where, like Formann
and Wagner et al. [54], the goal is to maximize the size of equally-sized labels that can be
rectangular or elliptical. Moreover, the presented method allows the rotation of each label
around the corresponding feature. Finally, they also introduce a bi-criteria algorithm that
allows to keep some of the labels unlabeled.

Kreveld et al. [120] studied several sliding models (1-, 2- and 4-slider model) and pro-
posed a combinatorial O(nlogn)-time greedy factor—% approximation approach for all men-
tioned slider models with the label number maximization objective. They assume fixed size
height but flexible width of labels. They also proved that the 4-slider model is N'P-complete.
The authors also shown an interesting fact, that proposed greedy 4-slider algorithm can
place about 10-15% more labels than corresponding 4-position model. Surprisingly, in
comparison to the fixed-position model approach by Christensen and Marks [39], the pro-
posed 4-slider approximation performs slightly worse up until 750 features, and from that
point to 1500 (the maximum number of tested points), only marginally better.

Petzold et al. [140] introduced a fast greedy slider model approach with the label number
maximization objective suitable for zooming and scrolling. The main idea is to divide the
label placement process into two phases: (1) time-consuming preprocessing and (2) fast
interaction phase. In the first phase, the scale-independent conflict graph is constructed,
similar to the approach of Ahn and Freeman [3,55], extended by the attributed edges
with a scale interval. The lower/upper bound is the smallest/largest scale where a conflict
exists. Similarly, the nodes in the graph are attributed with the smallest scale, where the
corresponding feature is labeled. In the second phase, the static conflict graph for a given
scale and clipping rectangle is derived from the scale-independent conflict graph constructed
in the preprocessing phase; see Figure 2.9. Finally, the conflict-free candidates are selected
by traversing the static conflict graph in ascending priority order.

5A force-based approach utilizes physical metaphors of forces, such as attraction and repulsion, to
determine optimal label placement. Labels and features are treated as objects that exert forces on each
other. Attractive forces pull labels toward their associated features, while repulsive forces push labels away
from other labels and visual elements to prevent overlap. This dynamic adjustment continues until the
system reaches an equilibrium, a state where the forces are balanced.
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Li et al. [107] proposed a method based on the region of movability that comes from
plane collision detection theory. The idea is to define a conflict-free label placement search
space and then derive the best position for each label using heuristic search methods.
Nevertheless, the method does not contain the removal strategy for cases where the features
are too densely distributed; therefore, conflict-free search space does not exist in such a
case.

2.1.3 Other Models

The exploration of label placement models beyond the traditional fixed-position and slider
models has led to innovative approaches that enhance flexibility and user interaction in
the label placement process. These alternative models often integrate interactive elements,
human-in-the-loop techniques, and hybrid strategies combining internal and external label-
ing methods.

In particular, Klau and Mutzel [94] proposed an exact provably optimal exponential-time
approach for label number maximization formulated as zero-one integer linear programming.
The proposed approach is independent of the labeling model and can be used both for fixed-
position and slider models. Moreover, the approach can place several labels of arbitrary size
per feature, which is rare in regard to the previous work, and also allows the combination
of several labeling models for different sets of features. The main idea of the approach
is to decompose the problem into a horizontal and vertical component and link these by
additional constraints. The authors also show that the more flexible the labeling model
is, the easier is the computation. The provided evaluation shows that the exponential
explosion is at about 400 labels for the 4-position and 4-slider models. Interestingly, the
computation time of the method is highly dependent on the spatial configuration features,
as for a specific instance of 366 features, while using the 4-position model, it takes more
than two and a half days to find an optimal solution. Nascimento and Eades [130] proposed
an iterative framework that allows users to interact with the labeling process by providing
domain knowledge (hints) via a conflict graph to aid the placement method. The idea of
hints is to help the algorithm escape from local minima or reduce the solution space. These
hints can include font size changes, custom candidate positions, modification of the cost of
candidate positions, and modifications of edges in the conflict graph. The framework was
evaluated by professional cartographers, who provided positive feedback on its potential
utility. They appreciated the integration of human expertise with automatic optimization
methods, although they noted the need for further enhancements and additional features
for practical deployment.

Klute et al. [96] proposed another approach that integrates the human-in-the-loop con-
cept into label placement algorithms. Their method begins with an algorithmically gener-
ated initial solution, which a cartographer can refine through various modifications, such as
changing label positions or sizes, deleting labels, or fixing label candidates; see Figure 2.10.
The primary goal is to maintain the stability of the label placement after modifications,
ensuring that most labels retain their positions. The authors developed a user interface
that allows cartographers to make these adjustments easily. They implemented a range of
label placement algorithms based on conflict graphs, including greedy approaches, several
approximations of the maximum independence set (MIS), and exact MIS techniques. Addi-
tionally, they incorporated three algorithms from QGIS. The evaluation involved simulating
modifications through five random rounds of resizing and deletion operations. The criteria
for evaluation included labeling quality, time complexity, and stability of modifications.
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Figure 2.10: An example of the graphical user interface proposed by Klute et al. [96]. Users
can refine the algorithmically generated initial solution by changing label positions or sizes,
deleting labels, or fixing label candidates.

The results showed that a combination of the initial solution via the KaMIS solver [99] and
modifications using the POPMUSIC approach [6] yielded the most promising outcomes.
The experiments also highlighted that the density of labels significantly affects the run-
time, ranging from 120ms for 182 sparsely distributed features to one hour for 373 densely
distributed features using the KaMIS solver.

Luboschik et al. [115] proposed a greedy particle-based labeling approach that can also
respect other visual elements and the visual extent of labeled features. The visualization
space is discretized into two types of so-called conflict particles. The label particles rep-
resents point features, and virtual particles represents the space occupied by other visual
elements. The placed label is approximated by a set of newly generated virtual particles.
Candidate positions for label placement are determined sequentially using several well-
known techniques in order: (1) 4-position model, (2) 8-position model, (3) 4-slider model,
(4) proposed spiral model. The candidate positions are first determined by the 4-position
model, and if a position is feasible (i.e., no conflict particle is in the area of the label), the la-
bel is placed, and the following set of candidates is not generated. However, if the candidate
positions are not feasible, another set of candidate positions is generated by the 8-position
model, and so on. The last candidate positions for labels are generated using introduced
spiral model — candidate positions are sampled from a spiral function. Furthermore, more
distant features are connected with the label by a straight leader line (i.e., using external
labels). The authors suggest that the proposed approach enables interactive labeling of up
to 1000 features.

A similar approach combining internal and external labels proposed Cmolik et al. [41];
see Figure 2.11. The technique operates in screen space, making it suitable for 2D and 3D
projected visualizations. The position and type of each label are specified by an ambiguity
threshold, which can be set by the user. The algorithm takes a color buffer and an ID
buffer as input to represent unique parts of the visualization. The labeling criteria are
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Figure 2.11: An example of a human head model with placed labels by technique proposed
by Cmolik et al. [41]. The image illustrates the changes in label layout when changing the
ambiguity threshold from zero (a) over midpoint (b) to the maximum value (c). Notice the
ambiguous spinal cord and spine placement in (b) in contrast with (c).

described by a fitness function comprising salience, priority of label candidates, leader line
length, and area ambiguity. Labels are placed using a greedy algorithm, which iteratively
selects the best candidate label based on the fitness function that aggregates the above
criteria. The use of an ambiguity threshold allows the algorithm to switch to external labels
when internal labels would cause confusion, ensuring that all labels are clearly associated
with their respective objects. Although the technique allows for real-time usage, temporal
coherency is not addressed in this work.

Kouril et al. [97] introduced a multi-scale and multi-level internal label placement frame-
work for labeling area features approximated by point features based on greedy approxi-
mation; see Figure 2.1(b). The method works as a post-processing step; nevertheless, the
scene is supposed to be rendered with the approach of Le Muzic et al. [100]. The input is
a set of buffers containing information about object type and id, depth, color, and a scene
graph. The method consists of three stages. First, the scene is divided into three regions
(foreground, middle-ground, and background) based on the distance of the object to the
camera (the idea is to group objects further from the camera). Afterward, the representa-
tive instance for each object type is determined using multi-criteria fuzzy decision-making.
Several criteria are considered, such as salience — to label the most prominent instances
and temporal coherence — to steer the algorithm toward the previous position. Finally, the
labels are centered on the computed anchor points of the area features, using 3D billboards
that are aligned with the camera. However, because points approximate area features, they
can overlap, especially for longer texts, which reduces their readability. Additionally, the
authors acknowledge that the current solution has the limitation of labels potentially oc-
cluding the objects they are intended to describe, which further impacts the clarity of the
visualization.

Lhuillier et al. [105] proposed a density-based labeling approach to place labels into
uncluttered parts of underlying visualization. The idea is to create a density map of the
features represented in the 2D space by convolving with a radial density estimation kernel.
Afterward, the constructed density map, in combination with gradient descent, is used
to guide the label from the feature point toward the area of low density. The gradient
descent trajectory is then used as a leader line in case of more distant labels from the
feature. Unfortunately, the method does not consider any well-established guidelines for
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Figure 2.12: (a) a part of a biological network with the focus region [75], (b) an visualization
of labels around the contour of a brain [133], (c¢) an application of boundary labeling for
visualization of mountain peaks [29].

label placement. Furthermore, the leaders of features on a gradient descent trajectory are
merged into a single leader. Therefore, the relation of labels with the corresponding features
remains unclearin this case.

2.2 External Labeling

As already mentioned, labels play a crucial role in identifying and describing features, but
placing labels internally within the visualization space can lead to clutter and overlaps, es-
pecially when dealing with densely packed data or complex visual structures. Therefore, to
overcome the shortcoming of internal label placement, external label placement techniques
emerged. External labels are placed outside the primary visualization area with the ambi-
tion of reducing clutter and improving readability. A key component of external labeling is
the use of leaders, which are lines that connect labels to their respective features. Leaders
can vary in shape and type, such as straight, curved, or angular, helping to maintain clear
associations between labels and features while minimizing visual clutter.

The term external label placement is widely accepted in the current literature as an
umbrella term encompassing several labeling techniques. Such as excentric or focus-region
labeling [53], which focuses on labeling features within a specific region of interest (typically
described by a circle of fixed radius), often referred to as a focus region or lens; see Fig-
ure 2.12(a). Another technique is contour labeling [4], which restricts label placement to a
predefined contour that generally matches the shape of the illustration; see Figure 2.12(b).
Lastly, boundary labeling [16], and its variant for panorama images [29,60], involves plac-
ing labels along the edges of a rectangular boundary surrounding the visualization; see
Figure 2.12(c).

The topic of external label placement is extensively covered in the state-of-the-art report
by Bekos et al. [20,21], which provides the first unified taxonomy for categorizing the various
external labeling techniques and presents a comprehensive survey of their applications and
developments. Therefore, the following text is structured as a high-level overview of external
labeling techniques, summarizing key aspects and advancements. Table 2.2 provides a
comprehensive overview of external point-feature label placement methods and their key
properties across different objectives and techniques.
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Figure 2.13: (a) straight-type leaders, (b) orthogonal-type leaders, (¢) diagonal-type leaders.
The segments are defined with respect to the reference edge that is the left edge of a label.

Leader types. Systematic classification of different leader types was introduced by Be-
kos et al. [16] and further extended in their subsequent work [20,21]. Leader line A consists
of k segments that are in order from feature to label. The type of i-th segment is described
by character ¢ from T' = {s,r,d,0,p}, thus the shape of A is described by string z € Tk,
The description of each character ¢ € T' is following;:

s is a straight line segment, o is an orthogonal line segment,
r is a ray segment emitted from a center, p is a parallel line segment.
d is a diagonal line segment,

The o- and p- segments are defined with respect to the reference edge, which is typi-
cally the vertical edge of a label. The leaders consisting only of those segments are called
orthogonal. The leaders comprising d in combination with preceding or succeeding o- and
p- segments are called octilinear. See Figure 2.13 for an illustration of common leader

types.

Objectives. During the external label placement research, several optimization criteria
emerged. Similar to internal label placement, label number mazimization (LNM) aims to
maximize the number of placed labels in visualizations while the leader crossings are not al-
lowed. This objective is intended for visualizations with many labels where all labels cannot
fit the visualization space. The extension of this case is weighted label number maximization
(WLNM), which also takes into account the weight of individual features. Another objec-
tive is leader crossing minimization (LCrM), where the objective is to minimize the number
of intersections among leaders as it makes the feature-label assignment ambiguous and the
visualization cluttered. However, the most common and explored objective is leader length
minimization (LLM), where the goal is to minimize the length of leaders as long leaders
make the feature-label assignment time-consuming, cluttered, and ambiguous. Alternative
reasoning is the ink savings when these visualizations are printed. Finally, leader bend min-
imization (LBM) emerged in external label placement. The objective is to minimize the
number of leader bends as it makes the visualization cluttered and hard to read.

Complexity. When dealing with labels of varying dimensions, external label placement
problems are typically classified as NP-hard [21]. This complexity arises from optimizing
label positions and routing leader lines, which connect labels to their corresponding features.
Specifically, objectives such as leader length minimization [19,112] and leader crossing
minimization [15,110] have been proven to be NP-hard in multiple studies. Additionally,
the work of Gemsa et al. [63] and Bekos et al. [18] demonstrates that both panorama
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labeling and 2-opposite-sided boundary labeling also fall into the N'P-hard category. This
classification indicates that finding optimal solutions for these problems is computationally
challenging, similar to internal label placement. Despite the complexity, heuristic methods
such as force-based techniques, dynamic programming, and mathematical programming are
crucial for achieving optimal or near-optimal solutions in practical applications.

2.2.1 Excentric Labeling

Excentric labeling is a technique used to manage the presentation of labels in visualizations
by dynamically displaying labels for only the most relevant features within a specific area
of interest. This method is beneficial for densely populated visualizations where displaying
all labels simultaneously would lead to clutter and reduced readability.

The concept of excentric labeling was introduced by Fekete and Plaisant [53]. The
authors describe their method as dynamic in a way that labels for features are implicitly
hidden, and when the cursor stays more than one second over a circularly defined focus
area, the labels for the features within the defined area are populated. The labels are
stacked along the left and right sides of the focus area and connected with features by
do-leaders (left side) and s-leaders (right side). When a vertical or horizontal ordering of
the features is important, the algorithm allows the crossing of the leaders. Further, their
method was extended by Bertini et al. [25] work that improves the previous limitations
by addressing high-density areas and uneven-density distributions. They propose to create
a density map such that an element of this map denotes the number of features that fall
inside. Afterward, the diameter of the focus area is obtained using average pooling on the
density map. Additionally, summary statistics in the form of a bar chart are provided above
or below the lens, offering insights into the area’s content.

Heinsohn et al. [75] proposed four different approaches for label placement with s-
leaders. The first (so-called Left Hand All) approach assigns the labels only to the left
side of the focus area. In the second so-called radial approach, the leader is defined by the
path of a ray given by the radial projection of the feature point to the circumference of the
focus area. When the angle between two subsequent leaders is too small, the corresponding
labels can overlap each other. To resolve this, they shift the labels further away from the
center of the focus area until there are no overlaps left. The third approach is based on
a force-based approach such that the preferred position of a label is its radial position.
The last so-called cake-cutting approach places the labels equally distributed along the
circumference of the focus area. Overlapping labels are resolved using the same method as
in the radial approach.

Niedermann and Haunert [132] proposed a focus region map labeling approach to en-
hance the usability of digital maps, especially on small screens, by reducing the need for
zooming. The technique places labels near the surroundings of the focus region using fish-
eye projection [181], ensuring that labels move smoothly without flickering when the user
moves the focus region. The projection ensures that the position of a focus label stays on
the radial ray from the center of the focus region through the original position of the label,
preserving the radial ordering of the focus labels; see Figure 2.14. When the user stops
moving the focus region, the positions of the focus labels are optimized to reduce overlaps
using a force-based approach. This approach introduces repulsive forces between poten-
tially overlapping labels and attractive forces between labels and their initial positions.
Mathematical programming is used to find an equilibrium of these forces. The method also
allows centric label placement for features in the middle of the focus area, considering their
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Figure 2.14: An illustration of the technique proposed by Niedermann and Haunert [132].
(a) The input consists of labels within the focus region. (b) Phase 1: The labels are
projected using fish-eye projections [181]. (c) Phase 2: The positions are refined using
optimization using force-based formulation.

importance to the user’s interests. Finally, leaders who are close to each other are bundled.
Instead of drawing each leader, each bundle is presented as a slightly transparent polygon
enclosing the bundled leaders.

2.2.2 Contour Labeling

Contour labeling is a technique designed to improve label organization and clarity in visual-
izations by aligning labels along predefined contours that follow the shape of the underlying
illustration. This method is particularly effective in scenarios where it is crucial to maintain
a visual flow and coherence with the visualization, such as in anatomical images.

In particular, Hartmann et al. [69] proposed a method for determining appealing place-
ments of textual annotations for complex-shaped geometric models using dynamic potential
fields. The technique employs artificial potential fields, where attractive forces draw labels
toward their reference objects, and repulsive forces prevent overlaps with other labels, object
boundaries, and image borders. Label candidates are evaluated based on various criteria,
including the accumulated potential of their placement area, visibility, length of the con-
necting line, and the angle between the connecting line and the main axis (horizontal or
vertical).

Ali et al. [4] analyzed hand-drawn illustrations from anatomic atlases and anatomic
textbooks and presented several labeling methods based on rectangular, circular, and sil-
houette (convex hull with padding) contours of the illustration; see Figure 2.15(a). In the
image analysis stage, the anchor points (features) of the illustration are computed using a
domain-specific 2D segmentation of the illustrated object. In the rectangular 2-sided label-
ing method, the labels are divided into left and right (or top and bottom) parts using pivot
(i.e., mean or median of anchor points). Afterward, the labels are placed on the contour
and connected to the feature with s- or po-leaders. In the circular/silhouette method, the
position of labels is given by the radial projection of the anchor points to the contour.
The possible overlap between labels is resolved iteratively using a force-based approach.
Ultimately, if the leader-to-leader intersection is present, the positions of the labels are
switched until all intersections are resolved. Later, Cmolik and Bittner [40] presented a
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Figure 2.15: An example of label placement for a medical illustration of (a) a heart proposed
by Ali et al. [4] and (b) a head proposed by Niedermann et al. [133].

similar algorithm based on fuzzy logic and greedy optimization that can calculate a more
reasonable set of anchors while being faster due to the implementation on GPU.

Niedermann et al. [133] proposed a method for labeling anatomic atlases based on a
contour of the figure prescribing the possible positions of the labels; see Figure 2.15(b).
The algorithm is based on dynamic programming, and the quality criteria can be defined
as hard constraints that cannot be violated or as soft constraints whose violation is penalized
by a general cost function. They formally proved that the resulting label layout satisfies all
hard constraints and has a minimal cost.

2.2.3 Boundary Labeling

Boundary labeling is a technique used in visualizations to place labels along the edges of a
rectangular boundary surrounding the illustration. This approach is beneficial for managing
label placement in dense visual environments, where internal labels might cause clutter or
overlap with essential visual elements. Boundary labeling is often categorized into different
models based on how many sides of the boundary the labels can occupy. The specific
category is typically denoted as i-sided, meaning the labels can be placed on ¢ sides of the
boundary rectangle, where ¢ < 4.

Bekos et al. [16,17] introduced a method for boundary labeling where a set of features
is connected with a set of predefined labels positioned in one or up to three rows with
rectilinear leaders. In the following publication, Bekos et al. [18] presented a method that
minimizes the total leader length or, in the case of orthogonal leaders, the total number
of bends. Benkert et al. [23] presented algorithms for solving the 1- and 2-sided boundary
labeling problem for po- and do-leaders and also showed that better label layouts could be
produced if one considers criteria such as the number of bends of the leaders and distance
between the leaders, in addition to the length of the leaders. Later, Bekos et al. [19] extended
the work of Benkert et al. [23] and published the boundary labeling method with octilinear
leaders for up to 4-sided boundary labeling that minimizes the total leader length.

Lin et al. [111] introduced many-to-one boundary labeling, where more than one fea-
ture can be connected to an identical label; see Figure 2.16(a). They proposed a 1- and
2-sided boundary labeling algorithm with opo- and po-leaders such that the total number
of crossings among leaders is minimized. Further, Lin et al. [112] introduced the concept
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Figure 2.16: An example of label placement for a motherboard image using many-to-one
label placement proposed by Lin et al. [110,111]. (a) More than one feature can be connected
to an identical label. (b) In addition, the hyperleader, may also consist of several branches
connecting multiple features with a label. The duplicated labels are highlighted in gray.

of 1.5-side boundary labeling for the text annotation systems and the polynomial-time al-
gorithm to solve the problem such that no crossings among leaders are allowed and the
total leader length is minimized. Additionally, they explored two-side boundary labeling
for the annotation systems and showed that the problem is NP-complete. To address the
complexity, they proposed a heuristic approach based on a genetic algorithm. In the follow-
ing work, Lin [110] presented a polynomial-time approach for removing the crossing among
the leaders in many-to-one boundary labeling by so-called hyperleaders — leaders that con-
sist of several branches connecting multiple features to a single label; see Figure 2.16(b).
Therefore, the method allows for the duplication of labels, with the primary objective being
to minimize the number of duplicate labels while also minimizing the total length of the
hyperleaders. The number of bends in the leaders is addressed in a post-processing stage
to optimize the label layout further.

Maass and Doéllner [117] presented two real-time labeling techniques for virtual land-
scapes. Both techniques are iterative and process the labels by the distance of the features
from the camera. Also, the labels are always centered on their leaders. The first method,
denoted as growing border, places labels in available empty space divided vertically into
horizontal slots. Once a label is placed, the area occupied by the label intersecting with
the slots, as well as the space below the label, is marked as occupied. The second method,
referred to as interval slot, operates similarly to the growing border technique, with one
key difference: only the area of the label intersecting the slots is marked as occupied upon
placement. Additionally, they outlined general characteristics for labeling perspective views
of terrain-based scenes: (1) Labels for features closer to the observer should be positioned
in the lower area of the view, while labels for features farther away should be placed in
the upper area. (2) Labels near the observer tend to hold more interest than those farther
away.

Gemsa et al. [60] presented 1-sided multirow algorithms with cross-free o-leaders for
panorama images based on dynamic programming that for a set of features finds the label
placement on the lowest number of rows (MINROW) or maximizes the number of labels
(MAXLABELS) placed in a given number of available rows K. Each label is placed above
the horizontal line and connected with the corresponding feature by a vertical leader that
does not intersect with any other label. They show a O(K*n?) algorithm for MINROW
where K* is the number of rows in the optimal MINROW solution and O(Kn?) algorithm
for MAXLABELS.
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Figure 2.17: An illustration of three boundary labeling approaches suitable for small-screen
devices proposed by Gedicke et al. [57]. The labels can be viewed through multiple pages,
sliding along the bottom boundary, or listing through a stack of labels.

Huang et al. [81] introduced a flexible 2-sided boundary model with cross-free po- and
opo-leaders where the labels are allowed to be placed at any non-overlapping position con-
trary to previous approaches, where the labels can be placed only into a stack of prede-
fined equidistantly distributed positions. The proposed definition allows using s-leaders
more often, leading to a shorter total length of leaders. The objective is either the to-
tal leader length minimization or the total bend number minimization. Simultaneously,
Kindermann et al. [90,91] proposed a 2-sided model with cross-free po-leaders running
in O(n®logn) for the total leader length is minimization and O(n3logn) for label num-
ber maximization. Furthermore, they showed that the 3-sided model can be decomposed
into two 2-sided subproblems. Bose et al. [31] improved a 2-sided boundary model with
cross-free po-leaders for the total leader length minimization using dynamic programming
running in O(n3logn). Moreover, they show an algorithm for 3- and 4-sided models with
po-leaders running in O(n®). Finally, they show a 2-sided model with po-leaders running
in O(n%) and O(n?) for opo-leaders. Later, Bose et al. [32] proposed 3- and 4-sided bound-
ary model with cross-free po-leaders with improved running times O(n%) and O(n3logn),
respectively.

Jia et al. [85] proposed a greedy energy-based approach for semantic-aware external
label placement in augmented reality. The awareness is driven by salience map estima-
tion, semantic segmentation (DeepLabV3), and edge detection (Canny). The authors let
20 participants place labels for 5 to 9 objects in 300 photos of street views. Given these
observations, they calculated placement priors for each semantic category. For example, it
is not desirable to place labels over traffic signs or lights, but it is valid for sky or foliage.
In combination with a salience map, semantic segmentation, and edge detector, they cre-
ate a guidance map. The label placement technique is formulated as energy minimization
with an objective function consisting of overlaps of labels with guidance map and edges,
label overlaps, leader line length, intersections, and orientation (vertical leaders are pre-
ferred). Finally, using a greedy algorithm, labels are sequentially placed. Note that the
method is not strictly boundary labeling as it enables the placement of the labels within
the visualization space.
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Figure 2.18: An example of situation map for emergency response proposed by Gedicke et
al. [58]. These maps serve to create situational awareness and provide crucial mission-
related information to emergency responders.

Gedicke et al. [57] investigated labeling methods for zoomless maps designed explicitly
for small-screen devices such as smartwatches; see Figure 2.17. They distinguished three
labeling methods: multi-page boundary labeling, sliding boundary labeling, and stacking
boundary labeling. These methods allow users to slide labels along the bottom side of the
map, browse labels based on pages, or stack labels. The authors proposed exact algorithms
and fast, simple heuristics to solve the optimization problems. The optimization considers
various criteria, including the ranking of labels, the total leader length, the crossings of
leaders, and the distance between leaders. For multi-page boundary labeling, the problem
is transformed into finding a perfect matching in a bipartite graph, seeking a minimum-
weight perfect matching that minimizes the sum of the weights over all selected edges. The
authors used a linear programming approach to solve this problem. The sliding boundary
labeling is approached as a constrained orienteering problem. In this context, a graph-
based method is used where each vertex represents a state with a score, and each edge
has a length. The goal is to find a path from the source to the target vertex, maximizing
the total score along the path while ensuring that a given length is not exceeded. An
integer linear programming (ILP) formulation expresses the problem of finding an optimal
labeling, defined as a linear objective function subject to a set of linear constraints. The
stacking boundary labeling approach is based on the method by Benkert et al. [23]. It
involves partitioning the map into strips induced by vertical lines through each label’s port
and feature. The problem is transformed into a static boundary labeling problem, with the
objective of minimizing leader length while ensuring the labeling is crossing-free.

Later, Gedicke et al. [58] proposed exact and heuristic approaches for the automatic
placement of tactical symbols in situation maps; see Figure 2.18. Their method auto-
mates the process based on an established map layout that distributes symbols to the map
boundaries. The approach places tactical symbols such that crossing leaders are prohib-
ited, prioritizing symbols of highly relevant features, minimizing the length of leaders, and
grouping symbols with similar semantics or spatial proximity. The exact approach employs
combinatorial optimization expressed as an integer linear program (ILP), while the heuristic
approach is based on simulated annealing, which provides approximate solutions to opti-
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Feature Type
point X X | x| x X X X
line X x
area x| x X X X
Label Shape
square X | x| x X
fixed-sized rectangle X X | % X
arbitrary rectangle x | x X | x| x X X X
Objective n/a
label number maximization x| x| x| x X X
label size maximization X X
minimum weighted active range maximization X
active range maximization X | x X | x| x| x| x
Temporal Coherence / Dynamic X | x [ x| x| x| x| x| x X X X X
Internactions n/a | n/a
zooming X | x| x X X X
panning X | % X X X
rotation X | X | X | x| x X
Technique
mathematical programming X | x x| x
dynamic programming X
simulated annealing
force-based X X
greedy X X X | % X X X
metaheuristic
other X | x| x X X

Table 2.3: Overview of properties for dynamic internal point-feature label placement meth-
ods. The table summarizes key attributes of various methods, including feature type, label
shape, objectives, and techniques. Entries with ,n/a“ denote cases where information is
either not applicable or unavailable.

mization problems. The heuristic approach generates an initial solution by transforming
the labeling problem into finding a maximum weighted matching in a bipartite graph con-
sisting of all features and ports as vertices. The heuristic produces high-quality results,
often matching or exceeding the quality of optimal results for prioritizing and leader length
criteria. Running the exact approach took between five seconds and ten minutes, which
is impractical for interactive map design. In contrast, the heuristic generated solutions in
under a second for each of the 30 instances, with running times between 0.44 and 0.82
seconds.

2.3 Dynamic Labeling

Maintaining a stable and coherent label layout is crucial in dynamic environments with
interactive or continuously updated visualizations. Dynamic label placement addresses
the challenge of positioning labels in a way that ensures smooth transitions and minimizes
abrupt changes, thereby enhancing the readability and aesthetic quality of the visualization.
This stability is essential in applications such as real-time data visualization, interactive
maps, and animations, where users need to track labels and easily understand their associ-
ation with dynamic features. Table 2.2 and Table 2.3 provide a comprehensive overview of
dynamic external and internal point-feature label placement methods and their key prop-
erties across different objectives and techniques.
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Figure 2.19: An example visualization of active range (AR) intervals for three labels pro-
posed by Been et al. [13]. (a) The label size is represented in world coordinates, and as such,
it is proportional to scale, meaning the screen size of the label is variant under zooming, but
it remains the same relative to the view area. From a certain point, ARs begin to overlap
with each other. (b) Therefore, active range optimization (ARO) is applied so that no two
extrusions overlap and the sum of active range lengths is maximized. The black outline
cone shows the view window. (c) Illustrates two horizontal slices at fixed scales s = 1 and
s = 2 representing a 2D map. At s = 1, the gray label is outside of the view. However, as
the user zooms out to scale s = 2, the gray label slides into the view and starts to overlap
the other ARs. Therefore, the yellow label must disappear at some scale between s = 1
and s = 2.

2.3.1 Dynamic Internal Labeling

Been et al. [13] introduced a set of desiderata for dynamic internal labeling, which involves
continuous zooming and panning. (1) Except for sliding in or out of the view area, labels
should not vanish or appear when zooming in or out. (2) As long as a label is visible, its po-
sition and size should change continuously under the pan and zoom operations. (3) Except
for sliding in or out of the view area, labels should not vanish or appear during panning.
(4) The placement and selection of any label is a function of the current map state (scale
and view area). The authors also proposed the first formal algorithmic framework where the
placement (i.e., size, orientation, and position) and selection (i.e., labels that do not overlap
with each other) of labels is made in the preprocessing stage, and only filtering (i.e., labels
that do not intersect the current view area are removed) is resolved during the interaction.
The placement in a dynamic environment can be visualized as an extruded label shape along
the vertical axis (scale); see Figure 2.19. Therefore, the dynamic label placement problem
can be formulated as a static label placement extended by scale dimension. Label placement
is done independently at each scale, abstracted from position models, allowing overlaps be-
tween labels during the preprocessing. However, although labels for each scale are placed
separately, their positions relative to the associated feature must remain consistent across
scales to ensure smooth transitions during zooming. The actual conflict resolution to avoid
overlaps is handled in a subsequent process. A label can be selected only in the so-called
active range interval, which is the range of scales during which a label is visible without
overlapping other labels. Therefore, the objective is to determine the placement and range
for each label such that no two extrusions overlap and the sum of active range lengths is
maximized. In simpler terms, the goal is to maximize the visibility of as many labels as
possible across various scales. The objective is known as active range optimization (ARO)
problem, a dynamic counterpart to label number mazximization (LNM) objective in static
cases. Finally, they proved that ARO is NP-hard and introduced a greedy technique for
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Figure 2.20: An example of label placement proposed by Vaaraniemi et al. [168]. (a) Label
placement of a road network in Munich with a large buffer zone around labels to enhance
readability and visual association. (b) Label placement of a protein interaction network
with a small buffer zone that allows placing many labels at the cost of complicated visual
association.

a simplified case running in polynomial time. Later, Been et al. [14] and Liao et al. [109]
proposed several approximations of algorithms introduced by Been et al. [13].

Zhang et al. [187,188] introduced a slightly different objective. Instead of maximizing
the total visibility of labels (as in ARO), they focused on mazimizing minimum weighted
active range (MMWAR), which emphasizes fairness in visibility. In this formulation, labels
are assigned weights based on their importance, and the goal is to ensure that even the least
visible important label has a sufficiently long active range. Unlike ARO, which maximizing
the overall number of visible labels, MMWAR ensures that critical labels (with higher
weights) remain visible for an adequate amount of time.

While previous work [13, 14, 109, 187] is focused on zooming operations, Gemsa et
al. [63,64] introduced the ARO with map rotations, ensuring that the number of labels
is maximized and labels remain horizontal during any rotation. They presented a constant-
factor approximation for this problem based on line stabbing and refined it into an efficient
polynomial-time approximation scheme (EPTAS). Later, Yokosuka and Imai [186] proposed
an algorithm for label size maximization (LSM) on rotating maps while ensuring that the
labels do not overlap with each other.

All previously mentioned methods take into account an entire map and optimize the
label layout globally, regardless of the current view area. In contrast, Barth et al. [12], later
extended by Gemsa et al. [62], developed a local view framework that optimizes the label
placement for an animation of a map given offline as an input. Any label that is not visible
in the current view area is ignored; thus, the problem size is also significantly reduced.
The framework is abstracted from the particular map operations (e.g., zooming, panning,
rotation). The labeling problem is expressed as a set of time intervals representing the
labels’ presences, activities, and conflicts. A similar approach proposed Gemsa et al. [61],
where a movement trajectory for the map is given as an input (e.g., the path from point A to
B in car navigation). Therefore, label placement can be optimized only along the trajectory.
For the general problem, they presented an integer linear programming formulation and an
approximation algorithm for a particular case of unit square labels.

