BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

ASSISTANCE IN CREATING MEDICAL REPORTS US-
ING LARGE PRETRAINED LANGUAGE MODELS

ASISTENCE PRI TVORBE LEKARSKYCH ZPRAV POMOCI VELKYCH PREDTRENOVANYCH JAZYKOVYCH
MODELU

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. PATRIK PRICL
AUTOR PRACE
SUPERVISOR RNDr. MAREK RYCHL?, Ph.D.

VEDOUCI PRACE

BRNO 2024

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

r

Master's Thesis Assignment i [l

Institut: Department of Information Systems (DIFS) 162623
Student: Pricl Patrik, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Bioinformatics and Biocomputing

Title: Assistance in Creating Medical Reports using Large Pretrained Language Models
Category: Artificial Intelligence

Academic year: 2023/24

Assignment:

1. Get acquainted with the concept and possible usage of large pretrained language models, explore
and compare different types of these models (LLaMA, Alpaca). Familiarise yourself with the format
and structure of medical reports, analyse available datasets.

2. Propose a method for utilising large pretrained language models for completing new and correcting
existing text in the process of creation of medical reports. Select appropriate types and settings of
the models, training procedures, and training datasets. Also, experiment with already available
pretrained models.

3. Perform training of selected language models according to the previous point using a suitable
dataset of medical reports. Choose an appropriate method for measuring the usability of the trained
models for the given purpose and evaluate them.

4. Implement a tool for demonstrating the completion of new and correction of existing text in the
creation of medical reports using the trained models.
5. Test the entire solution, evaluate the results, and discuss them.

Literature:
+ ZHAO, Wayne Xin, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.
Available at: https://arxiv.org/abs/2303.18223
* YUNXIANG, Li, et al. Chatdoctor: A medical chat model fine-tuned on llama model using medical
domain knowledge. arXiv preprint arXiv:2303.14070, 2023. Available at:
https://arxiv.org/abs/2303.14070

Detailed formal requirements can be found at https://www fit.vut.cz/study/theses/

Supervisor: Rychly Marek, RNDr., Ph.D.
Head of Department: Kolar Dusan, doc. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline: 31.7.2024

Approval date: 8.7.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

Abstract

The thesis deals with the use of pre-trained language models for summarizing medical
documentation in the form of dismissal reports. To create a functional model, the LLaMA
architecture is used. Already existing models of the given architecture were used. The aim
of the experiments was to find a model that can generate part of the documentation in the
Czech language. The selected model was fine-tuned using the LoRA method. Subsequently,
the inference parameters were experimented with to find the most suitable ones so that the
model generates the most correct output. Web-client and server applications were also
created as part of the thesis, the purpose of which is to demonstrate the functionality of
the fine-tuned model.

Abstrakt

Praca sa zaobera vyuzitim predtrénovanych jazykovych modelov na sumarizaciu zdravot-
nej dokumentacie do formy prepustacich sprav. Na vytvorenie funkéného modelu bola
vyuzita architektura LLaMA a experimentovanie uz s existujicimi modelmi danej architek-
tary. Cielom experimentov bolo najst model, ktory zvladne generovat cast dokumentacie v
ceskom jazyku. Vybrany model sa finetunoval pomocou metody LoRA. Nésledne sa exper-
imentovalo s inference parametrami na najdenie tych najvhodnejsich, aby model generoval
¢o najkoreknejsi vystup. Taktiez bola v rdmci prace vytvorena webova a server aplikacia,
ktorych ucelom je demonstrovat funkcénost fine-tunovaného modelu.

Keywords

NLP, Text sumarization, Artificial intelligence, Large language models, Transformers, Peft,
LoRA, LLaMA, BERT, GPT, ChatGPT-3.5, Medical documents, Flask, Python, fine-
tuning

Klticové slova

Spracovanie prirodzeného jazyka, Sumarizacia textu, Umeld Inteligencia, Predtrénované
jazykové modely, Transformers, Peft, LoRA, LLaMA, BERT, GPT, ChatGPT-3.5, Zdravot-
nicka dokumentécia, Flask, Python, fine-tuning

Reference

PRICL, Patrik. Assistance in Creating Medical Reports using Large Pretrained Language
Models. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor RNDr. Marek Rychly, Ph.D.

Assistance in Creating Medical Reports using Large
Pretrained Language Models

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of RNDr. MAREK RYCHLY, Ph.D. The supplementary information
was provided by company STAPRO s.r.o. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Patrik Pricl
July 31, 2024

Acknowledgements

Contents

1 Artificial Intelligence

1.1 Symbolic Artificial Intelligence oL
1.1.1 Rule-based Expert System 0.
1.2 Machine Learning Lo o
1.2.1 Decision Tree and Random Forest
1.2.2 Naive Bayes Classifier
1.3 Artificial Neural Network
1.3.1 Human Neuron e
1.3.2 Perceptron
1.3.3 Basisfunction.
1.3.4 Activation function
1.3.5 Layers
1.3.6 Model Training Lo
1.3.7 Artificial Neural Networks for unstructured data

2 Large Pre-trained Language Models

2.1 Tokens e e
2.1.1 Vocabulary
2.1.2 Tokenization
2.1.3 Token embeddings o
2.1.4 Special tokens
2.1.5 Prompt
2.2 Large Pre-trained Language Model‘s Architectures
2.2.1 Attention mechanism L.
2.2.2 BERT e
223 GPT e
2.2.4 LLaMA e
2.3 Learning e
2.4 Inference and evaluation L L.
2.4.1 Inference
2.4.2 Evaluation techniques

3 Assistant for Creating Medical Reports

3.1 Dataset
3.1.1 Entities
3.1.2 Dismissal reports
3.1.3 Data for Supervised fine-tuning oL

o o O

11
12
12
13
13
14
18
20
22

25
25
25
25
28
29
30
30
31
33
34
35
36
37
38
38

4 Implementation and testing 44

4.1 Programming Languages, Libraries and Technologies 44
4.1.1 MySQL . . . o 45
4.1.2 Python 45
4.1.3 Transformers and PEFT libraries 45
4.1.4 Flask o 45
4.1.5 Javascript 46
4.1.6 React.js L 46

4.2 Data preparation 46

4.3 Suitable modelo 47
4.3.1 Dataset 49
4.3.2 Prompt 50
4.3.3 Inference and testing Lo 54

4.4 Fine-tuning of selected model oL 58
4.4.1 Prompt L 59
4.4.2 Dataset improvements oo 60
4.4.3 Experiments with LoRA training parameters 64

4.5 Inference of fine-tuned model oL 67
4.5.1 Experiments with Inference parameters 67
4.5.2 Demonstration tool o 73

Bibliography 77

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.12
1.13
1.14
1.15

2.1
2.2
2.3

24

2.5
2.6
2.7
2.8
2.9

2.10
2.11

3.1
3.2

Venn diagram of Artificial Intelligence’s subsets mentioned in this thesis.
Design of Rule-based expert system. Image taken from [2]..
Diagram of Decision tree defining research designs. Image taken from [26]
Visual description of a human neuron. Image taken from [7].
Visualization of a perceptron. Image taken from [4].
Graph of Binary step function.o oo
Graph of Bipolar step function. 0oL
Graph of Identity.
Graph of Sigmoid function. o 0oL
Graph of ReLU Activation Function.
Visualization of individual types of the neural network based on connection.
Image taken from [5].. Lo
Progress of back-propagation algorithm. Image taken from [15].
Progress of finding minimum loss. Image taken from [15].
Visualization of CNN architecture. Image taken from [24].
Process of prediction sequence of new words by Recurrent neural networks .
Image taken from [22].

Tokenization of the sentence written in the English language.
Tokenization of the sentence written in the Czech language.
Word2vec predicts the words in the neighborhood of a central word by logistic
classifier L. Image taken from [22].
Token embeddings for Transformers, like BERT or GPT, contains position
information duo to parallel computations of Transformers. Image taken from
[22]. . e
Computation of a contextual embedding for a single token “mouse” by at-
tention mechanism. Image taken from [22].
Visual representation of multi-head attention. Image taken from [22].. . . .
Scheme of stacking multiple transformer layers. Image taken from [22]. . . .
Transformer model predicts the next token in token‘s sequence. Image taken
from [22].
Comparation between word prediction by BERT and text generation by
GPT. Image taken from [22].
Difference between types of attention. Image taken from [3].
LoRA principle using initial pre-trained weights and two much smaller ma-
trices. Image taken from [12].o

Entity relationship diagram of given dataset.
Example of input formodel. L

11
13
14
15
16
16
17
18

19
21
21
23

23

27
27

28

29

31
32
33

3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26

Example of label for model for input in Figure 3.2.

Simple schema of fine-tuning process of large language model.
Prompt without system prompt.
Prompt with system prompt.
First definition of instruction variable.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Second definition of instruction variable. 000
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Final definition of instruction variable.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Prompt for learning proccess of model.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3.
Output from model for input in Figure 3.2, which has label in Figure 3.3. .
Output from ChatGPT 3.5 for input 3.2, which has label as 3.3.
Sequence diagram of API communication between client-side application and
server-side application. Lo L oo
Client‘s application. e

43

Introduction

The expansion of artificial intelligence within the framework of natural language processing
leads to its more frequent use in various work areas. By using artificial intelligence, people
can be relieved of redundant administration by having artificial intelligence manages it by
itself. Medicine is one of these sectors.

In addition to treating patients, doctors must also write the patient’s medical documen-
tation. By relieving doctors of this repetitive administrative tasks, doctors can focus more
on their main work, which is treating patients. The aim of this thesis is to find a way to
assist doctors in the creation of medical documentation and make the administrative part
of their work easier with the help of artificial intelligence methods such as Large Pre-trained
Language models.

In the chapter 1 of this thesis, artificial intelligence as whole will be discussed and which
of the individual artificial intelligence methods can work with text to help with the creation
of medical documentation.