Vaaraniemi et al. [168] introduced a force-based labeling algorithm for point, line, and
area features of dynamic 2D and 3D scenes. The algorithm internally works entirely in the
screen space — the 3D world coordinate of a feature is projected to 2D screen space. To
resolve the temporal coherence, they apply several techniques. First, the optimal layout,
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Figure 2.21: An example of spatiotemporal trajectories and sequential processing of in-
tersections proposed by He et al. [73]. There are two joint sets (C1, C2). The introduced
technique first performs static label placement on the frame where the joint sets are located,
and the positions of labels are transferred to previous frames via constraints.

based on the previous one, is created for each frame. Second, the friction force is defined to
allow only continuous changes. Third, the buffer zone is defined around each label where
new labels can not be placed; see Figure 2.20. Finally, quickly moving labels and labels
with acting forces that cancel each other out are removed (labels squeezed from multiple
sides). Therefore, even if the feature is present and visible, it could be left unlabeled due
to temporally coherent requirements or conflict of the corresponding label with the other
one. The authors also conducted a preliminary study, where the participants (researchers
or engineers in Human-Computer Interaction and visual designers) were asked several ques-
tions to define design principles. The one concerning point features was whether the labels
should be scaled according to their depth (distance) in the 3D scene. The participants
suggested that depth helps spatial perception in a 3D landscape. However, the scale factor
should not exceed a certain minimum to maintain readability.

Bhore et al. [26] conducted an algorithmic study on fully dynamic independent sets
for map labeling, explicitly addressing the challenge of point labeling with axis-parallel
rectangular labels of uniform size, as well as uniform height and arbitrary width. Their
objective was to maintain the largest possible set of non-overlapping labels in a dynamic
environment where labels can be added or removed over time. This approach is relevant in
scenarios where map features and labels appear and disappear over time, such as reports
of earthquakes, forest fires, or disease incidences on social media. They introduced the first
deterministic algorithm that maintains a maximal independent set (MIS) for a dynamic set
of uniform rectangles. Additionally, they developed various deterministic dynamic approx-
imation methods for solving the MIS problem.

He et al. [73] proposed a point-feature label placement technique using a slider model.
The authors build on the method proposed by Vaaraniemi et al. [168] and extend it to the
spatiotemporal trajectories of features. At the initial phase, the intersections of trajectories
are placed by the force-based labeling method in the order given by the number of inter-
sections; see Figure 2.21. The idea is to attract the position of corresponding labels in the
previous frames to the positions at intersections. Finally, all forces are summed and solved
by simulated annealing until the system reaches equilibrium, where the forces are balanced
or a maximum number of iterations is reached.

In the context of dynamic internal label placement, the works of Petzold et al. [140] and
Koufil et al. [97], previously mentioned in Section 2.1, are also relevant here as they incor-
porate dynamic aspects into the label placement process. Petzold et al. [140] introduced
a fast greedy slider model that addresses zooming and scrolling by splitting the process
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into time-consuming preprocessing and a fast interaction phase. This method constructs a
scale-independent conflict graph during preprocessing, which is later used for fast conflict
resolution during interaction. Similarly, Kouril et al. [97] extended internal label placement
by developing a multi-scale, multi-level approach suitable for dense and multi-instance en-
vironments.

2.3.2 Dynamic External Labeling

Preim et al. [141] proposed a method for temporally coherent boundary labeling focusing on
3D models for anatomy learning. The visualization is divided into a central part containing
the visualized object and left and right parts used for textual descriptions. The proposed
solution counts the number of anchors within the visible part of the object and adjusts
the font size of textual descriptions based on this count. If the number of anchors exceeds
a threshold, a conflict arises, necessitating a reduction in the number of anchors. The
reduction leverages hierarchical relations among anchors, using group descriptions for sets
of anchors within the same group. Although the proposed technique allows leaders to
intersect, complicating the determination of correspondence between anchors and labels, it
laid a solid groundwork and identified issues to be addressed in future research on external
temporally stable label placement.

Azuma and Furmanski et al. [9] introduced a cluster-based approach where the overlap-
ping labels are clustered. Within each cluster, the labels are repositioned simultaneously in
the same position. For each cluster, 40-75 label positions are considered, including the same
position as in the previous frame. The remaining sets of positions are chosen randomly.
The best label position set is selected based on a cost function that penalizes label-label and
label-feature overlaps and leader-line intersections or leader-label conflicts. However, the
approach does not forbid these conditions to be accepted as a solution if the cost function
value in frame f; < f;_1. The authors also provided a user study that compares users’
response time of reading the label aloud of highlighted features among three additional
techniques: greedy, simulated annealing (SA), and gradient descent. The results show that
the users were the fastest for the SA technique even though it performed the most la-
bel transitions among the methods. However, the SA approach consistently achieved the
best cost value, indicating the least number of conflicts in the label placement. Therefore,
the authors claim that the conflicts influence the response time more than the temporal
instability.

Ali et al. [4] proposed an anchor points stabilization based on an additional attrac-
tive force that aims to keep anchor points close to their previous positions. Cmolik and
Bittner [40], and later Balata et al. [10] proposed a similar technique based on additional
coherence terms for features and label positions.

Miihler and Preim [129] proposed a method for the labeling of 2D slices and 3D re-
constructions of segmented medical structures for surgical planning. They propose to lock
the once-calculated position of a label over multiple slices until the labeling is infeasible
(e.g., overlap of several labels); see Figure 2.22(a). A similar greedy approach was published
by Mogalle et al. [127], who presented a more constrained label placement technique for
labeling 2D slice data; see Figure 2.22(h).

Gotzelmann et al. [65] proposed an algorithm to integrate internal and external labels
and annotation boxes. Internal labels are in this work defined more as area labels, with
anchors not precisely defined. The label candidates are tested sequentially based on pre-
defined rules or simple strategies that aim to minimize overlaps and ensure readability,
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Figure 2.22: (a) An illustration of slice coherency where the position of the label is
fixed across multiple slices to maintain readability and tracking proposed by Miihler and
Preim [129]. (b) Abdominal CT slice of the liver with labels placed by the technique of
Mogalle et al. [127].

with the most relevant labels placed first. External labels are placed on the contour of an
object, and overlaps among all types of labels are prohibited. The goal is to find a trade-off
between static and dynamic labeling in a coherent manner. The authors propose using
predefined local strategies to optimize the label layout and minimize displacement when
interacting with an object. The first strategy involves slightly changing the position or size
of the labels, and the second strategy is to place the label close to its location in the previ-
ous frame. Optimization is iterative, with agents continuously making minor adjustments
until a satisfactory layout is achieved. The agents do not learn from experience but instead
follow predefined heuristics and rules to optimize label placement. Therefore, the proposed
approach lacks the adaptive learning capability of reinforcement learning agents.

Later, Gotzelmann et al. [66] presented an approach focusing on the labeling of ani-
mated 3D objects such as combustion engines with moving pistons. The entire animation
is analyzed to determine the calm and fluctuating regions. Afterward, the labels are placed
in calm regions to move as little as possible during the animation. The label placement
of fluctuating parts is resolved by visualizing the trajectory whose midpoint is connected
to the corresponding label. Unfortunately, the approach considers the exact position and
shape of illustrated objects and does not rely on any shape simplification with bounding
objects.

Stein and Décoret [159] presented a greedy screen space approach for the dynamic label-
ing of interactive scenes based on energy optimization. The algorithm prioritizes features
that are difficult to label, such as those within clusters or occupied regions. A shadow
region is calculated for each feature, representing forbidden locations for labels, as leader
lines would intersect already placed labels. This shadow area is subtracted from the avail-
able screen space, and each pixel within the remaining space is evaluated based on an
objective function. The authors incorporated interpolation of label positions to maintain
temporal coherence, bounding the velocity of moving labels to avoid visual discontinuity.
This approach smooths label movements rather than fully solving the problem of temporal
discontinuity. Later, Sirk et al. [157] proposed a similar greedy technique with a slightly
modified energy function definition that better scales with a number of labels. Temporal
coherency is maintained using forces moving labels from positions of the previous frame to-
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Figure 2.23: An example of label placement proposed by Tanzgern et al. [163] in various
conditions. (a) Illustration of label stacking of center-based approach because poles have a
similar orientation in 3D space. (b) Using plane-based strategy the issue can be resolved
thought (c) it can suffer from label conflicts. (d) The plane-based approach can be relaxed
such that a label is not always placed parallel to the view plane.

wards ideal positions in the current frame, similar to Hartmann et al. [69]. The results show
that the labels can be placed closer to the features, and more labels are placed compared
to Stein and Décoret [159].

Tanzgern et al. [163] proposed a 3D object space labeling approach (so-called hedgehog
labeling). In contrast with most previously published methods, they define labels as ele-
ments of the 3D scene, which overcomes the lack of temporal coherence. Therefore, the
leader is part of the line defined by the center of the sphere enclosing the illustrated ob-
ject and the feature of the corresponding label in 3D space. The labels are always placed
parallel to the view plane. They suggest two variants of the approach to prevent label
occlusions: (1) center-based method is a 1DOF approach, where labels move along a 3D
pole sticking out from the annotated object. However, this strategy tends to stack anno-
tations if poles have a similar orientation in 3D space; see Figure 2.23(a). Therefore, this
approach should be considered if anchor points are well distributed around the object of
interest. (2) Plane-base method is a 3DOF approach, where the labels can move within a
corresponding plane fixed in 3D space. Each label is assigned to the plane that is closest to
its feature, and the planes are parallel to the view plane and are placed equidistantly; see
Figure 2.23(b)-(c). Afterward, the labels are projected into the corresponding plane and
placed using a force-based approach proposed by Ali et al. [4]. Finally, the placement is up-
dated when the viewing angle to the plane is larger than a predefined threshold, which can
lead to further difficulties resolved by relaxation of the label placement constraint (i.e., a
label is always placed parallel to the view plane); see Figure 2.23(d).

Maass and Déllner [117] proposed a similar hysteresis approach to make the movement of
labels temporally coherent. During the interaction, the labels keep their current positions,
and once the user pauses or finishes the interaction, the label layout is recalculated, and
the labels perform a continuous movement to the computed position.

Madsen et al. [119] presented a study of temporal coherence strategies for augmented
reality labeling. The authors analyzed three independent variables: (1) labeling space (2D
image space or 3D object space), (2) label layout update frequency (discrete, continuous),
(3) feature point distribution (balanced, unbalanced). During the trial, the duration and
error rate was measured. The study results show that the discrete 3D object space method
outperforms the continuous 2D image space labeling method (the authors suggest that the
continuously updating layout makes it difficult for users to keep track of the labels) and
even the discrete 2D image space labeling method. Nevertheless, the difference between
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Figure 2.24: An illustration of input, leveraged modalities derived using machine learning
(except Voronoi), and output of SmartOverlays proposed by Hegde et al. [74].

discrete and continuous 3D object space methods is not reported. Regarding the feature
point distribution, they did not find any significant difference.

Hegde et al. [74] proposed SmartOverlays, a greedy framework for external label place-
ment in augmented reality applications that addresses the common issues of clutter and
occlusion. This method leverages a real-time object detector and a Saliency Attention
Model (SAM) to generate bounding boxes and saliency maps for video frames. The label
placement algorithm uses Voronoi partitioning, where the partitions are convex polygons,
ensuring that leader lines are cross-free and labels are placed near their corresponding
objects without overlapping or occluding critical visual elements; see Figure 2.24. The
algorithm searches for the optimal label placement by finding the position with the min-
imum Label Occlusion over Saliency (LOS) score within each partition, determining the
top left corner of the label. If multiple positions have the same minimum LOS score, the
one closest to the centroid of the object’s bounding box is selected. Temporal coherence is
maintained by tracking objects across frames, reducing jitter in label placement. The tech-
nique also includes adaptive coloring for dynamic backgrounds, enhancing label readability,
and ensuring clear association with objects of interest.

2.4 Labeling Guidelines

The effectiveness of label placement directly influences how easily and accurately users can
interpret the information presented. Adequately placed labels not only enhance readability
and reduce visual clutter but also contribute to the overall aesthetic quality of the visu-
alization. Label placement guidelines are grounded in best practices that focus on factors
such as legibility, unambiguity, and the prevention of conflicting labels. However, as is later
discussed, there is not always a consensus on these principles, and practices vary across
different bodies of work.

2.4.1 Internal Labeling Guidelines

The visual guidelines for label placement were established by Yoeli [185] and Imhof [82]°.
Their work, grounded in extensive practical experience, introduced a set of principles that
have become widely recognized and adopted within the labeling community. The guidelines
discussed herein are primarily based on the publications of Imhof [82] and Yoeli [185], which
continue to influence contemporary practices in label placement across various fields.

5The original work Die Anordnung der Namen in der Karte was published in German in 1962.
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G1.

G2.

G3.

G4.

G5.

Ge6.

Legibility. Labels should be well-readable, easily discriminated, quickly, and easily
located, even in densely populated areas. Legibility depends on factors such as font
type, color, size, and the position or arrangement of other labels. The content of
the visualization also plays a crucial role in determining legibility. Labels should not
be broken into syllables. The ease of legibility and identification of the map’s labels
depends on (a) precise graphic relation between the label and the relevant item, (b)
minimum of mutually disturbing interference between the labels and other contents
of the map.

Unambiguity. Each label should be associated with only one feature, avoiding any
potential referential mismatches. Clear graphic association can often be determined
by variations in style, size, size-gradation, and visualization content.

Conflictless. Labels should not overlap with each other or with other visualization
features, ensuring clarity and avoiding visual clutter.

Didactics/Semantics. Labels should enhance and amplify the characteristics of the
labeled objects, such as revealing spatial situations, territorial extents, connections,
and importance. Didactical principles should be applied to reinforce the characteris-
tics of the items being labeled (e.g., , flowing placement of river labels, etc.).
Hiearchy. Labels should reflect the hierarchical structure of the scene (e.g., the
population of the city). Labels of different sizes, font styles, or colors can be used to
accomplish the hierarchical structure.

Aesthetics. The dispersion of labels in the scene should avoid being too uniform
or scattered. In order to accomplish this, less significant features can be removed.
There should be free space around labels, and the map should not be overcrowded
with names to maintain its optimal information value.

Imhof [82] explains that there are always exceptions to every rule, and often, rules may
conflict with one another. Each specific case requires tailored consideration to determine
the most appropriate principle to apply. In practice, adhering to all the rules relevant to a
particular scenario is not always possible. Building on this notion, Wood [178] argues that
cartographers should employ their overall judgment of these guidelines, selectively adhering
to some while disregarding others, all with the objective of enhancing clarity. Imhof [82] also
provides additional aesthetics and semantics recommendations specifically for point-feature
label placement:

R1.

R2.

R3.

RJ.

R5.

Labels should be placed to the left of a river or boundary line for points on the left and
to the right for points on the right. For locations straddling a river (e.g., Budapest),
the label should be split across the river or placed in available space to the right.
For aesthetic reasons, labels should be entirely placed over land, avoiding placement
over water bodies or partially between land and water.

Labels for shoreline or coastal locations should be fully displayed over the water
surface. Conversely, labels for places near but not directly on the shore should be
positioned entirely on land.

In dense, small-scale maps, all coastal labels should be positioned over the ocean.
These labels should also be slightly curved outward from the horizontal line for better
legibility.

Narrow letter spacing should be chosen in small-scale maps to ensure clearer associ-
ations between labels and their corresponding locations
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Figure 2.25: Common label positions for a point feature as presented in prior literature: (a)
4-position model, (b) additional positions of 8-position model, and (c¢) additional positions
of 10-position model.

Only a few bodies of work elaborate further on the label placement principles. Formann
and Wagner [54] claim that labels can usually be removed in geographical maps to avoid
conflicts as small or less important cities can be left out. However, in technical maps, every
feature is typically essential and needs to be labeled. The authors provide an example of
groundwater maps in Munich, where the features are drill holes, and the label represents the
name of the drill hole, the groundwater level, or similar relevant measurements. Van Dijk et
al. [160] summarized the principles proposed by Imhof [82] and Yoeli [185] and proposed a
conceptual definition of a quality function ¢ € [0,100], where ¢ = 0 corresponds with the
lowest quality and ¢ = 100 with the highest quality. The function consists of aesthetics, label
visibility, feature visibility, and label-feature association. The quality function also considers
line and area features among point features. The authors provide an example definition
of ¢, but as regards the point-features, the definition is relatively trivial. Aesthetics is set
to a constant of 100, and the label’s visibility is defined as the percentage of the area of a
label that does not overlap with other elements, etc. Unfortunately, the authors have not
provided any evaluation of the proposed technique with users or domain experts.

2.4.2 Candidate Position Guidelines

The primary challenge in internal point-feature label placement involves a selection of the
most appropriate position for each label from among n potential candidates surrounding a
point feature, typically with the objective of maximizing the number of labels that can be
placed. When multiple suitable candidate positions are available for a point feature, the
selection is determined based on the Position Priority Order (PPO) of the label candidates,
an assigned value within the range [1, n], where a lower value means a higher priority.

Within the cartographic community and the domain of automated label placement, a
variety of position models have been utilized, differing in the number of label candidates
considered for each point feature. The 8-position model is the most prevalent, evaluating
eight potential label placements per point feature, followed in popularity by the 6-position,
4-position, and 10-position models. Figure 2.25 illustrates the label candidate positions
for these models. Models with alternative configurations, such as the 5-position model,
are used rarely. Alongside the position models, authors frequently delineate the priorities
assigned to label candidates. However, the following review of the existing literature reveals
inconsistencies and, at times, contradictions in these priorities. Table 2.4 shows the analyzed
works detailing their chosen position models and the associated priorities.

As already mentioned, the initial guidelines for selecting appropriate label candidates,
among other labeling principles, were formulated by Imhof in 1962, published in German,
and later translated into English [82]. Imhof introduced a 5-position model tailored for
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L Position Priority Order
Author Year Citations |Type TToT3Tal 516171819710
YoeliA [185] 1972 231 A [TRITLBRBL| T | B
Robinson et al. [140] 1995 (6th) |3096 (4th)| B |TR|TLIBR/BL| T | B |Tsr Bsr|Tsw Bsr
Brewer [33] 2015 441 B |TR|TLIBRBL| T | B
YoeliB [185] 1972 231 A TRITLBRBL| R |L | T | B
Dent [47] 2009 (6th) |1304 (5th)| B |TR|TLBR|BL| R | L |Ts1,Bsr
Dobias (QGIS) 2009 - SW |TR|TLBR|BL| R | L |Tsg/Bsr
Krygier et al. [98] 2016 (3rd) |361 B |TR|TL|BR/BL| R | L |Tgr,|Bsr
Christensen and Marks [39]|1995 520 A |TRITLIBLIBRl R | T | L | B
Yamamoto [182] 2005 40 A |TR|TL|BL BR
Ebinger and Goulette [50] 1989 - A |TR|BR|TL BL
Wood [178] 2000 28 A |TR|BR|TL|BL|Tsg|BsL,
Slocum et al. [158] 2022 (4th) |962 B |TR|BR|TL|BL| T | B| R | L
Imhof [82] 1975 (*1962)439 (*88) | A [TRIR|T |B | L
Zoraster [191] 1986 108 A |TR|T|R|TL|/BR| L | B |BL
Jones [86] 1989 79 A |TR| R |BR|TL| L |BL
Zoraster [192] 1990 129 A TR/ T|TL/R| L |BR| B |BL
Zoraster [193] 1997 103 A |T|TRITL|R| L |BR| B |BL
‘PerceptPPO ‘2024 ‘7 ‘ A ‘ T ‘ B ‘ R ‘TR‘BR| L ‘TL ‘ BL‘ ‘ ‘

Table 2.4: This overview outlines the PPO recommendations of various authors grouped
by similarity. The literature is categorized into four groups based on the similarity of their
priority schemes. A fifth category encompasses works with distinct priority practices that
do not align with those of any other group. The top-right (TR) positioning emerges as
a dominant preference, with authors consistently favoring it. While TR remains widely
accepted across the board, there is noticeable diversity in selecting other positions. The
citation counts are derived from Google Scholar. *The seminal work, Die Anordnung der
Namen in der Karte, was first introduced in German in 1962. Yoeli [185] and Zoraster [193]
define more than eight positions not included in our comparison as they are rarely used.
Abbreviations: A — article, B — book, SW — software.

left-to-right languages, leveraging his cartographic expertise to recommend the top-right
position as the most favorable for label placement. His preference was rooted in typographic
principles, e.g., the top position (T) was favored over the bottom (B). This rationale was
based on the observation that in the Latin alphabet, ascenders are more common than
descenders, suggesting that labels placed at the top are likely to appear visually closer
to their corresponding point features. This consideration is particularly relevant for city
names, which typically begin with a capital letter.

Yoeli [185] introduced the first algorithms for the automated positioning of point-feature
labels. He proposes two n-position models later adopted for point-feature label placement
by other authors. The first position model, denoted in Table 2.4 as YoeliA, is a 10-position
model where the label candidates are organized around the point feature as in Figure 2.25.
Notably, Yoeli proposed a grid system for typesetting the labels where the size of the grid
cell is based on the size of the letters. Therefore, Yoeli distinguishes between labels with
an odd and even number of letters. Since the latter cannot be centered above or below the
point feature, Yoeli introduces additional top and bottom position modifiers that shift the
label slightly left (SL) or slightly right (SR). In Table 2.4 are reported only the first six
positions, as nowadays, even labels with an even number of letters can be easily centered
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above or below the point feature. Similarly, Brewer [33] omits the four additional positions
with shifted labels in his 6-position model. For Robinson et al. [146], Table 2.4 reports
all positions in their 10-position model with priorities identical to Yoeli’s, as they do not
provide any information as to why the positions with shifted labels are included in his
model.

The second position model, denoted in Table 2.4 as YoeliB, is an 8-position model that
Yoeli originally crafted for labeling small-area features. Nonetheless, other authors [47, 98]
adopted or adapted Yoeli’s 8-position model for point-feature label placement. Similarly,
as in the previous 10-position model, Yoeli [185] uses additional top and bottom positions
slightly shifted to the left for labels with an even number of letters. However, the overview
presented in Table 2.4 again ignores additional adjustments for even-lettered labels, as they
can be precisely centered directly above or below the point feature nowadays, regardless of
letter count.

Wu and Buttenfield [180], although considered controversial by Mills [124], questioned
the PPO proposed by examining road maps produced by three separate publishers, to deter-
mine if Yoeli’s prioritization exists and is consistent with that on medium-scale navigational
maps, and the extent to which map producers vary in their prioritization of positioning
point-feature labels. They found that label candidate positions varied significantly between
publishers. They also identified that the top (T) and bottom (B) positions were more
commonly used than Yoeli’s model suggested. Finally, the data did not support Yoeli’s pri-
oritization, indicating that it might not align with practical cartographic applications and
is influenced by individual publisher preferences. The authors concluded that while Yoeli’s
model has been influential, its practical application varies, and alternative prioritization
strategies may better reflect cartographic practices.

Christensen and Marks [39] introduced two algorithms for PFLP, employing gradient
descent and simulated annealing techniques. The formulation of the proposed objective
function draws upon Yoeli’s foundational work [185]. Notably, they adopt an 8-position
model similar to Yoeli’s, but with swapped priorities of bottom-left (BL) and bottom-right
(BR) positions and the top (T) and left (L) positions, which they describe as a standard
PPO.

Ebinger and Goulette [50] proposed a 4-position model, see Figure 2.25(a), which di-
verges in priority schemes from one proposed by Imhof [82] and Yoeli [185]. While Yoeli
prioritizes top positions over bottom positions, Ebinger and Goulette prioritize positions on
the right side over the left. Wood [178] proposed a 6-position model with the top position
being shifted slightly right (Tsg) and the bottom slightly left (Bgr,). The author remarks
that the shifted positions should only be used in extreme cases. Moreover, he argues that
the shifted positions help associate the label with the feature. Unfortunately, no justifi-
cation is given for this claim. Similarly, Slocum et al. [158] proposed an 8-position model
extending Wood’s first for positions to include top (T), bottom (B), right (R), and left (L)
positions, enhancing label placement flexibility.

The prior literature exhibits an even more significant variety in priority schemes for
label placement. Zoraster [191-193], in his series of works, introduced three distinct 8-
position models for oil well labeling, each with unique priorities. A notable trend across
Zoraster’s models is the elevated priority given to the top position, starkly contrasting
with other authors’ approaches. Additionally, Jones [86] proposed 8-position models that
resemble the 4-position model by Ebinger and Goulette [50], with a nuanced approach to
prioritization: the right (R) position is placed between the top-right (TR) and bottom-right
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Figure 2.26: Example of stimuli for leader type readability study conducted by Barth et
al. [11]. Participants were asked to select label or feature corresponding to a highlighted
feature or label.

(BR) positions, while the left (L) position’s priority is set between the top-left (TL) and
bottom-left (BL) positions.

Upon examining Table 2.4, it becomes clear that except Zoraster [193], the top-right
(TR) position emerges as the highest priority across multiple bodies of work. The desig-
nation of priorities to other positions shows even more significant variability, highlighting
a lack of consensus. Moreover, all reported priorities are based on the experience of the
authors, and none of them were empirically verified by users. To our knowledge, the sole
exception is a study by Scheuerman et al. [151], which attempts to evaluate position pri-
orities with user input but limits its scope to just three positions (TL, L, BL). The study
establishes the position preference order of L > T'L > BL, indicating L is favored over TL
and BL, and TL is preferred over BL.

2.4.3 External Labeling Guidelines

Regarding the external label placement, Barth et al. [11] conducted a user study, where
they evaluated boundary labeling with different leader types (s-, po-, do-, opo-leaders)
with respect to their performance, 7.e., whether and how fast a viewer can assign a feature
to its label and vice versa; see Figure 2.26. They found that do-leaders perform best in the
preference rankings, but concerning the assignment tasks, they perform slightly worse than
po- and s-leaders. Nevertheless, concerning other factors, they recommend po-leaders as
the best compromise between measured task performance and subjective preference.

Hartmann et al. [70] analyzed hand-drawn anatomical illustrations and created several
metrics for functional requirements and aesthetic attributes of internal and external label
placement. Readability is affected by label placement and font attributes. Therefore, labels
and leaders should not overlap with each other or with visualized objects. The text should be
oriented horizontally, and minimal contrast between lettering and its neighborhood should
be met. Unambiguity guarantees that the association between features and labels prevents
referential mismatches. Labels should be placed as close as possible to their corresponding
features. The number of leader bends should be minimized. Features should not form
clusters. Aesthetics should be maintained by symmetric layouts and visual clutter should
be avoided. If an internal label cannot be placed aesthetically, it should be placed externally
instead. The distributions of features and labels should not be too scattered or uniform.
External labels should be aligned with each other or along the silhouette of a visualized
object. Temporal Coherency should be maintained to prevent visual discontinuities during
user interactions. The distance of identical elements between subsequent frames should be
minimized.
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Later, Niedermann et al. [133] conducted interviews with domain experts, and based
on a semi-automatic analysis of 202 handmade anatomical drawings, they identified a set
of 18 layout quality criteria. These include labels placed outside of the drawing area, no
conflicts among labels, uniform spacing between labels, and the same font for all labels.
Labels should consist of single-line text, the length of leaders should be minimized, and
leaders running parallel should be avoided as it can cause a referential mismatch. Further-
more, they designed a new geometric label placement algorithm based only on the most
important criteria. They formally proved that the approach yields labeling that satisfies
all hard constraints and has a minimum overall cost. Moreover, they showed on real-world
anatomical drawings that the resulting labeling is of high quality and can be produced in
adequate time.

Further labeling knowledge can be transferred from the general drawing principles such
as maximizing symmetry, minimizing edge crosses, and minimizing bends [142, 176].
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Chapter 3

Temporally Stable Optimization
Approach to Boundary Labeling

Interactive applications of labeling algorithms introduce a new aspect of temporal coher-
ence. Applying only static algorithms on a frame-by-frame basis leads to temporally un-
stable behavior. In such a case, labels often jump abruptly from one position to another,
breaking several assumptions of high-quality labeling. In this chapter, we specifically focus
on the one-sided boundary labeling of dynamic scenes, where labels are placed on the top
of the scene (the static case was introduced by Gemsa et al. [60] as panorama labeling).
The features in the scene are approximated by points denoted as anchors. The visual re-
lationship between labels and corresponding features is established by vertical leaders that
connect the label with the anchors; see Figure 2.12(c).

We propose two labeling methods suitable for a diverse range of applications. The first
is designated for the offline processing of the entire interaction in advance. Such a method
can be valuable for creating, e.g., educational visualizations, television news infographics,
or generally in the movie industry, where the complete interaction with the scene (i.e., all
the frames of the video-sequence) is known in advance. Imagine video-footage from a
drone flying through mountain terrain or a city, where one would like to label peaks or
tourist attractions, respectively. The second method is designed for the online processing
of continuously delivered frames created on-demand as a result of interacting with a dynamic
scene. Such a method can be applied in, e.g., games, 3D map viewers, and augmented or
virtual reality applications. Imagine an interactive application presenting a 3D map (digital
elevation model), where one would like to know nearby points of interest and could move
along the scene by interacting with the camera (e.g., pan or rotate).

We claim the following contributions: (1) A temporally stable labeling method designed
for the offline processing of the entire interaction with the scene in advance. (2) A novel
temporally stable labeling method designed for interactive visualizations. (3) An extended
labeling terminology of Bekos et al. [20] suitable for interactive and non-interactive labeling
of dynamic scenes. (4) A formulation of visibility optimization based on feature promi-
nence, and an extension for smooth label transitions. (5) A comparison of the proposed
methods with three others, and the results of an extensive user study on several aspects of
labeling.
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Figure 3.1: Illustration of terminology based on the report of Bekos et al. [20].

3.1 Problem Definition and Terminology

In this section, we describe the formal definition of boundary labeling for dynamic scenes.

We extended the terminology and definitions proposed by Bekos et al. [20], that are suitable

for static labeling, to capture specific aspects of dynamic labeling. As input we are given

a sequence S of frames Fo, I, ..., Fj,—g|. A frame is a tuple F' = (D, A, £) described by

a drawing region D partitioned into the image region I and labeling region L = D \ I,

see Figure 3.1. The drawing region D has the same dimensions (Dy, Dy) for the entire

sequence S. A set of anchors A denotes the points of interest to be labeled. Each anchor

a is a point of the image region I with coordinates (ay, ay). Furthermore, each anchor has

additional information attached (e.g., the name of the anchor). The axis-aligned bounding

box of additional information is denoted as label ¢ of dimensions ({y, ¢). Each label is a

rectangular sub-region of L placed at coordinates ({y,¢y); see Figure 3.1. We denote a set

of all instances (e.g., labels, anchors) in frame F with a superscript such as £ (labels) and

a set of all instance that occur at least once in any frame of sequence S such as £°. Each

anchor is connected to its label ¢ by a leader A at an attachment point called port m on the

boundary of £. The distance between ¢y and 7 is called offset ¢, (i.e., horizontal coordinate

Uy = ax — l,). A callout is the collection v = (A, 7, ) of a leader A connected to a label ¢

at the point m. A set C of callouts is called labeling or label layout. A labeling of frame F

and sequence S is denoted as C¥ and C%, respectively. We call a labeling C of a sequence

S walid if it satisfies the following requirements.

(R1) The labels do not overlap with each other [4,13,70,117,129].

(R2) The labels are connected with the corresponding anchors with vertical leaders [60,70,
117,129).

The labeling quality among a set S of all valid labelings can be described by a cost function

c:S — RY. The optimal labeling C° € S satisfies the condition of optimality ¢(C%) <

¢(C)VC € S and respects all the following criteria C.

(C1) The number of stacked layers of labels in the label layout is minimized [4]. To put
it differently, the labels are placed as close as possible to the corresponding anchor
[70,117,129].

(C2) The leader is connected to the label as close to the center of the label as possible to
provide clear mapping [117], and to achieve aesthetic and symmetric layout [60,70].

(C3) The movement of the labels through the interaction is temporally coherent [4,129]. In
other words, the vertical and horizontal movement of the labels should be continuous
without abrupt changes [13], and minimized through the interaction with the scene
[70].

(C4) [Optional] The vertical positions of labels should correspond to the distances of labeled
anchors in a scene from the camera center. The labels of the closest anchor should be
the lowest in the label layout [117].
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Please note, that high-quality human-friendly labeling, in general, is hard to formalize
as it is relative to various subjective and domain aspects. Therefore, high-quality boundary
labeling is often a compromise among the described criteria. Because of the previous
statement, we provide a quantitative evaluation in Section 3.6.1 and an extensive user
study in Section 3.6.2-3.6.3.
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Figure 3.2: High-level overview of processing stages applied in the proposed methods. The
OFFLINETEMPORAL method consists of the preprocessing stage followed by the Label Inter-
val to Row Assignment and Within Row Label Placement stage. The ONLINETEMPORAL is
designed as a single-stage method.

3.2 Offline Optimization

When the entire interaction with the scene is known in advance, we process the sequence
S as a whole. We place labels into discrete rows such that the vertical position ¢, is
approximated by row r € R, where R = { r |7 € N A r < |A®| } is a set of available
rows. Furthermore, we suppose the width ¢, and the height ¢y is fixed for all F' € S.
The proposed temporally coherent method denoted as OFFLINETEMPORAL consists of the
following three stages (for a high-level overview, see Figure 3.2).

Preprocessing. Given a set of anchors A°, we create an anchor interval o = [0min, Cmax]
for each anchor a € AS. The anchor interval o captures the horizontal movement of anchor
a through all the frames F' € S. The minimum x-coordinate i, = min(a,;) and the
maximum amax = max(a,) of an anchor define the bounds of the corresponding anchor
interval «; see Figure 3.3(a). We denote the set of anchor intervals derived from the
sequence S by AS.

54



Camera Shift Direction

Volcano Peak

Rowstone Mountain ;

: 3 ‘rossrocks

: 5 : e Fy

Little $Shane Crest
Rowstone Mountain | Volcano Peak : T o

" o
- Little Wolfsbane Crest . To —‘3
‘ , = == 7 E
< B

Distance A; Row #

(a) (b)

Figure 3.3: (a) Example of sequence preprocessing in the OFFLINETEMPORAL method. The
movement of the anchor in the x-axis starts at the position denoted by a red circle in frame
Fy and ends at the position denoted by a red triangle in frame F|g|. The label interval A (a
green rectangle with a black stroke) reserves the space for the horizontal movement of its
label. The length of the label interval A is derived from the label width £y, (blue rectangle)
and the length of anchor interval a (red line). The left bound of label interval Api, and
its vertical position (row r) is optimized in Label Interval to Row Assignment stage. (b)
Function § with parameters w; = 0.1, we = 0.8 and w3 = 0.5.

Given a set £° of labels, we then define a label interval X = [Amin, Amax| for each label
¢ € £5. We construct the label interval A to reserve space for the horizontal movement of
the label. This way, we can fixate the vertical movement of a label and allow movement
only in the horizontal direction. Therefore, one label cannot influence the movement of
any other label, which fulfills Criterion 3. We derive the width of a label interval A from
the associated anchor interval a and the label £ as Ay, = max(amax — Omin, fw). We denote
the set of label intervals derived from the sequence S by A®. Furthermore, we calculate
an average camera-to-anchor distance aq for each anchor a € A% to be able to satisfy
Criterion 4. Because the label interval A\ is associated with the anchor interval «, the
camera-to-anchor distance \q = agq.

Label Interval to Row Assignment. In this stage, we determine the vertical position
¢y = r and the left bound Ay, of the label interval A. The right bound of the label interval
A can then be derived as Apax = Amin + Aw. Since the label moves inside the reserved
space given by its label interval A, the label intervals must not overlap with each other
(Requirement 1). Similarly, for the same reason, the anchor interval a@ must be a sub-
interval of label interval \; otherwise, Requirement 2 could be violated (label ¢ could not
be connected with its anchor a). Furthermore, as we determine the row r in which the
label will be fixed throughout the sequence S, we also take Criterion 1 and Criterion 4 into
account in this stage. Please note that this stage is solved only once for the given sequence
S. For an example of a label-to-row assignment; see Figure 3.3(a).

Within Row Label Placement. In this stage, we derive the horizontal position ¢, of
label ¢ fixed within row r by optimizing the offset ¢, from the port 7 for each frame F' € S.
Therefore, we take into account Criterion 2. However, in order to better fulfill Criterion
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2 at the bounds of A, we enable the label to pop out of its associated label interval A.
Consequently, we consider also Requirement 1 and Requirement 2.

3.2.1 Label Interval to Row Assignment

We formulate the problem as mixed-integer linear programming (MILP), which combines
combinatorial optimization over binary variables with linear optimization over continuous
variables [22]. The instance of MILP is formulated as the minimization of the cost function
c1 with respect to decision variable I € {0,1} that indicates whether the label interval A
is placed in row r, and with respect to continuous variable A, considered further in the
definition of constraints. The cost function is defined as

er (M%) = D > IR+ I (Mg, 7). (3.1)

MeASTrER

The hat modifier in the above-given variable (e.g., #) denotes the unity-based normalized
value of that variable. The product in the first term of ¢; supports Criterion 1. The function
d(d, ) in the second term of ¢; is defined as

. ’f—wd‘—k’wzf—d‘—kwg’f—d‘
()= (i)’

and supports Criterion 4. The purpose of the § function is to establish a relation between
normalized distance d and the row 7 of the label interval . By observing the influence of
various values of the weights w1, wg and ws on the resulting layouts, we recommend using
the weights w; = 0.1, wy = 0.8, and w3 = 0.5; see Figure 3.3(b). Please note that we have
selected these values with Criterion 4 in mind.

To fulfill Requirement 1 and Requirement 2, we define the following constraints. First,
we define the constraint to satisfy Requirement 1 as

AD AN <A M- (1) v M (1- 1), (3.3)

(3.2)

where we define the order so that the associated anchor interval affl)i < a(] ) Al ) £l
and o), o) e AS. This constraint only needs to be applied in the case that both label
1ntervals are in the same row r which is indicated by the binary decision variables I L and
I{ ;). The use of a binary variable to activate and deactivate the constraint is a known trick
in MILP [37,60]. The constant M needs to be sufficiently large to deactivate the constraint
(i.e., the constraint is always true for any combination of A9 and A9 that are not in the
same row). We set M equal to the width of drawing region D,,.

From the definition of the label interval A and from Requirement 2 it follows that the
interval must completely overlap its associated anchor interval o. Therefore, we introduce
constraints to enforce that « is the subinterval of A as

Amin < Qmin, (34&)
Amin + Aw > Omax- (34b)

Finally, the label interval A is allowed to occupy only a single row r. Therefore, we define

this restriction as
Y =1 (3.5)
reR
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3.2.2 Within Row Label Placement

We formulate the problem as convex quadratic programming (QP). When each label interval
is assigned to a row and its left bound A, is set, it remains to determine the vertical
position of each label for a given frame F' so that Criterion 2 is reflected. The instance of
QP is formulated as the minimization of the cost function cs with respect to the continuous
offset variable £,. The cost function for the given frame F' is defined as

oF) =Y (eo— %)2 (3.6)

et

The function ¢y enforces Criterion 2 only. To enforce Requirement 1, we define a constraint
for each pair of labels £() and ¢) associated with anchors ay(£()) and ay (1)) in the given

frame F as
i (M) — ) 460 < g (M) ), (3.7)

where we suppose an order so that a,(£®)) < ay(00)) A L0 £ ¢U) and (@ ¢0) ¢ £F,
Furthermore, to satisfy Requirement 2 we define the constraints

0, >0, (3.8a)
0y < Ly (3.8b)

Finally, we want to restrict a label overflow with vertical bounds of drawing region D,,.
This is accomplished by a pair of

ax(f) — £y > 0, (3.92)
ax(0) — Ly + Ly < Dy (3.9b)

3.3 Online Optimization

The previously described method in Section 3.2 is not suitable when the entire interaction
with the scene is not known in advance. Continuous delivery of frames makes it impossible
to retrieve the anchor and label intervals. Furthermore, the performance of the method is
also an aspect of concern in interactive applications.

Therefore, we propose an interactive method ONLINETEMPORAL that removes described
pitfalls and at the same time reflects Requirement 1 and Requirement 2 while satisfies Cri-
terion 1-Criterion 4. The ONLINETEMPORAL method, in contrast to OFFLINETEMPORAL,
processes the entire interaction frame by frame and consists of only single stage wherein the
position of the label is determined at once individually for each F' (see a high-level overview
in Figure 3.2). We again place labels into discrete rows such that the vertical position ¢,
is approximated by row r € R, where R = {r | r € N A r < |AF| }. Furthermore, we
suppose that the width ¢, and the height ¢}, are consistent for each F.

Single Stage Position Assignment. Given a frame F' and its immediate predecessor
F~!, we determine the temporally stable position (x,/y) for each label ¢ at once and
without any knowledge of the following frames. Unlike the OFFLINETEMPORAL method, we
can not fixate the vertical movement of a label due to its uncertain unfolding in the future.
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Therefore, we allow a label to change its vertical position; nevertheless, in the definition
of the cost function, we minimize this behaviour in favor of Criterion 3. Furthermore, we
restrict the vertical change of a label within two consecutive frames to be at most a single
row (i.e., row £F of label £ in frame F is either ¢/ = ¢F'~" or ¢F = ¢F~" £1). This technique
also narrows down the optimization search space, which in turn speeds up the computation
of subsequent frames.

3.3.1 Single Stage Position Assignment

We formulate the problem as mixed-integer quadratic programming (MIQP). The instance
of MIQP is formulated as the minimization of the cost function cs with respect to decision
variable Ij € {0,1}, that indicates whether a label ¢ is placed in row r, and with respect
to continuous offset variable ¢,. The cost function for any given frame F' is defined as (for
simplification the superscript of a current frame is omitted)

es (FLF) =0 17 (wrow? + waist (Lg, 7)) (3.10a)
teLF reR
N2
+ Z Zfé" (wmwA (r —ef 1) ) (3.10Db)
leLF reR
1 - 2
FTWof fset Z (fw (fo - Zf 1>> (3.10¢)
LeLk
+ > Lt 2 (3.10d)
Weenter gw o — B) . .
teLt

The variable ¢4 denotes the distance of anchor ay(¢) associated with label £ from the camera
center. Further definitions of the delta function §(d, #) and hat modifier from Section 3.2.1
hold. The first term (3.10a) reflects the definition of a cost function ¢; from Section 3.2.1;
therefore supports Criterion 1 and Criterion 4. The second term (3.10b) minimizes the
vertical positional change of a label (Criterion 3) in two consecutive frames F and F~!.
Similarly, the third term (3.10c) minimizes the horizontal positional change. The last
term (3.10d) reflects Criterion 2. By observing the influence of various weights on the
resulting layouts with the defined criteria from Section 3.1 in mind, we recommend using
the weights of the terms as wrow = 0.5, Wyist = 0.8, Wrowy = 1.0, Woffser = 0.1 and Weenter =
0.3.
To fulfill Requirement 1, we define the following constraint

ax (M) — 0 40 < g (M) 0D+ M- (1-Iy)+ M- (1-1,), (3.11)

where we define the order so that ay(£()) < ay(£0)) A £ #£ ¢0) and ¢0) 00) e £F. To
restrict the vertical position of any given label £ in frame F, which is placed in row p = ££ -
in the preceding frame F~!, we introduce the constraint defined as

s+t =1 (3.12)

Furthermore, requirement Requirement 2 is defined in a similar way as in Section 3.2.1.
Finally, a label ¢ is allowed to occupy only a single row r. Therefore, we define this

restriction as
=1 (3.13)
reR
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3.4 Extensions

Both proposed methods can be easily extended by additional terms and constraints to
customize the resulting layout. In this section, we describe an extension for visibility
optimization based on prominence and alpha-blending extension for smooth transitions of
labels.

3.4.1 Feature Prominence and Visibility Optimization

Typically, some features of the visualized scene are more important than the other ones.
Therefore, we define a prominence ¢ to express the importance of a label £ corresponding
with an anchor a(¢). The prominence can be defined by a compound of several (potentially
weighted) attributes. For example, the prominence of a mountain peak may be defined as
a compound of its elevation, isolation, topographical prominence, and distance from the
current viewpoint. To illustrate the compound prominence in our application, we define
it as the weighted-sum of peaks’ elevation ¢, distance from the current viewpoint d, and
Google score w derived from a number of search results

by = wele +wq(l — £q) + wel,. (3.14)

All attributes are normalized into the range [0, 1]. The weights were experimentally chosen
as we = 1.0, wg = 0.2, and w,, = 0.8.

In crowded visualizations (e.g., mountain terrain or city skyline) with many features to
be labeled, it is sometimes useful not to show all the possible labels to prevent cluttered and
chaotic label layout. More prominent features are more likely to be labeled and visualized;
on the other hand, less prominent features do not need to be labeled at all. Therefore, the
definition of Constraint 3.13 from Section 3.3, and ditto Constraint 3.5 from Section 3.2,
can be redefined as

d <, (3.15)
reR
such that the label £ or the interval label ), respectively, does not have to be placed in any
row r. Furthermore, the cost function cs from Section 3.3.1, and ditto ¢; from Section 3.2.1,
can be extended by term e; defined as

e (F) = —py S S 17 (0, + V(L) (3.16)
teLF reRr
where the P@) is a reward for keeping the label visible, £, is a compound prominence, and V'
is a wvistbility function that prevents labels from rapid disappearing. The visibility function
V' is piecewise-defined as
1 f- fg@ ~© <n

0 else,

DO

where f is the index of the current frame, f, is the index of frame in which the last
change from an invisible state M) (Vr € R : I} = 0) to a visible state @) (Ir € R : I} = 1)
has occurred, and n is the number of frames for that the label should stay visible. To
illustrate e; in our application, we set pg = 0.9, n = 20. Similarly, to prevent labels from
rapid changing from () to (W) we define the term ey as

e (F)=—ng Y. (1 -3 f£> (1= t) + N(t,m). (3.18)

teL¥ reR

V(t,n) = { (3.17)
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where the P& is a reward for keeping the label invisible, £, is a compound prominence, and
N is an invisibility function piecewise-defined as

O-@
N(t,n) = {1 f—Je < (3.19)

0 else,

where fe@ ~® is the index of frame in that the last change from @) to a (n) has occurred.
The rest mimics the definition of e;. To illustrate es in our application, we set Pa) = 0.1,
n = 10.

3.4.2 Smooth Label Transition

To prevent labels from popping in and out abruptly, we implement smooth alpha-blending.

An extended labeling method is then denoted by the suffix ALPHA (e.g., ONLINETEMPO-

RALALPHA). Let k" € [0,1] be the alpha value of label £ in frame F. When a label ¢ is
r_,© @®

added to the scene, the alpha value is set to k, = k', where k1’ is a constant that defines
the fade in speed. In the following frames f, ..., f@*@ — 1, the /%F is increased by a fade
in function such as

k) = min (/1571 + /@CA@, 1) , (3.20)

F—l

where kK alpha value of label £ in the previous frame F~'. In our application we use

® _

kx = 0.1 (i.e., the label is fully visible in 10 frames). Similarly, when a label ¢ is removed
from the scene, the nf is decremented by a fade out function such as

ki = max <0, /{5_1 — K?) , (3.21)

@ ©_ 0.2

where the k5" defines the fade out speed. In our application we use Ky = (i.e., the label
fully disappears in five frames). For simplicity, we use the linear fade in/out function.

Furthermore, to create a smooth transition of a label ¢ during the fade-out blending in
the proposed ONLINETMEPORAL method, the position of corresponding anchor ay(¢) needs
to be predicted because the disappearance of the anchor ay(¢) cannot be precomputed
in advance. Therefore, we apply linear extrapolation to calculate the af (¢) from the two
consecutive frames F~2 and F~! such as

af (0) = af 2 (0) 4 2 (af o) - af*z(e)) . (3.22)

3.5 Results

We used GUROBI 9.0 with a C++ interface as an optimization solver for the OFFLINETEM-
PORAL as well as ONLINETEMPORAL method. The solver applies several primal heuristics
and a branch-and-cut algorithm with different types of cutting planes (e.g., Gomory, MIR,
StrongCG) to solve the MILP and MIQP problem [67]. In case of the minimization of MIP
problems, the branch-and-cut algorithm (for more details see, e.g., Bixby et al. [27]) keeps
track of the upper bound and lower bound. The upper bound UB (also called incumbent)
is an objective value of the best feasible solution found so far. On the other hand, the
lower bound LB is a minimum objective value of the LP-relaxed solutions (i.e., integral
constraints on variables are relaxed) in the leaf nodes of the branching tree. The absolute
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Figure 3.4: Time (left y-axis) and relative optimality gap (right y-axis) measurements for
the proposed methods considering the number of labels in the scene.

difference between upper and lower bound serves as a quality measure of the solution to
optimality. The optimization is terminated when the relative optimality gap G defined

as
UB-LB

UB
is less than the Gp % (the value of Gp = 0.01 % is, in fact, the recommended termination
criterion by the authors of GUROBI), meaning that the solver found a near-optimal solu-
tion that can not be further than the Gy % from the true-optima. Note that, since the
MILP, as well as MIQP, is N'P-hard, only exponential-time algorithms are known, and the
computational time can grow significantly with an increasing number of binary variables

(i.e., with the number of labels) [28,56]. The following measurements were performed on
Intel® Core i7-9700K @ 3.60GHz with 64GB of RAM.

G = 100 (3.23)

3.5.1 Offline Labeling Method

The solution of the label interval to row assignment for the sequence with 40 labels takes
575ms and for smaller instances (20 labels and less) it is found in less than 42ms (see
Figure 3.4) with a relative optimality gap less than Gp = 0.01 %. The reported time
measurements and optimality gaps are averaged over 100 runs.

The optimization in the within row label placement is defined as convex QP; hence it
can be solved in polynomial time [184]. Moreover, the label placement can be solved inde-
pendently for each row; therefore, the optimization is prompt and can run in parallel.

3.5.2 Online Labeling Method

The computation of the proposed ONLINETEMPORAL method can be split into two phases.
The solution for the initial frame Fy is largely dependent on the search space, which is given
by the number of labels. Each label £ can be placed at any row » € R. The time needed to

61



solve the initial frame is a period of time when the interaction is not possible; thus, one has
to wait until the solution is found. On the other hand, the search space for the following
reqular frames Fy, Fs, ..., F, is narrowed by the Constraint 3.12 (i.e., the vertical change
of any given label must be at most a single row). Therefore, label ¢ can be placed at any
row £,F " + ¢ where the ¢ € {—1,0,1}. To limit the duration of the optimization for the
initial frame, we apply the time restriction

tiimit = exp (0.05 - [L]), (3.24)

which in turn can increase the relative optimality gap G. The solution for the initial frame
Fy with 40 labels takes 7.4s with a relative optimality gap of G = 0.03 %. The solution of
smaller instances (20 labels or less) is found in less than 145ms with a relative optimality
gap of G =~ 0 %. To limit the duration of the optimization for the regular frames, we apply
the time restriction

The solution for regular frames with 40 labels takes 18ms with a relative optimality gap of
G = 7.7 x107% %. The solution of smaller instances (20 labels or less) is found in less than
5ms with a relative optimality gap ranging from 3.33 x 1078 to 9.87 x 107® %. The reported
time measurements and optimality gaps are averaged over 100 runs. For more details see
Figure 3.4.

3.6 Comparison with State of the Art

We have implemented three previously published methods GROWINGBORDER [117], IN-
TERVALSLOT [117], and GEMSAMINROwW [60] to compare them with the proposed OF-
FLINETEMPORAL and ONLINETEMPORAL methods. The label layouts produced with these
methods are shown in Figure 3.5(a)-3.5(f).

The GROWINGBORDER and INTERVALSLOT methods [117] were designed for the anno-
tation of dynamic virtual landscapes. They connect each label to its vertical leader at a
port in the center of the bottom boundary of the label. Due to this consistency, each label
changes only its relative vertical position to its anchor. The relative horizontal positions
of each label to its anchor is always the same (i.e., only the length of the leader changes).
This makes the movement of labels temporally coherent. The consistency can also facilitate
finding the corresponding label to the given anchor (and vice versa). However, due to this
fact, the methods may produce label layouts with longer leaders. Furthermore, they allow
the leaders to intersect with labels of other anchors. Note that the latter two features can
make finding the corresponding label to the given anchor (and vice versa) harder.

The GEMSAMINROW method [60] was not intended for the annotation of dynamic
scenes. Therefore, we apply the method to each frame independently. We do not expect
the method to achieve a temporally coherent movement of labels. The method produces
label layouts where the leaders do not intersect with any label, but create clusters of long
leaders due to this constraint; see Figure 3.5(f). We have included the method into the
comparison to examine whether the intersections of leaders with labels influence the users’
ability to find the corresponding label to the given anchor (or vice versa).

All compared methods were evaluated on three different sequences Si, Sz, S3 with a
minimum length of 101 frames. The sequences are created by a series of horizontal and
vertical movements that simulate, e.g., the flight of a drone. Sequence S; consists of a
long left truck (a leftwards horizontal movement of a camera) with a close anchor in front
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Figure 3.5: Example of label layouts calculated for the mountain peaks in the test sequence
Ss approximated by point anchors.

followed by a short pedestal down (a downwards vertical movement of a camera) where the
anchors start to disappear rapidly. Sequence Sy is composed as a sequence of a left truck,
followed by a dolly in (a forward movement of a camera) completed by a pedestal up where
the anchors start to appear rapidly. Sequence Ss is created by a long right truck. Pan and
tilt movements are not included as they do not introduce a parallax effect; therefore, the
labeling does not change a lot, and it remains almost the same except for the newly appeared
anchors on the edges of the drawing region D. Nevertheless, pan and tilt movements are
included in the interactive experiment in Section 3.6.3.

To further describe the sequences, we measured several anchor related parameters and
characteristics for each sequence, please see Table 3.1 and Figure 3.6. The mean number
of anchors within sequence S7 and Ss is 27 anchors, whereas, in the sequence 53, it is only
21 anchors. The most noticeable changes concerning the anchors’ x-position happen in the
sequence S; (with the maximum shift of 31.97 pixels) and S3 (with the maximum shift of
8.98 pixels). Regarding the anchors’ y-position, only the anchors in the sequence S; and Sy
move dramatically. The length of an anchor interval reflects the distance that the anchor
travels from the point it appears to the point it disappears. Allow us to point out that
this also defines the space that is allocated for the smooth and uninterrupted movement
of its label. Therefore, as the Anchor Interval Length section within Table 3.1 shows, in
the sequence S; and S3 exists an anchor that (a) moves very quickly in comparison to
the other anchors, and (b) whose label interval allocates approximately a half of a row in
a label layout. On average, an anchor is present in 98 out of 139 frames (71 %) in the
sequence S1, and more anchors disappear than appear throughout the sequence. The other
two sequences Sy and S3 follows almost the same presence of 69 % and 67 %, respectively.
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Sequence

Parameters
S 1 52 SB

Number of Frames 139 228 101
Frame Dimensions 1200x400 1200x400 1281 x 346
Number of Anchors anchors

Minimum 21 19 26

Mean 27 21 27

Maximum 30 24 30

Anchor Shift in Frame

pizels (z, y)

Minimum (0.00, 0.00)  (0.00, 0.00) (0.00, 0.00)

Mean (0.36, 0.32)  (0.20, 0.19) (0.54, 0.19)

Maximum (31.97, 5.51) (1.66, 2.40) (8.98, 0.86)
Anchor Interval Length pizels

Minimum 1.20 0.10 0.90

Mean 38.40 30.68 44.48

Maximum 663.73 159.15 534.69
Anchor Presence no. of frames

Shortest 7 6 9

Mean 98 158 68

Longest 139 228 101
Anchor Presence Change no. of anchors

Appeared 19 18 23

Disappeared 24 19 22
Anchor Clusters no. of clusters (bin size 50 px)

Size 6 1 0 3

Size 4 32 6 3

Size 3 171 144 132

Size 2 754 1445 613

Table 3.1: Parameters of test sequences. Mean Anchor Shift in Frame is calculated from
individual mean shifts of anchors over a sequence. Anchor Interval Length is equivalent to
an absolute change of anchor’s x-position.

The density maps of anchors’ x-coordinates (ay) depicted in Figure 3.6 reveals that (with
respect to the bin size of 50 px, Dy, ~ 1200 px) in sequence S, there is one cluster of six
anchors, 32 clusters of four anchors, 171 clusters of three anchors and 754 clusters of two
anchors. For more details about sequences, please see Table 3.1 and Figure 3.6. In addition,
the tested sequences are available online as a part of Appendix A.

For all compared methods, we evaluate if the label layouts produced for the sequences
S1, S, and S3 are temporally coherent and if the label layouts allow users to find the
corresponding label to the given anchor (or vice versa). Furthermore, we evaluate users’
preferences among all compared methods.
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Figure 3.6: Density of anchors’ x-coordinates (ay) over frames of test sequences S; (a), Sy
(b) and S3 (¢). The anchors are accumulated into bins with a width of 50 pixels.

3.6.1 Quantitative Evaluation

In the quantitative evaluation, we have measured properties (vertical compactness, vertical
displacement, and horizontal displacement) of the produced label layouts for the sequences
S1, So2, and S3 for each of the compared methods. The vertical compactness of the label
layout can be described by the maximum number of rows M, in a sequence. The methods
producing label layouts with lower M, are able to position the same number of labels
on a lower number of rows. The compactness is important as the labels must fit into a
labeling region L of finite height. Furthermore, label layouts with high M, will lead to
long leaders that can make finding the corresponding label to the given anchor (and vice
versa) harder. The results presented in Figure 3.7(a) show that the OFFLINETEMPORAL
method, followed by the ONLINETEMPORAL method, achieves the best results. Note that
the GROWINGBORDER and GEMSAMINROW methods achieve the worst results leading to
longer leaders.

For the temporally coherent movement of labels, the labels must not jump abruptly.
Therefore, we have calculated the displacement metric for the compared methods in hori-
zontal A, and vertical A, direction separately as the sum of differences in the positions of
all labels between all pairs of subsequent frames. The results presented in Figure 3.7(b) and
Figure 3.7(c) suggest that labels in our proposed methods are more temporally coherent
than in the other compared methods. The most significant discrepancy is visible in hori-
zontal displacement A,. The GEMSAMINROW method achieves the worst results for both
horizontal displacement A, and vertical displacement A,. This is expected as the method
was not designed for the labeling of dynamic scenes.

3.6.2 Accuracy Experiments

We have conducted a user study to assess whether the proposed OFFLINETEMPORAL and
ONLINETEMPORAL methods (1) improve the ability of the user to follow the labels in time
and (2) influence the ability of the label layout to mediate the interconnection between
the labels and the features. For the evaluation, we have created a web application that
the participants accessed through a web browser. First, each participant was instructed
about the testing procedure; then, the participant provided their age and gender. The
evaluation was divided into two experiments. The first experiment was one factor with four
levels. The independent variable was the labeling method. The four levels were our OF-
FLINETEMPORAL method and INTERVALSLOT, GROWINGBORDER, and GEMSAMINROW
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Figure 3.7: Quantitative metrics: (a) The maximum number of rows per sequence of the
label layout. Total label displacement per sequence in horizontal (b) and vertical (¢) direc-
tion. The A, for the OFFLINETEMPORAL method is zero. The tested sequences S1, S2, S3
are represented by individual colors.

methods. The follow-up experiment was one factor with one level. Again, the independent
variable was the labeling method. The only level was the ONLINETEMPORAL method. In
both experiments, we evaluated the methods for three sequences Sp, So, S3.

Both experiments were designed as a between-subject. In other words, one participant
was tested with only one labeling method to eliminate the learning effect and fatigue.
For each participant, the order of sequences was counterbalanced with a 3x3 balanced
Latin square [118, Section 5.11] to eliminate the carry-over effect. In a between-subject
design, combining the results of the two experiments is trivial as each level is evaluated
independently of the other levels. Both experiments consisted of a series of three tasks
defined as follows:

Task 1. Locate the label associated to a highlighted anchor.

Task 2. Locate the anchor associated to a highlighted label.

Task 3. Follow a moving label for two seconds and then select the label in the blind

view (i.e., the text of the label is not shown).
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For a detailed description of the tasks, please see Appendix A and supplementary video'.

Fach participant repeated each task 10 times for each sequence. We measured the error
rate (the number of wrongly selected labels/anchors relative to all selected labels/anchors).
Afterward, we conducted a subjective evaluation of the visual search easiness (Task 1-3),
the confidence (Task 1-2) and the need to focus (Task 3). The participants provided their
subjective evaluation on Likert scales from 1 to 5.

Task 1 and its subjective evaluation was completed by 60 participants (12 females) with
the age ranging from 19 to 54 years (z = 25.31; 0 = 6.49) in the first experiment and by
35 participants (three females) with the age ranging from 20 to 38 years (z = 24.03; 0 =
4.62) in the second experiment. Task 2 and its subjective evaluation was completed by 49
participants (11 females) with the age ranging from 19 to 54 years (z = 25.86; 0 = 7.04)
in the first experiment and by 25 participants (two females) with the age ranging from
20 to 38 years (z = 23.92; 0 = 4.76) in the second experiment. Finally, Task 3 and its
subjective evaluation was completed by 44 participants (10 females) with the age ranging
from 19 to 54 years (z = 26.32; o0 = 7.29) in the first experiment and by 24 participants
(two females) with the age ranging from 20 to 38 years (z = 23.92; 0 = 4.86) in the second
experiment.

For each task and each measured variable, we define a family of two null hypotheses —
Hg: “The difference in the mean value of the OFFLINETEMPORAL method and the mean
value of each other compared method is zero,” and Hg: “The difference in the mean value
of the ONLINETEMPORAL method and the mean value of each other compared method is
zero.” The family of hypotheses consists of 7 pairwise comparisons.

We evaluated the collected data for all sequences together. We performed a statistical
evaluation of the measured data using confidence intervals. We calculated the confidence
intervals of the error rates as adjusted Wald intervals, a method recommended for com-
pletion rates [2,149]. We calculated the confidence intervals for Likert scales as confidence
intervals for rating scales [150, Chapter 3]. We used 95% confidence intervals for error rates
and Likert scales.

For Task 1 and Task 2, the average error rates and average score from subjective eval-
uation together with their 95% confidence intervals are shown in Figure 3.8(a) and Fig-
ure 3.8(b). For Task 3, the average error rates, and average scores from the subjective
evaluation, together with their 95% confidence intervals, are shown in Figure 3.8(c). Please
note that the 95% confidence intervals cannot be directly used to visually evaluate the
difference between the means if multiple pairwise caparisons are evaluated.

To detect whether the means of the measured data are significantly different, we have
calculated [5] the p-value from the 95% confidence interval of the difference between the
means for all seven pairwise comparisons. To keep the type 1 error at significance level
a = 0.05 for the whole family of hypotheses, we have adjusted the p-values with the
Holm’s [78] sequentially-rejective method using the Siddk equation [155] as described by
Ludbrook [116]. Please note that in certain cases, the method produces the same adjusted
p-values for several pairwise comparisons. We report the adjusted p-values in Figure 3.8. As
we are adjusting the p-values, not the significance level a;, we compare all adjusted p-values
with a = 0.05.

!Supplementary video is available at the project page http://cphoto.fit.vutbr.cz/interactive-
labeling/
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Figure 3.8: Results of the Accuracy Experiment: Error rate and subjective score for the
Task 1 (a), Task 2 (b), and Task 3 (c).

Task 1: Assign Label to Highlighted Anchor

The results in Figure 3.8(a) show that the OFFLINETEMPORAL method achieves a signif-
icantly lower error rate than the ONLINETEMPORAL, GROWINGBORDER, and GEMSAM-
INROW methods. The ONLINETEMPORAL method achieves a significantly lower error rate
than the GROWINGBORDER and GEMSAMINROW methods. In the subjective evaluation,
we have not detected any significant difference for the easiness and for the confidence. The
results indicate that the label layouts with longer leaders (GROWINGBORDER and GEM-
SAMINROW) negatively influence the ability of users to assign the correct label to the
selected anchor. The leaders that do not intersect the labels (GEMSAMINROW) do not
compensate for the longer leaders.
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Task 2: Assign Anchor to Highlighted Label

The results in Figure 3.8(b) show that the OFFLINETEMPORAL and ONLINETEMPORAL
methods achieve a significantly lower error rate than the GEMSAMINROW method. In
the subjective evaluation of Task 2, we have not detected any significant difference for
easiness. However, the participants were significantly more confident that they are selecting
the correct anchor with the ONLINETEMPORAL method than with the GEMSAMINROW
method. In our opinion, the clusters of long leaders created by the GEMSAMINROW method
are the reason for the poor performance of the method.

Task 3: Follow the Moving Label

The results in Figure 3.8(c) show that the OFFLINETEMPORAL method achieves a signifi-
cantly lower error rate than all other methods. The ONLINETEMPORAL method achieves a
significantly lower error rate than the INTERVALSLOT, GROWINGBORDER and GEMSAM-
INROW methods. In the subjective evaluation of Task 3, the participants reported that the
task was significantly easier to complete with the OFFLINETEMPORAL method than with
all other methods. The task was significantly easier to complete with the ONLINETEM-
PORAL method than with the INTERVALSLOT, GROWINGBORDER, and GEMSAMINROW
methods. Furthermore, the participants reported that they had to focus significantly less
with the OFFLINETEMPORAL method than with the the ONLINETEMPORAL, INTERVAL-
SLoT, and GEMSAMINROW methods. With the ONLINETEMPORAL method they had to
focus significantly less than with the INTERVALSLOT and GEMSAMINROW methods. The
results strongly indicate that lower displacement of labels between the frames improves the
accuracy of the users in following a moving label.

Discussion

In general, the results show that for the three sequences Sy, S, S3 our proposed OF-
FLINETEMPORAL method followed by the ONLINETEMPORAL method allow to follow la-
bels moving in time significantly more accurately than the compared methods. At the same
time, our OFFLINETEMPORAL and ONLINETEMPORAL methods mediate the interconnec-
tion between labels and anchors the same as (INTERVALSLOT for Task 1 and Task 2 and
GROWINGBORDER for Task 2) or better than (GEMSAMINROW for Task 1 and Task 2 and
GROWINGBORDER for Task 1) the compared methods. We were especially surprised by
the poor performance of the GEMSAMINROW method in Task 1 and Task 2. It seems that
forcing the leaders not to intersect with labels is counterproductive as it leads to clusters of
long leaders. In conclusion, we recommend using the proposed methods over the compared
methods for sequences with similar characteristics as the sequences S, Sa, S3.

3.6.3 Preference Experiments

To assess the users’ preferences among different labeling methods, we have conducted two
subjective experiments. The first was designed as non-interactive (i.e., participants could
not influence the pose of the camera in the scene), and the second as interactive (i.e., par-
ticipants were asked to interact with the camera in the scene).
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Non-Interactive Environment

To capture users’ preferences in a non-interactive environment, we conducted an experi-
ment based on a psychophysical technique of paired comparisons [45,166]. Specifically, we
exploited the two-interval forced choice (2IFC) paradigm to verify the perceived quality
of labeling methods (GEMSAMINROW, GROWINGBORDER, INTERVALSLOT, OFFLINETEM-
PORAL, ONLINETEMPORAL, and its extended version by alpha-blending denoted as ON-
LINETEMPORALALPHA).