In the chapter 2, Large Pre-trained Language models are introduced as one of the
Artificial Intelligence methods used in natural language processing, which will also be used
to find a solution to the problem of this thesis. Mainly, the architecture and learning
process of Large Pre-trained Language models will be discussed. Additionally, the chapter
introduces methods for evaluating the model’s performance.

The available dataset and the structure of medical documentation is shown in the chap-
ter 3. In that chapter, it is also shown how to modify the available dataset to be used
for training of Large Pre-trained Language models. Additionally, the chapter provides a
description of the use of techniques for optimal model performance.

In the chapter 4, implementation of dataset creation as well as training process of Large
Pre-trained language model are described and the chapter also provides a description of
the use of techniques for optimal model performance. Evaluation of the individual steps
of this process and also the evaluation of the success of the model to generate medical
documentation is also included in this chapter. Decsription of demonstration tool is also
part of this chapter.

Chapter 1

Artificial Intelligence

A wide range of programs fall into the category of artificial intelligence. It can be an
program that classified a thing to 2 categories or an assistant, which can drive a car from
some city to another city.

Program, categorized as artificial intelligence, is called agent. An agent is just some-
thing that acts. Computer agents are expected to do: operate autonomously, perceive their
environment, persist over a prolonged time period, adapt to change, and create and pursue
goals. [27]

Based on this, we divide artificial intelligence into [14]:

e Narrow Artificial Intelligence: Also called Weak Artificial Intelligence. It can
be trained to perform a single or narrow task, often far faster and better than a
human mind can. However, it cannot perform tasks other than the one it was trained
for. Even OpenAlI’s ChatGPT is considered a form of Narrow Artificial Intelligence,
because it is limited to the single task of text-based chat.

¢ Generative Artificial Intelligence: Also known as Strong Al. This type of Al can
solve more problems and truly understands what is happening. There may even be
emotions and creativity. Only few companies decide to develop this type of Al and
are still working on it. This type of Artificial Intelligence is still theoretical.

e Super Artificial Intelligence: Artificial superintelligence is strictly theoretical. If
ever realized, Super Artificial Intelligence would think, reason, learn, make judgements
and possess cognitive abilities that surpass those of human beings. The applications
possessing Super Artificial Intelligence capabilities will have evolved beyond the point
of understanding human sentiments and experiences to feel emotions, have needs and
possess beliefs and desires of their own.

Artificial Intelligence is also divided into four categories based on functionalities [14]:

« Reactive Machine Artificial Intelligence: Reactive machines are Artificial Intelli-
gence systems with no memory and are designed to perform a very specific task. Since
they can’t recollect previous outcomes or decisions, they only work with presently
available data. Reactive Artificial Intelligence stems from statistical math and can
analyze vast amounts of data to produce a seemingly intelligence output.

e Limited Memory Artificial Intelligence: This form of Artificial Intelligence can
recall past events and outcomes and monitor specific objects or situations over time.
Limited Memory Artificial Intelligence can use past- and present-moment data to
decide on a course of action most likely to help achieve a desired outcome. However,
while Limited Memory Artificial Intelligence can use past data for a specific amount of
time, it can’t retain that data in a library of past experiences to use over a long-term
period. As it’s trained on more data over time, Limited Memory Artificial Intelligence
can improve in performance.

e Theory of Mind Artificial Intelligence: Theory of Mind Al is a functional class
of Al that falls underneath the General AI. Though an unrealized form of Al today,
AT with Theory of Mind functionality would understand the thoughts and emotions of
other entities. This understanding can affect how the Al interacts with those around
them. In theory, this would allow the AI to simulate human-like relationships. Be-
cause Theory of Mind Al could infer human motives and reasoning, it would per-
sonalize its interactions with individuals based on their unique emotional needs and
intentions. Theory of Mind Al would also be able to understand and contextualize
artwork and essays, which today’s generative Al tools are unable to do.

o Self-Aware Artificial Intelligence: Self-Aware Al is a kind of functional AT class
for applications that would possess super Al capabilities. Like theory of mind Al,
Self-Aware Al is strictly theoretical. If ever achieved, it would have the ability to
understand its own internal conditions and traits along with human emotions and
thoughts. It would also have its own set of emotions, needs and beliefs.

In this thesis, attention will be directed only to Narrow artificial intelligence, as the
other types currently operate only at a theoretical level. Narrow Artificial Intelligence
includes the categories Reactive Machine Al and Limited Memory Al, so attention will be
also focused only on these two categories based on functionality.

The Narrow Artificial Intelligence can be also divided by the approach how to solve
the given problem. In the thesis, the approach using Symbolic Artificial Intelligence and
machine learning will be described.

Artificial Machine
Intelligence Learning

| Deep Learning |

Figure 1.1: Venn diagram of Artificial Intelligence’s subsets mentioned in this thesis.

1.1 Symbolic Artificial Intelligence

Symbolic artificial intelligence, a fundamental approach in artificial intelligence, intricately
involves the explicit modeling of intelligent systems with a strong focus on clarity and un-
ambiguous representation. This approach requires an in-depth analysis and understanding
of the problem. The acquired knowledge is transformed into symbolic or abstract forms.

Symbolic representations can take the form of graphs, logic formulas, and rules [8]. They
are used to preserve the characteristics of individual knowledge. The solution is created by
traversing complex relationships and rules that provide the basis for sophisticated problem
solving.

These symbolic representations must be defined by human experts. The expert describes
how the system perceives and acts in its environment. Due to the need for high expertise in
the area of the given problem and precisely defined knowledge for effective functioning, this
approach places higher demands on human resources than the machine learning approach.
Nevertheless, this approach is often preferred due to the clear definition of how the program
should behave in a given situation and the simple correction in case of unexpected behavior.

1.1.1 Rule-based Expert System

One of the methods that is used nowadays is Rule-Based Expert Systems. Its use human
expert knowledge to solve real-world problems that normally would require human intel-
ligence. Expert knowledge is represented in the form of rules with needed data saved in
computer’s memory.

Depending upon the problem requirement, these rules and data can be recalled to solve
problems. Rule-based expert systems have played an important role in modern intelligent

systems and their applications in strategic goal setting, planning, design, scheduling, fault
monitoring, diagnosis.|[2]

Expert knowledge Users

Knowledge base

acquisition facility User interface

Knowledge base

A

Explanation

Inference engine "
J facility

Figure 1.2: Design of Rule-based expert system. Image taken from [2].

The basic components of an expert system are illustrated in Figure 1.2.

The knowledge base stores all relevant information, data, rules, cases, and relationships
used by the expert system. A knowledge base can combine the knowledge of multiple human
experts. The purpose of the inference engine is to seek information and relationships from
the knowledge base and to provide answers, predictions, and suggestions in the way a human
expert would. The explanation facility allows a user to understand how the expert system
arrived at certain results. The purpose of the user interface is to ease use of the expert
system for developers, users, and administrators. [2]

This method cannot directly process text. However, it can be combined with methods
that extract information from unstructured texts, recognize entities, and their relationships.
These extracted pieces of information serve as inputs to the expert system. Subsequently,
when the expert system provides an answer, a method is also needed to generate this
answer in a user-friendly text format. Such a combination of algorithms can be particularly
effective in the healthcare field, where it is essential to accurately diagnose and determine
the appropriate treatment, which may be specific to each patient.

1.2 Machine Learning

Machine Learning, unlike Symbolic Artificial Intelligence, does not need an expert with
knowledge in the problem’s topic. What it needs, however, is data of the given problem,
on which it will ,Jearn“ the solution. This approach is really inspired by the human ability
to learn.

Learning

In machine learning are 3 types that defines how can agent learn the solution.

e In unsupervised learning the agent learns patterns in the input even though no
explicit feedback is supplied. The most common unsupervised learning task is clus-
tering: detecting potentially useful clusters of input examples.

e In reinforcement learning, the agent learns from a series of reinforcements—rewards
or punishments. If the agent gets a reward, it knows that is a good way to the solu-
tion. On the other hand, if the agent is punished, it knows that is a bad way to the
solution.

e In supervised learning, the agent observes some example input—output pairs and
learns a function that maps from input to output.

Process of learning, that turn machine learning models with bad results to models,
which give useful results, contains these steps:

o First step is Data Preparation: Data should be in the best condition. Flaws can
cause a significantly worse result. The cleaned and modified data are divided into
training, validation and test datasets. The training dataset is used to train the model,
the validation dataset provides an evaluation of the model’s fit during training, and
the test dataset is required for the final evaluation of the model.

e Second step is Model Training : After randomly initializing the model parameters,
input data is fed forward through the model, producing output. The difference be-
tween the produced output and the desired value is calculated, and through iterations,
this difference is minimized by adjusting the model parameters.

o Third step is Evaluation and Testing: Using the validation dataset, the model is
evaluated with metrics such as accuracy, precision, and recall. This type of evaluation
is performed after every iteration during the training phase. Once the training is done,
the testing dataset is used to evaluate metrics and assess the ability of the model to
solve the given problem.

One of the main problems during model training is overfitting. It means that the
model has learned the data in great detail, including any noise or flaws captured in the
data. As a result, the model fails when it encounters new, unseen data.

1.2.1 Decision Tree and Random Forest

This model is mostly used for classification, but it also manages the regression or the
anomaly detection. Model has tree structure, where leafs represent final class as it is shown
in the Figure 1.3. A tuple with quantitative and qualitative attributes is used as input. The
classification process starts from the root node and continues to other non-leaf nodes, where
the value of attributes is evaluated. Branches represent the outcomes of this evaluation.
Supervised learning is selected in order for the model to be able to assign tuples to the
correct class.

10

Quantitative or
Qualitative?

Qualitative

Quantitative

Dbservational or

What Paradigm?
Interventional?