At the beginning of the experiment, participants were familiarized with the experimental
procedure by the written instructions. Participants were asked to focus on the visual
presentation of the labels and then select the method they liked the most. During the
experiment, participants were able to play the assigned sequence as many times as they
wanted. The names of the methods were transcoded with numbers. The stimuli were
represented by three different video sequences presented in a web browser, and we evenly
distributed them among the participants. Each participant was sequentially stimulated by
a pair of labeling methods applied to the assigned sequence.

We have collected two groups of participants A and B, each consisting of 40 persons.
The participants in group A — 40 males and 10 females with the age ranging from 19 to
54 years (z = 26.61; 0 = 7.46) — were asked to compare all pairs of GEMSAMINROW,
GROWINGBORDER, INTERVALSLOT, OFFLINETEMPORAL. Therefore, each participant in
group A contributed with (g‘) = 6 pairwise comparisons where m = 4. Moreover, the
order of the pairs of methods to compare was counterbalanced with a 6x6 balanced Latin
square [118, Section 5.11] to eliminate learning and carry-over effects. Based on the outlier
analysis tool provided by Pérez-Ortiz and Mantiuk [139], four participants (two males, two
female) that behave very differently from the others were removed. The participants in
group B — 36 males and four females with the age ranging from 17 to 44 years (Z = 26.18;
o = 5.76) — were asked to compare randomized pairs of { GEMSAMINROW, GROWING-
BORDER, INTERVALSLOT, OFFLINETEMPORAL} X ONLINETEMPORAL extended by a pair
of ONLINETEMPORAL X ONLINETEMPORALALPHA which was presented as the last pair
of the experimental procedure. Therefore, each participant in group B contributed with
five pairwise comparisons. Together, group A and B created an incomplete experimen-
tal design (i.e., only several pairs are compared) to reduce the number of needed pairwise
comparisons.

We stored the data in the count matrix C for each participant separately. The element
¢i;j represents the number of times that method i was selected over method j. We converted
the per-participant-count matrices C into a quality score (z-score) scale and computed a
statistical significance using a customized MATLAB framework [139]. To transform the
count matrix C to the quality score scale, we used Thurstone’s Law of Comparative Judg-
ment model concerning Case V [139,166]. In order to reject the null hypothesis H3: “the
difference in perceived quality scores is zero,” we applied the Two-tailed test at a significance
level of a = 0.05.

The quality scores for compared methods are depicted in Figure 3.9(a). The results
show that the proposed OFFLINETEMPORAL method exhibit the best quality score followed
by ONLINETEMPORALALPHA and ONLINETEMPORAL. The results also suggest that the
best of the previously published methods is considered to be INTERVALSLOT followed by
GEMSAMINROW and GROWINGBORDER.

The statistical significance for surveyed methods is presented in Figure 3.10(a). The
quality difference between the proposed OFFLINETEMPORAL and ONLINETEMPORAL is
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Figure 3.9: Quality scores and 95% confidence intervals for (a) non-interactive and (b)
interactive experiment.
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Figure 3.10: Statistical significance (p-values reported in brackets) and quality scores for
(a) non-interactive and (b) interactive experiment.

statistically significant. Therefore, we can reject the null hypothesis H$ for the pairs of
OFFLINETEMPORAL X {ONLINETEMPORAL, INTERVALSLOT, GROWINGBORDER, GEM-
SAMINROw}. The ONLINETEMPORALALPHA has a higher quality score (¢ = 0.34) than
ONLINETEMPORAL (¢ = 0.15). However, Hg can not be rejected for this pair and more
generally for any other pair of {OFFLINETEMPORAL, ONLINETEMPORAL} X ONLINETEM-
PORALALPHA. Therefore, the suggested additional quality of alpha-blending is not statis-
tically proved. In addition, we have not detected significant difference in perceived quality
among the INTERVALSLOT, GROWINGBORDER and GEMSAMINROW methods.

Interactive Environment

To capture users’ preferences in the nature of an interactive environment, we conducted a
follow-up experiment. Participants had to rank the labeling methods suitable for interactive
applications (GROWINGBORDER, INTERVALSLOT, ONLINETEMPORAL and ONLINETEMPO-
RALALPHA) from the best perceived method to the worst. We transcoded the names of the
methods with numbers, and the first shown method was randomized. At the beginning of
the experiment, participants were familiarized with the experimental procedure by the writ-
ten instructions. We instructed the participants to focus predominantly on the assessment
of label placement and the movement of the labels in time. After they read the instructions,
the supervisor again repeated all the important details. The stimuli were represented by an
interactive visualization of mountain terrain presented at a resolution of 1200x900, where
the independent variable was the labeling method. During the experiment, participants
were guided along the same predefined path above mountain peaks. They could interact
with the scene by the following operations whenever they wanted: (1) fly forward/backward
and stop, (2) rotate the camera, (3) zoom in and out, (4) return to the beginning of the
path, and (5) change the labeling method. For convenience, we provided participants with
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printed cards to ease the ranking R during the experiment. At the end of the experiment,
participants were asked to describe their decision process and to justify their ranking.

A total of 15 participants (two females) with the age ranging from 22 to 35 completed
the experiment in ¢ = 14 minutes (¢ = 3.5). Based on the described decision process
and justification description, we removed three participants (two males, one female) that
were wrongly focused on the other aspects of the presented stimulus (e.g., the length of
leaders, the rendering method, or correspondence of the label’s row with the distance from
the camera). The removed participants were also suggested by the outlier analysis tool
provided by Pérez-Ortiz and Mantiuk [139].

To be consistent with the previous experiment, we chose once again to apply the pair-
wise comparison paradigm. We used the transitive closure to transform the ranking R
to the count matrix C. For example, the participant’s ranking A, B, C' was transformed
to a pairwise comparison [A, B],[B, C], [A, C]. Afterward, we derived the quality score by
Thurstone’s Law of Comparative Judgment model concerning Case V [139,166]. In or-
der to reject the null hypothesis (the same as Hj from Section 3.6.3): “the difference in
perceived quality scores is zero,” we applied the Two-tailed test at a significance level of
a = 0.05.

The quality scores for the compared methods is depicted in Figure 3.9(b). The results
show that the proposed methods — ONLINETEMPORALALPHA, ONLINETEMPORAL — ex-
hibit the best quality score followed by INTERVALSLOT and GROWINGBORDER. The statis-
tical significance for the surveyed methods is presented in Figure 3.10(b). The ONLINETEM-
PORALALPHA has a higher quality score (¢ = 3.25) than ONLINETEMPORAL (¢ = 0.82).
Unlike the previous non-interactive experiment, the results show that the quality difference
between the proposed ONLINETEMPORAL and ONLINETEMPORALALPHA is statistically
significant. Therefore, we can reject the null hypothesis Hg , and the suggested additional
quality of alpha-blending is, in this case, statistically proved. Furthermore, we can reject
the null hypothesis Hg for the pairs of {ONLINETEMPORAL ONLINETEMPORALALPHA} X
{INTERVALSLOT, GROWINGBORDER}. Consistently with the previous experiment, we have
not detected a significant difference in perceived quality between the INTERVALSLOT and
GROWINGBORDER.

3.7 Limitations

The proposed methods are seemingly more involved and harder to implement than the
compared state-of-the-art methods. However, the labeling approached as an optimization
problem yields a higher level of flexibility, which allows extending the proposed formulations
for diverse needs. Furthermore, the difference between the lower and upper bounds used
to solve MIP problems provide a quality measure of the solution to optimality. Another
drawback of our approaches is the time-to-solve span for the initial frame which grows with
an increasing number of labels in a scene. We tackled this issue by limiting the available time
in favor of optimality; however, in future work, this could be approached differently (e.g., by
further narrowing the search space similar to the approach for regular frames).

3.8 Summary

In this chapter, we proposed two novel temporally stable screen-space methods for bound-
ary labeling of dynamic scenes using an optimization approach. The OFFLINETEMPORAL
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method is designed for the offline processing of the dynamic scene in advance (e.g., drone-
shot videos annotation, visualizations in television news). On the other hand, the ON-
LINETEMPORAL method is designed for interactive applications (e.g., terrain viewers, aug-
mented, and virtual reality applications). Both proposed methods can be easily extended
by additional terms and constraints to customize the resulting label layout, such as visibility
optimization based on prominence and alpha-blending extension for smooth label transition.
We show that according to the results of quantitative evaluation, the label layout is as com-
pact as previous methods. At the same time, labels are more stable during an interaction
with the scene. Furthermore, we compared the methods with three previously published
methods in an extensive user study. The results of the accuracy experiment show that with
our methods, the users can follow moving labels significantly more accurately than with the
concurrent methods. At the same time, our methods mediate the interconnection ability
between labels and features the same as or better than the other methods. Moreover, the
results of the preference experiment show that the proposed methods were ranked the best
for both interactive and non-interactive boundary labeling of dynamic scenes.
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Chapter 4

Deep Reinforcement Learning
Approach to Internal Labeling

Just as deep learning vastly mitigated the need for feature engineering and produced re-
markable performance improvements in computer vision and natural language processing,
applying learning techniques to visualization could lead to similar advancements.

In this chapter, we present point-feature label placement as a reinforcement learning
problem. Reinforcement Learning (RL) is an area of machine learning (alongside super-
vised and unsupervised learning) concerned with decision-making, driven by experience, to
maximize the numerical reward signal. Over the discrete-time steps, an agent (i.e., decision-
maker) senses the state of the environment, interacts with the environment by taking actions
that affect the state, and receives a reward. Learning from experience overcomes the lack of
label placement datasets that would be needed for supervised learning. Furthermore, the
advancement in Deep Learning and its combination with RL emerged in Deep Reinforce-
ment Learning (DRL). DRL has enabled scaling the RL to previously intractable problems
(including labeling) due to the curse of dimensionality. Recent research has successfully
proven that DRL can solve complex problems within several domains even with enormous
state spaces, e.g., robotics [103, 104], self-driving cars [136], industrial design [125], and
finance [46]. Moreover, DRL can be trained for objectives that are difficult to optimize
directly, as DRL is agnostic to the precise model of the environment as long as the reward
signal correlates with the objective. Li and Malik [106] demonstrated that an RIL-based
autonomous optimization algorithm converges faster and/or finds better optima than the
existing hand-engineered optimization algorithms (e.g., gradient descent, momentum, con-
jugate gradient).

Given the mentioned characteristics, we believe the DRL approach is well suited for
the point-feature label placement problem. However, employing RL to label placement
poses unique challenges, such as complex deep RL training, handling variable number of
anchors and labels, and vast continuous state and action spaces. Moreover, it demands the
meticulous design of neural network architectures, formulation of state space, and careful
definition of action space. Despite these challenges, the potential of RL in this domain is
immense. Our research confronts these issues, devising strategies highlighting our novel
approach to the problem.

To the best of our knowledge, no work has been published on label placement with the
ability to learn and generalize from experience and generate new labeling for unseen sets of
features of interest. Our main contributions are summarized as follows:
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(1) We introduce a Multi-Agent Deep Reinforcement Learning formulation to the point-
feature labeling problem, which we believe to be the first machine-learning-driven
labeling method contrary to the existing hand-crafted algorithms designed by human
experts. Our efficient feedforward neural network architecture, with less than half a
million parameters, serves as both a policy and value function approximation.

(2) We provide comprehensive ablation studies on the observed modalities and neural
network architecture that justify our design choices, highlight the essential aspects of
our work, and provide a guideline for future work. As a part, we introduce a novel
completeness metric that measures the performance of labeling methods based on the
number of completely labeled point features and benchmark dataset for evaluation.

(3) We compare the performance of the proposed method with two existing methods,
Particle-Based Labeling [115] and Rapid Labels [138], using quantitative assessments.
Additionally, we conducted a user study to evaluate the proposed method qualita-
tively. Based on these evaluations, we show that our method outperforms all the
other examined methods.

Machine Learning & Visualization

There has been a recent trend of incorporating machine learning techniques into visualiza-
tion (ML4VIS) to enhance the efficiency of visualization creation and suggest appropriate
visual representations. Machine learning can be broadly categorized into several types, in-
cluding supervised learning and reinforcement learning, each with its unique characteristics
and suitable application areas. Supervised learning is the most common type, where an
algorithm learns a model from labeled training data and then uses this model to make
predictions for unseen data. In the context of visualization, supervised learning has been
utilized in several impactful ways. For instance, Luo et al. [114] introduced DeepEye, a
system that leverages supervised learning to recommend suitable visualizations based on
the provided data. Likewise, Bylinskii et al. [35] formulated a method for predicting users’
visual attention distribution on infographics. Similarly, Chen et al. [38] employed a series of
supervised-learning techniques for the automatic segmentation of graphical elements from
timeline infographics.

Reinforcement learning represents another significant category of machine learning,
where an agent learns to make decisions by taking actions in an environment to maximize
some notion of cumulative reward. Despite the success of reinforcement learning across var-
ious domains, its application in visualization (RL4VIS) remains relatively unexplored, with
only a handful of works adopting this technique. For instance, Tang et al. [162] proposed
PlotThread, which facilitates collaboration between an RL agent and a human designer to
modify the storyline’s layout. The trained agent assists designers and refines their interac-
tions on a shared canvas. Zhou et al. [189] proposed Table2Chart leveraging deep Q-learning
and heuristic search to generate chart sequences from table data. Hu et al. [79] proposed
a method for optimizing the coordinate ordering of sets of star glyphs related to multiple
class labels to maximize perceptual class separation. In addition, Wu et al. [179] devel-
oped MobileVisFixer, which automates a mobile-friendly visualization re-design process,
and Deng et al. [44] introduced DashBot, a Deep RL-based tool for generating analytical
dashboards. For a more comprehensive review of the use of machine learning in visualiza-
tion, please refer to the survey by Wang et al. [175]. While RL provides innovative solutions
for visualization problems, visual analytics also proves instrumental in understanding and
interpreting RL models (VIS4RL). For instance, DQNViz [173] proposed by Wang et al.
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and DRLViz [84] introduced by Jaunet et al. offer visual analytics approaches to understand
deep Q-networks and deep reinforcement learning, respectively. Mishra et al. [126] visual-
ized explanations of agent behavior in reinforcement learning, whereas Wang et al. [174]
employed visual analytics for RNN-based deep reinforcement learning.

Although the techniques above tackle various tasks, none of them address the specific
challenge of label placement. Furthermore, RL-based techniques predominantly rely on
a single-agent approach, a strategy that diverges from the multi-agent system proposed
in our research. Our work introduces a novel approach wherein multiple agents, acting as
proxies for labels, are tasked to learn and interact concurrently within a shared environment.
This paradigm inherently involves more complex dynamics, such as agent coordination
and management of a non-stationary environment, which arise due to the simultaneous
learning processes undertaken by the agents [36,113]. Therefore, our work represents not
only an advancement in the application of reinforcement learning to the intricate problem
of label placement but also the exploration of multi-agent systems in the visualization
domain.

4.1 Introduction to Reinforcement Learning

Instead of relying on labeled data common for supervised learning, reinforcement learning
(RL) leverages an agent that learns to take actions that maximize a cumulative reward by
exploring the environment and observing the consequences of its actions. Reinforcement
learning techniques have become an essential tool for solving various complex problems,
particularly when dealing with decision-making. However, the curse of dimensionality in
state space makes it challenging to apply RL effectively. To overcome this, RL is usually
extended to Deep Reinforcement Learning (DRL), which employs a neural network as a
function approximator [161]. Based on the number of agents, RL can be further classified
into a Single-Agent Reinforcement Learning (SARL) variant, where only one agent interacts
with the environment. The second variant is Multi-Agent Reinforcement Learning (MARL),
where multiple agents interact with a shared environment and work collaboratively to attain
a shared goal.

The formal basis of reinforcement learning is the theory of Markov Decision Processes
(MDP). Over the discrete-time steps ¢ € N, an agent observes the state s; € S of the
environment. Given the state, the agent selects actions a; € A based on a policy m that
maps the state to a probability distribution over actions. At the next time step t + 1 as a
consequence of the selected action, the agent receives feedback in a form of numerical reward
r¢+1 and transitions to new state sy;y1.' The sequence of states, actions, and rewards is
called trajectory or rollout. The agent’s goal is to find an optimal policy 7, that maximizes
the discounted return Gy = Zgzo Y¥ri ki1, where v € [0,1] is a discount factor. As y — 0,
the agent becomes more shortsighted and maximizes the immediate reward. On the other
hand, the agent takes the future rewards into account more seriously when v — 1. The
agent’s task is called episodic if T < oo, and such a trajectory is called an episode. The
value function v.(s), also called the state-value function, is the expected return beginning
in state s and following policy 7 afterward. Formally, the value function is defined as
vr(s) = Er[Gi|sy = s]. Likewise, the g-value function qr(s,a), also called action-value
function, is the expected return beginning in state s, taking action a, and following policy

IWe follow the notation of Sutton and Barto [161] and use the 741 instead of r; to denote that reward
and next state s;y1 are determined jointly.
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7 afterward. Formally, the value function is defined as ¢r(s,a) = Ex[Gt|s; = s,a; = a].
In the DRL, the Markov property is often relaxed so that the agent does not have to be
fully aware of the environmental state. Instead, the agent observes only a partial state
known as observation o; (retains far less information compared to the entire state of the
environment), forming the Partially Observable MDP (POMDP). One step further is the
cooperative Multi-Agent setting, where the agents act in parallel, extending the POMDP to
the Decentralized POMDP (dec-POMDP). We refer to Sutton and Barto [161] for further
details on the formal background.

4.2 Learning Internal Label Placement

Traditionally, supervised learning methods require a substantial amount of labeled data
samples to train the model. However, this requirement poses a significant challenge, as no
such labeled dataset currently exists for the point-feature label problem. Creating a dataset
for this purpose would require access to an immense number of high-quality drawings with
labels and time-consuming annotations. The novel approach presented in this work tackles
this problem by posing the point-feature label placement as a reinforcement learning prob-
lem, which circumvents the challenge posed by the absence of ground-truth label placement
datasets, a crucial requirement for traditional supervised learning methods.

Designing the labeling problem as MARL has several significant benefits over SARL.
First, when posing the label placement as SARL, the agent acts as a supervisor managing all
labels at once. However, in that case, the observation and action space size changes with a
varying number of labels, which contradicts the RL’s prerequisite of fixed-sized observation
and action spaces. On the contrary, with the abstraction of an agent for each label in MARL,
an agent’s individual observation and action space can be implicitly designed as fixed-sized.
Therefore, the number of agents (i.e., copies of trained strategy) varies in MARL compared
to the observation and action space size in SARL. Second, even if one would overcome the
variability, the SARL observation space would still be several times larger than in MARL,
and the neural network architecture would be more complex and have significantly more
parameters, resulting in more challenging training. Third, one would have to collect many
more trajectories to train the super agent, as the trajectory in SARL is a collection of the
observations, actions, and rewards of all labels. On the contrary, the trajectory of each
individual agent can be used to improve the shared strategy in MARL. Therefore, due to
the mentioned properties, we decided to represent each label by an agent, which finally
unfolds into a Multi-Agent Deep Reinforcement Learning (MADRL) problem. From now
on, we also refer to an agent as a label or a label agent interchangeably. Similarly, we refer
to a point feature as an anchor.

The proposed method is designed explicitly for adjacent PFLP, meaning a label can
be placed only around its anchor. Our intention is to find a conflict-free label position for
each anchor (denoted as complete labeling), and if such a position does not exist for all or
cannot be found by the method, we call the labeling incomplete. The emergence of label
placement strategy and rules, in RL referred to as a policy, of our method is driven entirely
by the learning process contrary to the existing hand-crafted methods.

4.2.1 Environment

In the following text, we follow the terminology and definitions defined by Bekos et al. [20],
later extended by Bobdk et al. [30].
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Figure 4.1: Illustration (a) describes the used terminology and definitions. Illustration (b)
depicts the observed modalities and defined action Ag. The orange dashed lines represent
rays providing the mapping vector of modalities. A ray begins at the label’s center, but
the actual reading of range starts at the label’s bound. We collect the distance and type of
the nearest intersection (i.e., label, anchor, or bound) for each ray. The distance is positive
(denoted by the plus sign subscript) if the ray hits the label from the outside. On the other
hand, the distance is negative if the ray hits the label from the inside; see the ray denoted
by 7, . Furthermore, we compute the mass of bodies of labels (denoted by the m;. 4) that
the ray went through till the bound of the environment. The overlap modality is depicted
by the area of o1 and oy. The value for ¢; is just the area of o1, but 01 + 09 for 5 as it is
in a label-label conflict with ¢ and ¢3. Similarly, we demonstrate the penetration distance
for /5 as a sum of p; and py. Finally, we show the displacement distance di;+1 and diio
time steps ¢t + 1 and ¢ + 2, respectively. The total distance traveled is the cumulative sum
of dy, t € [0,T]. The illustration does not show a complete description of the state for
the illustration clarity (e.g., only a few rays are visualized, and the labels corresponding to
anchors producing the penetration p; and py are not shown).

Inspired by the interface of OpenAl Gym [34], we transformed the adjacent PFLP
problem into a custom-developed environment, referred to as AdjacentPFLEnv, to facilitate
the reinforcement learning paradigm. The proposed environment consists of a set of anchors
A, each defined by its coordinates (ax, ay) enclosed within rectangular drawing region D of
dimensions (Dy,, Dy). Each anchor is paired with an axis-aligned box denoted as label agent
¢ defined by its origin coordinates (¢, fy) and dimensions (£, ). A set of all label agents
within the environment is denoted as £. The label agent’s origin coordinates lie on the
circumference of the slider rectangle o, whose origin is defined as (0, 0y) = (az —lw, ay—Lp)
and dimensions as (o4, 0p) = (w,¢n). Finally, each label agent ¢ remains tethered to its
respective anchor via an attachment point denoted as port II; see Figure 4.1(a). We derive
the initial origin of an associated label agent as

¢, = clip(ax, 0, Dy, — £y), (4.1a)
¢y = clip(ay, 0, Dy, — fy), (4.1b)

where clip(z, b, b,) is a piecewise function that clips the value z between lower b, and
upper b, bound. Therefore, a label agent is placed at the initial state sy primarily at the
most preferred position in the upper right quadrant of the 4-position model, despite the
fact that agents can be in conflict (i.e., agent-agent overlap, agent-anchor penetration); see
Figure 4.1(b).

In the training phase, the anchor coordinates and dimensions of associated label agents
are randomized at the initial state sg. Coordinates of an anchor are drawn from the uniform
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distribution such as a; ~ U(0,D,,) and a, ~ U(0,Dy). Dimensions of label agents are
determined in the similar fashion ¢,, ~ U(0.1D,,0.15D,,), and we fixed ¢, = 0.05Dj,.
The environment is populated only by one to two label agents, none of which or both
of which overlap with the other agent, and we chose D,, = 600, Dj = 400 pixels. The
environment terminates at the fixed horizon of " = 100 steps. After termination, a new
randomized configuration of label agents is populated in the environment and presented to
the training algorithm. We apply a fixed-horizon approach to avoid a non-episodic behavior
(i.e., infinite horizon) when conflict-free label placement does not exist. Furthermore, a fixed
horizon helps stabilize the label agent’s position after finding a conflict-free arrangement
by allowing the agent to discover that any additional action can lead to a deterioration of
the reward.

In the evaluation phase, we can populate the environment with any number of label
agents, even though we trained the policy with only one to two agents. We are leveraging the
capability of RL to generalize to instances (i.e., specific configurations of an environment)
unseen during the training to find the label placement for hundreds of anchors rather than
just two. Moreover, the size of the drawing area, label size, and other mentioned parameters
can be selected arbitrarily.

4.2.2 Observation Space

We represent the state of the environment for each label agent ¢ solely by the local same-
shaped observation vector Of. This approach enables us to leverage all individual trajectories
to train a shared policy and facilitate decentralized execution. Furthermore, we solely rely
on sensor-based data, raw data acquired directly from the environment, instead of image
data. Image data, represented as raster images or pixel matrices, typically demand greater
storage and computational resources. By opting for sensor-based data, we effectively reduce
the size of the observation vectors. To capture the semantics of the observed modalities,
we divided the observation of into two distinct vectors: the mapping vector M and the
self-aware vector S. The observation vector of is then obtained by concatenating M and
S.

The modalities captured by the mapping vector M = [d,t,c,m] serve to encode the
agent’s surroundings through the use of 32 ray sensors, which are uniformly distributed
around the label boundaries and function in a similar manner to LiDAR sensors. These
sensors measure the distance d to the closest intersection point, as well as the type t of an
object that the ray intersects (i.e., label, anchor, bounds of the environment). Additionally,
the mapping vector captures the count ¢ and mass m of the labels that the ray passed
through.

The self-aware vector S = [0,D, Ape, Apr, Ad, T] supplies local modalities that pertain
mainly to the agent’s conflicts, including overlaps with other agents and penetrations with
anchors. We define the overlap modality 0 as a sum of the occluded area between the given
agent and the other agents being in conflict. The displacement D represents the Euclidean
distance of the agent’s origins between two consecutive time steps ¢t and ¢t+ 1. Furthermore,
we define penetration distance as the Euclidean distance between the penetrated anchor and
the nearest point of escape on the circumference of the label. Like the overlap modality, we
define the penetration modality Ape as a sum of the penetration distances between a given
agent and its anchor or the other agents’ anchors being in conflict. For both modalities, we
also provide the agent with a count of conflicts relative to the total number of label agents.
Additionally, the agent observes the Euclidean distance to its anchor Ad, the relative position
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Figure 4.2: A detailed illustration of the agent’s action Ag. For Ay : 0 — 27, the origin
of the label [¢,, ¢,] moves counterclockwise along the circumference of a slider rectangle
o (denoted by a dashed line), whose origin is defined as (0, 0y) = (az — by, ay — ¢5) and
dimensions as (0w, 0p) = (bw, ).

of the anchor to the label agent’s port Apr, and finally, the information about elapsed time
steps T.

We normalize all observation modalities. An overview of the observed modalities is
presented in Figure 4.1(b), while a comprehensive description is available in Appendix B2.

4.2.3 Action Space

We designed the action space of agents such that they can change the origin continuously
without discretization to the environment’s raster, allowing subpixel precision and inde-
pendence of the drawing area dimensions. Therefore, we define a continuous action Ay
representing the angle between basis vector € = (1,0) and vector § = (pg,py), where point
[Pz Dy] = [la, £y] belongs to the circumference of the slider rectangle for a given label ¢; see
Figure 4.1(b) and Figure 4.2. We use one-dimensional action space Ay rather than an in-
tuitive two-dimensional action space of A, and A, to simplify the learning process. In our
experience, multi-dimensional action can introduce unnecessary coordination complexity.
Given Ay € (0,27), we define the origin of a label in quadrant Q1 as

[1, tan(Ay)] 0 < Ay < arctan (t%)

4.2
[cot(Ag), 1] arctan (%) <Ay < T (4.2)

Ly

2
[Eza Ey]tJrl = o

2

The derivation for quadrants Q2 to Q4 is trivial — the idea is to transform the Ay into the
Q1 and then flip the position to the corresponding quadrant. For clarity, we omitted use
of Ay € [—1,1] in our implementation; nevertheless, the previous declaration holds.

To facilitate continuous action space with an infinite number of actions, we define a
policy as a parameterized Gaussian distribution. Therefore, instead of learning the prob-
abilities of all possible actions, which is infeasible, we learn statistics of the distribution.
Formally, we define policy as

m6(Aglse) = N (po(se),05(st)) (4.3)

where s, is the current state at time step ¢, ug(s¢) and o3(s;) is the mean and variance of
the distribution parametrized by the neural network parameters § € R¢ further described
in Section 4.2.5.

2Supplementary material related to this project can be also accessed via project page at http:
//cphoto.fit.vutbr.cz/reinforced-1labels.
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4.2.4 Reward

Our goal in this work involves the emergence of cooperation among agents to find a conflict-
free label position for each anchor. Therefore, we combine two types of rewards as suggested
by Nguyen et al. [131]. The local reward r'°@ assigns an agent its feedback solely based on
individual efforts, while the global reward r81°P2! gives an agent its feedback based on the
entire state of the environment. As a local reward, the agent receives step-wise penalization
(i.e., negative reward) for being in label-label conflict with another agent, meaning both
label agents overlap with each other. We compute the overlap value o(¢) in the same way
as the overlap modality, as a sum of the occluded area between a given agent and the other
agents in conflict. The global reward is the composition of local rewards among individual
agents. Formally, we define the local reward r1°¢® and global reward r8°bal a5

el (0) = —o(0) rert =", (4.4)
el

where t is the current time step, o(¢) is the overlap value. Based on these definitions, we
define the total reward for a label agent £ as

ota lobal oca
r3T0) = (1= w) -5+ w - rST(0). (4.5)

By observing the influence of various weight values on the final reward of the trained policy,
we recommend using w = 0.5.

4.2.5 Policy & Value Network Architecture

We designed an efficient yet straightforward feedforward network with just less than half of
a million (412 thousand) parameters, as depicted in Figure 4.3. The architecture consists
of two input heads — mapping and self-aware, and two output branches — value and policy.
The ray observations from sensors constituting the mapping head are first passed through
a circular 1D-convolution layer proposed by Schubert et al. [152] to capture the correla-
tion between individual readings, including the borders of the tensor. The intermediate
representation is reshaped to form a 1D tensor. The other observation modalities forming
the self-aware head are concatenated and embedded by a dense layer. The mapping and
self-aware heads are concatenated and passed by a final shared dense layer. At the end
of the architecture, two separate dense layers split the outcome into the value and policy
branches.

4.2.6 Training

We adopt a parameter sharing in which each agent utilizes the same policy network with
identical parameters. This approach allows us to optimize the parameters of the proposed
network using the trajectories of the individual agents. We update the parameters of the
policy network in a policy gradient fashion — meaning the parameters are updated based
on the gradient of an estimate of expected return with respect to the policy parameters.
In particular, we utilize Proximal Policy Optimization (PrPO), one of the most prominent
actor-critic policy gradient methods proposed by Schulman et al. [154]. The method is
best known for its relative simplicity while preserving the convergence properties of more
complex predecessors. We refer to the survey of Arulkumaran et al. [8] for further details on
the DRL algorithms. The goal is to optimize the parameters € that maximize the expected
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Figure 4.3: Overview of Reinforced Labels and its neural network architecture. The pro-
posed AdjacentPFLEnv environment describes the adjacent point-feature labeling problem.
We are proposing a Multi-Agent approach, where an agent controls the origin of a label.
We use parameter sharing, meaning each agent acts according to the same policy network
with identical parameters. Therefore, we can use trajectories of individual agents to op-
timize the parameters of the proposed network. We utilize only local agent observations
of, enabling parallel execution in the evaluation phase. We provide the agent feedback by
local rewards r°®@ and global rewards r8°P2! only during the training; the reward is not
used in the evaluation phase. The mapping and self-aware modalities are passed through
the network, resulting in a state value v(s) and parameters of normal distribution pug(s)
and o3(s). The training algorithm [154] uses the v(s) to optimize the parameters of the
network. The distribution parameters are used to sample an action Ay. Finally, the agent
acts according to the action, which might translate (i.e., the Ay # 0) into the change of
the label’s origin.

discounted return E[G}]. The surrogate objective of PrPO is defined as

L(O)THP =B [min(ry(6) Ay, clip(r(6), 1 - ;1 + €) A7), (4.6)
where r4(0) = % is the probability ratio of the new and old policies. Value of A,
is the estimator of the advantage function, computed by Generic Advantage Estimation
introduced by Schulman et al. [153], describing whether choosing action a; in state s; is
better or worse than the average action of policy m. One of the essential concepts of PrPO
is the clip operation on top of the probability ratio r(f) that discourages the policy from
dramatically changing between training iterations, resulting in convergence issues. Lower
values of € correspond to more consistent policy improvements. On the other hand, higher

values yield greater variance and volatility of convergence. The value network objective is
formulated as regression via mean square error as

LYF(9) = E [(vn (5:]60) — v'r5)2] (4.7)

where v'a%8 = r; + yr.q + ... + 7Tty (s;). Because the proposed neural network
architecture shares parameters between policy and value networks, we combine the afore-
mentioned objectives to a composed loss to train both networks simultaneously as L(6) =
L(O)CHP — LVF(9). A detailed list of hyperparameters is available in Appendix B.

4.2.7 Inference

Once the policy network is trained, we can use it to evaluate an instance with an arbitrary
number of anchors, size of labels, and dimensions of the drawing area, all due to the
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proposed MADRL design properties and choice of the observed modalities and actions. At
the beginning of the evaluation, we initialize the environment according to Equation 4.1.
The evaluation step for an agent ¢ consists of a collection of observation modalities to form
vector of and passing it through the shared policy network, resulting in action Ay. This
sequence produces a new environment state sq1 and a new observation vector of, ;. The
process is repeated for all agents until no conflicts are present or the horizon T is hit.

4.3 Ablation Study

We conducted an ablation study to fine-tune the proposed method and validate our design
choices. The goal is to shed light on the impact of each component within our method
and to understand how variations in these components can influence overall performance.
Additionally, the findings from these ablations open up the potential for future research
pathways, creating opportunities for further optimization and refinement of our technique.
To measure the performance of our method under different ablations, we introduce a novel
metric and benchmark dataset.