Post-positivist
Interpretivist/Constructivist

Transformative/Critical Theory
Pragmatic

Observational Interventional

[Analytical] [Quasi-Experimental] [Experimental]

Case report Prevalence Non-equivalent groups Blinded/unblinded

Case series Common:Cross-sectional Pretest-Posttest Pretest-Posttest

Prevalence/Incidence Rare:Case control Interrupted time series Time series

Questionnaire/Survey Incidence:Cohort with/without controls Cross-over

Audit/Review g ﬂ?‘; l‘gv! ty and specificity Stepped wedge Block designs
sk/Outcome

Figure 1.3: Diagram of Decision tree defining research designs. Image taken from [26]

A random forest is a model using multiple decision trees. Each tree is created based on
randomly chosen subset of data. A random forest is good for classification tasks. Each of
the individual trees vote for final class. The selected class is the class with the most votes.
One of the advantages of this model is its resistance to overfitting.

Decision trees can be a powerful tool for extracting and classifying information from
text. This includes tokenization, which is the process of splitting text into words or phrases.
Feature extraction is conducted by converting the preprocessed text into a numerical repre-
sentation. The data is split at each node based on feature values to maximize the separation
between classes or minimize variance. High dimensionality is a significant challenge when
dealing with text data, as it often results in a large number of features, making the decision
tree complex and prone to overfitting. The advantages of decision trees is their inter-
pretability. Visualizing the tree can provide insights into how decisions are made based on
textual features.

1.2.2 Naive Bayes Classifier

The Naive Bayes Classifier is a machine learning model based on probability. The foun-
dation is Bayes’s Theorem. This theorem uses conditional and marginal probabilities to
calculate the probability of a certain class. The theorem can be described by the math-
ematical equation 1.1, where P (X) is probability of event X and P (X|Y) is conditional
probability of event X if event Y already happened.

11

P(Y|X)P(X)
P(Y)
For the Naive Bayes classifier, the mathematical equation 1.1 is modified into the equa-

tion 1.2. C}, represents the k-th class and X; represents the i-th attribute of the input tuple.
The result is class with higher probability.

P(X|Y) = (1.1)

n
Y = argmax P (Cy) [[P (Xi|Ck) (1.2)
k=1,2,....m i1

The reason why this model is called ,Naive“ is that the dependence between individual
features is not considered.

This method is also used in natural language processing, particularly for classification
tasks such as spam detection. Initially, the text undergoes tokenization and feature ex-
traction, similar to the decision tree method. However, the outcome is the probability of
assigning the text to a specific class. Naive Bayes assumes feature independence, simpli-
fying the model but potentially not capturing the true nature of text data. Despite this,
Naive Bayes is more computationally efficient and scalable for large datasets.

1.3 Artificial Neural Network

Artificial Neural Networks are a cornerstone of modern machine learning, inspired by the
biological neural networks of the human brain. They are designed to recognize patterns
and learn from data, making them highly effective for tasks such as image and speech
recognition, natural language processing, and predictive modeling. By imitating the way
neurons and their interconnections function, Artificial Neural Network enable machines to
perform complex tasks and improve their performance over time through learning. Large
Pre-trained Language models are built upon Artificial Neural Networks, showcasing the
current state-of-the-art in natural language processing.

1.3.1 Human Neuron

A cell that is a basic part of the human nervous system. A neuron consists of a nucleus,
which is also called Soma. Soma is round or oval, with a prominent nucleolus [29]. Next,
there are filaments extruding from Soma and these filaments are used for communication
with other neuron cells. The layer between communicating filaments or filament and another
type of cell is called Synapse. These filaments are divided into [29]:

e Dendrites: Serve to receive input information. A neuron has usually a larger number
of dendrites. They tend to be shorter but richly branched.

e Axon: Used to send information from the body of the neuron. It is usually one, but
at the end it can be considerably branched. In most cases, the axon is wrapped along
its entire length by a myelin sheath, which plays a significant role in the transmission
of impulses. The longer the nerve fiber and the thicker the myelin sheath, the faster
it conducts the impulse.

12

Nucleus

R
Cell body Synapses
(soma)

Figure 1.4: Visual description of a human neuron. Image taken from [7].

The main function of a neuron is to receive, process and send a signal. This signal is in
electrical form within the neuron and between neurons it is in chemical form. Whether the
signal is sent further when one or more Dendrites are activated depends on the cell itself.

1.3.2 Perceptron

A perceptron is an artificial neuron that mimics human neurons in a very simple way. It
has multiple inputs, but only one output. Artificial neuron also consist of weights, a basis
function and an activation function.

o Weights: The numerical values, which indicate how much the given input will influ-
ence output‘s value. Each input has its own weight.

e Basis function: It processes the input values together with the corresponding
weights. The result serves as input to the activation function.

e The activation function sets the output value, and this function is selected based
on the task to be solved.

The Figure 1.5 shows the perceptron with Linear basis function graphically and the
similarity with the human neuron from the Figure 1.4 is visible.

1.3.3 Basis function

In machine learning, two functions are defined as basis functions: the Linear basis function
and the Radial basis function. [27].

e Linear basis function: For most neural networks, perceptrons with the Linear basis
function are chosen. It can be described as a linear combination of inputs and their
weights. This can also be represented by the mathematical equation 1.3, where x is
input, y is output of the Linear basis function, w is weight and 4 is number of input.

= (waw;) (1.3)

n=0

13

Inputs Weights Basis Activation
function function

output

Figure 1.5: Visualization of a perceptron. Image taken from [4].

Perceptrons with the Linear basis function also typically have an input called Bias,
always with the value 1. In equation 1.3, input xg represents the Bias. The Figure
1.5 shows the perceptron with the Linear basis function.

e Radial basis function: This basis function works on other principle than the Linear
basis function. The value of the Radial basis function depends only on the distance
from a certain point called the center[8]. The coordinates of this point are stored in
the parameter weight. For the calculation of this distance, the Euclidean distance is
used [30]. Its mathematical description is the Equation 1.4. In the given equation, x
is vector of inputs, w is vector of inputs. n is count of all inputs to the neuron.

D (z,w) = \/lad — wf| + [e§ —wd| + - + |22 — wd] (14)

1.3.4 Activation function

Output from a node depends on this function. As already mentioned, the choice of the
activation function depends on the problem that the neural network has to solve and also
on the way in which it is expected to solve it. Some activation functions can behave quite
radically. Bipolar step function or Heaviside step function are typical examples of this [8].

e Heaviside step function: This is a very simply defined function. The function
returns 1 for a positive input and 0 for a negative input. Mathematically, the function
is defined as 1.5 and the development of the function on the 2D numerical axis is shown
in the Figure 1.6. The function is also called as Binary step function and is used in
the output layer of the neural network, which is described in Subsection 1.3.5, for
binary classification tasks. One of the main disadvantage of this function is that the
gradient at an output value of 0 is also 0. This means that during learning process,
there is no changes in neuron‘s weights, basically meaning that the neural network
learns nothing.

14

r@={ 5 22, (1.5

Binary step function

1.0 4 — Output

0.8

0.6

0.4 4

0.2 4

0.0

T T T T T T T T
-2.0 -15 -10 -05 0.0 0.5 10 1.5 2.0

Figure 1.6: Graph of Binary step function.

e Bipolar step function: This function is also as simple as the Heaviside step func-
tion. The only difference between them is that the Bipolar step function returns -1
for a negative input or 0. The mathematical equation of the function is 1.6 and the
graph of the function is shown on Figure 1.7. This function is used also in the output
layer of the neural network for binary classification tasks. This function does not have
a 0 at the output like the Heaviside step function, defined in the Subsection 1.3.4, so
the neuron‘s weights are changed at both outputs.

1, >0

ro={ 1 520 (1.6

15

Bipolar step function

1.00 1 —— oOutput

0.75

0.50 4

0.25 4

—0.25 1

—0.50 1

—0.75 1

-1.00 1

T T T T T T T T
-20 -15 -10 -05 0.0 0.5 1.0 15 2.0

Figure 1.7: Graph of Bipolar step function.

e Linear function: This function reacts more ,smooth* than the Heaviside step func-
tion or Bipolar step function [8]. The Basic linear function is called Identity and
the result of the function is the same as the input as seen in the Figure 1.8. These
types of function are used in regression tasks, where the goal is to predict continuous
values, or in dimensionality reduction to reconstruct the input data, while preserving
its linear structure.

Linear function

— output

Figure 1.8: Graph of Identity.

16

e Sigmoid function: This function is continuously differentiable and a smooth S-
shaped function [28]. On large negative or positive inputs, gradient of this function
can be very small, which leads to vanishing gradient problem. This function can be
used in hidden layers, but because of vanishing gradient problem, function is mostly
used in output layer at binary classification tasks, where the output should be the
probability of classifying the element in the given class. This function can be also
used in hidden layers. The Sigmoid function is seen in the Figure 1.9.

Sigmoid function

101 — oQutput

0.8 4

0.6

0.4 4

0.2 4

0.0

Figure 1.9: Graph of Sigmoid function.

e ReLU Activation Function: ReLU stands for rectified linear unit and is a non-
linear activation function which is widely used in neural network [28]. The function
is based on a mathematical equation 1.7 and its behavior is illustrated in the Figure
1.10. This function is used in hidden layer, described in Subsection 1.3.5, for various
tasks from image classification to speech recognition.

f(z) = max (0,z) . (1.7)

17

RelLU function

51 —— Output

Figure 1.10: Graph of ReLLU Activation Function.

e Softmax function: Like the sigmoid function, the result is the probability that the
given sample belongs to the given class. The difference from the sigmoid function
stems from its use, where the sigmoid function is used to determine the probability
between two classes and the softmax function produces a probability distribution
over multiple classes. Primarily used in the output layer of classification models. A
mathematical equation of this function is 1.8, where z is vector, j is index of vector
and K is number of classes.