4.3.1 Completeness Metric

Labeling metrics typically measure the quantity of non-conflicting labels. Such metrics,
however, are best suited for methods that ensure conflict-free label layouts. Conversely,
methods not offering such assurances may calculate performance based on the sum of over-
lapping regions. Yet, from the perspective of the established label placement rules [82,185],
any overlap, whether slight or significant, deems a layout non-conflict-free. Given this land-
scape, we observed a gap: while conflict-free methods may omit labels to avoid conflicts, it
is uncertain how the overlap regions would appear. Conversely, methods without a conflict-
free guarantee do not indicate labels that should be discarded to achieve a conflict-free
layout. To close the gap, we introduce the completeness metric. Our work focuses on find-
ing a conflict-free label position for each anchor. If such a position does not exist for all
anchors or cannot be found by the method, we call the labeling incomplete. On the other
hand, we denote the labeling as complete if all anchors are annotated without conflict.

We measure the performance of label placement methods by the completeness metric
representing the percentage of complete labelings for a given set of instances. For example,
let D be a dataset of 10 instances. Let M; be PFLP method that found eight complete
conflict-free layouts without the need of removing any label and two incomplete conflict-free
layouts with several removed labels. Let My be a method with the same PFLP properties as
M, that found nine complete conflict-free layouts and one incomplete layout with remaining
conflicts (i.e., label-label or label-anchor conflict). The completeness of M; is 80%, and the
completeness of My is 90%, as the latter method found more complete layouts out of a set
of ten given instances. Therefore, method Ms performs better than method Mj.

4.3.2 Benchmark Dataset

We have created a benchmark dataset to compare outcomes and performance among the
evaluated label placement methods. We split the dataset into two parts — compact and
volume datasets. To endorse the standardized evaluation of labeling methods, we provide
the benchmark dataset as supplementary material.
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Model Completeness Steps Inference Parameters

% - ms millions
RFL_Conv 97.9 30.721 3.077 0.412
RFL_ConvLn 96.8 37.333 3.513 0.412
RFL_2Dns 96.4 41.466 2.775 0.673
RFL_2DnsLn 94.5 59.353 2.998 0.673
RFL_1Dns 95.4 53.081 2.665 0.833
RFL_1DnsLn 94.7 63.307 2.882 0.833
RFL_rllib 90.6 81.905 2.008 0.206

Table 4.1: Ablations of neural network architecture evaluated on the compact dataset. We
computed the overall completeness metric for the dataset to summarize the performance and
simplify the comparison of the ablations examined. Furthermore, we provide the average
number of elapsed steps needed to solve instances in the dataset, inference time per step,
and the number of parameters to illustrate the complexity of the neural network. The
notation is explained in Section 4.3.3.

We generated the anchor coordinates using a pseudo-random number generator with
uniform distribution common across multiple bodies of previous work [107,138,183]. In
the compact dataset, we sampled the anchor coordinates from an area of 600x400 and
sequentially increased the number of drawn samples by five, ranging from 5 to 50. For
the volume dataset, we drew coordinates from an area of 2400x1600 and consecutively
raised their count by 50, going from 100 to 600. For each number of anchors, we generated
ten instances. Therefore, the entire dataset consists of 41 250 anchors divided into 210
instances. Furthermore, we randomly formed the corresponding labels so that the text
consists of three to seven capital letters from the English alphabet.

It is worth noting that the benchmark dataset also contains instances that cannot be
solved, as it was created using a pseudo-random number generator, due to the factual
inexistence of a conflict-free layout. In such a case, any labeling method cannot produce
complete labeling. However, such instances do not influence the comparison of labeling
methods on the proposed dataset because these instances always affect all methods the
same.

4.3.3 Architecture Ablations

In order to justify the design choices behind our proposed architecture, we performed sev-
eral architectural ablations. Each ablation was evaluated on the compact dataset ten times
to adequately account for the inherent stochastic properties of Reinforced Labels (RFL). In
an effort to summarize the performance and facilitate the comparison of the examined ab-
lations, we report the overall completeness metric as a single average value for the compact
dataset. The results of these evaluations can be found in Table 4.1.

We categorized the ablations into four groups, starting with the proposed architecture
and systematically removing/varying its components. Furthermore, we also evaluated the
universal baseline architecture of a leading reinforcement learning library RLLib utilized in
our development [108]. The first ablation group RFL_Conv* contains a custom two-head,
two-branch convolution-based architecture as described in Section 4.2.5. The mapping
modalities are first concatenated into vector M, embedded by a circular 1D-convolution
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layer, and optionally passed through a layer normalization. The self-aware modalities are
concatenated into vector S, embedded by a dense layer, and optionally passed through a
layer normalization denoted by Ln suffix. Ultimately, the outcomes are concatenated, and
two separate dense layers split the outcome into the value and policy branches. The second
ablation group RFL_2Dns* retains the two-head, two-branch architecture but excludes the
circular 1D-convolution layer. Instead, the mapping modalities are embedded by a dense
layer. The third ablation group RFL_1Dns* includes custom single-head, two-branch archi-
tecture. The observed modalities M and S are merged, embedded by two dense layers, and
optionally passed through a layer normalization. At the end of the architecture, two sepa-
rate dense layers split the outcome into the value and policy branches. The final ablation
RFL_rllib holds the default baseline architecture of RLLib. The observed modalities M
and S are concatenated and separated into the value and policy by two triple-dense-layer
branches.

Table 4.1 shows the results of the architectural ablations. The best-performing model is
the RFL_Conv, as described in Section 4.2.5, achieving an overall completeness of 97.9%. We
emphasize the importance of the circular 1D-convolution layer as, in addition to classical
convolution, the circular one captures the correlation between the borders of the tensor.
The second-best score was achieved by RFL_2Dns, without circular convolution but pre-
serving the two-head scheme, achieving 96.4%. However, the minor decline in completeness
is accompanied by a significant increase in the average number of steps needed to solve
instances in the dataset. Changing the architecture to a single-head scheme (RFL_1Dns)
leads to a further decrease in performance to the completeness of 95.4%. We also evaluated
the default universal model RFL_rl1lib, which performs the worst, achieving significantly
lower completeness of 90.6%. The main difference between the architecture of RFL_rllib
and the other variants is the absence of a shared dense layer before splitting the outcomes
into the value and policy branches. Therefore, we argue that the presence of a shared dense
layer is a vital part of the proposed architecture as it carries the most significant differ-
ence in completeness. Finally, the results of our ablation study consistently show that layer
normalization is an inappropriate architecture component for the given label-related modal-
ities, always resulting in an overall performance drop. In the following text, we simplify
our notation and use RFL to denote the RFL_Conv model.

4.3.4 Observation Ablations

Similarly to the previous section, we ablated the observed modalities to justify our design
choices of representing the agent’s state. We start with the proposed observation set and
then systematically remove/vary the included modalities fed into the best-performing archi-
tecture RFL_Conv. As described in Section 4.2.2, the proposed vector of observed modalities
o consists of mapping modalities denoted by M and self-aware modalities denoted by S. Ray-
based mapping modalities include distance to the nearest intersection d, type of the nearest
intersected object t (i.e., label, anchor, bounds of the environment), and count ¢ and mass
m of labels that the ray went through. Self-aware observations include overlap 0, displace-
ment D, anchor penetration distance Ape, anchor-port distance Apr, anchor-origin distance
Ad, and time step T modalities. To investigate the importance of ray-based modalities, we
also include mapping modalities based on the agent’s origin Or and size Si as a replacement
of ray casting.

The results are presented in Table 4.2. For clarity, we provide a numerical notation
of each set of evaluated modalities (7.e., numbers in the first column of the table). First
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Set Modalities Completeness Steps Inference Observation

% - ms ms
1 MO008[d cm]S[0 ApeAprAdT] 96.8 36.791  2.723 19.870
2 MO016[d cm]S[0 ApeAprAdT] 96.8 41.389  2.713 23.444
3 MO032[d cm]S[0 ApeAprAdT] 97.9 30.721 2.883 30.645
4 MO64[d cm]S[0 ApeAprAdT] 97.9 32.159  3.077 40.400
5 M128[d cm]S[0 ApeAprAdT] 97.7 36.630  3.150 63.260
6 M[d cm]S[0 ApeAprAdT] 97.9 30.721 3.077 30.645
7 M[0rSi]S[0 ApeAprAdT] 96.8 46.382  2.679 16.013
8 M[d cm]S[ ApeAprAdT] 45.3 298.759  1.999 27.096
9 M[d cm]S[O AprAdT] 90.3 75.955  2.506 29.012
10 M[d cm]S[0O Ape AdT] 97.9 33.594 2.575 26.721
11 MId cnlS[O Apehpr TI 97.4 34255 2.698  28.690
12 M[d cm]S[0 ApeAprAd ] 97.3 33.095  2.722 28.606
13 M[ cnlS[O0 ApeAprAdT] 96.7  36.610 2.569  27.742
14 M[d m]S[0 ApeAprAdT] 97.0 41.403  2.655 30.215
15 M[d ¢ 1S[0 ApeAprAdT] 97.2 34.945  2.752 28.332
16  M[dtcm] S[ODApeAprAdT] 97.2 35.352  2.740 29.763
17 M[0rSi] S[ODApeAprAdT] 94.8 61.165  2.539 15.829
18  M[dtcm]S[ DApeAprAdT] 50.6 270.392  2.007 41.181
19  M[dtcm]S[0 ApeAprAdT] 97.5 40.649  2.758 28.917
20 M[dtcm]S[OD  AprAdT] 86.4 98.084  2.567 28.735
21  M[dtcm]S[0ODApe  AdT] 96.8 46.255  2.681 27.909
22 M[dtcm]S[0ODApeApr T] 93.9 66.275  2.578 28.057
23 M[dtcm]S[0DApeAprAd ] 95.1 55.721  2.609 27.961
24  M[ tcm]S[0DApeAprAdT] 95.2 59.602  2.535 27.942
25 M[d cm]S[0DApeAprAdT] 97.6 41.915 2.912 30.325
26  M[dt m]S[0ODApeAprAdT] 96.4 54.344  2.579 28.562
27  M[dtc 1S[0DApeAprAdT] 96.8 39.204  2.615 28.272
28 M[dtcm] S[O 1 86.0 94.781 2.628 27.442
29 M[0rsi] s[O ] 83.3 96.557  2.522 14.972
30 M[ 1sIlo ] 82.4 101.750 2.414 14.525

Table 4.2: Ablations of observed modalities evaluated on the compact dataset. We provide
overall completeness, the average number of elapsed steps needed to solve the dataset,
inference time per step, and observation creation time per step. The notation is explained
in Section 4.3.4.

and foremost, the results show that removing the overlap modality (comparing sets 18 with
16 and 8 with 6) dramatically degrades the performance and highly impacts the average
number of steps needed to solve the labeling. Therefore, we argue that the overlap modality
is the most crucial modality that effectively allows an agent to avoid label-label conflicts.
Similarly, removing the anchor penetration modality Ape (comparing sets 20 with 16 and
9 with 6) leads to a significant performance decline and moderately impacts the average
number of steps needed to solve the labeling. We argue that the penetration modality
effectively allows an agent to avoid label-anchor conflicts. Replacing the mapping ray-
based modalities with modalities based on the agent’s origin Or and size Si (comparing
sets 17 with 16) advocates the presence of ray casting in our method. Ray-based modalities
deliver (a) higher completeness and (b) effectively cut the average number of needed steps
nearly to half. Interestingly, further removal of displacement modality D (comparing set
19 with 16) positively impacts the performance. We argue the displacement modality
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(cumulative distance traveled) decreases the number of steps needed for an expense of
lower completeness. A similar explanation applies to ray-type modality (comparing set 25
with 16). Therefore, we omitted displacement and ray-type modality due to the negative
impact on completeness and conducted a second round of ablations (set 15 to 6). The
results show an additional increase in completeness and a decline in the number of steps
needed, please compare set 16 with 6. Further findings remain consistent with the first
round of ablations (set 27 to 16) except for omitting the proximity modality (set 10) that
achieves the same performance, but a higher number of steps is needed in comparison with
set 6.

Finally, we experimented with a number of rays, as shown by sets 1 through 5, where
the number following M denotes the number of casted rays. The results indicate that
the best option is to cast 32 and 64 rays to achieve the best completeness. However,
casting 64 rays demands more resources, leading to increased observation creation time
compared to 32 rays. Reducing as well as increasing the number of rays leads to lower
completeness. We hypothesize that the information is likely too sparse at the lower end,
not providing sufficient detail. Conversely, opting for 128 over 64 rays might not offer
substantial additional information and, combined with an undersized convolution filter,
lead to a slight decrease in performance. Nevertheless, the confirmation of our hypothesis
remains open for future research. In the following text, we simplify our notation and use
RFL to denote the RFL_Conv model combined with modalities of set 3.

4.4 Comparison with State of the Art

We employ the completeness metric and benchmark dataset, as outlined in Section 4.3.1 and
Section 4.3.2, to compare our Reinforced Labels (RFL) with several published methods, be-
ginning with the implementation of Particle-Based Labeling (PBL) proposed by Luboschik et
al. [115]. The latter method attempts to position each label sequentially, first with the fixed
4- and 8-position model, then using the slider model, and finally with a spiral-based dis-
tant model. Furthermore, the method is greedy, and such cannot change the position of
a label after it has been placed. Moreover, labels that the method cannot position with-
out a conflict are removed from the calculated label layout. Therefore, the approach may
produce an incomplete label layout. We separate PBL into two variants. The first, denoted
as PBL-A, involves only the fixed 4-, 8-position, and slider models resulting in adjacent
label placement. The other variant, referred to as PBL-AD, applies the spiral-based distant
model in addition to the fixed 4-, 8-position, and slider models, resulting in a combination
of both adjacent and distant label placement (i.e., a label can be placed farther away
from its anchor, and a leader line maintains the correspondence). Please be aware that
PBL-AD cannot be directly compared with adjacent-only methods, such as RFL, given the
fact that the distant labels offer a greater degree of freedom. As a result, we expect PBL-AD
to achieve a higher completeness score than adjacent-only methods. Nevertheless, we in-
clude the PBL-AD in the evaluation to compare the RFL with a method that uses distant
labels. Additionally, we compare RFL to the Rapid Labels (RAPL) [138], a GPU-accelerated
greedy and adjacent-only method that leverages the 8-position model. Similarly to PBL,
RAPL may produce an incomplete layout as labels that cannot be placed without a conflict
by the method are removed from the calculated layout. Table 4.3 presents a comparison of
the evaluated label placement methods. Finally, we introduce an untrained version of RFL
with randomly initialized weights (abbreviated as RFL-random) to validate that the RFL
learns a reasonable policy.
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RFL RAPL PBL-AD PBL-A

Paradigm Machine Learning  Algorithm Algorithm Algorithm
Position model Slider Fixed Fixed/Slider Fixed/Slider
Problem definition Reward Value based on rules Rules Rules
Label position Continuous Discrete Discrete Discrete
Heuristic Non-greedy Greedy Greedy Greedy
Computation time Non-interactive Highly interactive

Completeness High Low Low
Resolution-independent  Yes No Yes Yes

Table 4.3: Comparison of the evaluated label placement methods. The desirable properties
are depicted in green, and less desirable properties are marked in orange and red. The com-
putation time requirements are contingent upon the specific use case. For scenarios where
labeling needs to be pre-computed with a high level of completeness, such as cartographic
maps, technical drawings, or medical atlases, the RFL method is an appropriate choice.
Conversely, in interactive applications such as games or viewers, the trade-off of decreased
labeling completeness may be acceptable to ensure faster computation times. Please note
that the Position model for the PBL-AD and PBL-A methods is Fized/Slider as these meth-
ods first try to position labels on the fixed positions, and only if that is not possible, they
try several positions between the fixed ones.

4.4.1 Quantitative Results

We trained the RFL policy on randomly generated instances previously described in Sec-
tion 4.2.1 with at the most two anchors, therefore with up to two agents within the en-
vironment, for an hour on a computation node equipped with 2x AMD EPYC"™ 7H12,
64-core, 2.6 GHz CPUs without a GPU accelerator. To optimize the parameters of the
neural network, we utilize PrPO implementation from the RLLib framework [108]. Specifi-
cally, we used 119 cores for rollout workers to collect agents’ experiences (i.e., observations
and rewards) and a single core for the trainer worker responsible for updating the param-
eters of the proposed network. A detailed description of our training setup is available
in Appendix B. We executed the following evaluations on Intel® Core i7-9700K 8-core,
3.60GHz CPU, and NVIDIA GeForce GTX 1660 Ti. To capture the stochastic nature of
RFL (see the definition of Equation 4.3), we evaluated the RFL and RFL-random ten times
over the benchmark dataset. The other compared methods, PBL-A, PBL-AD, and RAPL, are
deterministic, and as such, we evaluated each only once. Therefore, we provide quartiles
Q1 and Q2, mean and median statistics for the completeness metric of RFL. Furthermore,
we fixate the episode horizon of RFL and RFL-random in the evaluation phase at T" = 500
steps (recall we set the 7' = 100 for the training).

Figure 4.4(c) and Figure 4.4(d) show the completeness of the compared methods on
the compact and volume datasets. Both charts reveal a similar trend. As the number of
anchors rises, as does the environment occupancy (i.e., a ratio of the total area of the labels
to the overall area of the drawing), the completeness of PBL-A, RAPL, and RFL-random
decreases rapidly. The reason behind the difference in completeness between 50 anchors in
the compact and 100 anchors in the volume dataset is the varying occupancy. It is easier to
find complete labeling within a larger space of volume dataset. Besides PBL-AD, which has
the advantage of distant labels, the RFL achieves the highest average completeness of 89%
and 64% for 50 and 600 anchors, respectively. The random policy of an untrained agent
RFL-random corresponding with a chance performs the worst. This fact confirms that the
RFL learns a meaningful policy, and its performance is not the outcome of the randomized
search. The second worst method in terms of completeness is PBL-A, followed by RAPL.
Starting from 300 anchors, PBL-A fails to place all the labels for any instance, resulting
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Figure 4.4: Comparison of the examined methods evaluated on the benchmark dataset.
Charts (a) and (b) show computation time. Charts (c) and (d) illustrate the completeness
on compact and volume datasets. Charts (e) and (f) depict the length of the episode.
We recall that PBL-AD combining both adjacent and distant models cannot be directly
compared with adjacent-only methods such as RFL, PBL-A, or RAPL.The former PBL-AD
provides a greater degree of freedom by placing a label further away from its anchor while
the additional leader line maintains the correspondence. We acquired the values for RFL
and RFL-random by executing these methods ten times over a set of instances with the same
number of anchors. The solid line represents the mean, the shaded area depicts quartiles Q1
and Q2, and the dash-dot line describes the median. The empty circle symbol represents
the mean value of complete-only instances found by RFL (incomplete instances reaching the
fixed horizon are filtered out). In simpler terms, the value conveyed by the symbol provides
an answer to the question: “If and only if the RFL can solve the given instances, how long
does it take on average?”
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in 0% completeness. Similarly, at 50 and 550 anchors, PBL-A, RAPL, and RFL-random all
achieve 0% completeness.

We also compared RFL with PBL-AD, which combines adjacent and distant labels
and, therefore, has a higher degree of freedom than the strict slider model of our method.
However, it is essential to recognize that the inherent flexibility of PBL-AD, stemming from
its ability to position distant labels away from the anchors and the use of leader lines for
connection, makes it directly incomparable with adjacent-only methods such as RFL. More-
over, the leader lines that grant PBL-AD its flexibility can also intersect with other labels,
anchors, or leader lines, creating potential conflicts. Such conflicts not only diminish the la-
bels’ readability but also complicate the association between labels and anchors. Imhof [82]
underscores the importance of both label readability and straightforward label-to-anchor
association in label layout. Hence, while PBL-AD might seem advantageous regarding place-
ment flexibility, it should be approached cautiously, especially when label layout quality is
essential. To our surprise, the PBL-AD performs slightly worse on the compact dataset than
RFL and surpasses RFL only at the point of 35 anchors. We further investigated this case and
found that the dip in RFL performance is caused by the factual inexistence of a complete
conflict-free layout. Therefore, the proposed method outperforms both hand-crafted algo-
rithms RAPL and PBL-A/-AD on the compact dataset. On the volume dataset, the PBL-AD
shows stable completeness of 100% through the dataset, except at 550 anchors, where the
completeness dips slightly to 90%. We attribute the superior performance of PBL-AD on the
volume dataset to the fact that anchors are not spread as evenly across the entire space as
in the compact dataset. As a result, PBL-AD can utilize more distant labels for anchors in
dense clusters and position them in less dense areas.

Figure 4.4(a) and Figure 4.4(b) depict the dependence of the computation time on the
number of anchors. We group all instances with a given number of anchors and compute the
aggregated statistics. Therefore, we report quartiles Q1 and Q2, mean and median statis-
tics. The PBL-A and PBL-AD are the fastest methods over the entire benchmark dataset.
The RAPL follows with a difference of an order of magnitude that steadily decreases towards
600 anchors. This fact goes along with the authors’ statement that the performance gain
comes with a more significant number of anchors due to the computation of the Summed
Area Table [138]. The second slowest method is RFL. We attribute this to the RLLib’s inter-
nal inefficiencies (i.e., policies among agents within an environment cannot be evaluated in
parallel) and the utilized single-thread ray casting implementation from the Box2D frame-
work®. In fact, the observation computation and collection take on average 46% (29 ms)
of the computation time per step, of which 2/3 makes up the ray-casting operation. The
inference of the proposed architecture carries only about 7% (4 ms) of the time. The fi-
nal 47% (30 ms) is dissolved in preprocessing observations and actions within the RLLib
framework. The slowest method overall was RFL-random, hitting the upper bound of 500
steps. Again, this fact confirms that RFL learns a reasonable policy, and its performance is
not an outcome of the randomized search.

Figure 4.4(e) and Figure 4.4(f) illustrate the dependence of RFL and RFL-random on
episode length and the number of anchors. The results significantly distinguish the policy
of trained and untrained agents corresponding with a chance that a random set of actions
reach the complete conflict-free labeling. The difference is mainly visible at 30 and 150
anchors — the policy of RFL-random skyrockets to the horizon of 500 steps while RFL tops
32 and 7 steps at the same point, respectively.

3The framework Box2D is available at https://box2d.org.
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4.4.2 User Study

Along with the quantitative evaluation, we conducted a user study to determine the pre-
ferred methods among users. We assessed the RFL method, as well as the state-of-the-art
methods RAPL, PBL-A, and PBL-AD, which were also evaluated in the quantitative analysis.
To carry out the user study, we utilized instances from the compact dataset containing 30,
40, and 50 anchors and labeled each instance with all the evaluated methods. The labeled
instances can be found in Appendix B. We opted for these instances to assess each method
with increasing occupancy while avoiding overwhelming the participants when comparing
the layouts.

We have designed the user study based on the psychophysical technique of paired com-
parisons [166]. Specifically, we utilized the two-alternative forced choice (2AFC) paradigm.
FEach participant was sequentially presented with all possible label layout pairs where, in
each pair, the label layouts of the same instance were used and created with different meth-
ods. The participants’ task was to choose their preferred label layout for each pair in the
sequence. To mitigate the learning effect and fatigue, we randomized both the order of the
pairs in the sequence and the positions of label layouts (left or right) in pairs. The user
study was conducted with 21 participants, consisting of 19 males and two females, with an
average age of 21.53 years (ranging from 21 to 24). The average experiment completion
time was 6 minutes and 44 seconds, with participants taking anywhere from 2 minutes
and 54 seconds to 12 minutes and 32 seconds. Two of the 21 participants were removed
using the outlier analysis tool from Pérez-Ortiz and Mantiuk [139], as their results deviated
significantly from the others.

We stored the choices in the count matrix C for each participant individually. Each
element ¢;; in the matrix indicates the number of times that method i was selected over
method j. We transformed the per-participant-count matrices C into a quality score (z-
score) scale and calculated statistical significance using a customized MATLAB framework
[139]. To transform the matrix C to the quality score scale, we used Thurstone’s Law of
Comparative Judgment model concerning Case V [139,166]. We employed a Two-tailed
test with a significance level of o = 0.05 to reject the null hypothesis, “there is no clear
user preference among the tested methods.”

Figure 4.5 presents the quality scores and the statistical significance of the evaluated
methods. The results show that the null hypothesis is clearly rejected as the proposed RFL
method exhibits the best quality score that is significantly better than the quality scores of
the remaining evaluated methods. In other words, the proposed RFL method was preferred
by the users over the remaining evaluated methods. The results also suggest that there is
not a significant difference in user preference for the remaining RAPL, PBL-A, and PBL-AD
methods.

4.4.3 Discussion

The outcome of the comparison is manifold. First, we show that our RL-based method
achieves an impressive level of generalization. We remind that we trained RFL on random
instances of just two anchors and evaluated the method on unseen instances with up to
600 anchors. The scalability of our method to handle hundreds of agents relies on two key
aspects: the design of our environment and the use of Multi-Agent Deep Reinforcement
Learning (MADRL). As the number of agents increases, more potential conflicts can occur.
However, our local-global reward structure motivates the agents to minimize these con-
flicts collectively. Notably, our design does not involve any explicit communication channel
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Figure 4.5: Results of the user study. The chart shows quality scores accompanied by
95% confidence intervals. Statistically significant differences between the pairs of methods
are denoted by solid blue brackets, with the corresponding p-values reported above them.
Conversely, the red dashed brackets represent the pairs of methods without evidence of
statistically significant differences.

among the agents. Instead, a shared policy implicitly encourages collaborative behavior,
resulting in predictably coordinated actions among agents. Even so, RFL outperformed
the compared methods in the category of completeness, and at the same time, the user
study participants preferred RFL over all compared methods. By this fact, we demonstrate
the power of machine learning techniques and their capability to surpass the hand-crafted
algorithms.

Second, we show that greedy methods frequently produce suboptimal solutions concern-
ing completeness. The quantitative results shown in Section 4.4.1 and the comparison of
the examined methods in Table 4.4 provide evidence supporting this claim. For example, in
instance 45, RAPL and PBL-A left four anchors unlabeled. Even PBL-AD, with the benefit of
distant labels, did not find complete labeling and left two anchors unlabeled. In contrast,
RFL produced complete adjacent labelings for all these instances.

Third, we observe a trade-off between optimality and computation time demands. All
the previous methods we examined, PBL-A, PBL-AD, and RAPL, can be computed faster but
at the expense of an incomplete solution. In contrast, the proposed RFL method is several
orders of magnitude slower but, on the other hand, provides results with a much higher level
of completeness. Therefore, the examined methods, PBL-A, PBL-AD, and RAPL, are suitable
for interactive applications where incompleteness is not critical (interactive visualizations
with the ability to zoom). On the other hand, RFL is better suited for cases where the
labeling can be computed in advance, and completeness is essential (e.g., cartographic
maps, technical drawings, medical atlases). We argue that our approach can serve better
than the other examined methods to aid professional illustrators. We believe that future
research based on RFL can further mitigate the gap between optimality and speed.

Finally, even though we have primarily focused on the elimination of label overlap in
this work, the RL framework is much more versatile. It enables the integration of other
metrics into the reward function, allowing one to tailor the solution to specific tasks and
opening up numerous opportunities for further improvements and research. The flexibility
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Table 4.4: Visual comparison of the examined methods for selected instances from the
proposed dataset. In addition, we provide real-world instances of IATA airport codes with
250 anchors and CITY names with 150 anchors based on data obtained from Open Street
Maps. For the latter two, we cropped the result to focus on differences among methods.
Original results can be found in Appendix B. The green dot represents the anchor (i.e., point
feature). The gray rectangle symbolizes the body of the label itself. The red dot describes
an anchor that was not labeled by the given method. The red rectangle illustrates the
dimensions of the missing label. We stress that we intentionally added all the missing labels
to the visualization for illustrative purposes only, and their origins are not the outcome of
the method itself.

solidifies the potential of RL in solving complex spatial decision-making tasks like label
placement, promising exciting advancements in the visualization field.

4.5 Limitations

We are aware of several flaws and limitations of the proposed method. First and fore-
most, RFL is currently limited to finding only binary solutions. As a result, the method
can find either complete conflict-free labeling or a complete but conflict-present solution
(i.e., label-label or label-anchor at the screen bound). However, the flexible design of the
AdjacentPFLEnv environment allows one to define new actions or entirely redefine the ex-
isting ones. In future work, adding a further indicator action, which decide whether to
place the label or not, could address the binary limitation of the current method. Similarly,
the reward objectives could be extended to minimize the number of unlabeled anchors. To
this end, we intend to make the AdjacentPFLEnv publicly available to further support the
research in this domain.

Computation time is another area for improvement of the proposed method. We showed
in Section 4.4.1 that RFL is magnitudes of order slower than the compared methods. Further
examination revealed that the computation and collection of observations contribute signif-
icantly to the computation time, mainly due to expensive ray casting and imperfect code
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optimization. However, we believe that in future work, the limitation can be addressed, for
instance, by using a graph representation of possible conflicts known as a conflict graph in
the observation. Nevertheless, we leave the question open for future research.

4.6 Summary

In this chapter, we introduced the first Multi-Agent Deep Reinforcement Learning formula-
tion of the adjacent-point-feature labeling problem. To facilitate the label placement policy
training, we developed AdjacentPFLEnv, an environment where agents collect experiences
— sense the state of the environment via proposed observation modalities, perform actions,
and receive feedback in the form of proposed reward. Furthermore, we designed an efficient
yet straightforward feedforward neural network architecture with less than half of a million
parameters to model the agent’s policy and estimate the value function. We show that
our approach significantly outperforms previous hand-crafted methods designed by human
experts in the number of placed labels and perceived quality. Additionally, we would like to
encourage the labeling community towards standardized evaluation, a long-used machine
learning practice. To this end, we are proposing a new benchmark dataset to facilitate the
comparison of label placement methods, as most of the method codes remain unpublished
or proprietary.
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Chapter 5

Perceptual Prioritization of
Point-Feature Label Positions

Point-feature label placement primarily deals with the maximization problem — aiming
to position labels for the maximum number of point features, also called anchors, possible
within a given set. This task is often constrained by the fized-position model, which restricts
label placements to a limited number of predefined positions around a point feature. This
limitation necessitates using a systematic order of preference for these positions, which we
term as Position Priority Order (PPO). The PPO ranks potential label positions according
to predetermined priorities, guiding the selection process.

However, a closer review of existing literature reveals a disconcerting lack of consensus
in PPOs as described in detail in Section 2.4.2. Various authors have ascribed different
priorities to the same label positions, often without a clear or unified rationale. Priorities
have historically been based on typographic and cartographic conventions or printer capa-
bilities, with varying degrees of justification and consistency across the literature, leading to
a fragmented understanding of optimal label placement practices. The identified inconsis-
tency highlights a gap in the field and underlines the necessity for an empirically grounded
methodology that reflects user perceptions and preferences. Nevertheless, recent PFLP
approaches [93, 102, 138] continue to rely on traditional PPOs. Interestingly, commercial
products such as Google Maps, TomTom, and Mapbox tend to use non-traditional PPOs
for reasons that have not been reported. This discrepancy between academic research
and commercial practice further emphasizes the urgent need for updated, user-validated
PPOs.

Our research introduces Perceptual Position Priority Order (PerceptPP0), a user-cen-
tered methodology that seeks to redefine the prioritization of point-feature label positions
based on users’ perceptual and cognitive preferences rather than traditional conventions.
Through this effort, we aim to establish a new standard in automatic label placement that
prioritizes user experience, paving the way for more intuitive and accessible map designs
and setting a precedent for future research in the domain. Our main contributions are
summarized as follows:

(1) We propose a comprehensive review of existing literature on Position Priority Orders
(PPOs), analyzing existing PPOs and highlighting the missing consensus based on
user preferences.

(2) We introduce Perceptual Position Priority Order (PerceptPP0), a novel, user-centered
prioritization of point-feature label positions that prioritizes user perceptions and
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preferences over traditional conventions supported by a global user study involving
nearly 800 participants from 48 countries.

(3) We uncover the optimal label density for maps, an aspect seldom explored in prior
research. Our research shows that users prefer an overall label coverage of 12.5% on
blind maps.

(4) We provide analysis demonstrating the superior user preference of PerceptPP0O over
existing PPOs, reinforcing its potential for improving map design, user experience in
cartographic applications, and other types of visualizations.

5.1 Perceptual Position Priority Order (PerceptPP0)

Due to non-existing consensus on the ranking of label positions within cartography and GIS,
we aim to create PPO rooted in user perception. Typographic and cartographic conventions
used in previous works are valuable, but originate from several decades-old practices that
may not align with modern user needs. Herein, we detail the empirical user study that
underpins the Perceptual Position Priority Order (PerceptPP0) and lay the groundwork
for a comparative analysis that underscores its efficacy.

5.1.1 Data

We randomly selected 30 locations worldwide. We excluded any locations on the sea or
ocean and those with latitudes greater than -60 degrees to exclude Antarctica due to its
sparse population. Each location served as the center of an area, defined by the location and
a zoom level ranging from 5 (approximately the size of Europe) to 10 (roughly the size of
Luxembourg), rendered as a vector SVG image at a size of 1305 x 1025 pixels. Settlements
with more than 500 habitants, obtained from GeoNames, specifically Cities 500", within
these areas were used as anchors and were sorted by population size. Then we filtered only
anchors such that all the 8-positions around are available in any configurations of labels
without any conflict (we examined the occurrence of conflict for all anchors over bounding
boxes containing all eight positions of labels). If an area contained fewer than 20 anchors,
we discarded it in favor of another area. Finally, we acquired 30 areas indexed from 0 to
29 at zoom levels 5 to 8, with 20 to 54 anchors.

Subsequently, we rendered each area eight times, placing all labels in one of the eight
corresponding positions relative to the anchor: top-right (TR), top (T), top-left (TL), left
(L), bottom-left (BL), bottom (B), bottom-right (BR), and right (R). This process yielded
30 x 8 = 240 blind maps featured with a white background, red anchors, and corresponding
labels. See example in Figure 5.1 and Appendix C for additional renders. In order to
understand user preferences for label positions in relation to the anchor, we opted for using
blind maps to eliminate all other factors potentially influencing the judgment of the label
placement, such as patterns and vivid colors in the map background. Each cartographic rule
for label placement [33,82,146,158] focuses on a specific factor, such as avoiding overlaps,
ensuring proper label alignment, or selecting appropriate font sizes and colors. Therefore,
we believe that these factors can be analyzed separately.

http://download.geonames.org/export/dump/
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Figure 5.1: Example of map area rendered consistently using TR and T position across all
point features.

5.1.2 Procedure

We employed the Two-Alternative Forced Choice (2AFC) approach to determine the posi-
tion priority order based on the actual perception of users, which we call Perceptual Position
Priority Order (PerceptPP0). Considering the eight label positions under examination, we
have (g) = 28 pairwise comparisons on an area. Consequently, the entire evaluation con-
sists of 30 x 28 = 840 pairwise comparisons to cover all of them once. In order to alleviate
potential fatigue among the participants during the study, we allocated only three areas to
each participant, resulting in a batch of 3 x 28 = 84 pairwise comparisons. Therefore, 10
participants were required to cover all pairwise comparisons once.

We engaged Mechanical Turk workers and university students to conduct the evaluation.
Participation in the evaluation was voluntary, and the compensation for Mechanical Turk
workers was set to match the average compensation rate of other requesters on Amazon
Mechanical Turk. Initially, the participants were introduced to the experiment, informed
about its duration, and that the provided data would be collected and used for research
purposes. Subsequently, we asked about their country of residence, age, gender, and edu-
cation. Each participant was allowed to take only one batch of 84 pairwise comparisons to
mitigate the carry-over effect. During the evaluation, the pairs of area and label position
were distributed randomly but uniformly between the left and right sides of the shown
comparison pair. Participants were shown two maps sequentially, each depicting the same
area but with different positions of labels relative to the anchors. Notably, the position of
a label was kept consistent for all points within a single map; see Figure 5.1. Participants
were asked to select the map they prefer from each presented pair. At the end of the eval-
uation, the participants were allowed to leave an additional note about anything regarding
the experiment.

5.1.3 Statistical Analysis

To derive insights from the pairwise comparison data of n objects, we transform the data
into the n x n preference matrix P for each participant individually. Each element p;; in
the matrix indicates the number of times that method i was selected over method j by a
participant. The conversion allows for a preference analysis, facilitating the identification
of PPO patterns across participants in the study.
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Coefficient of Consistency (

Assessing whether the particular participant can form a reliable judgment of the quality
under examination is crucial when using paired comparison. Kendall and Babington [89]
proposed coeficient of consistency ¢ to measure the consistency based on the transitivity
of participant’s choices. For example, when evaluating three objects: A, B, and C, a
participant might choose that A > B (A is preferred to B), B > C and C > A. In
this case, the triad is called circular and the pair comparison inconsistent. The ¢ = 1 if
there are no circular triads / no inconsistencies. On the other hand, when the number of
circular triads/inconsistencies increases, the ¢ decreases towards zero. Inconsistency can
arise due to incompetence, participant’s attention changes during the evaluation, or the
examined objects being too alike. The definition of { can be simplified as { = 1 — ﬁ,
where T is the observed number of circular triads, T;,4; is the maximum number of circular
triads. For more details; see Kendall and Babington [89] and David [45]. We employ
the implementation proposed by Wickelmaier and Schmid [177], which also provides the

expected number of circular triads F(7T') when choices are made at random.

Coeflicient of Agreement u

While the coefficient of consistency provides a measure of consistency within participants,
the coefficient of agreement u introduced by Kendall and Babington [89] measures the
variety of choices among m participants. Complete agreement v = 1 is achieved when all
participants make identical choices for all pairs. In other words, the half p;; of the overall
preference matrix P =, (0,m) Py is equal to the number of participants m, while the other
half is a zero. On the other hand, the minimum agreement occurs when the preference for
each pair is equally divided among participants. Specifically, this happens when p;; = 5 if
m is even or when p;; = mTil otherwise. Correspondingly, minimum coefficient of agreement
is Umin = m;_ll O Umin = % For cases in between the u range, Kendall and Babington [89]
defines u as

25, ()

() (%)
The statistical significance of v with the null hypothesis that all participants choose the
preferences randomly (or there is no agreement among participants) can be approximated

by x? variate as described in David [45]. Again, we employ the implementation proposed
by Wickelmaier and Schmid [177].

~1. (5.1)

Pairwise Comparison Model

To transform the preference matrices to quality scores, we employ Thurstone’s statistical
judgment model proposed by Thurstone [165], as recommended by Tsukida and Gupta [166]
and Pérez-Ortiz and Mantiuk [139]. The model assumes that the quality score of object A is
a Normal random variable A ~ N (qa, JE‘) where mean g4 is assumed to be the true quality
score, and 0124 is the variance. Similarly, for object B ~ N(qp,0%). Normal distribution
captures the fact that different participants have various preferences regarding the quality of
examined objects (inter-participant variance). Moreover, participants’ preferences are also
likely to change when they repeat the same evaluation (intra-participant variance). We
apply Thurstone’s Case V model, which assumes that a Normal distribution can explain
inter- and intra-participant variance. At the same time, the variance o2 describes the
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uncertainty and is the same for all examined objects (in our example 0% = 0%) while
the correlation p among objects is zero (pap = 0). The difference between the two Normal
distributions is again Normal distribution A—B ~ N (qaz, 0124 ) Without loss of generality,
we can assume that variance 0124 = O’% = % so that 01243 = 0124 + J% —2papoaop = 1 which
corresponds to standard Normal distribution. The quality difference estimation of two
objects A and B §4p is then defined as

_ Pan
jap =@t (o —AE 5.2
iap =7 (G20, 5.2

where P 4 g is the value from the preference matrix P for A > B, and ®~!(z) is the inverse
CDF of standard Normal distribution that can be interpreted as z-score as it represents the
distance of x from the mean in units of the standard deviation.

To determine quality scores of m objects, Tsukida and Gupta [166] recommend using
the maximum likelihood estimate (MLE). To this end, we employ the MLE implementation
of Pérez-Ortiz and Mantiuk [139], which also includes confidence interval estimation based
on random sampling with replacement and methodology to perform a two-tailed test of the
null hypothesis “There is no difference among examined objects.” at a significance level of
a = 0.05.

5.1.4 Online Study Precautions

When dealing with online study, there is always a risk of ingenue responses and result fabri-
cation. Therefore, to address these pitfalls, we conducted a pilot study with 50 participants
who are qualified as Master Mechanical Turk Workers and consistently demonstrated high
accuracy in performing various Human Intelligence Tasks (HITs). The pilot results serve
as a calibration group to determine an evaluation’s statistics, evaluation duration, time
spent on the introduction page, time spent filling out the survey, response time for individ-
ual pairs, participant’s coefficient of consistency, and balance of choosing the left or right
option. Afterward, we made the study available to a broader range of Mechanical Turk
Workers while following the general recommendations: HIT approval rate 95%, number of
approved HITs > 2000, and restricted repetition of study by one worker. Additionally,
we implemented Google reCAPTCHA to reduce the risk of bot fabrication, mitigating bot
activity and ensuring that participants are genuine. Moreover, to assess and control the
data quality, we used the statistics from the calibration group to eradicate workers of in-
sufficient quality that significantly deviated from the standard deviation. We intentionally
did not automate the elimination process to interpolate the measured statistics (deviations
from the calibration group) while considering the expected number of circular triads E(T")
and workers’ feedback, allowing a more nuanced understanding of worker performance and
potential issues within the tasks. In particular, we identify participants as potentially in-
consistent if ' < FE(T) is observed in at least two of the three areas assigned for their
evaluation. Once the HIT was approved, it became part of the calibration group, and all
statistics for this group were recalculated.

To gain an even deeper understanding, we employed Smartlook® to analyze workers’
behavior while working on the evaluation by manually reviewing activity recordings. By
doing so, we identified three pitfalls: (1) some workers were likely modifying JavaScript to
alter the behavior of the study, (2) workers often copied the text of the task/questions pre-

2yww.smartlook.com
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sumably because they did not understand the text and were translating it, (3) some workers
disregarded the instructions and tried to complete the task as quickly as possible.

To address these issues, we (1) implemented obfuscation to prevent manipulation of
JavaScript, (2) integrated Google Translate into the study and slightly modified the instruc-
tions to accommodate non-native English speakers better, and (3) introduced a mechanism
where a participant must first review the pair and spend a minimum of 5 seconds selecting
their preferred option.

5.1.5 Results

We eliminated participants who exhibited inconsistencies in their responses as described
in Section 5.1.4. Following this data refinement, we were left with a total of 225 partici-
pants with a dropout of 27%. These participants generated 18,900 pairwise comparisons.
Therefore, on average, each comparison pair was evaluated by approximately 23 different
participants.

We apply methodology as described in Section 5.1.3 to compute the quality z-score
and assess statistical significance at the significance level of a = 0.05 to evaluate the null
hypothesis H{: “There is no clear user preference among the label positions.” Our initial
findings of aggregated preferences suggested that label positions could be ordered by the
perceptual preferences of participants as follows: T > B > R > TR > BR > L > TL > BL.
A statistically significant difference was found between all pairs of label positions except
for the BR > L pair. Our finding also harmonizes with PPO proposed by Scheuerman et
al. [151], who claims that the L. > TL > BL order is preferred among participants. In
order to determine statistical significance for the BR > L pair, we engaged an additional
104 participants who were specifically asked to respond to the (BR, L) pair of positions.
Each participant was presented with a single pair for each area, resulting in 30 pairwise
comparisons per participant. This approach led to a total of 3,120 new pairwise comparisons
specific to the pair of (BR, L) positions. After the addition of the new comparisons, the
final results, as depicted in Figure 5.2(a), show a statistically significant difference between
all pairs of label positions, as illustrated by Figure 5.2(b). Therefore, we can reject the
null hypothesis H& and claim that there is a clear preference of label positions in the order
given by z-scores.

In total, we engaged 329 participants for this study, comprising of 217 males and 112
females. A majority of the participants hailed from the USA (155), followed by Czech
Republic (88), India (35), and Slovakia (29). The most common age range among the
participants was 20-30 years, with 159 individuals falling into this category. Regarding
educational qualifications, the highest number of participants held bachelor’s degrees (119),
followed by high school diplomas (117), and master’s degrees (65). On average, participants
completed a batch of 84 pairwise comparisons in 5 minutes and 56 seconds, with a standard
deviation of 3 minutes and 4 seconds. For the additional comparisons specifically acquired
to determine statistical significance for the (BR, L) pair, the average completion time was
2 minutes and 4 seconds, with a standard deviation of 1 minute and 10 seconds.

The overall average consistency ¢ across participants is 0.67 (SD = 0.29, M D = 0.75),
which indicates that they were fairly consistent in their decisions and the consistency is
reasonably leveled for each map area. For more details see Table C.9 in Appendix C. The
overall coefficient of agreement v = 0.12 (min v = —0.001) reveals relatively low agreement
among participants, although with the p-value = 0 clearly indicates that we can reject the
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Figure 5.2: Results of the PerceptPP0 user study. Chart (a) depicts quality z-scores and
95% confidence intervals. Chart (b) shows a triangle plot visualizing significant differences
between label position preferences as proposed by Pérez-Ortiz and Mantiuk [139]. Each
red circle represents a label position, and the lines indicate significant differences between
pairs. Solid blue lines represent statistically significant differences. The edge values show
the absolute difference in z-scores between the compared label positions, with the p-values
denoted in brackets. The label positions are plotted along the x-axis, with alternating
y-axis offsets for clarity.

null hypothesis Hg: “There is no agreement among participants” at a = 0.05 and conclude
there is indeed statistically significant agreement among participants.

However, the relatively low overall coefficient of agreement u = 0.12 suggests that
there might be underlying patterns or segments within the participant data that are not
immediately apparent from the aggregated overall results. Therefore, we use hierarchical
clustering applying Ward’s minimum variance method to uncover these patterns and provide
a more nuanced interpretation of the data [71,83]. We identified three participant clusters
as shown in Figure 5.3. Even though the p-value for the coefficient of agreement u within
clusters is sometimes greater than a = 0.05 for individual areas, which disallows us to reject
the null hypothesis HZ for several areas, especially in Cluster 3, aggregation of the choices
over all areas leads to p-values lower than a = 0.05 for all clusters. Therefore, among all
clusters, there is indeed statistically significant agreement among participants. Cluster 1
(N = 93) shown in Figure 5.3(a) with mean consistency ¢; = 0.833 (SD = 0.179, M D =
0.900) and fairly high agreement u; = 0.335 (min u; = —0.004), comprises participants that
show strong preference in central positions T, B, R, and partly L over to corner positions
BL, TL, TR, and BR. Cluster 2 (N = 41) depicted in Figure 5.3(b) with mean consistency
C2 = 0.844 (SD = 0.155, M D = 0.900) also shows considerable agreement us = 0.370
(min uz = —0.008) and contains participants that strongly favor label positions T, B, TR
as opposed to L, BL, R, BR, and TL. Cluster 3 (N = 91) presented in Figure 5.3(c) with
mean consistency (3 = 0.435 (SD = 0.259, M D = 0.350) and relatively low agreement
u = 0.021 (min v = —0.004) includes participants that are uncertain in their preferences
but lean towards TR position.

5.2 Evaluation of PerceptPP0O

In order to evaluate the established PerceptPP0 and compare it with the other PPOs type-
setted in bold in Table 2.4, we have conducted a series of the following evaluations. We do
not include the position modifiers SL (Slightly Left) and SR (Slightly Right) in our study.
Initially, the modifiers were introduced due to limitations in grid printing, specifically for
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Figure 5.3: Identified clusters of users in PerceptPP0 study with depicted quality z-scores
and 95% confidence intervals. The red dashed brackets, with the corresponding p-values
reported above, represent the PPOs pairs without evidence of statistically significant dif-
ferences at @ = 0.05 using the two-tail test. Conversely, between the PPOs pairs without
brackets are detected statistically significant differences.

labels with an even number of letters that could not be precisely centered. However, with
current advancements in typesetting, the necessity for these auxiliary positions has become
obsolete. Furthermore, we examine at most eight positions to reduce the complexity of a
time-demanding pairwise comparison study, as the additional positions are relatively un-
common. The additional criteria for the selection were the number of citations (applied
for Brewer [33], Christensen and Marks [39], Slocum [158], Imhof [82]), the founder aspect
(Imhof [82], Yoeli [185]), and similarity with PerceptPP0O (Zoraster [193]). In the follow-
ing text, we typeset these using typewriter font to denote the corresponding PPO and
abbreviate the PPO proposed by Christensen and Marks only by the first author’s name
(Christensen).

5.2.1 Evaluation 1: Label Density

We need map renders to evaluate and compare the PerceptPP0 with existing PPOs. Again,
we intend to create a blind map to eliminate factors potentially influencing the judgment of
the label placement other than its position relative to the anchor. However, by doing so, we
faced a question. How many labels should be presented in such a map area? We reviewed
existing cartographic books and found that, surprisingly, just a handful of works studied
this topic [80]. Therefore, we conducted a dedicated experiment to see users’ preferences
on label density.

Data

We selected ten populated areas (0, 4, 5, 6, 9, 12, 13, 17, 27, 29), providing a wide range of
possible label density samples from areas employed in the PerceptPP0O study. We limited
our selection to ten areas because not all 30 locations described in Section 5.1.1 had suffi-
cient populations to sample the varying levels of label density required for the experiment.
Additionally, reducing the number of areas streamlined the experiment, making it more
manageable and efficient for participants. For each area, we produced maps with varying
density of labels which the participants can compare. We have several requirements on
each map: (1) The Global Label Density (GLD) of the whole map M is lower than a given
threshold LDy, and (2) to prevent local dense clusters of labels in highly populated areas,
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the Local Label Density (LLD) of local neighborhood of each anchor has to be lower than
the given threshold LDyy,. Both these densities are expressed in percentages.

We define LLD for each anchor o in map M, such that the anchor is the center of a
tile T of size 256 x 256, which is the typical size of web-based raster maps. The LLD is

defined as:

ZQEM L (a) nT
A(T) ’
where a is an anchor, T' is the square tile, L(a) is the rectangle enclosing the label text
corresponding to an anchor a, and A(T) is the area of the tile. If the anchor is in the map

M positioned such that T is not entirely in the map M, we perform a minimal shift of the
tile T' to be entirely in the map M. Similarly, we define GLD for each map M as

ZaEM L(CL) nM
A(M)

LLD(a) = (5.3)

GLD(M) = (5.4)

We order the cities in the given map area by population size, from most populated
to least populated, and process them iteratively. We sequentially try to add anchors and
labels to the map, starting with the largest population and proceeding to the smallest. The
anchor « is added to map M at position p from PPO if all of the following conditions are
met: (1) Anchor « is in the map M, (2) the label L of anchor « is entirely in the map M,
(3) the label L of anchor « is not overlapping any anchor, (4) the label L of anchor « is not
overlapping any already placed label, (5) the local label density LLD of anchor « is lower
than LDy, (6) the global label density GLD of the map M is lower than LDyy,,. After
no other anchors can be labeled according to the above rules, we recompute the final LLD
(LLDF) for each placed anchor as we do not update LLD(ay), when label L(ag) protrudes
from T3 into T} and label L(ag) is placed after L(aj). Therefore, LLDF can be slightly
above LDyyy.

We aggregate LLDF within each map M by calculating the median and mean values
across all anchors a € M, capturing overall statistics and allowing for consistent compar-
ison of local label density across different maps. Specifically, these aggregated values are
calculated as follows:

LLDF(M) = mediangep (LLDF () (5.5)
LLDF(M) = meanyepn (LLDF ()

To prepare various samples of selected areas with various levels of label densities, we
repeatedly rendered the area with LDy, = (2.5% — 40%, step size 2.5%) U (45%, 50%, 75%,
100%). The upper part is more sparse because, with increasing levels of label density,
the renders became perceptually similar. For example, only a few labels create differences
between 40% and 42.5% or 50% and 55%. Therefore, we increased the step size to 5% from
40% and to 25% from 50%. If any rendered maps of a given area were the same, we kept
only unique map renders. Following this procedure, we rendered ten selected areas (see
Figure 5.4 and for more examples, refer to Appendix C) for selected PPOs from Table 2.4.
Again, We used the same data source for cities as in Section 5.1.1. We employed the city
labels in three different sizes, as suggested by various guidelines [33, 98, 146, 158] , because
more than three categories are perceived with difficulty according to Robinson et al. [146].
As suggested by Tyner [167], we split the population into three intervals: (< 500,000);
(500,001-1,000,000); and (> 1,000,000); and apply three different font sizes of 11pt, 13pt,
and 15pt, differing by 2pt as recommended by Robinson et al. [146].
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(a) LDy, =2.5%, LLDF = 3.4%, (b) LDu,=12.5%, LLDF = 16%, (¢) LDw, = 100%, LLDF = 50.1%,
LLDF = 3.9%, GLD = 2.5% LLDF = 15.8%, GLD = 12.5% LLDF = 46.7%, GLD = 31.3%

Figure 5.4: Renders of map area 0 using PerceptPP0 at various values of LDy, employed
in the evaluation of label density described in Section 5.2.1.
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Figure 5.5: (a) The box plot of placed labels for each examined PPO aggregated for all values
of LDy, at 1305 x 1025. (b) The box plot of placed labels for label density LDy, = 12.5%
at 1305 x 1025. (b) The box plot of placed labels for label density LDy, = 12.5% at
652 x 512.

For the evaluation of label density, we are not using a blind map, but we included
the borders of continents and water bodies in terms of rivers, lakes, seas, and oceans (see
Figure 5.4 and Appendix C). By doing so, we aimed to provide the participants with
information about where the cities may occur and where they might not (e.g., a lake or
ocean) while minimizing the factors affecting the participants’ decision process. We used
the data provided by Natural Earth®, specifically land, lakes and reservoirs, rivers, and
lake central lines. We selected data from available scales at 1:50,000,000 due to the trade
between precision and image size as we employ SVG vector format at a size of 1305 x 1025
pixels.

Data Verification

We measured the number of positioned labels for all PPOs to ensure that anchors’ spatial
configurations within selected areas do not discriminate against or favor a particular PPO.
The Figure 5.5(a) and Figure 5.5(b) show that the number of placed labels is very similar
for all PPOs. Additionally, we explored the adherence of label placements to their desig-
nated priorities and examined how increasing label densities influence the label placement.
For each selected PPO outlined in Table 2.4, we have measured the probability of labels
occupying specific positions and observed how these probabilities shift with escalating label
densities.

3https://www.naturalearthdata.com/downloads/
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Figure 5.6: The probability of a label being placed at a given position over all 30 locations
rendered as described in Section 5.2.1 with label density LDy, = 12.5%.

As expected, labels are most likely to be positioned in their highest-priority position.
The probability of the label being placed at the second highest priority was significantly
lower, decreasing progressively for lower-priority positions (refer to Figure 5.6 and Fig-
ure C.15 in Appendix C for additional insights into label density impacts). Nonetheless,
some patterns deviated from this trend. We observed a striking deviation with priorities of
Imhof [82], where labels at lower densities were equally likely to occupy the second to fifth
priority positions. However, as label density increased, this likelihood inverted, favoring
lower-priority positions, realigning the priority sequence from the intended TR, R, T, B, L
to TR, L, B, T, R for maps with greater label density. This density-dependent realignment
in positioning probabilities is detailed in Figure C.15 in Appendix C.

We also noted exceptions in the PPOs set by Slocum [158], Zoraster [193], and our
PerceptPP0. For the priorities of Slocum, labels at higher densities are more likely to be
placed at TL than at BR, contrary to the intended order BR, TL. Similarly, for the priorities
of Zoraster, the likelihood of position BR is higher than for L or R, contrary to intended
order R, L, BR. Likewise, PerceptPP0O demonstrated a higher placement likelihood at L
over TR or BR. Appendix C further illustrates these individual probability patterns across
different PPOs and their relation to label density in Figure C.15.

Procedure

Participants could access the study directly via a web application or indirectly via the
Mechanical Turk interface, which embedded the same web app within its environment.
Participation in the evaluation was voluntary, and the compensation for Mechanical Turk
workers was set to match the average compensation rate of other requesters on Amazon
Mechanical Turk. The web application included an introduction, a survey, an evaluation,
and a feedback section. The introduction defined the participant’s task and how to use
the application. Within the evaluation we presented rendered maps of selected areas in
randomized order. Each participant was assigned a single PPO for all ten areas. Each
participant was allowed to participate only once to mitigate the carry-over effect. For
each area, we preloaded all renders with various label density levels. Using the slider, the
participants were asked to “choose a label density they found comfortable without being
overwhelmed by the amount of information.” The leftmost position was the lowest label
density, and the rightmost position was the highest density. The participant must spend at
least 5 seconds carefully selecting the preferred label density and explore the full range of
label densities. When they complete all ten areas, we provide them the option to provide
any feedback.
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Results

We eliminated participants who exhibited inconsistencies within their responses across dif-
ferent areas and ones that deviated more than two standard deviations from the mean of
LLDEF and evaluation duration, as described in Section 5.1.4. After this data refinement,
we engaged 110 participants from Mechanical Turk with a relatively high dropout of 45%,
which we attribute to a spike of inattentive workers according to the review of activities
recorded by Smartlook. Eliminated workers consistently set the slider in the right or left-
most position, which is highly unlikely to be the preferred position according to the control
group.

We found the following overall statistics on the preference of label density threshold
LDy, from participants: median(LDyy,) = 12.5% (p = 14.85, SD = 7.22%). We deter-
mined the preferred LDy, using the median, as it provides a robust measure that mini-
mizes the impact of potential outliers. The preferred LDy, = 12.5% corresponds to the
median(GLD) = 12.5% (p = 14.54%, SD = 6.59%), and a median of 150 labeled an-
chors (= 159, SD = 82). To accurately reflect the trends in participants’ opinions on
the localﬁb\el density, we calculated the overall preference statistics from the aggregated
median LLDF and mean LLDF, respectively. Specifically, the preferred LDy, = 12.5%
corresponds to median(LLDF) = 16.3% (u = 17%, SD = 7.35%).

Upon conducting an Analysis of Variance (ANOVA) to investigate the effect of different
PPOs on the LDyy,, our results indicated no significant differences across the various PPOs.
Specifically, the ANOVA test, utilizing a Type II sum of squares approach, yielded an F-
statistic of 1.660 with a corresponding p-value of 0.127. The p-value suggests that we found
no statistically significant differences in LDy, values among PPOs at significance level
a = 0.05. The finding implies that the examined PPOs do not significantly affect the L Dy,
value, reinforcing the idea that the variations observed in LDy, across different PPOs might
be attributed to random chance rather than inherent differences in PPOs. Therefore, our
analysis supports the conclusion that the selection of PPOs does not significantly influence
the preferred LDyy,.

5.2.2 Evaluation 2: Comparison of PPOs

To compare the proposed PerceptPP0 with existing PPOs, we conducted an evaluation that
follows findings from the evaluation of label density experiment described in Section 5.2.1.
We aim to validate that the PerceptPP0 is preferred when the label cannot always be placed
in a single position, unlike the PerceptPP0 experiment described in Section 5.1.

Data

In this evaluation, we employ the same approach as described in Section 5.2.1 with LDy, =
12.5%. However, this time, we again use a blind map to eliminate factors potentially
influencing the judgment of the label placement other than its position relative to the
anchor. We have also reduced the size of renders to half 652 x 512, which means that
the average number of shown anchors and labels is 24.79 (SD = 5.91), contrary to 131.31
(SD = 21.01) for 1305 x 1025; see Figure 5.5 and Appendix C for more details. We found
out that comparing map pairs with 131.31 labels on average is overly demanding and cannot
be completed in a reasonable time. Therefore, we chose to reduce the size of the map area
while still maintaining the LDy, = 12.5% but with 24.79 presented labels on average;
see Figure 5.7. In this evaluation, we also use all 30 locations worldwide as described in
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Figure 5.7: Renders of map area 0 using various PPOs at LDy, = 12.5% employed in
comparison of PPOs described in Section 5.2.2.

Section 5.1.1. Other data characteristics hold with Section 5.2.1, except the background is
blank as in Section 5.1.1.

Data Verification

We measured the number of placed labels for all PPOs again to ensure that anchors’ spatial
configurations within selected areas do not discriminate against or favor a particular PPO.
The Figure 5.5(c) show that the number of placed labels is very similar for all PPOs.
Finally, we explored the adherence of label placements to their designated priorities for
the data used in the evaluation (652 x 512 size of renders at LDy, = 12.5%). Refer to
Figure C.16 in Appendix C for more details. We found the same deviations for the priority
orders of Imhof, Zoraster, and PerceptPP0 as for the data with 1305 x 1025 size of renders
at LDy, = 12.5% (see Section 5.2.1).

Procedure

We applied the 2AFC paradigm to determine the preferred PPO based on the perception
of users. Considering the seven PPOs under examination, we have (;) = 21 pairwise
comparisons on an area. Consequently, the entire evaluation consists of 30 x 21 = 630
pairwise comparisons to cover all of them once. In order to alleviate potential fatigue
among the participants during the study, we allocated only three areas to each participant,
resulting in a batch of 3 x 21 = 63 pairwise comparisons. Therefore, 10 participants were
required to cover all pairwise comparisons once. We engaged Mechanical Turk workers and

university students to perform the evaluation. The rest of the procedure is the same as
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for Section 5.1.2 except, participants were shown two maps sequentially, each depicting the
same area but with different PPOs.

Results

We eliminated participants with inconsistent responses as described in Section 5.1.4. Fol-
lowing this data refinement, we were left with a total of 352 participants (179 females and
173 males) with a dropout of 24%.

A majority of the participants hailed from the USA (221), followed by India (54), Czech
Republic (32), Brazil (7), and United Kingdom (5). The most common age range among
the participants was 20-30 years, with 98 individuals falling into this category, followed by
31-40 with 93 participants, 41-50 with 77 participants, 51-60 with 47 participants, > 60
with 35 participants and 2 participants bellow 20. Regarding educational qualifications, the
highest number of participants held bachelor’s degrees (163), master’s degrees (76), followed
by high school diplomas (67), community college education (38), doctoral’s degrees (7), and
elementary education (1). On average, participants completed a batch of 63 pairwise com-
parisons in 10 minutes and 46 seconds (SD = 3 minutes and 13 seconds). The participants
generated 22,236 pairwise comparisons. Therefore, on average, each comparison pair was
evaluated by approximately 35 different participants.

We apply methodology as described in Section 5.1.3 to compute the quality z-score and
assess statistical significance at the significance level of o = 0.05 to evaluate the null hy-
pothesis Hg: “There is no clear user preference among the examined PPOs.” The overall
results, as depicted in Figure 5.8, show a statistically significant difference between PPO
groups Gt ={PerceptPP0, Zoraster} and Grr ={Brewer, YoeliB, Christensen, Slocum,
Imhof}. Specifically, the statistical analysis indicates that there is no significant difference
within the groups GT, and GTgr, but there is a significant difference between these two
groups. Figure 5.8(b) demonstrates that PerceptPP0 and Zoraster consistently outper-
form other PPOs, justifying their grouping. Therefore, we can reject the null hypothesis
Hg’ and claim that there is a clear preference of PPOs only between groups Gt and Grg.
In other words, participants perceived PPOs in Gt significantly better than in Gpgr. The
outcome validates the findings of our PerceptPP0 study described in Section 5.1 that par-
ticipants prefer label position T at the first place of PPO as proposed by Zoraster and
PerceptPPO. Interestingly, the following label positions do not seem essential for perceiving
the quality of PPOs.

The overall average consistency ¢ across participants is 0.59 (SD = 0.23, M D = 0.57),
which indicates that they were fairly consistent in their choices. The consistency re-
mained reasonably uniform across each map area; details are provided in Table C.10 in
Appendix C. The overall coefficient of agreement v = 0.013 (min v = —0.0009) with the
p-value = 7.362e clearly shows that we can reject the null hypothesis Hé: “There is
no agreement among participants” at o = 0.05 and conclude there is indeed statistically
significant agreement among participants.

However, the relatively low overall coefficient of agreement u = 0.013 suggests that
there might be underlying patterns or segments within the participant data that are not
immediately apparent from the aggregated overall results. Therefore, we apply the same
hierarchical clustering technique as in Section 5.1.5 to uncover these patterns and provide a
more nuanced interpretation of the data. We identified three participant clusters as shown
in Figure 5.9. Even though the p-value for the coefficient of agreement v within clusters
is sometimes greater than o = 0.05 for individual areas, which disallows us to reject the
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Figure 5.8: Overall comparison of PPOs. Chart (a) depicts quality score and 95% confidence
intervals. Chart (b) shows a triangle plot visualizing significant differences between PPO
preferences as proposed by Pérez-Ortiz and Mantiuk [139]. Each red circle represents a
PPO, and the lines indicate significant differences between pairs. Solid blue lines represent
statistically significant differences, while the dashed red lines indicate non-significant ones.
The edge values show the absolute difference in z-scores between the compared PPOs, with
the p-values denoted in brackets. The PPOs are plotted along the x-axis, with alternating
y-axis offsets for clarity.

null hypothesis Hg for several areas, aggregation of the choices over all areas leads to p-
values lower than o = 0.05 for all clusters. Therefore, among all clusters, there is indeed
statistically significant agreement among participants. Detailed results supporting found
clustering, including statistics and cluster compositions, can be found in Table C.10 in
Appendix C.

Cluster 1 (N = 134) depicted in Figure 5.9(a) with mean consistency ¢; = 0.659 (SD =
0.232, M D = 0.714) shows fairly high agreement u; = 0.218 (min u; = —0.002, p-value= 0)
and contains participants that prefer PPOs in group Gt = {PerceptPP0, Zoraster}.
Cluster 2 (N = 82) shown in Figure 5.9(b) with mean consistency (» = 0.612 (SD =
0.223, MD = 0.643) and slightly lower agreement us = 0.131 (min uy = —0.004, p-
value= 1.25¢7134), comprises participants that prefer PPOs in group Gtr = {Brewer,
YoeliB, Christensen, Slocum, Imhof} contrary to PPOs in group Gr. Cluster 3 (N = 136)
presented in Figure 5.9(c) with mean consistency (3 = 0.502 (SD = 0.210, M D = 0.500)
and relatively low agreement uz = 0.005 (min uz = —0.002, p-value= 7.63¢~%) includes
participants that are uncertain in their preferences but slightly incline towards PPOs in
group G over PPOs in group GTrR.

5.3 Discussion

The PerceptPP0 study showcases the potential of a user-centered approach to enhancing
the principles of label placement in cartography and GIS. The high coeficient of consis-
tency ¢ observed among the participants, with an overall mean of 0.67 and a median of
0.75, underscores the reliability of user judgments in determining the perceptual preference
order of label positions around point features. Notably, the study established a clear overall
preference order: top (T) > bottom (B) > right (R) > top-right (TR) > bottom-right (BR)
> left (L) > top-left (TL) > bottom-left (BL). Moreover, the analysis of the participants’
feedback revealed that their choices were driven primarily by the functionality of the label
placement rather than aesthetics. Many participants highlighted that their preferences were
based on the ease of associating labels with their anchors. Specifically, labels positioned
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Figure 5.9: Identified clusters of users in a comparison study of PPOs with depicted quality
z-scores and 95% confidence intervals. The red dashed brackets, with the corresponding p-
values reported above, represent the PPOs pairs without evidence of statistically significant
differences at o = 0.05 using the two-tail test. Conversely, between the PPOs pairs without
brackets are detected statistically significant differences.

directly on top or bottom of the anchor were most effective in facilitating the association,
with the top position being particularly favored. This finding challenges traditional con-
ventions and suggests a shift towards prioritizing labels above or bellow of point features
for improved user experience.