€%

R 1.8
Yoy e -

o(z);

1.3.5 Layers

As the brain is made up of several interconnected neurons, the neural network is also made
of multiple perceptrons arranged in layers. A perceptron can also be referred to as a node.
These 3 types of layers are used in neural networks:

e Input Layer: The input enters the neural network through the input layer. Neurons
in this layer perform no other activity than sending the input value to other neurons.

e Hidden layer : The layer of this level performs calculations on the input values
that will lead the neural network to the correct result. Networks with more than one
hidden layer are denoted as Deep Neural Networks. With more hidden layers, the
network can learn to solve the given problem more successfully, but the process of
training the model is all the more challenging.

e Output layer : It processes calculations obtained from neurons from the hidden
layer and sends the result to the output.

Each layer has a different purpose and together they ensure the desired functioning.
The cooperation of the layers also depends on their type of connection. There are two
fundamentally distinct ways [27]:

18

e Feed-forward network : Layers are only connected in one direction. Only the
given input will influence output‘s value. Each input has its own weight. Every node
receives input from “upstream” nodes and delivers output to “downstream” nodes.
There are no loops. The Feed-forward network, where the input of node is obtained
from nodes that are one level of layers higher, is called Fully-connected network.

e Recurrent network : Unlike the Feed-forward network, this one feeds its outputs
back into its own inputs. This means that the activation levels of the network form a
dynamical system that may reach a stable state or exhibit oscillations or even chaotic
behavior. Moreover, the response of the network to a given input depends on its
initial state, which may depend on previous inputs. Recurrent networks can support
short-term memory. This makes them more interesting as models of the brain, but
also more difficult to understand.

Those two types are graphically illustrated on Figure 1.11.

a) Feedforward Network b) Recurrent Network

Y

Input

Hidden Outputs
Units

Figure 1.11: Visualization of individual types of the neural network based on connection.

Image taken from [5].

19

1.3.6 Model Training

As mentioned in Section 1.2, first the parameters are randomly initialized, then the input is
passed through the network. After all inputs from the training dataset have passed through
the network, the difference between the output of the network and the expected output is
calculated for each sample in the training dataset. Expected output is also called label. A
loss function is used for these calculations.

Loss function can be an arbitrary function mapping two vectors to a scalar. This
function should be bounded from below, with the minimum attained only for cases where
the prediction is correct. [10]

The type of loss function is chosen based on the network architecture and the type of
problem. The types of loss function are as follows [10]:

e Hinge : For binary classification problems, the classifier’s output is a single scalar
yr and the label y,, € {—1,1}. The mathematical notation is shown in Equation 1.9.

L(yra yw) = mmax (O’ 1- yryw) (1'9)

e Binary cross-entropy: The function is used in binary classification with conditional
probability outputs. Binary cross-entropy is useful when the network produces class
conditional probability for a binary classification problem and It is assumed that the
output layer is transformed using the sigmoid function. The loss function is defined
in Equation 1.10. Label y,, € {0, 1} defines in which class the sample belongs to and
P (yw) is the probability from the model.

L= —yylogp (yw) — (1 — yuw)log (1 = p (yu)) (1.10)

e Categorical cross-entropy: Similar to binary cross-entropy, the function is used
when a probabilistic interpretation is required, but is used in multi-class classification.
It is assumed that the output layer is transformed using the softmax function. The
loss function is defined in Equation 1.11, where C' is count of classes, y,, is vector of
wanted probability for all classes, so y,,, is wanted probability of c¢ class and . is
predicted probability by model for that class.

C
L=—=> yr.log(yuw.) (1.11)
c=1

e Mean Square Error: 1t is the average squared difference between the observed and
predicted values. It is used to calculate output error in regression tasks. This is a
simple function that skillfully solves ,punishment“ for a very distant output from the
desired output and at the same time does not focus on small deviations. The formula
for the calculation is shown in Equation 1.12, where n is number of training samples
in Epoch.

(yr - yw)2 (1'12)
1

MSE(Z/T? yw) =

n

7

20

Next part of model training is calculate the gradients and adjust weights of the network by
the calculated gradients.

Gradient is a vector that gives the magnitude and direction of the steepest slope [27].
One of the Loss functions is used to calculate the gradient.

Back-propagation algorithm is used to propagate gradients from the output layer
through all hidden layers back to the start of the network and adjust weights in order to
minimize the loss function. This is demonstrated on Figure 1.12.

Backpropagation

Error is sent back to

each neuron in backward
Grodient of error is

direction
calculated with respect to
each weight
Outputs Error - difference
/; W - ? Error — between predicted
Predicted output and actuol
output output
x3
InputLayer Hidden Layer Output Layer

Figure 1.12: Progress of back-propagation algorithm. Image taken from [15].

The goal is to find the minimum of the loss function for all the training data by stepping
down on the function surface as it is shown on Figure 1.13.

Loss (J)

Weight (W)

Hinimum point of cost function

Figure 1.13: Progress of finding minimum loss. Image taken from [15].

21

The way the gradient changes the individual weights of neurons to reduce errors is
defined by the chosen optimization function:

e Stochastic Gradient Descent: Stochastic Gradient Descent is a general optimiza-
tion algorithm. It works by repeatedly sampling a training example and computing
the gradient of the error on the example with respect to the parameters. It updates
the parameters in the opposite direction of the gradient of the loss function with re-
spect to the parameters. Stochastic Gradient Descent updates the parameters after
computing the gradient using a single example or a mini-batch of examples. [10]

e Adagrad: The algorithm adaptively tunes learning rate for each parameter and in
the process performing larger updates for rarely updated parameters. Nevertheless,
Adagrad’s update rule results in a vanishing (decaying) rate which forces the learning
rate to monotonically decrease to a very small amount. A very small learning rate
stalls the algorithm. [21]

o Root Mean Square Propagation (RMSProp): The technique maintains per-
parameter learning rates and is an extension of the stochastic gradient descent algo-
rithm, that attempts to fix the issue of vanishing (decaying) learning rates. A version
of RMSProp optimization algorithm uses momentum - moving average of the squared
gradients for each parameter. [21]

e Adam: Adam means Adaptive Moment Estimation. It is a popular algorithm and
integrates the benefits of Adagrad and RMSProp. It leverages on the moving average
of past gradients to ascertain the direction of descent just as it uses the running
average of past squared gradients to scale (modify) the learning rate. Adam offers
a remarkable improvement on stochastic gradient descent in that it performs well in
practice. It converges fast and enhances the learning speed of neural network models.
[21]

1.3.7 Artificial Neural Networks for unstructured data

This types of neural networks are used to solve complex problems like text generation,
speech recognition or language translation. The neural network must not only learn to solve
the problem correctly, but also convert the input data into a format that it understands
and can find a solution for. This category also includes the type of neural network used in
Large Pre-trained Language models.

Convolutional neural network

This is neural network used mostly for solving problems include image type input‘s data.
For process this type of data, Convolutional neural network have special types of layers on
the begging of network to convert input to better format for Feed-forward network. The
special types of layers are:

e Convolutional layer is supposed to apply matrix filters to the input and identify
indicative local predictors in a large structure [10].

e Pooling layer resizes output matrix from the Convolutional layer to the smaller one.

22

These two layers are repeated at the beginning of the neural network until a vector is cre-
ated that can be processed by the Feed-forward network,which is described in Subsection
1.3.5. This architecture is shown on Figure 1.14. Convolutional neural network is used for
image classification, object detection, motion prediction. It can also be used in the process-
ing of natural speech, where the sound stage is transformed into reasonable representations
such as spectrograms and then can be processed by Convolution neural network.

Fully
Connected

O
Ol
O
O
T v Oi, L
S

Convolution

Pooling .-~
- ooling __.

D\- -‘: S

Feature Extraction Classification

Figure 1.14: Visualization of CNN architecture. Image taken from [24].

Recurrent neural networks

The architecture of Recurrent neural network was mentioned in Subsection 1.3.5 for its use
of its own output as input in the next step. Recurrent neural network, as language model,
computes the likelihood of a sequence of words and predicts the next word in the sequence.
Sequence of words are saved as inner state and new word is used as input to network. Input
word is added to inner state and network predict next new word. Process of prediction is
shown on Figure 1.15.

Q
=

the cat s 0 the mat
y 4 \ y

=)

->
- >

S A

09..0.7 | [-1.2..08 | [19.-02] [03.04 | [09..07 |

the cat sat on the

Figure 1.15: Process of prediction sequence of new words by Recurrent neural networks .
Image taken from [22].

23

It turns out that this model has difficulties to reconstruct the relation between distant
sequence elements, since gradients tend to vanish or “explode” as the sequences get longer.
Therefore, new Recurrent neural network types have been developed: Long Short-Term
Memory and Gated Recurrent Unit. Both of them introducing gating mechanisms
that allow the model to retain information over longer sequences. [22]

Transformer

Transformer is the neural network architecture that can be used for Natural Language
Processing tasks like text generation. Models based on Recurrent Neural Networks have a
major limitation caused by the sequential nature of Recurrent Neural Network. The number
of operations required to determine the relation between words grows with the distance
between positions. The model has to store the relations between all words simultaneously
in a vector, making it difficult to learn complex dependencies between distant positions.
The Transformer directly computes these relations between words in parallel in one step,
instead of relating distant words by a large number of computation steps. [22]

The transformer architecture is the foundation of many Large Pre-trained Language
models and will be described in more detail in the following Chapter 2.

24

Chapter 2

Large Pre-trained Language
Models

In this chapter, the architecture of Large Pre-trained Language Models, the process of
converting text into tokens, and the learning process of Large Pre-trained Language Models
are described. Various techniques for evaluating these models will also be discussed, some
of which will be used to evaluate the models used to address the problem presented in this
thesis.

2.1 Tokens

These models do not understand text representation as one long string datatype. Therefore,
text need to be divide into tokens.