The evaluation of label density offers a brief view into how users perceive and prefer the
density of labels on maps — the median of the final preferred local label density at 16.3%
reflects the preferred label density in the local region of a map. The median of global label
density of 12.5% suggests that users favor a moderate overall label presence, enough to
inform without being too crowded. Analysis of participants’ feedback further supports our
findings, as they consistently highlighted preference selection driven by functionality over
aesthetics. Participants reported that when label density was too low, they struggled to
orient themselves in the area due to a lack of contextual information. Conversely, when
label density was too high, they found the maps cluttered, making it challenging to associate
labels with the corresponding cities. Therefore, achieving the right balance is crucial for
creating user-friendly maps that facilitate easy navigation and understanding.

Finally, the comparison between PerceptPP0 and existing PPOs reveals that Percept-
PPQ’s perceived quality surpasses the traditional PPOs and slightly outperforms Zoraster.
Moreover, our comparison of PerceptPP0 with Zoraster suggests that the initial position
within a PPO plays a crucial role, while subsequent positions have less impact on overall
user perception.

5.4 Limitations

While the study presents a statistically significant ordering of label positions, it also uncov-
ers distinct clusters of user preferences, revealing the complexity of perceptual prioritization.
We used generic blind maps that, on the one hand, minimize the degree of freedom and en-
able precise evaluation of preferences, but on the other hand, it is essential to acknowledge
that other elements of a map could also influence user perception. Additionally, this study
did not account for semantic considerations — such as the placement of city labels across
state borders or the positioning of coastal city labels towards water bodies, as highlighted by
Imhof [82]. Preferences might also vary based on the map’s intended use and audience, from
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military to recreational purposes. The demographic aspects may similarly affect the prefer-
ences for languages with right-to-left or top-to-bottom scripts. Additionally, participants’
familiarity with the presented area may influence their preferences. Notably, the study did
not delve into the functional aspect of label placement, including ease of information search
and overall readability. Despite stringent participant screening and measures to ensure data
integrity, the inherent variables associated with the uncontrolled online environment could
introduce unseen biases.

The outcomes of our study lay a solid foundation, yet further research is needed to
explore the aforementioned factors. Future work should investigate how semantic rules, map
purpose, target audience preferences, and functional aspects such as readability interplay
with the perceptual prioritization of label positions to develop more nuanced guidelines for
map design.

5.5 Summary

In this chapter, we introduced Perceptual Position Priority Order (PerceptPP0), funda-
mentally reviewing the point-feature label placement by prioritizing user preferences over
traditional conventions. Engaging nearly 800 participants globally, we have established a
user-preferred ordering of label positions along the feature point that challenges and di-
verges from the conventional top-right towards the top position. Moreover, we performed
an additional study to find users’ preferred label density, a domain narrowly studied in prior
literature. According to the results, users prefer 12.5% of the generic map to be overall
covered by labels. Finally, the comparative analysis underscores PerceptPPQ’s superiority
in perceived quality against traditional PPOs, particularly highlighting the significance of
the first label position’s role in user perception. Our empirical study marks a significant
step toward more intuitive and user-centered map designs, emphasizing the importance of
aligning label placement visualization practices with actual user expectations.
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Chapter 6

Conclusions

The primary objective of this dissertation was to advance the field of automatic label
placement by developing innovative techniques to address the inherent challenges of both
internal and external label placement within complex visualizations. This research was
driven by the need to enhance the efficiency and user perception of label placements across
various applications. Specifically, the research concentrated on three key areas: achieving
temporally stable and visually coherent boundary label placement, exploring the relevance
of machine learning in internal label placement to enhance the completeness of labeled data,
and optimizing label positioning by incorporating perceptual insights.

Research Outcomes

Chapter 2 provided a comprehensive review of existing techniques in automatic label place-
ment, highlighting the limitations of current methods in handling dynamic environments
and maintaining visual coherence. The review also identified that while significant progress
has been made, challenges remain in effectively balancing computational efficiency with
the quality of label placement. Additionally, despite the widespread adoption of Position
Priority Order (PPO), a systematic ranking of potential label positions around a point fea-
ture, there remains no consensus within the labeling community on the optimal approach
to determining the PPO.

The research presented in Chapter 3 introduced novel approaches for the temporally
stable optimization of boundary labeling in panoramic visualizations. The proposed opti-
mization techniques successfully minimized label movement across frames in dynamic visu-
alizations, thereby enhancing visual coherence and reducing cognitive load on users. The
experimental results demonstrated the effectiveness of these approaches in maintaining label
stability without compromising readability or clarity.

Chapter 4 explored the relevance of machine learning for internal point-feature label
placement. The proposed methods significantly improved the completeness of labeled data,
particularly in scenarios involving complex and dense data. By leveraging reinforcement
learning, the proposed technique could dynamically adapt to varying data distributions and
optimize label positions, outperforming traditional heuristic-based methods.

The final Chapter 5 focused on perceptual prioritization in label positioning relative
to the point feature. This research established a user-preferred ordering of label posi-
tions, challenging the conventional preference for the top-right position by demonstrating a
stronger user preference for labels placed directly above the feature point. Additionally, an
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exploratory study was conducted to identify users’ preferred label density, which has been
scarcely explored in existing literature. The findings confirmed that integrating percep-
tual insights into the label placement process significantly enhances overall user experience,
leading to more intuitive and effective visualizations.

Limitations

While this research has made substantial contributions to the field of automatic label place-
ment, several limitations must be acknowledged. The proposed methods, particularly for
boundary label optimization in panoramic visualizations, are more complex and challeng-
ing to implement compared to existing techniques. While allowing for greater flexibility,
this complexity may pose challenges in practical applications, especially in scenarios requir-
ing real-time processing. The deep reinforcement learning approach, although effective in
improving label completeness, is computationally intensive. The time required for compu-
tation, particularly in scenarios with a large number of labels, is a limitation that could
hinder its application in real-time systems. The approach is also limited to binary solutions,
either achieving complete conflict-free labeling or allowing conflicts. The perceptual prior-
itization study provided valuable insights into user preferences for label positions, but it
also revealed the complexity and variability of these preferences. The study’s use of generic
blind maps minimized variables, but future research should consider how additional map
elements, semantic rules, and the map’s intended audience and purpose might influence user
preferences. Moreover, demographic factors and the functional aspects of label placement,
such as ease of information search and readability, were not fully explored.

Future Work

Future research in the field of automatic label placement can explore several promising di-
rections that build on the work presented in this dissertation. One intriguing avenue is the
development of mixed-label placement models that effectively operate in three-dimensional
spaces. This challenge involves integrating the concepts of internal point-feature label
placement, typically used in top-down views, with external label placement, which is more
suitable for side views. Such a model would be particularly useful in applications where ter-
rains or structures need to be visualized from multiple perspectives, such as in geographic
information systems, interactive hiking guides, or urban planning. Combining these two
approaches presents a unique challenge, as it requires developing algorithms that can dy-
namically adjust label placements based on the viewer’s perspective, ensuring that labels
remain legible and correctly associated with their corresponding features. This problem,
which has not been widely addressed in the research community, offers significant potential
for innovation.

The deep reinforcement learning approach explored in this dissertation has proven effec-
tive in specific contexts but remains limited to binary solutions, either achieving complete
conflict-free label placement or allowing conflicts. Future research could focus on optimizing
the computational aspects of this approach. For instance, employing more efficient data
structures, such as conflict graphs, could streamline identifying and resolving label conflicts.
Improving the optimization process in the proposed way could enhance the practicality of
Reinforced Labels (RFL), particularly in real-time applications where computational effi-
ciency is critical.
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Another critical area for future research is enlarging our understanding of user per-
ception in label placement. While the perceptual prioritization study conducted in this
dissertation provided valuable insights, it also highlighted the complexity and variability
of user preferences. Future studies could explore how different factors, such as the content
of a map, the intended use of the visualization, and the demographic characteristics of
the user base, influence label placement preferences. Moreover, developing a user-centered
metric for evaluating the perceived quality of label placements could be a valuable tool for
improving label placement algorithms. Such a metric could be derived from crowd-sourced
data used to train neural networks that predict the perceived quality of a label placement,
thereby providing user-centered feedback during the label placement process. This approach
could close the loop in the label placement process, using these predictions as metrics to
guide the placement of labels in a way that aligns more closely with user expectations and
preferences.

Finally, it is essential to acknowledge that the quality of label placement is not entirely
and precisely defined. While cartographic guidelines provide a framework for minimizing
conflicts and ensuring clear associations between labels and features, many of these rules
are based on best practices rather than empirical user studies. As such, the objectives used
in label placement optimization may not always be applicable across different domains.
Therefore, future research should focus on developing flexible label placement techniques
that can easily incorporate various criteria and adapt to the specific needs of diverse appli-
cations. Flexibility is crucial for ensuring that label placement techniques remain relevant
and effective across a wide range of use cases. The proposed methods in this dissertation
have been designed with this flexibility in mind, driven by mathematical definitions that
can be easily altered or extended. However, further collaboration between visual designers,
cartographers, and computer scientists is needed to refine these techniques and enhance
their applicability in real-world scenarios.

This research journey has been marked by significant challenges and meaningful dis-
coveries. In conclusion, while this dissertation has made substantial strides in advancing
the field of automatic label placement, much work remains to be done. By addressing the
limitations identified and exploring the new directions outlined above, further research can
contribute to the development of more robust, efficient, and user-centered visualizations
that better serve the needs of diverse users and applications.
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Appendix A

Temporally Stable Optimization
Approach to Boundary Labeling

In this appendix, we present a detailed description of the tasks that participants fulfilled
during the user study. These tasks were designed to evaluate the accuracy and preference
of labeling methods in both non-interactive and interactive environments. This additional
information complements the findings discussed in the main document, providing a deeper
understanding of the user study and its outcomes.

A.1 Accuracy Experiments

In this section, we present a detailed description of the tasks evaluated in the Accuracy
Experiments. To see all the three described tasks being fulfilled, please look at the supple-
mentary video.! Please note that the participants tried each task on a demo scene to get
familiar with the task before they started fulfilling the task.

A.1.1 Task 1: Assign Label to Highlighted Anchor

The first task was to find the label associated with a highlighted anchor. An image with a
labeled scene was presented to the participant. After one second, one of the anchors was
highlighted. The participant had to find the label associated with the highlighted anchor
and press the space-bar. Then only the labels (without text) remained visible on the screen,
and the participant had to click on the associated label. The participant was instructed
to click on free space between labels if s/he was not able to find the associated label. We
measured the reaction time, measured as the time between highlighting the anchor and
pressing the space-bar, and the error rate, measured as the number of wrongly selected
labels relative to all selected labels. When the participant could not decide which label
belonged to the highlighted anchor, we counted this as an error. The whole process was
repeated 30 times (10 different labels in 3 different scenes). The participants indicated
their subjective agreement or disagreement with each statement on Likert scale from 1 to
5. After each scene, we have presented to the participant three statements:

(1) It was easy to select the correct labels.

(2) I was able to find the correct labels fast.

!Supplementary video is available at the project page http://cphoto.fit.vutbr.cz/interactive-
labeling/
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(3) I was confident that I was selecting the correct labels.

A.1.2 Task 2: Assign Anchor to Highlighted Label

The second task was to find the anchor associated with a highlighted label. The task was
similar to task 1. An image with a labeled scene was presented to the participant. After one
second, one of the labels was highlighted. The participant had to find the anchor associated
with the highlighted label and press the space-bar. Then only small boxes around each
anchor remained visible on the screen, and the participant had to click on the associated
anchor. The participant was instructed to click on free space between the boxes if s/he was
not able to find the associated anchor. Similarly, as in task 1 the reaction ¢ime and the error
rate. The whole process was repeated 30 times (10 different labels in 3 different scenes).
The participants indicated their subjective agreement or disagreement with each statement
on Likert scale from 1 to 5. After each scene, we have presented to the participant three
statements:

(1) It was easy to select the correct anchors.

(2) I was able to find the correct anchors fast.

(3) I was confident that I was selecting the correct anchors.

A.1.3 Task 3: Follow the Moving Label

The third task was to follow a certain label moving in time and then select the label. The
task was similar to tasks 1 and 2. An image with a labeled scene was presented to the
participant. After one second, one of the labels was highlighted. The participant pressed
the space-bar, then the highlight of the label disappeared, and the animation started playing
with the speed of 10 frames per second. The participant had to follow the movement of
the initially highlighted label. After two seconds, the animation stopped, and only the
labels (without text) were displayed on the screen. The participant should have clicked
the label that s/he was following. The participant was instructed to click on free space
between the boxes if s/he was not able to find the correct label. In this task, we measured
the error rate only. Again, the whole process was repeated 30 times (10 different labels in
3 different scenes). The participants indicated their subjective agreement or disagreement
with each statement on Likert scale from 1 to 5. After each scene, we have presented to
the participant two statements:

(1) The label layout made it easy to follow the labels.

(2) I didn’t have to focus hard to be able to follow the labels.

A.2 Preference Experiments

In this section, we present the detailed description of the tasks evaluated in non-interactive
and interactive environments. To see all the three described tasks being fulfilled, please
look at the supplementary video'.

A.2.1 Non-Interactive Environment

The stimuli were represented by three different video sequences presented in a web browser,
and we evenly distributed them among the participants. Each participant was sequentially
stimulated by a pair of videos produced by the tested labeling methods. At the beginning
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of the experiment, participants were familiarized with the experimental procedure by the
written instructions:
(1) When the test starts, you will be able to play two animations, please play both of
them.
(2) During each playback, try to focus on your personal feeling about the visual presen-
tation of labels (label layout).
(3) Afterward, you will be asked if you prefer the first or second label layout.
During the experiment, participants were able to play the assigned sequence as many times
as they wanted. The names of the methods were transcoded with numbers.

A.2.2 Interactive Environment

The stimuli were represented by an interactive visualization of mountain terrain presented
at resolution 1200x900, where the independent variable was the labeling method. During
the experiment, participants were guided along the same predefined path above mountain
peaks. Each participant was familiarized with the experimental procedure by the written
instructions:

(1) This study aims to assess four interactive labeling techniques for dynamic scenes. The
estimated time to complete the study is approximately 20 minutes.

(2) The presented scene is set in the Alps where you can:

(a) fly above mountain tops following the predefined path by holding the Up key
(forward) or the Down key (backward),

(b) stop whenever you want to by lifting your finger from the Up or Down key,

(c) rotate the camera by pressing the left mouse button and moving,

(d) zoom in and out by mouse wheel, and

(e) return to the beginning of the path by pressing the Z key.

(3) Your goal is to rank the four methods ,1¢, ,2¢, 3% ,4“ from the most preferred
to the least preferred method. You can use prepared cards to establish the ranking
continuously during the study.

(4) Please focus predominantly on the assessment of the label placement and the move-
ment of the labels in the time.

(5) Throughout the study, you can change the method any time by pressing the corre-
sponding numerical key. The name of the selected method is available in the top left
corner of the application window. You can change the method as many times as you
want.

(6) Please let the supervisor know whenever you are satisfied with the final ranking of
the methods or when you need assistance.

At the end of the experiment, participants were asked to describe their decision process
and to justify their ranking.
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Appendix B

Deep Reinforcement Learning
Approach to Internal Labeling

In this appendix, we provide a collection of additional resources, including dataset defini-
tions, experimental setups, supplementary results, and visual comparisons that complement
the main findings discussed in the manuscript. These elements were omitted from the main
document in an effort to preserve its conciseness and readability. Our aim is to ensure
that readers have access to all necessary supplementary information to fully understand
the scope and depth of our research findings.

B.1 Hyperparameters

We use PrPO implementation from the RLLib framework [108]. Rollout workers query the
current policy to determine actions and collect a new vector of observations and rewards.
Collected data are assembled into training batches and shuffled. The trainer worker coordi-
nates the rollout workers and orchestrates policy optimization. We use Adam to optimize
the policy and value function parameters. Further hyperparameters are as follows:

Parameter Value
Learning rate 1-10-6
Batch size 2000
Mini-batch size 128
SGD epochs 10
PrPO clip factor 0.25
PrPO gradient clipping -
PrPO entropy coefficient 0.0
Horizon 100
0 0.99
A 1.0

Table B.1: Hyperparameters

B.2 Observation Modalities

We designed two observation vectors. First, the mapping vector M provides surroundings
modalities. Second, the self-aware vector S provides local information about the state of the
given label agent. Observations are mostly normalized to [—1,1] range. The intersection
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Mapping vector Range Shape

Intersection distance (-1,1) 32
Intersection mass (-1,1) 32
Number of intersected labels (-1,1) 32
Intersection object type (-1,0,1) 32

Self-aware vector Range Shape

—_

Overlap area (—
Overlap indicator (-
Number of overlaps (—
Displacement (-
Cumulative displacement (—
Anchor penetration distance (—
Penetration indicator (—
(-

(-

( —

(-

(_

(-

)
)

Number of penetrations
Anchor-port distance
Anchor-port angle
Anchor-port vector
Anchor-origin distance
Elapsed time steps

o e e e e e e
i e e e e e

o e e e e e e e e e e
NN N N NI N N NI NI NI NI AN A

Table B.2: Observation Modalities

observation type is an exception — the value of —1 signifies the intersection of anchor,
0 defines screen bound, and 1 represents the label. We use Box2D' framework to cast
rays serving as LiDAR sensor to encode the agent’s surroundings by 32 rays (similar to
LiDAR) evenly distributed around the label bounds that sense the range, type of the
nearest intersected object (i.e., label, anchor, bounds of the environment), and the mass
that the ray went through.

B.3 Dataset Definition

The dataset comprises a collection of instances, where a JSON file represents each instance.
The JSON file contains information about the screen or drawing area, including the width
and height, as well as an optional reference to a background image. Additionally, the JSON
file contains a description of the labels associated with the instance, where each label is
characterized by the position of its anchor and the size of its label box. Moreover, the label
definition may include a text string and font configuration for each label.

{
"screen": {
"size": {"width": 2400, "height": 1600},
"background": {"file": "background.svg"}
Yo
"labels": {
"definition": {
"o, {
"text": "Brno",
"size": [76, 20],
"font": {
"size": 17,
"family": "Arial",
"style": "Regular"}
Fo
}

!The framework Box2D is available at https://box2d.org.
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Table B.3: Visual comparison of examined methods applied to selected instances from the
compact dataset and real-world instances of TATA airport codes with 250 anchors and CITY
names with 150 anchors based on data obtained from Open Street Maps. The green dot
represents the anchor (i.e., point feature). The gray rectangle symbolizes the body of the

label itself. The red dot describes an anchor that was not labeled by the given method.

The red rectangle illustrates the dimensions of the missing label.
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from the volume dataset.
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Figure B.1: Training metrics of RFL (denoted by light blue) smoothed out using Exponential
Moving Average (denoted by dark blue). Charts (a) and (b) show mean episode reward
(same as mean return with discount factor v = 1.0) and loss over within training iteration.
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Appendix C

Perceptual Prioritization of
Point-Feature Label Positions

In this appendix, we provide a collection of additional resources, including various images,
detailed tables, comprehensive instructions for conducting the experiments, and further
results not included in the primary publication. These elements were omitted from the
main document in an effort to preserve its conciseness and readability. Our aim is to ensure
that readers have access to all necessary supplementary information to fully understand the
scope and depth of our research findings.

C.1 PerceptPP0 Study

Addressing the lack of uniformity in label position prioritization in cartography and GIS, our
objective is to establish a PPO that is deeply anchored in user perceptions rather than rely-
ing on typographic and cartographic traditions. These traditional practices, though histor-
ically significant, stem from methodologies developed decades ago and might not reflect the
requirements of today’s users. With PerceptPP0, our aim is to transcend traditional label
placement strategies by leveraging empirical user data to dictate label positioning, thereby
enhancing the perceived clarity, usability, and overall user experience of maps.

C.1.1 User Study Interface

This section provides examples of user interface used to establish PerceptPP0. The following
paragraphs present textual information available to participants as seen in Figure C.1 and
Figure C.2.

Introduction. Welcome to our user study! We are excited to have you participate in
this research to help us understand more about the perception of maps. Your feedback will
play a crucial role in shaping future map-based products and services.

Task. You will be presented with a pair of blind maps. The only difference between
shown maps is in the position of the text relative to the points. The position of a text is
consistent for all points within a map. Your objective is to select the map that you find
more appealing.
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Instructions. Press the button below the blind map that you find more appealing. Re-
peat this process until you’ve completed all assignments. Once finished, press the ,,Submit*
button on the last page to submit your results.

Note. Please note that opening multiple HI'Ts simultaneously is not allowed, and only one
submission per participant will be eligible for payment. Additionally, any attempt to tamper
with the website’s functionality is strictly prohibited and will result in disqualification from
the study.

Start Experiment. Ready to get started? Press the ,Start Experiment* button below
and follow the instructions on your screen. By proceeding, you consent to participate in
this study. Provided data will be collected and used for research purposes only.

Call For Action. Which of the two maps do you find more appealing?

Perception of Maps St

Welcome to our user study!

We are excited to have you participate in this research to help us understand more about the perception of maps. ) P —
Your feedback will play a crucial role in shaping future map-based products and services. Perception of Maps S— Tranatate
Your Task
« You will be presented with a pair of blind maps. User Survey
Clrsmant Gramont To help us gain even more insight, we would like to ask you to complete a short user survey.
Sacise Symcuse that your responses in this your eligibility icipation or payment
Troy Toy ‘Therefore, we kindly ask you to fill it out truthfuly.
Bngpamo , sorngtas Spngtes
Gender
Scomon oy oargry
[ Open this select menu x 1
Vannatan Mannat
Teas
+ The only difference between shown maps is in the position of the text relative to the points. Age
« The position of a text is consistent for all points within a map.
« Your objective is to select the map that you find more appealing l Open this select menu x ‘
Instructions
Highest Level of Education
1. Press the button below the blind map that you find more appealing
2. Repeat this process until you've completed all assignments. [ Open this select menu X+ \
3. Once finished, press the "Submit" button on the last page to submit your results. Pleas: w——
Note Country of Residence
Please DO NOT use your browser's forward or backward buttons during the experiment. Doing so may cause the form to become Please select your actual country o residence. Rest assured, your choice of country willnot impax
invalid and prevent you from completing the task. our welcome all dless of Mechanical Turk
x

twill be elgible for payment. Additionally, any attempt

Please note

1o tamper with the

Ready to get started?
Press the "Start Experiment” button below and follow the instructions on your screen.

study. Provided

(a) Introduction

Open this select menu

I'm not a robot

(b) Survey

Figure C.1: User Study — PerceptPP0: Web interface for introduction and survey.
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° Perception of Maps (Click to collapse)

Task Description
« You are presented with a pair of blind maps with the same set of points.
« The only difference between shown maps is in the position of the text relative to the points.
« The position of a text s consistent for all points within a map.
« Your objective s to select the map that you find more appealing
Instructions
1. Press the button below the blind map that you find more appealing.
2. Repeat this process until you've completed all assignments
3. Once finished, press the “Submit” button on the last page to submit your results.
Note

Please DO NOT use your browser's forward or backward buttons during the experiment. Doing so may cause the form
to become invalid and prevent you from completing it

° Perception of Maps

R . - . You are almost done!

We would love to hear your thoughts on the experiment! Your optional feedback will help us understand your choices
and preferences even better.

Thank you for taking the time to share your thoughts with us! Once finished, please click the "Submit* button to
complete the experiment
Which of the two maps do you find more appealing?

= s ]

(a) Experiment (b) Feedback

Figure C.2: User Study — PerceptPP0: Web interface for experiment and feedback.

C.1.2 Data

Figure C.17, Figure C.18, and Figure C.19 display the map renders utilized in the user study,
showcasing all examined label positions within the 8-position model. We randomly selected
30 global locations, excluding maritime regions and areas south of -60 degrees latitude to
omit Antarctica, given its minimal population. FEach site was centered within a zone defined
by specific coordinates and a zoom level between 5 (comparable to the size of Europe) and
10 (similar in area to Luxembourg), rendered into vector SVG images measuring 1305 x
1025 pixels. We identified settlements with populations exceeding 500, using data from
GeoNames, specifically the Cities 500 dataset!, as anchor points. These anchors were
ranked by population size, and only those with all eight potential label positions conflict-
free were included. Areas with less than 20 suitable anchors were replaced. This process
yielded 30 areas, numbered 0 to 29, at zoom levels 5 to 8, featuring between 20 to 54 anchors
each.

C.1.3 Results

Table C.1 presents comprehensive p-values from pairwise comparisons of label positions.
Additionally, Table C.2, Table C.3, and Table C.4 detail the p-values for the pairwise
comparisons within the identified clusters. Table C.9 shows the coefficient of consistency (
and coefficient of agreement u along with its corresponding values of umin, x> and p-value
for positions of PerceptPP0 for each map area reported over all responses and clusters
obtained by hierarchical clustering. Figure C.8 and Figure C.9 show the detailed statistics
of engaged participants.

"http://download.geonames.org/export/dump/
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T B R TR BR L TL BL

T - 1.64e-03 3.81e-07 8.59e-17 3.31e-22 3.49e-35 1.28e-55 4.38e-50
B |1.64e-03 - 6.40e-04 3.22e-08 3.58e-20 1.09e-29 2.93e-34 8.54e-48
R |3.81e-07 6.40e-04 - 1.25e-03 4.46e-12 1.30e-21 2.42e-19 3.39e-31
TR |[8.59e-17 3.22e-08 1.25e-03 - 4.57e-04 2.06e-05 6.10e-20 4.82e-24
BR|[3.31e-22 3.58¢-20 4.46¢-12 4.57e-04 - 1.19e-02 1.25e-07 2.43e-20
L |3.49¢e-35 1.09e-29 1.30e-21 2.06e-05 1.19e-02 - 1.30e-03 2.08e-09
TL|1.28e-55 2.93e-34 2.42e-19 6.10e-20 1.25e-07 1.30e-03 5.79e-04
BL [4.38¢-50 8.54¢-48 3.39¢-31 4.82e-24 2.43e-20 2.08e-09 5.79¢-04 -

Table C.1: User Study — PerceptPP0: Detailed overall p values disregard identified clus-
ters for all position pairs. Green cells indicate statistically significant differences, or red
otherwise. We use a Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025
to be significant.

T B R TR BR L TL BL

T - 2.86e-01 3.20e-01 6.10e-25 1.90e-10 9.61e-15 2.66e-48 3.87e-50
B |2.86e-01 - 4.92¢-01 5.93e-19 3.7le-14 3.05e-10 3.42¢-31 2.54e-61
R [3.20e-01 4.92e-01 - 3.01e-29 1.77e-19 8.66e-13 3.40e-37 1.39e-83
TR |6.10e-25 5.93e-19 3.01e-29 2.80e-01 7.63e-02 2.01le-11 1.70e-16
BR|1.90e-10 3.71e-14 1.77e-19 2.80e-01 - 2.66e-01 3.72e¢-06 1.01e-13
L 19.61e-15 3.05e-10 8.66e-13 7.63e-02 2.66e-01 - 3.06e-11 3.84e-16
TL | 2.66e-48 3.42¢-31 3.40e-37 2.0le-11 3.72e¢-06 3.06e-11 2.97e-02
BL |3.87e-50 2.54e-61 1.39e-83 1.70e-16 1.01e-13 3.84e-16 2.97e-02 -

Table C.2: User Study — PerceptPP0: Detailed p values of Cluster 1 for all position
pairs. Green cells indicate statistically significant differences, or red otherwise. We use a
Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025 to be significant.

T B R TR BR L TL BL

T - 3.76e-10 1.80e-45 8.22e-14 1.15e-36 3.96e-63 2.57e-31 1.74e-65
B |3.76e-10 - 6.86e-20 5.14e-03 1.85e-18 4.08e-38 1.18e-08 3.09e-27
R |1.80e-45 6.86e-20 - 4.27e-10 7.51e-02 1.12e-05 2.73e-02 4.78e-03
TR |8.22e-14 5.14e-03 4.27e-10 - 1.97e-05 3.44e-13 2.88e-03 1.06e-12
BR|1.15e-36 1.85e-18 7.51e-02 1.97e-05 3.26e-06 1.62e-01 8.91e-05
L |3.96e-63 4.08¢-38 1.12¢-05 3.44e-13 3.26e-06 - 1.73e-14 9.46e-03
TL|2.57e-31 1.18e-08 2.73e-02 2.88e-03 1.62e-01 1.73e-14 - 1.82e-08
BL | 1.74e-65 3.09e-27 4.78e-03 1.06e-12 8.91e-05 9.46e-03 1.82¢-08

Table C.3: User Study — PerceptPP0: Detailed p values of Cluster 2 for all position
pairs. Green cells indicate statistically significant differences, or red otherwise. We use a
Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025 to be significant.

T B R TR BR L TL BL

T - 6.50e-02 2.30e-01 4.07e-02 2.41e-01 9.99e-08 1.71e-10 9.62e-06
B |6.50e-02 - 2.78e-01 1.09e-02 2.29e-01 3.09e-05 6.09e-05 4.62e-04
R {2.30e-01 2.78e-01 - 1.71e-02 4.51e-01 1.16e-04 1.11e-04 4.26e-03
TR [4.07e-02 1.09¢-02 1.71e-02 - 3.42e-03 5.87¢-06 1.55e-08 1.50e-05
BR[2.41e-01 2.29e-01 4.51e-01 3.42e-03 - 1.40e-04 1.32e-05 9.08e-04
L 19.99¢-08 3.09e-05 1.16e-04 5.87e-06 1.40e-04 4.59¢e-01 1.99e-01
TL|1.71e-10 6.09¢-05 1.11e-04 1.55e-08 1.32e-05 4.59¢-01 - 1.75e-01
BL|9.62e-06 4.62e-04 4.26e-03 1.50e-05 9.08e-04 1.99e-01 1.75e-01 -

Table C.4: User Study — PerceptPP0: Detailed p values of Cluster 3 for all position
pairs. Green cells indicate statistically significant differences, or red otherwise. We use a
Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025 to be significant.
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C.2 Evaluation 1: Label Density

In this evaluation, our objective was to understand the impact of label density on users’
preferences. Recognizing that dense labeling can clutter a map and reduce its legibility,
while too sparse a distribution might overlook important information, we sought to identify
an optimal label density from a user-centered perspective.

C.2.1 User Study Interface

This section provides examples of user interface used to undercover preferred label density.
The following paragraphs present textual information available to participants as seen in
Figure C.3, Figure C.4, and Figure C.5.

Introduction. Welcome to our user study! We are excited to have you participate in
this research to help us understand more about the perception of maps. Your feedback will
play a crucial role in shaping future map-based products and services.

Task. You will see a map along with a slider positioned below it. The slider will alter the
density (amount) of labels on the map. Your goal is to use the slider to set a label density
on the map that feels comfortable and not overwhelming by the amount of information for
you. Please do not focus on the specific cities or locations presented, but solely on the
density of labels.

Instructions. Move the slider with your mouse or use the left and right arrow keys to
set a prefered label density. Press ,,Continue* to proceed to the next map. At the end of
the assignment, you will have an opportunity to provide additional feedback. Afterward,
press the ,,Submit* to submit your response.

Note. Please note that opening multiple HI'Ts simultaneously is not allowed, and only one
submission per participant will be eligible for payment. Additionally, any attempt to tamper
with the website’s functionality is strictly prohibited and will result in disqualification from
the study.

Start Experiment. Ready to get started? Press the ,Start Experiment® button below
and follow the instructions on your screen. By proceeding, you consent to participate in
this study. Provided data will be collected and used for research purposes only.

Call For Action. Adjust the slider to choose a label density that you find comfortable

without being overwhelmed by the amount of information, disregarding the specific cities
displayed.
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Adjust the slider to choose a label density that you find comfortable without being overwhelmed by the amount of
information, disregarding the specific cities displayed.

.

Figure C.3: Evaluation 1 — Label Density:

Web interface for experiment. Initial position
of slider is randomized in each trial.
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Adjust the slider to choose a label density that you find comfortable without being overwhelmed by the amount of
information, disregarding the specific cities displayed.

Figure C.4: Evaluation 1 — Label Density: Web interface for experiment. After setting

the slider to the leftmost position while exploring the intermediate densities, as shown by
the green bar below the slider.
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Adjust the slider to choose a label density that you find comfortable without being overwhelmed by the amount of
information, disregarding the specific cities displayed.

© T

Figure C.5: Evaluation 1 — Label Density: Web interface for experiment. After setting
the slider to the rightmost position while exploring the intermediate densities, as shown by
the green bar below the slider.

C.2.2 Data

Figure C.20, Figure C.21, Figure C.22, Figure C.23, Figure C.24, Figure C.25, Figure C.26,
Figure C.27, Figure C.28, and Figure C.29 display the map renders utilized in the label
density user study, showcasing various label density thresholds LDyy, for all selected areas.
We chose ten populated areas (0, 4, 5, 6, 9, 12, 13, 17, 27, 29) from the PerceptPP0 study
to cover a broad spectrum of label density scenarios, including geographical features like
continent borders and bodies of water. This approach aimed to mirror maps encountered
in everyday life while limiting extraneous influences on participant choices. We utilized
Natural Earth data for physical features and maintained the same city data source as in
previous sections, opting for a 1:50,000,000 scale to balance detail with manageable SVG
image sizes.

C.2.3 Results

Figure C.15 show probabilities that a label is placed at a specific position for each in-
vestigated method dependent on label density. Figure C.12 displays frequency of LDy,
LLDF, and GLD of study for all participants. Figure C.10 and Figure C.11 show the
detailed statistics of engaged participants.

C.3 Evaluation 2: Comparison of PPOs

This segment of our research focuses on a comparative analysis of various Position Priority
Orders (PPOs), as delineated in our study. We aim to ascertain the relative effectiveness
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and user preference across different PPO configurations, offering insights into how label
placement strategies can be optimized for user satisfaction.

C.3.1 User Study Interface

This section provides examples of user interface used to compare PPOs. The following
paragraphs present textual information available to participants as seen in Figure C.6 and
Figure C.7.

Introduction. Welcome to our user study! We are excited to have you participate in
this research to help us understand more about the perception of maps. Your feedback will
play a crucial role in shaping future map-based products and services.

Task. You will be presented with a pair of blind maps. The difference between shown
maps is in the position of the text relative to the points. Your goal is to select the map
that you like more. Please ignore specific cities or locations presented, as the maps are not
required to display the same set of points. If both maps look identical and you can not
decide, please choose one randomly.

Instructions. Press the button below the blind map that you like more. At the end of
the assignment, you will have an opportunity to provide additional feedback. Afterward,
press the ,Submit* to submit your response.

Note. Please note that opening multiple HI'Ts simultaneously is not allowed, and only one
submission per participant will be eligible for payment. Additionally, any attempt to tamper
with the website’s functionality is strictly prohibited and will result in disqualification from
the study.

Start Experiment. Ready to get started? Press the ,Start Experiment* button below
and follow the instructions on your screen. By proceeding, you consent to participate in
this study. Provided data will be collected and used for research purposes only.

Survey. To help us gain even more insight, we would like to ask you to complete a
short user survey. Please be assured that your responses in this survey have no effect on
your eligibility for participation or payment. Therefore, we kindly ask you to fill it out
truthfully.

Call For Action. Which of the two maps do you prefer? Focus mainly on the position
of the text relative to the points.
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Perception of Maps

Welcome to our user study!

We are excited to have you participate in this research to help us understand more about the perception of maps.
Your feedback will lay a crucial role in shaping future map-based products and services.

Solect Lar

Perception of Maps

Trans!

Your Task User Survey
« You will be presented with a pair of blind maps. To help us gain even more insight, we would like to ask you to complete a short user survey.
Clrsmont Glrant ¥ in this survey your eligibility i payment.
Syacuse ° Syracuse . Therefore, we kindly ask you to fill it out truthfully.
° o . T
 Sogtamin s segaon - Gender
Jsmon oy scnen o [ Open this select menu -
Please select one of the options
Mt Menhstan
Age
+ The difference between shown maps is in the position of the text relative to the points. Open this sefect men PN

« Your goal is to select the map that you like more.
« Please ignore specific cities or locations presented, as the maps are not required to display the same set of points.
« If both maps look identical and you can not decide, please choose one randomly. Highest Level of Education

Please select one of the options!

Instructions Open this select menu

1. Press the button below the blind map that you like more. Please select one of the options!

2. Atthe end of the assignment, you will have an opportunity to provide additional feedback.
3. Afterward, press the "Submit" to submit your response.

Country of Residence

Please select your actual country of residence. Rest assured,
. rege

Note Turk
Plase not that pening mltple HITs notallowed mission perparicpa < payment. Additional,any atempt Open this select menu
10 tamper with he webte's functionaty s sticty pohibted and wil esul in disqualication fom the sudy. e —
Ready to get started? ™
Press the "Start Experiment” button below and follow the instructions on your screen. lmrote Kbo oo
Start Experiment

(a) Introduction (b) Survey

Figure C.6: Evaluation 2 — Comparison Study of PPOs: Web interface for introduc-
tion and survey.

° Perception of Maps (Click to collapse) Select Language ]
Povereaty Go-de Translate

Your Task
« You are presented with a pair of blind maps
« The only difference between shown maps is in the position of the text relative to the points.
« Your goal s to select the map that you like more.
« Please ignore specific cities or locations presented, as the maps are not required to display the same set of
points.
« If both maps look identical and you can not decide, please choose one randomly.

Instructions
1. Please spend at least 0 seconds to carefully select the map you like more.
2. Press the button below the blind map that you like more.
3. At the end of the assignment, you will have an opportunity to provide additional feedback.
4. Afterward, press the "Submit" to submit your response.

Note
Please DO NOT use your browser's forward or backward buttons during the experiment. Doing so may cause the
form to become invalid and prevent you from completing the task. ° P : [Selecianguage ¥
erception of Maps
Pouerad vy Goge Tranaiate
Chicago Chicago
Lomana . Lomana .
Denver Indianapolis, , Columbus Denver Indianapolis , Columbus
* Colorad Spngs . * Colorado Spogs Jansasciy d You are almost done!
Nashile
o Ouahoma gl Charote, (OHNOMACY | mpis CTOHON We would love to hear your thoughts on the experiment! Your optional feedback will help s understand your choices
Memphis and preferences even better.
FortWort_, Dallas Dallas
Fort ortn
sacksonvile, Jacksonile
sanAntonio GHowston " . San Aptonio,Houston 0
LTamen LzaTonse
M M -
o Monterrey o Monterrey Thank you for taking the time to share your thoughts with us! Once finished, please click the "Submit’ button to

complete the experiment.
Which of the two maps do you prefer? Focus mainly on the position of the text relative to the points.

(a) Experiment (b) Feedback

Figure C.7: Evaluation 2 — Comparison Study of PPOs: Web interface for experiment
and survey.

C.3.2 Data

Figure C.30, Figure C.31, and Figure C.32 display the map renders utilized in the PPO
comparison user study, showcasing all examined PPOs.
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C.3.3 Results

Table C.5 presents comprehensive p-values from pairwise comparisons of examined PPOs.
Additionally, Table C.6, Table C.7, and Table C.8 detail the p-values for the pairwise
comparisons within the identified clusters. Table C.10 shows coefficient of consistency ¢
and coefficient of agreement u along with its corresponding values of iy, x? and p-value
for examined PPOs for each map area reported over all responses and clusters obtained by
hierarchical clustering. Figure C.13 and Figure C.14 show the detailed statistics of engaged
participants. Figure C.16 show probabilities that a label is placed at a specific position for
each investigated method for the data used in the PPO comparison user study (652 x 512
size of renders and label density LDy, = 12.5%).

‘Brewer YoeliB Christensen Slocum  Imhof Zoraster PerceptPPO

Brewer -
YoeliB 2.37e-01
Christensen | 1.80e-02
Slocum  |4.45e-01
Imhof 6.72e-02
Zoraster |4.68e-11

PerceptPPO | 8.35¢-14

6.72e-02
2.42e-02

5.29e-10

2.37e-01  1.80e-02  4.45e-01

- 8.60e-02  2.34e-01
8.60e-02 - 1.85e-02 3.:
2.34e-01  1.85e-02 - 9.
2.42e-02  3.38e-04  9.62e-02
1.35e-11  7.71le-14  1.79e-10
2.09e-15 7.07e-18  3.4le-13

6.71e-13

4.68e-11  8.35e-14
1.35e-11  2.09e-15
7.7le-14  7.07e-18
1.79e-10  3.41e-13
5.29e-10  6.71e-13
- 3.35e-02
3.35e-02 -

Table C.5: Evaluation 2 — Comparison Study of PPOs:

Detailed overall p values

disregard identified clusters for the examined PPOs. Green cells indicate statistically sig-
nificant differences, or red otherwise. We use a Two-Tailed test with a = 0.05; therefore, p
has to be less than 0.025 to be significant.

Brewer YoeliB Christensen Slocum Imhof Zoraster PerceptPPO

Brewer 1.08e-03  2.62e-06  8.13e-03 1.43e-03 1.97e-57 1.73e-49

YoeliB 1.08e-03 - 8.01e-02  2.08e-01 3.75e-07 7.23e-98 1.09e-80
Christensen |2.62¢-06 8.01e-02 1.51e-02 6.79e-12 2.42e-105  9.26e-88

Slocum 8.13e-03 2.08e-01  1.51e-02 - 4.39e-06 1.26e-72 1.43e-66

Imhof 1.43e-03 3.75e-07  6.79e-12  4.39e-06 1.30e-50 1.07e-41

Zoraster |1.97e-57 7.23e-98 2.42¢-105 1.26e-72 1.30e-50 - 4.24e-01
PerceptPPO [ 1.73e-49 1.09e-80  9.26e-88  1.43e-66 1.07e-41 4.24e-01

Table C.6: Evaluation 2 — Comparison Study of PPOs: Detailed p values of Cluster
1 for the examined PPOs. Green cells indicate statistically significant differences, or red
otherwise. We use a Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025

to be significant.

Brewer YoeliB Christensen Slocum Imhof Zoraster PerceptPPO
Brewer - 5.45e-03  9.59e-03  1.71e-01 1.12e-01 8.18e-38  3.94e-29
YoeliB 5.45e-03 - 4.76e-01  5.57e-04 2.77e-01 9.61e-22  3.83e-21
Christensen |9.59¢-03 4.76e-01 - 1.47e-03 3.08¢-01 2.08e-26  3.26e-24
Slocum 1.71e-01 5.57e-04  1.47e-03 2.41e-02 7.05e-39  2.14e-33
Imhof 1.12e-01 2.77e-01  3.08e-01  2.41e-02 1.59e-27  2.30e-33
Zoraster |8.18e-38 9.61e-22  2.08e-26  7.05e-39 1.59e-27 1.56e-01
PerceptPPO|3.94e-29 3.83e-21  3.26e-24  2.14e-33 2.30e-33 1.56e-01 -

Table C.7: Evaluation 2 — Comparison Study of PPOs: Detailed p values of Cluster
2 for the examined PPOs. Green cells indicate statistically significant differences, or red
otherwise. We use a Two-Tailed test with o = 0.05; therefore, p has to be less than 0.025

to be significant.
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Brewer YoeliB Christensen Slocum Imhof Zoraster PerceptPPO

Brewer - 4.52e-04  2.58e-02  5.20e-02 4.72¢-01 2.77¢-03  3.58e-08
YoeliB 4.52e-04 - 1.65e-01  1.63e-01 3.80e-04 4.55e-01  2.92e-03
Christensen |2.58e-02 1.65e-01 - 4.56e-01 1.16e-02 1.36e-01  5.91e-05
Slocum  |5.20e-02 1.63e-01  4.56e-01 - 3.25e-02 1.10e-01  5.80e-05
Tmhof 4.72e-01 3.80e-04  1.16e-02  3.25e-02 - 241e-04  5.84e-13
Zoraster [2.77e-03 4.55e-01  1.36e-01  1.10e-01 2.41e-04 4.53e-03

PerceptPPO | 3.58¢-08 2.92e-03  5.91e-05  5.80e-05 5.84e-13 4.53e-03 -

Table C.8: Evaluation 2 — Comparison Study of PPOs: p values of Cluster 3 for the
examined PPOs. Green cells indicate statistically significant differences, or red otherwise.
We use a Two-Tailed test with @ = 0.05; therefore, p has to be less than 0.025 to be
significant.

Arca Overall Cluster 1 Cluster 2 Cluster 3

mean ( u Umin x> p-value ‘ mean { u Umin x> p-value ‘ mean { u Umin x> p-value ‘ mean { Umin X2 p-value
0 | 0.720 0.142 -0.043 127.937 2.2¢-13| 0.900 0.310 -0.091 150.960 1.0e-15| 0.750 0.286 -0.333 212.000 0.012 | 0.438 0.013 -0.143 46.222 0.363
1 0.619 0.102 -0.059 87.969 8.7¢-07| 0.821 0.293 -0.143 115.040 1.3¢-07| 0.767 0.381 -0.333 228.000 0.001 | 0.388 -0.018 -0.143 38.222 0.700
2 0.679 0.152 -0.048 126.681 4.9¢-13| 0.754 0.316 -0.091 153.360 4.0e-16| 0.812 0.250 -0.333 124.000 0.003 | 0.390 -0.071 -0.200 47.556 0.915
3 0.652  0.102 -0.040 106.019 6.3e-10| 0.739 0.210 -0.111 101.143 5.8¢-07| 0.879 0.367 -0.143 132.640 4.4e-10| 0.389 0.008 -0.111 42.857 0.398
4 ] 0.625 0.102 -0.048 98.340 1.4e-08| 0.819 0.311 -0.143 124.222 1.1e-09| 0.733 0.095 -0.333 180.000 0.250 | 0.455 0.070 -0.091 61.580 0.009
5 0.474 0.044 -0.040 63.932 6.1e-04| 0.731 0.186 -0.143 91.556 2.9¢-05| 0.867 0.286 -0.333 212.000 0.012 | 0.243 0.010 -0.077 39.389 0.296
6 0.688 0.099 -0.048 93.839 7.6e-08| 0.894 0.480 -0.143 168.222 1.5e-16| 0.925 0.488 -0.333 164.000 4.2¢-07| 0.400 0.012 -0.111 44.000 0.352
7 0.700 0.148 -0.048 124.155 1.3e-12| 0.861 0.448 -0.111 169.714 1.5e-17| 0.975 0.571 -1.000  inf 0 0.500 0.019 -0.111 44.875 0.252
8 0.774 0.116 -0.037 122.170 1.2e-12| 0.896 0.319 -0.077 162.281 6.3e-18| 0.810 0.371 -0.200 130.222 1.0e-06| 0.578 -0.028 -0.111 32.571 0.828

9 0.647 0.127 -0.059 98.116 3.6e-08| 0.825 0.343 -0.200 123.500 1.2¢-07| 0.850 0.143 -0.333 188.000 0.139 | 0.438 0.074 -0.143 62.222 0.033
10 | 0.594 0.094 -0.059 83.719 3.4e-06| 0.780 0.257 -0.200 108.889 2.3e-04| 0.850 0.250 -0.333 124.000 0.003 | 0.378 0.044 -0.111 53.143 0.099
11 | 0.664 0.114 -0.048 105.940 9.4e-10| 0.744 0.226 -0.111 105.714 1.4e-07| 0.825 0.352 -0.200 125.500 6.5e-08| 0.421 0.034 -0.143 54.240 0.219
12 | 0.615 0.167 -0.043 144.698 3.1e-16| 0.722 0.317 -0.111 132.000 1.9e-11| 0.790 0.457 -0.200 146.222 1.0e-08| 0.411 0.111 -0.111 72.571 0.002
13 | 0.714 0.136 -0.048 119.940 5.4e-12| 0.905 0.431 -0.091 185.136 3.1e-21| 0.933 0.333 -0.333 220.000 0.004 | 0.369 -0.010 -0.143 40.222 0.616
14 | 0.640 0.165 -0.034 170.299 4.3e-21| 0.800 0.357 -0.077 177.554 1.4e-20| 0.900 0.524 -0.333 252.000 2.9e-05| 0.419 0.046 -0.077 53.917 0.029
15 | 0.717 0.127 -0.043 117.651 1.1e-11| 0.911 0.480 -0.111 178.857 4.3e-19| 0.770 0.400 -0.200 135.556 2.3e-07| 0.494 0.032 -0.111 49.714 0.169
16 | 0.661 0.114 -0.043 108.889 2.8¢-10| 0.764 0.361 -0.091 161.136 4.3e-17| 0.900 0.429 -0.333 236.000 4.2¢-04| 0.456 0.012 -0.111 44.000 0.352
17 | 0.674 0.093 -0.059 81.049 9.6e-06| 0.925 0.438 -0.200 143.500 2.2e-10| 0.800 0.429 -0.333 236.000 4.2e-04| 0.438 -0.028 -0.143 35.556 0.801
18 | 0.773  0.179 -0.040 166.931 2.5¢-20| 0.850 0.286 -0.111 128.875 1.9e-11| 0.925 0.548 -0.143 186.222 1.5¢-19| 0.525 0.122 -0.143 74.889 0.002
19 | 0.673 0.105 -0.040 111.264 8.3e-11| 0.810 0.295 -0.111 131.875 6.6e-12| 0.880 0.314 -0.200 119.556 1.7e-05| 0.455 0.016 -0.091 42.914 0.270
20 | 0.656 0.094 -0.040 100.454 4.7¢-09| 0.855 0.444 -0.111 178.875 1.1e-19| 0.670 0.257 -0.200 108.889 2.3e-04| 0.450 0.041 -0.111 51.875 0.088
21 | 0.725 0.134 -0.059 104.969 2.6e-09| 0.939 0.294 -0.111 125.143 2.1e-10| 0.767 0.429 -0.333 236.000 4.2¢-04| 0.383 -0.043 -0.200 42.500 0.836
22 | 0.636 0.040 -0.048 57.740 0.004 | 0.867 0.224 -0.200 98.500 1.3e-04| 0.925 0.179 -0.333 112.000 0.022 | 0.425 -0.015 -0.091 30.960 0.746
23 | 0.758 0.168 -0.043 149.570 3.8e-17| 0.910 0.256 -0.111 119.375 5.5e-10| 0.808 0.405 -0.200 136.500 2.1e-09| 0.531 0.122 -0.143 74.889 0.002
24 | 0.681 0.076 -0.048 79.102 9.6e-06| 0.875 0.390 -0.143 144.889 8.2e-13| 0.875 0.357 -1.000  inf 0 0.505 -0.013 -0.091 33.136 0.695
25 | 0.626 0.125 -0.043 116.127 1.9¢-11| 0.840 0.310 -0.111 136.375 1.3¢-12| 0.900 0.143 -1.000  inf 0 0.382  0.026 -0.091 46.469 0.164
26 | 0.715 0.136 -0.043 123.365 1.3e-12| 0.791 0.286 -0.091 135.358 13] 0.863 0.476 -0.333 162.000 6.9e-07| 0.537 0.112 -0.143 72.222 0.004
27 | 0.722  0.150 -0.053 121.506 4.2¢-12| 0.837 0.339 -0.143 131.556 9.1e-11| 0.833 0.348 -0.200 124.500 8.8e-08| 0.458 0.105 -0.200 73.500 0.029
28 | 0.740 0.130 -0.040 126.193 3.3e-13| 0.875 0.281 -0.111 127.375 3.3e-11| 0.850 0.305 -0.200 115.500 1.2e-06| 0.517 0.147 -0.111 82.857 1.3e-04
29 | 0.636 0.132 -0.040 128.280 1.5e-13| 0.767 0.292 -0.091 144.560 1.2e-14| 0.983 0.714 -0.333 284.000 5.6e-08| 0.375 0.003 -0.111 39.875 0.448

Table C.9: PerceptPP0 Study: Coefficient of consistency ¢ and coefficient of agreement u
along with its corresponding values of umin, x> and p-value for positions of PerceptPP0 for
each map area reported over all responses and clusters obtained by hierarchical clustering.

160 Gender 120 2

f—— L 100

100 | BA0 80

105

60

40

0 0 - -
20-30  31-40  41-50 5160 <20  >60 Bachelors  High Masters  College Ph.D. 0.0 25 5.0 7.5 10.0 12.5 15.0
Age Range Education Level Duration (minutes)

(a) (b) (c)

Figure C.8: PerceptPP0 Study: User statistics of age, education, and and duration of
study for all participants.
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Figure C.9: PerceptPP0 Study: Country distribution for all participants.
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Figure C.10: Evaluation 1 — Label Density Study: User statistics of age, education,
and duration of study for all participants.
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Figure C.11: Evaluation 1 — Label Density Study: Country distribution for all partic-
ipants.
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Figure C.12: Evaluation 1 — Label Density Study: Frequency of LDy, LLDF, and
GLD of study for all participants.
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Figure C.13: Evaluation 2 — Comparison Study of PPOs: User statistics of age,
education, and duration of study for all participants.
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Figure C.14: Evaluation 2 — Comparison Study of PPOs: Country distribution for
all participants.
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Area Overall Cluster 1 Cluster 2 Cluster 3
mean ¢ u Upnin x> p-value ‘ mean ( u Upmin x? p-value ‘ mean ( u Upnin x>  p-value ‘ mean ¢ u Upnin x>  p-value
0.639  0.001 -0.030 23.947 0.407 | 0.776 0.167 -0.067 82.556 8.9e-08| 0.735 0.356 -0.143 97.280 1.0e-07| 0.411  0.032 -0.091 36.120 0.132
0.599  0.055 -0.029 65.478 5.6e-06| 0.684 0.263 -0.053 135.557 3.2e-17| 0.536 0.067 -0.200 48.875 0.143 | 0.487 0.075 -0.091 47.407 0.015
0.550  0.038 -0.030 50.572 7.8e-04| 0.652 0.253 -0.067 111.479 1.6e-12| 0.633 0.048 -0.143 42.880 0.177 | 0.375 -0.007 -0.091 25.320 0.596
0.608  0.002 -0.027 23.977 0.396 | 0.675 0.243 -0.111 82.857 1.2e-06| 0.643 0.165 -0.091 70.519 2.0e-05| 0.550 0.013 -0.059 29.920 0.244
0.560 -0.006 -0.029 18.419 0.729 | 0.595 0.134 -0.091 64.520 9.2e-05| 0.587 0.079 -0.111 47.429 0.029 | 0.514 -0.021 -0.067 18.556 0.858
0.567  0.010 -0.029 30.523 0.133 | 0.638 0.233 -0.067 104.710 2.2e-11| 0.541 0.084 -0.143 49.280 0.059 | 0.500 -0.028 -0.077 18.347 0.895
0.599  0.020 -0.029 38.183 0.023 | 0.611 0.114 -0.059 70.727 3.2e-06| 0.643 0.048 -0.143 41.333 0.142 | 0.543 0.024 -0.111 34.781 0.232
0.582  0.045 -0.030 54.947 2.1e-04| 0.670 0.199 -0.077 85.983 4.8e-08| 0.690 0.048 -0.200 45.875 0.221 | 0.454 0.007 -0.077 28.375 0.368
0.601  0.041 -0.029 54.536 2.1e-04| 0.714 0.298 -0.077 121.042 5.0e-14| 0.667 0.384 -0.200 98.875 5.0e-07 | 0.478 0.029 -0.067 36.000 0.086
9 0.573  0.018 -0.029 36.099 0.040 | 0.607 0.111 -0.111 55.281 0.003 | 0.686 0.314 -0.200 89.333 1.7e-04| 0.529  0.024 -0.053 35.074 0.079
10 | 0.589  0.039 -0.032 49.947 1.0e-03| 0.729 0.306 -0.111 101.281 8.6e-10| 0.540 0.069 -0.111 45.143 0.047 | 0.516 0.060 -0.077 44.529 0.019
11 | 0.547  0.029 -0.029 44.826 0.004 | 0.656 0.110 -0.091 56.296 0.001 | 0.589 0.224 -0.143 76.000 2.6e-05| 0.451  0.025 -0.067 34.571 0.114
12 | 0.532  0.015 -0.029 34.183 0.061 | 0.669 0.193 -0.091 77.630 2.0e-06| 0.500 0.072 -0.077 48.165 0.008 | 0.440 -0.007 -0.091 25.320 0.596
13 | 0.675  0.072 -0.029 79.007 4.3¢-08| 0.795 0.356 -0.067 146.556 9.7¢-19| 0.679 0.276 -0.200 81.875 8.2¢-05| 0.552  0.015 -0.067 30.864 0.237
14 | 0.589  0.030 -0.029 45.948 0.003 | 0.590 0.164 -0.067 81.325 1.4 0.673 0.156 -0.143 62.080 0.004 | 0.546 -0.002 -0.077 25.708 0.5

15 | 0.577  0.017 -0.029 35.830 0.042 | 0.675 0.244 -0.059 122.727 0.520 0.111 -0.143 54.080 0.022 | 0.455 -0.004 -0.091 26.963
16 | 0.604  0.046 -0.027 59.634 4.0e-05| 0.729 0.320 -0.067 134.249 0.774  0.359 -0.200 94.875 1.8¢-06| 0.424 -0.006 -0.067 23.429
17 | 0.608  0.006 -0.029 27.614 0.228 | 0.665 0.326 -0.077 123.802 0.550 0.007 -0.111 30.781 0.402 | 0.595 -0.016 -0.091 22.920
18 | 0.504  0.005 -0.029 26.301 0.281 | 0.533 0.092 -0.077 53.983 0.002 | 0.476 0.003 -0.200 38.875 0.493 | 0.492 0.048 -0.059 43.253
19 | 0.623  0.041 -0.029 55.007 1.8e-04| 0.743 0.282 -0.067 121.325 3.le-14| 0.531 0.011 -0.143 36.480 0.413 | 0.541 0.014 -0.077 30.708
20 | 0.591 0 -0.029 22.772 0.468 | 0.770 0.285 -0.077 117.042 2.5e-13| 0.487 0.120 -0.091 58.963 6.8e-04| 0.468 0.027 -0.091 34.963
21 | 0.552  -0.006 -0.027 18.034 0.747 | 0.539 0.238 -0.091 89.185 3.6e-08| 0.667 0.240 -0.091 93.720 4.3e-09| 0.464 0.015 -0.077 31.042
22 | 0.553  0.003 -0.029 25.433 0.326 | 0.634 0.224 -0.143 76.000 2.6e-05| 0.684 0.011 -0.143 36.480 0.413 | 0.475 0.011 -0.053 29.296
23 | 0.580 0.013 -0.029 32.463 0.090 | 0.625 0.245 -0.091 95.320 2.4e-09| 0.643 0.143 -0.111 62.781 3.4e-04| 0.489 -0.018 -0.077 21.256
24 | 0.584 0.044 -0.029 56.463 1.2e-04| 0.589 0.196 -0.067 96.000 4.8e-10| 0.464 0.143 -0.200 60.875 0.016 | 0.632 0.065 -0.077 45.983
25 | 0.635 0.011 -0.029 31.242 0.114 | 0.612 0.161 -0.067 83.429 5.1e-08| 0.736 0.081 -0.111 48.281 0.016 | 0.571 -0.007 -0.111 27.281
26 | 0.557 8.8e-04 -0.029 23.493 0.429 | 0.571 0.233 -0.077 96.165 1.1e-09| 0.565 0.201 -0.091 82.920 2.1e-07| 0.529  0.029 -0.111 35.781
27 | 0.627 -4.0e-04 -0.029 22.523 0.486 | 0.708 0.352 -0.091 118.519 6.le-13| 0.706 0.201 -0.111 73.714 2.3e-05| 0.519 4.5e-04 -0.067 25.941
28 | 0.612 0.018 -0.032 35.680 0.046 | 0.643 0.231 -0.091 87.407 6.8e-08| 0.619 0.212 -0.111 76.000 1.1e-05| 0.577  0.053 -0.091 42.120
29 | 0.605 0.018 -0.029 36.889 0.032 | 0.633 0.214 -0.077 94.375 1.6e-09| 0.698 0.132 -0.111 58.857 0.002 | 0.511 0.009 -0.077 29.256

[ R N N

Table C.10: Evaluation 2 — Comparison Study of PPOs: Coefficient of consistency ¢
and coefficient of agreement v along with its corresponding values of umin, x> and p-value
for examined PPOs for each map area reported over all responses and clusters obtained by
hierarchical clustering.
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Figure C.15: Evaluation 1 — Label Density Study: The probability that a label is
placed at a specific position for each investigated method is dependent on label density.
For each PPO, the positions (see the labels above the boxplots) are in ascending order with
respect to their priorities from left to right. Label density threshold LDy, increases from
top to bottom.
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Figure C.16: Evaluation 2 — Comparison Study of PPOs: The probability that a label
is placed at a specific position for each investigated method for the data used in Evaluation
2 (652 x 512 size of renders and label density LDy, = 12.5%). For each PPO, the positions
(see the labels above the boxplots) are in ascending order with respect to their priorities
from left to right.
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Figure C.17: PerceptPP0 Study: Visualizations of areas 0 through 9 used in the user
study.
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Figure C.18: PerceptPP0 Study: Visualizations of areas 10 through 19 used in the user

study.
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Figure C.19: PerceptPP0 Study: Visualizations of areas 20 through 29 used in the user

study.

155
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Figure C.20: Evaluation 1 — Label Density Study: Visualization of area 0 with various
label density thresholds LDy, used in the user study.
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Figure C.21: Evaluation 1 — Label Density Study: Visualization of area 4 with various
label density thresholds LDy, used in the user study.
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Figure C.22: Evaluation 1 — Label Density Study: Visualization of area 5 with various
label density thresholds LDy, used in the user study.
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Figure C.23: Evaluation 1 — Label Density Study: Visualization of area 6 with various
label density thresholds LDy, used in the user study.
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Figure C.24: Evaluation 1 — Label Density Study: Visualization of area 9 with various
label density thresholds LDy, used in the user study.
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Figure C.25: Evaluation 1 — Label Density Study: Visualization of area 12 with various
label density thresholds LDy, used in the user study.
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Figure C.26: Evaluation 1 — Label Density Study: Visualization of area 13 with various
label density thresholds LDy, used in the user study.
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Figure C.27: Evaluation 1 — Label Density Study: Visualization of area 16 with various
label density thresholds LDy, used in the user study.
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Figure C.28: Evaluation 1 — Label Density Study: Visualization of area 27 with various

label density thresholds LDy, used in the user study.
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Figure C.29: Evaluation 1 — Label Density Study: Visualization of area 29 with various
label density thresholds LDy, used in the user study.
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Figure C.30: Evaluation 2 — Comparison Study of PPOs: Visualizations of areas 0
through 9 used in the user study.

166



Brewer YoeliB Christensen Slocum Imhof Zoraster PerceptPPO

. . . . . P P
LKano i LKano s s e R Rl ) M Kapo s OB 1 Kapo LTI
i, oo v | e e o e e, s w | e o— | e - [ e oo e e
i vouna e kool e PR ——— e Wosrne e e oo e R Kino NOlmena [
\adns - adna - P (R P - o - .
LBomnciy LBennciy LBennciy LBemncy : Lsennciy Loy - R
- s [t [ P [ i - Bl B - o - I K AP -
oouma oausa [ w oo p
1 e ey, Mg, e, Mo e R Lt o, S, Lt T — . R——
i i "o g i
ot Johesa Poters, L esa o, S8 R oo e o, K Ko
s - - s . [ — I
Lo o o e s o o
s oron Bk s R s R s w80 s eron 8o g vogan Bk g 2 vegan Bk
v T o o T2 o Tt o Lz o Tz — e .
Ao o - Neo ot - - s — s
K Mo o ruan . R - g L. . M i amn . ) o 7 o Togn o Toyn
12 T T T T s o N g
A : s i : e : . . P — : s, : :
) S | O I | O E | L0 T S | SO0 s wo e B e e
7 s, Dammam 7 e Dammam " o Dammam B Dsmmam B Dammam B Dampam S Dampom
- = - e = - = — — o — =
et s et s o, - e i | Coksess e ot e g T O o
ooy, ooy, ey M oy M e o ey g Grapn et gt e
varsns erans s oy . o
L] I———— o, ook i oo o o o e
o, o __ ke, b, oo e, s, poon e, L resen e, [ps— g oo, g e . - g
Tangs. Tanes sl ‘San Antonio. Tanga Lotz T ‘San Antonio
Morkry ortrey ortrey ertomy ooy orgy fra—
o G, o — CS— e - o - I
v o "o r” v o R e G
T, S 9, S e o, . oS, Samara oy Samara Samara Samara o
R Lowtug R - K — ot J— oot oot s Lo Voo e [ o
- vologgras
17| - hetornaso e ol RS emoon O Sorsatons M R f— f—
P el I el I we | e Sl e s - P e
orovan ek Norovan Bk Vorovan_, Bk " Yermvan 8ok Yorovan Bk Yorgran B3 Yorguan B .
Kol Brary oo s . Ko s . o sharu R R Ry P - >
Lr— - — p— p— pm— i
S s [ Sogaoe PO il PR il PR il PR il . - s
1g| oo b Palmbang Paenbang Paemtang Ll Paamiang = - sann
s {——- f— [ - fro— -
s 0 - — - p— B o B st E . > saara >
e S o L s S e g S T e et suspom
oo " eanans "o g ™ s e sont” g oy g
e S e i S e P oSt T
Lo . - e - -] R o
[ B Ll - S anan
19 s e lmic s . i P o . S v R o el i P B o
e L e Ko e T Ko S e o JL T -, s, M e Ko we T o s £ o
o jg - o O PO i

Figure C.31: Evaluation 2 — Comparison Study of PPOs: Visualizations of areas 10
through 19 used in the user study.
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Figure C.32: Evaluation 2 — Comparison Study of PPOs: Visualizations of areas 20
through 29 used in the user study.

168



	Introduction
	Literature Review
	Internal Labeling
	External Labeling
	Dynamic Labeling
	Labeling Guidelines

	Temporally Stable Optimization Approach to Boundary Labeling
	Problem Definition and Terminology
	Offline Optimization
	Online Optimization
	Extensions
	Results
	Comparison with State of the Art
	Limitations
	Summary

	 Deep Reinforcement Learning Approach to Internal Labeling 
	Introduction to Reinforcement Learning
	Learning Internal Label Placement
	Ablation Study
	Comparison with State of the Art
	Limitations
	Summary

	 Perceptual Prioritization of Point-Feature Label Positions
	Perceptual Position Priority Order (PerceptPPO)
	Evaluation of PerceptPPO
	Discussion
	Limitations
	Summary

	Conclusions
	Bibliography
	Temporally Stable Optimization Approach to Boundary Labeling
	Accuracy Experiments
	Preference Experiments

	Deep Reinforcement Learning Approach to Internal Labeling
	Hyperparameters
	Observation Modalities
	Dataset Definition

	Perceptual Prioritization of Point-Feature Label Positions
	PerceptPPO Study
	Evaluation 1: Label Density
	Evaluation 2: Comparison of PPOs