An essential components for this in the architectures of Large Pre-trained Language
models are the encoder and decoder. The encoder processes the input text sequence and
converts it into tokens, while the decoder performs the reverse operation, converting tokens
back into text sequences. To accomplish this, the model utilizes a vocabulary.

2.1.1 Vocabulary

It is essentially a mapping structure where each token is associated with a unique index or
identifier and the corresponding text, which a token represents. The identifier associated
with the token is a reference for the model. Typically, it is represented as an integer data
type and allows the model to efficiently access and manipulate tokens during training and
inference.

Size of vocabulary is not infinite and depends on various factors, such as the size of
the training corpus, the tokenization technique or adding own tokens, imposed on the
vocabulary size. A larger vocabulary can capture a wider range of linguistic variations but
may require more computational resources. [22]

2.1.2 Tokenization

Tokenization is process, where input text is divided into tokens and can be done in the
following ways (For each way, there is example of tokenization of this sentence: ,/This is an
example of tokenization.“) :

25

e Tokenization based on words divide text to separate words and each token rep-
resents one word. Example:

tokens = ["This", "is", "an", "example", "of", "tokenization", "."]

e Tokenization based on subwords, where token represents part of word. So for
tokenization of one word is needed more than one token. Example:

tokens = ["This", "is", "an", "example",
"Of n "tO" ll##kenll "##1zatj_01’l" n . H]

e Tokenization based on characters, where token represents smallest unit of word.
Example:

tokens =[’T’, ’h’, ’i’, ’S’, b ;’

)3 da?d))

1’S’ ’

P PR))

a’, ’'n’, s

))~) dm?? PR 27 >) >

e’, ’x’, ’a’, ’'m’, ’p’, ’1’, ’e’,)

A)£))

O’f’ s

I+ PN)17) PR)3)))na))4+)3 PPN PR
t’, ’o’, ’k’, ’e’, ’n’, ’i’, ’z’, ’a’, ’t’, ’i’, ’o’, ’n’,
)7]

o Tokenization based on n-grams, where token represents n-number of words [22].
Example:

Bigrams (2-grams):

tokens = [(“ThiS" s "iS") s ("iS" s "gn" s
(“an" s "example") s ("example" , "Of") ,
("of", "tokenization"), ("tokenization", ".")]

Trigrams (3-grams):

tokens = [("This", "is", "an"),
(llisll , llanll , llexamplell) s
(llanll s "eXample" s llof") s
("example", "of", "tokenization"),
("of", "tokenization", ".")]

Since the Large Pre-trained Language Model uses a vocabulary, in which all used tokens
should be found so that the model can process them, Byte-pair Encoding, WordPiece
Algorithm and SentencePiece are used to correctly create these tokens.

e Buyte-pair Encoding: This method first selects all characters as tokens. Then,
successively the most frequent token pair is merged into a new token and all instances
of the token pair are replaced by the new token. This is repeated until a vocabulary
of prescribed size is obtained. Note that new words can always be represented by a
sequence of vocabulary tokens and characters. Common words end up being a part of
the vocabulary, while rarer words are split into components, which often retain some
linguistic meaning. In this way, out-of-vocabulary words are avoided. [22]

26

e« WordPiece Algorithm also starts by selecting all characters of the collection as to-
kens. Then it assumes that the text corpus has been generated by randomly sampling
tokens according to their observed frequencies. It merges tokens in such a way that
the likelihood of the training data is maximally increased. There is a fast variant
whose computational complexity is linear in the input length. [22]

o SentencePiece is a package containing several subword tokenizers and can also be
applied to all Asian languages. All the approaches effectively interpolate between
word level inputs for frequent words and character level inputs for infrequent words.
[22]

As the current definition of tokenization shows, sentences with the same meaning but
in a different languages will be tokenized with different tokens, and the number of tokens
may also be different. Since the thesis is focused on generation medical reports in the
Czech language, an example of sentence tokenization in the English language and the Czech
language will be given to compare the results. For this tokenization is used tokenizer of
LLaMA 3 by META, which use Byte-pair Encoding.

This is just a test for very complex words, where diacritics are Token count
also used.| 19

This is just a test for very complex words, where diacritic

s are also used.

Figure 2.1: Tokenization of the sentence written in the English language.

Toto je pouze test pro velmi komplexni slova, kde se pouZivd i Token count
diakritika.| 20

Toto je pouze test pro velmi komplexni slova, kde se pouziv

a i diakritika.

Figure 2.2: Tokenization of the sentence written in the Czech language.

As can be seen in Figure 2.1, the given sentence, that has 14 words and 2 punctuation
marks, is encoded into 19 tokens. On the Figure 2.2, the given sentence, that has 13 words
and 2 punctuation marks, is encoded into 20 tokens. The difference between the better
encoding of these two languages lies in the fact that model is trained primarily with text in

27

English language and thus also its vocabulary contains tokens of English words. It cannot
be concluded from this, that the given model works better with text in English language
than with text in Czech language, but the use of a larger number of tokens results into a
usage of larger amount of required memory.

2.1.3 Token embeddings

They represent the meaning of each word by a vector of real numbers with hundreds of
dimensions and each dimension capture different aspect. Between these vectors can be
computed a sort of relation between different words. Those embeddings can be categorized
into two main types: Simple embeddings and Contextual embeddings.

Simple embeddings assign each token in the vocabulary a unique, fixed-length vector
representation. These representations are pre-computed and remain constant throughout
the duration of a task. It is typically pre-trained on large text corpora using unsupervised
learning techniques. During training, the embeddings are learned by optimizing an objec-
tive function that encourages similar words to have similar embeddings. Simple embeddings
capture both semantic and syntactic information about tokens. Tokens with similar mean-
ings or usage patterns tend to have similar embeddings, which allows the embeddings to
encode semantic relationships between words. They are based on global statistics of lan-
guage usage obtained from the entire training corpus. As a result, they do not consider the
surrounding context in which tokens appear and provide a general representation of words
based on their overall usage patterns. [22]

Common approaches of Simple Embeddings [22]:

e Word2Vec: Word2Vec is a popular simple embedding technique that represents
words as dense vectors in a continuous vector space, which learn embeddings by
predicting neighboring words or context words given a target word.

Biden has been U.s. president since 2021

N

P.1.04,1.9 122004 p-7.0.1.03 Rs1213 k7,144 f12814) 20314

Biden has been U.Ss. president since 2021

Figure 2.3: Word2vec predicts the words in the neighborhood of a central word by logistic
classifier L. Image taken from [22].

e Global Vectors for Word Representation is another widely used simple embed-
ding method that learns word embeddings by factorizing the co-occurrence matrix of
words in the corpus. It captures global statistics of word co-occurrences to generate
embeddings that reflect both semantic and syntactic similarities between words.

28

e FastText extends the Word2Vec model by representing each word as a bag of char-
acter n-grams, allowing it to capture morphological information and handle out-of-
vocabulary words more effectively.

Contextual embeddings are a type of word representation in natural language process-
ing that captures the meaning of a word in the context of a sentence or document. Unlike
simple embeddings, which assign fixed representations to each word regardless of context,
contextual embeddings are dynamically computed based on its context within a sentence
or a document, allowing for a more nuanced understanding of word meaning. Contex-
tual embeddings often capture bidirectional context, meaning they consider both preceding
and subsequent words when computing the representation of a word. This bidirectional
context enables contextual embeddings to capture long-range dependencies and semantic
relationships between words within a sentence.

Large Pre-trained Language Models, which use this type of embeddings, are [22]:

e Bidirectional Encoder Representations from Transformers, also known as
BERT, is a transformer-based model that generates contextual embeddings by pre-
training on large text corpora using masked language modeling objectives. BERT rep-
resentations capture bidirectional context through self-attention mechanisms.

e Generative Pre-trained Transformer, shortly GPT, is another transformer-based
model that generates contextual embeddings by pre-training on large text corpora
using autoregressive language modeling objectives. GPT representations capture uni-
directional context and are suitable for generating text.

Contextual embeddings also capture information about the relative positions of words
within sentences, including word order and positional relationships. The embeddings of
words vary depending on their positions within the input sequence, allowing the model to
understand the sequential nature of language. [22]

This is shown on Figure 2.4.

position

n X1 X2 X3 Xy X5 Xe X7 Xg X9 X10 X11

embeddings

+ + + + + + + + + + +
segment' % x4 x4 x, x, Xy Xg Xp Xp Xp Xg
embeddings

+ + + + + + + + + + +
token
il X[cLS) Xmy Xdog Xis X[MASK] X[SEP] Xhe Xlikes Xplay Xittting X[SEP)
input tokens [CLS] my dog is [MASK]| [SEP] he likes play ##ing [SEP]

Figure 2.4: Token embeddings for Transformers, like BERT or GPT, contains position
information duo to parallel computations of Transformers. Image taken from [22].

2.1.4 Special tokens

Special tokens play a crucial role in various natural language processing tasks, providing
additional information or a structure to input sequences processed by models. Overview of
special tokens used by BERT or GPT [22]:

29

o [CLS] (Classification) Token represents the aggregation of the input sequence for
classification.

o [SEP] (Separator) Token separates segments of text in tasks involving multiple
text inputs, such as sentence pairs or question-answering.

o [MASK] Token is used in masked language modeling tasks like BERT’s pre-training
objective. Tokens are randomly masked during training, and the model is trained to
predict them based on surrounding context.

o [UNK] (Unknown) Token is used as representation of out-of-vocabulary words or
tokens not present in the model’s vocabulary. This token is used during inference to
handle unknown tokens.

o Beginning-of-Sentence (BOS) Token : Marks the beginning of a sentence in
tokenized sequences.

o End-of-Sentence (EOS) Token: Marks the end of a sentence in tokenized se-
quences.

o End-of-Text (EOT) Token: Marks the end of the entire text or a document in
tokenized sequences.

2.1.5 Prompt

A prompt is a textual input provided by the user to get a response or trigger an action
from the model. The prompt can include questions, instructions or any text that the model
needs to analyze and generate a response based on. Prompt include even tokens, which
help divide prompt into section or make prompt for model more understandable.

The prompt should be as clear and specific as possible to ensure the model understands
exactly what is expected. Providing context or additional information can help the model
generate a more precise and relevant response. The format of the prompt can vary, ranging
from questions to commands to text snippets that serve as a basis for the model to generate
a response.

Well-chosen prompts can significantly impact the quality and usefulness of the responses
generated by model. Also, prompt needs to be tokenized and convert into token embeddings
so model is able process the prompt.

2.2 Large Pre-trained Language Model‘s Architectures

Large Pre-trained Language Models typically use transformer architecture as their back-
bone. Transformers have become the standard architecture for many natural language
processing tasks due to their ability to efficiently capture long-range dependencies in se-
quences as was mentioned in Subsection 1.3.7.

Transformers rely on mechanisms like self-attention and feed-forward neural networks
to process sequential data. This architecture allows them to effectively model relationships
between tokens in a sequence, making them well-suited for tasks such as language modeling,
text generation and machine translation.

30

2.2.1 Attention mechanism

The attention mechanism is a crucial component of transformer architectures in machine
learning, enabling models to focus on relevant parts of input or output sequences during
sequence processing. This mechanism allows models to efficiently learn long-range depen-
dencies in sequences and capture context for better predictions.

Each word or token in the input sequence is represented by a vector. This is input
representation and it is used to generate three vectors: query, key, and value. Query
represents actual token and key represents other tokens in the sequence. [22]

For each token, a scalar is computed between the query and the key of each other token
in the sequence. This scalar expresses the ,Jimportance* of the query with respect to the
given token. The scalars are normalized using an activation function like softmax to obtain
attention weights. These weights are then used to weight the values corresponding to the
respective tokens. The sum of weighted values forms the output representation for the given
token as it is shown in Figure 2.5.

new embedding

weighted value vectors

probability score % 4 4 4‘
(softmax]
_ A A A A
association score £ 27.0 -3.0 18.1
[0.4,..] [05..] [03..][[01,..] [08,.. [04,..]1[07.] [02.] [05..] [08,.] [0.3,..] [0.3,..]

vectors

w@ | |lwk | |ww w@ | [wi | |

embedding vector R

1
1
I
1
1
1
1
1
1
T
1
1
1
1
I
1
I
i
query, key, value I
1
1
1
1
I
I
1
I
1
1
1
1
1
1
1
1
1
]

input tokens The [MASK] cheese

Figure 2.5: Computation of a contextual embedding for a single token “mouse” by attention
mechanism. Image taken from [22].

31

The attention mechanism is often implemented as multi-head attention, which allows
the model to focus on different aspects of the input. In multi-head attention, the query,
key, and value are linearly projected into multiple spatial subspaces, and then the attention
mechanism is applied to each of these subspaces. The outputs are then concatenated and
linearly combined to obtain the final output. Visual representation of multi-head attention
is shown in Figure 2.6.

output embedding (01,07 [03,.-04 [0.1.02 [04,.08]

Add and normalize

feed-forward and
nonlinearity

concatenation of
partial embeddings

[03..][0.2.] [01,.][04,..] [08,..][09.] [07,..][06,.]

[0.3,..] [0.8,..] [0.7,..] [0.2,..] [0.4,..]

1

attention

input
embeddings

attention head 1

t

The mouse [MASK] cheese

Figure 2.6: Visual representation of multi-head attention. Image taken from [22].

Large Pre-trained Language Models typically consist of multiple transformer layers as
it is shown in Figure 2.7. By stacking multiple transformer layers, the model can learn
hierarchical representations of the input sequence. Lower layers capture basic features
and local dependencies, while higher layers capture more abstract features and long-range
dependencies.

32

¥

further encoder blocks

i
L iathac

- e

. -
ij ':Tj N
* t |
[multihead self-attention } b5
N f 7 E—
) t t t
The mouse [MASK] cheese

Figure 2.7: Scheme of stacking multiple transformer layers. Image taken from [22].

2.2.2 BERT

Bert is natural language processing model introduced by Google [11]. Thanks to its ar-
chitecture, which was not previously used, it became an effective model in understanding
the semantics and relationships within sentences. The advantage of the architecture lies in
the fact that it takes into account the probability of the occurrence of a word between two
words and not sequentially from one side only.

As opposed to directional models, which read the text input sequentially (left-to-right
or right-to-left), the Transformer encoder reads the entire sequence of words at once. This
characteristic allows the model to learn the context of a word based on all of its surroundings
(left and right of the word). [11]

Another advantage is that it does not only take the sequence of words, but also the
continuity of the sentences themselves.

In the BERT training process, the model receives pairs of sentences as input and learns
to predict if the second sentence in the pair is the subsequent sentence in the original
document. During training, 50% of the inputs are a pair in which the second sentence
is the subsequent sentence in the original document, while in the other 50% a random
sentence from the corpus is chosen as the second sentence. The assumption is that the
random sentence will be disconnected from the first sentence. [11]

BERT is also labeled as an autoencoder model whose main task is to derive context-
sensitive embeddings for tokens. In each layer of BERT, the lower layer embeddings are
transformed by self-attention to a new embedding. The main training task is to predict
words from the input sequence, which have been replaced by a [MASK] token. This is
done by using the last layer embedding of the token as input to a logistic classifier, which
predicts the probabilities of tokens for this position. During training the model parameters
are optimized by stochastic gradient descent. This forces the model to collect all available

33

information about that token in the output embedding. The first input token is the [CLS]
token. During training, it can be used for next sentence prediction, where a logistic classifier
with the [CLS]-embedding as input has to decide, if the first and second sentence of the
input sequence belong together or not. [22]

With additional training for a specific task, the BERT model can provide output to this
task through the [CLS] token.

2.2.3 GPT

GPT has transformer architecture similar to BERT. GPT model is mainly used in text
generation tasks.

Model generate text by predicting the next token in a sequence based on the tokens
that came before it. Since GPT generates the tokens by sequentially applying the same
model, it is called an autoregressive language model and this generate text process is shown
in Figure 2.8. [22]

| new york

Dﬂﬂﬂim token probabilities
= &

output embeddings OOITM CIOOOTW COOED OO OO oo

1]]

OO OO manas, [mamaa; CIIILT input embeddings O OO mmaas; manas, [sasssssaas]

[Bos) | [joe | [biden | [went | [w0 | input tokens [80s) | | joe | [biden | [went | | to | [new |

Figure 2.8: Transformer model predicts the next token in token‘s sequence. Image taken
from [22].

This text generation process is same as text generation by recurrent neural networks
or its variants. GPT uses attention mechanism described in Subsection 2.2.1, which is
typical for transformer architecture. Thanks to this attention mechanism, GPT model can
provide better result in text generation task than recurrent neural networks. Blocks used
in GPT are referred to as decoding blocks. Difference between word prediction by BERT
and text generation by GPT is shown in Figure 2.9. Text generation by GPT can be the
same process as word prediction by BERT, if the BERT model predicts word at the end of
a sequence.

34

BERT Autoencoder GPT Language Model

a5 R TTT)
1 1

Transformer Transformer

Encoder Blocks Decoder Blocks

Vhe [MASK] eats che? QOS the mouse /

Figure 2.9: Comparation between word prediction by BERT and text generation by GPT.
Image taken from [22].

2.2.4 LLaMA

LLaMA is natural language processing model introduced by Meta. It is an autoregressive
language model like GPT, but LLaMA uses different type of attention mechanism than
BERT or GPT.

LLaMA uses Grouped-query attention and BERT or GPT uses Multi-head at-
tention. Instead of processing each query independently, queries are grouped into subsets
based on some predefined criteria. For example, queries may be grouped based on their
semantic similarity, syntactic structure, or positional proximity in the sequence. Within
each query group, attention scores are computed independently using the grouped queries
and all key vectors. This means that each query in the group attends to all key vectors,
but only within its own group. The Difference is demonstrated in Figure 2.10.[3]

Multi-head Grouped-query Multi-query
Values D U U U U
Keys D D D D U

(0000000 OONOODD DOODOOED

Figure 2.10: Difference between types of attention. Image taken from [3].

35

The main advantage of this model is that there are fewer parameters than other Large
Pre-trained Language Models [32]. In addition, the benefits of Grouped-query attention
should be noted, as it achieves quality close to multi-head attention while being almost as
fast [3]. As a result, the model can run locally without requiring a lot of performance while
still generating text with good results in a reasonable amount of time.

2.3 Learning

Large Pre-trained Language models are neural network models with a very high number of
parameters, so the training such large models is computationally demanding. Due to this
reason, the training is divided into 2 stages: Pre-training and Fine-tuning. The model
can use the knowledge acquired during Pre-training through transfer learning and thanks
to that, the performance on the fine-tuning task is much better [22].

e In Pre-training, the model is trained on large amount of text documents of various
types and even more various contexts. Unsupervised learning is used for learning in
Pre-training stage, so no manual annotation is required [22]. After completing this
stage of the learning, the model generates text based on the learned probability of
occurrence of a word in a given sequence of words. The model is not yet specialized
for performing the given task.

e Fine-tuning the model is a training process for the specialization of the model, so
that the model provides better results for a given task. For this stage is used far
less samples compare to Pre-training. Supervised fine-tuning is traditional su-
pervised learning, where instead of randomly chosen weights of the model during its
initialization, the weights are given by loading the pre-trained model. Reinforce-
ment Learning with Human Feedback is used to improve the results of the given
model when the real person evaluates the output of the model using feedback. The
model is then either ,,punished” or ,rewarded“ for the answer.

Parameter Efficient Fine-Tuning

It is true that a model with a large number of parameters can solve much more complex
tasks more successfully than a model with a low number of parameters. But with a large
number of parameters, also comes a great need for computing power.

Therefore, fine-tuning all model weights is still a very computationally demanding pro-
cess. By using a PEFT, this computational complexity is reduced. PEFT, stands for
Parameter Efficient Fine-Tuning. It is a set of techniques or methods to fine-tune a large
model in the most compute and time-efficient way possible, without losing any performance
which you might see from full fine-tuning. Really big models is almost impossible to fine-
tune them without spending tens of thousands of dollars for computation resources. When
it is necessary to use such big models for better performance, PEFT comes in. This is done
by fine-tuning only the most important and relevant parameters in the neural network. The
techniques introduce new parameters in the network or freeze the whole model except for
some parts to make it easier to train the model. [23]

LoRA, which stands for Low-Rank Adaptation, is one of PEFT methods. It operates on
a crucial insight. The difference between the fine-tuned weights for a specialized task and
the initial pre-trained weights often exhibits “low intrinsic rank” - meaning that it can be
approximated well by a matrix of low rank. A low-rank matrix has few linearly independent

36

columns, which means, in simple terms, that the matrix is less “complex”. One cool property
of low-rank matrices is that they can be represented as the product of two smaller matrices.
This realization leads to the hypothesis that this delta between fine-tuned weights and
initial pre-trained weights can be represented as the matrix product of two much smaller
matrices as it is shown in Figure 2.11. The key idea is to focus on updating these two
smaller matrices instead of the entire original weight matrix during training, leading to
improved computational efficiency. LoRA contains 2 essential parameters: Rank (r) and
Aplha(r__alpha). [20]

Parameter Rank determines the rank of the low-rank matrices that are introduced to
the model. A lower rank means fewer parameters to fine-tune, leading to faster training
and less memory usage. Alpha is a scaling factor that controls the magnitude of the update
applied to the low-rank matrices.[20]

h | |

ZERL
Pretrained
Weights

= Rd)(d

[
X | |

Figure 2.11: LoRA principle using initial pre-trained weights and two much smaller matri-
ces. Image taken from [12].

2.4 Inference and evaluation

The most crucial part of training an artificial intelligence model is evaluating whether
a given model produces better results than other models. If the model is successful in
evaluation then it can be used to generate text for users. This generation of text by model
is referred to as Inference.

37

2.4.1 Inference

Inference is a fundamental concept in the realm of Large Language Models. Inference is the
process of generating new data or predictions based on the model’s learned patterns. It is
the step where the model, after being trained on a large dataset, uses its learned knowledge
to make predictions or generate responses. This process is central to the functioning of
Large Pre-Trained Language Models and is what allows them to interact with users in a
meaningful way. [6]

The inference process involves complex computations and algorithms. It is not just
about generating any response, but about generating the most probable response based on
the model’s understanding of the input. This involves a deep understanding of language,
context, and the nuances of human communication. [6]

The inference parameters play a big role in the output the given model generates. These
parameters are Temperature, Top_k, and Top_ p.

Temperature is a parameter that adjusts the randomness of text generation by altering
the probability distribution. Low Temperature leads to more predictable and conservative
outputs. High Temperature leads to more varied and creative outputs.

Parameter Top__k limits the number of possible next words to the K-most probable
words before sampling. This restricts the model’s choices to the K words with the highest
probabilities.

Parameter Top__p selects the smallest set of words whose cumulative probability ex-
ceeds a specified threshold P.

2.4.2 Evaluation techniques

In addition to the fact that a person can evaluate the results himself, automatic methods can
also be applied. A major disadvantage of this type of artificial intelligence is that automatic
methods for evaluating these models lack credibility, as they would need to understand the
overall meaning of the generated text.

Nevertheless, these evaluation methods prove with a large deviation whether the given
model is successful or not.

These techniques are [22]:

e BLEU compares counts of 1-grams to 4-grams of tokens. The BLEU metric ranges
from 0 to 1, where 1 means an identical output with the reference. Although BLEU
correlates well with human judgment, it relies on precision alone and does not take
into account recall—the proportion of the matched n-grams out of the total number
of n-grams in the reference translation.

e« ROUGE unlike BLEU is a recall-based measure and determines which fraction of
the words or n-grams in the reference text appear in the generated text. It determines,
among other things, the overlap of unigrams or bigrams as well as the longest common
subsequence between a pair of texts.

ROUGE-1, ROUGE-2 and ROUGE-L are metrics of this method and also are used
to measure success of the models in this thesis. ROUGE-1 measures the overlap of
unigram between the pair of texts. ROUGE-2 determines the overlap of bigrams
between the pair of texts. ROUGE-L measures the length of the longest sequence of
words that is shared between both texts. This length is divided by the number of
words in the reference text.

38

Within this thesis, the general metrics Precision, Recall and Fl-score are used to
display the results of ROUGE metrics. Precision focuses on the system’s accuracy.
A high value means that most of the generated words are correct, but it does not
indicate whether all important parts of the reference text are covered. Recall focuses
on the system’s completeness. A high value means that most of the reference words
are covered in the generated text, but it does not indicate how many unnecessary
words are generated. F1l-score combines precision and recall into a single number,
providing an overall performance evaluation of the system.

METFEOR performs a word-to-word alignment between the translation output and
a given reference translation. The alignments are produced via a sequence of word-
mapping modules.

39

Chapter 3

Assistant for Creating Medical
Reports

Creating medical reports is one of the administrative duties of the examining doctor. By
creating an assistant for creating a report of this kind, it can help the doctor to create these
reports faster, more easily, and it will also contribute to the elimination of errors caused by
human factors.

The use of properly pre-trained language modules will speed up the development of this
assistant, and through the fine-tuning process, the creation of reports will be achieved as
correctly as possible.

The exact task of the assistant consists in summarizing text documents created during
the patient’s hospitalization to a dismissal report.

3.1 Dataset

The dataset was provided by company STAPRO s.r.o., which specializes in the development
of information systems for hospitals, clinics and laboratory facilities.

3.1.1 Entities

The provided dataset contains 5 files and each file contains data and attributes of the entity
it represents. So the dataset contains the data of the entities:

e Patient: Provides data of patient.
e Department: Provides data of department of hospital.
e Hospitalization: Provides data of admission to hospital for treatment.

e Hospitalization__diagnoses: It provides data on diagnoses for a given hospitaliza-
tion episode.

e Document: Provides data to documentation created by doctors.

Relationships between entities are shown on Figure 3.1.

40

Hospitalization
hosp_id <<PK>>

hospcase_id
hosp_from_date
hosp_to_date

hospcase_from_date
hospease_to_date Hospitalization's diagnoses

Patient 1 0.n | patient_id =<FK== 1 0.n | oS =<PK==>
patient_id <<PK== * depariment_id <<FK>> ¥ dg_code
gender_code on dg_name
birth_date 1 1 da_order
death_date
0.n 1
0.n
Document | o ' Department
document_id <<PK== / department_id =<PK=>
document_class deparimeni_code
document_type deparimeni_name
documeni_name parent_depariment_id
document_date department_fype
document_changed active
hosp_id <<FK==
patient_id =<FK==
document_text
department_id =<FK>=

Figure 3.1: Entity relationship diagram of given dataset.

3.1.2 Dismissal reports

The dismissal report is issued when the patient is dismissed from the hospital. This is a
report, that summarizes the course of a treatment and essential information from other
documents related to the given treatment.

The dismissal report, in accordance with the laws of the Czech Republic, shall include

[1]:
1. brief information about medical history and current illness

2. the duration and course of one-day or inpatient care describing why the patient was
hospitalized and what was the result of diagnostic efforts

3. a summary of the diagnoses for which the patient was provided medical care during
hospitalization

4. a record of previous treatment and the results of examinations that are essential for
the provision of other health services

5. an overview of the medical procedures performed during hospitalization, which are
significant for the further provision of health services, including their results and
information on the complications that have occurred

6. recommendations for the provision of necessary health services, including medical
rehabilitation and nursing care and recommendations for a diet regimen, medicinal
products, food for special medical purposes and their dosage, and recommendations
for medical devices intended for the provider who will provide other health services,
and recommendations for a medical assessment roast

41

The Preliminary Dismissal Report shall include [1]:

1. basic data on the course of hospitalization

2. a summary of the diagnoses for which the patient was provided medical care during
hospitalization

3. a brief record of previous treatment, medical rehabilitation and nursing care, dietary
regimen, including the indication of medicinal products, food for special medical pur-
poses and medical devices with which the patient is equipped

4. recommendations for the next procedure in the provision of health services

This is the foundation. Furthermore, each hospital adjusts the content of the dismissal
report in its own guidelines.

3.1.3 Data for Supervised fine-tuning

The provided dataset contains many entities, but the most important information is found
in the entity Document, more precisely in its attribute document__text, where the text
written by a doctor or other relevant person is stored, and contains information that can
be used to create an assistant.

Attribute document__class indicates the category to which the given document be-
longs. These categories are shown in Table 4.2.

Further, documents from the category of dismissal report, admission report and Decours
will be used to create the assistant.

Documents of admission report, saved in entity Document, are divided into a structures
with the following subsections: Anamnesis; Measured data; Current illness; Status praesens;
Status localis; Diagnostic sheet; Care plan.

From this subsections, Current illness provides information that can be useful in
creating the course of hospitalization and at the same time does not contain a large amount
of additional information that would only unnecessarily take up memory space and increase
the necessary computing power.

Structure of Decours documents can be divided into Diagnostic Summary and Daily
Progress Notes.

Daily Progress Notes represents an ideal part for adding input information to the model.
It offers information about every single day during hospitalization and these notes are
written in a concise form, which also reduces the memory and computational complexity
required for running the model.

The input to the model will therefore be created by Current illness and Daily Progress
Notes. Example of input is shown on Figure 3.2.

42

Example of input

onemocnéni:

Pacient prijata k provedeni diag. koronarografie pred zarazenim na waiting list pred
transplantaci ledviny. Echo srdce: EF LK 60-65%, porucha diastol. relaxace LK,
lehka sym. hypertrofie LK, bez lokalnich poruch kinetiky, bez vyznam. chlopen.vad
Subj: Neguje bolesti na hrudi, dusnost, palpitace, pre/synkopy.

Denni prubéh:

10.3.2022 8:40 Zapsal | G

S: bez obtizi

O: afebrilni, eupnoe, AS reg., dychani alv. c¢isté, bricho mékké, nebol., DKK bez
otoku, lytka volnd, akra prokrvend, zapésti po skg klidné telem: SR 61/min

dimise

Figure 3.2: Example of input for model.

The label will then be created from the dismissal report document, which has the fol-
lowing structure: Diagnostic Summary; Anamnesis; Current illness; Status praesen; Status
localis; Treatment Summary; Surgical Procedur; Laboratory Results; Measured Data; Hos-
pital Course; Pacient state at dismissal; Recommendations; Recommended Therapy.

The label is exactly Hospital Course of Dismissal Report and example is shown on
Figure 3.3.

Example of label

Pacientka prijata k provedeni diag. koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Vykon proveden dne 9.3. s nélezem koronarni tepny bez
vyzn. stenoz (50% RIA, 60% ACD). Pacientka obéh. komp., afebrilni, propusténa,
dnes pravidelna dialyza. Odvoz s rodinou.

Figure 3.3: Example of label for model for input in Figure 3.2.

With provided input, this leads to summarization task.

Other parts of dismissal reports are already created like Anamnesis, Current illness,
Status praesens, Status localis and can be copied from other documents. And for another
parts like Recommendations and Recommended Therapy, the model would need to under-
stand the context of the patient’s current condition with the treatment that was performed
in the past. This leads to the need to have access to the given data, which would be a
problem in terms of the need for a large amount of memory and computing power.

Even if the structure of the text documents is obvious, it is only a form of guidance
for doctors and it is not exactly necessary to follow this structure by them. In reality,
doctors have a free hand in creating this documents, which can lead to violations of data
structures. This can complicates data extraction and leads to the creation of a low-quality
dataset, which subsequently leads to the creation of a low-quality assistant.

43

Chapter 4

Implementation and testing

This chapter encompasses the two most essential parts of this thesis. The process of obtain-
ing a model to serve as an assistant in generating medical documentation, thus addressing
the thesis problem, is illustrated in Scheme 4.26. Programming languages and libraries used
for the implementation, including both the model training process and its runtime, as well
as the tools enabling the model’s usage, will be also introduced.

The process of obtaining a model is divided into individual steps, each accompanied by
tests that demonstrate how each step influenced the acquisition of the model. These steps
are as follows:

e Data preparation: A dataset suitable for learning the Large Pre-trained Language
Model will be created from the data provided by the company STAPRO s.r.o.

e Choose suitable model: A suitable model will be chosen that can process the given
input text so as to generate the most correct output.

o Supervised fine-tuning of model: Choosing the right training procedure and ad-
ditional training parameters for the best possible fine-tuning of the model.

The current scheme for fine-tuning the model consists of:

Extraxt data to - e
/ Import / : \ /] \ /Fmetuneselecteh
X create input dataset Select suitable model o=
.—.| enilydooument S| [l jon process || by experimenting with }—-|_:: TR (EFEEE T
into local MySQL | | improve dataset for

i | | T
\ Database // \Ursullable mudel/ \\exlstlng mudels/ \benerﬂnetunlg//

/ \ ﬁixperlment 'Vlth\ ,/E_xperiment w\th\,
@ nvumany o [memiertnees | [vipmomtiee ||
= model or E;D%Lélpu o | finetuning selected |

\ / \ / \ mode! /

Figure 4.1: Simple schema of fine-tuning process of large language model.

4.1 Programming Languages, Libraries and Technologies

Various libraries were utilized to expedite the model creation process, with some being
indispensable for the model’s development. These include not only the libraries used for
model creation but also those necessary for the model’s operation and applications essential
for model‘s successful use. For better and faster way to process data files provided by
STAPRO s.r.o., MySQL Database system is used.

44

4.1.1 MySQL

MySQL is an open-source relational database management system used for storing, man-
aging, and retrieving data. MySQL is widely utilized in various applications, from small
projects to large enterprise systems, due to its speed, reliability, and ease of use. This
system supports the standardized SQL for database communication, allowing users to per-
form operations such as creating, updating, and querying data. MySQL is renowned for its
ability to handle large volumes of data and deliver fast performance, which is particularly
important for web applications and services that require quick response times. [19]

4.1.2 Python

For this whole finetuning process was used python as programimg language.

Python is a high-level, interpreted programming language known for its readability
and ease of use. It is widely used in various fields, including web development, scientific
computing and machine learning. Python has a clean and readable syntactic style, making
it easy to learn and understand. It supports multiple programming paradigms, including
object-oriented, procedural, and functional programming and has a rich standard library
and numerous external libraries. The code is executed directly by the interpreter, allowing
for quick testing and debugging. [25]

Popular Python frameworks include Flask, TensorFlow, and PyTorch and the libraries
commonly used in natural language processing tasks include NumPy for numerical compu-
tations, pandas for data manipulation, transformers and peft for training and inference of
Large Pre-Trained Language model.

4.1.3 Transformers and PEFT libraries

Transformers provides APIs and tools to easily download and train state-of-the-art pre-
trained models. Using pretrained models can reduce compute costs required to train a
model from scratch. These models support common tasks in different modalities, such
as Natural Language Processing, Computer Vision and Audio classification.Transformers
support framework interoperability between PyTorch and TensorFlow. This provides the
flexibility to use a different framework at each stage of a model’s life like train a model in
three lines of code in one framework, and load it for inference in another. [13]

PEFT (Parameter-Efficient Fine-Tuning) is a library for efficiently adapting large pre-
trained models to various downstream applications without fine-tuning all of a model’s
parameters because it is prohibitively costly. PEFT methods only fine-tune a small num-
ber of model parameters, which significantly decreasing computational and storage costs,
while yielding performance comparable to a fully fine-tuned model. This makes it more
accessible to train and store large language models on consumer hardware. [17]

4.1.4 Flask

Flask is a lightweight web application framework. It is designed to make getting started
quick and easy, with the ability to scale up to complex applications. It began as a simple
wrapper and has become one of the most popular Python web application frameworks.
Flask offers suggestions, but doesn’t enforce any dependencies or project layout. It is up to
the developer to choose the tools and libraries they want to use. There are many extensions
provided by the community that make adding new functionality easy. [16]

45

4.1.5 Javascript

JavaScript is a high-level programming language commonly used to create interactive web
pages. It is interpreted and runs directly in the client’s web browser, allowing for dynamic
content changes based on user actions. JavaScript is also widely used on server plat-
forms.The language serves as a fundamental building block for modern web applications,
enabling manipulation of the Document Object Model to alter page content without need-
ing to refresh it. Additionally, it supports asynchronous programming through callbacks,
promises, enhancing efficiency in data manipulation and server communication. [18]

4.1.6 React.js

React is a popular JavaScript library for building user interfaces, developed and maintained
by Facebook. It focuses on creating single-page applications and web applications that
are efficient and fast in user interaction. React employs a component-based approach to
user interface development, allowing applications to be divided into independent, reusable
components. These components can manage their own state and respond to changes in the
application, enhancing code modularity and maintainability. One of React’s key concepts
is the virtual Document Object Model, which enables efficient rendering of changed parts of
the page without redrawing the entire page. This improves performance and user experience
during application interactions. [9]

4.2 Data preparation

As a first step is need to insert data to MySQL database from CSV file document. This
file represents entity document, which was mention in Figure 3.1, and contains all needed
information to create dataset to training model. MySQL is used for faster work with
data thanks of create index on specific row which are most crucuel in patient_id and
document_ type rows. This is done by script Data__preparation.py implementing using
Python language.

It begins by importing the necessary libraries: pandas for data manipulation and
mysql.connector for connecting to the MySQL database.

Next, it defines the connection parameters for the MySQL database, which include the
host, user, password, and database name. It also specifies the path to the CSV file that
contains the data to be loaded, as well as the table name in the database and the primary
key column.

The script contains a function, create__connection, which attempts to establish a
connection to the MySQL database using the specified configuration parameters. If there is
an error during the connection attempt, the function displays an appropriate error message
and returns None.

Another function, load__csv__to__mysql, reads data from the CSV file into a pandas
DataFrame. It then opens a cursor for executing SQL operations. For columns with date
values like document_ date and document_ changed, it converts the values to datetime
format. The function then creates an SQL query to create a table in MySQL, if it does not
already exist, and executes this query.

Next, the function iterates over the rows of the DataFrame and for each row, it creates
and executes an SQL query to insert the data into the table. After successfully inserting all
the data, the changes are committed. The function includes an except block that catches

46

and prints any errors that may occur during execution. Finally, the function closes the
cursor and the database connection.

Document Type Occurrences
General Nursing Documentation 151611
Laboratory Examination 86135
Invasive Entries 74562
Decours 24324
Dismissal Report 15379
Consultation 14567
Consent 10339
Rehabilitation Procedures 10115
Admission Report 9182
Wound Recording 7453
Epicrisis 7068
Radiodiagnostics 5753
Scoring Schemes 4902
ADL 4101
Pressure Ulcers 3823
Falls 3223
Surgical Protocol 3004
Nurse Education 2850
Finding 1716
Childbirth Report - Child 1519
Other 1335
Childbirth Report - Mother 1060
Pathology - Biopsy 564
Nursing Transfer Report 525
Nursing History 517
Prescription 492
Medication Request 488
Social Record 363
Nutrition 284

Table 4.2: The number of occurrences of individual types of medical documentation insert
into database table document.

The table 4.2 shows the type of medical documentation and its count that was uploaded
to the local MySQL database. It is obvious that a higher number of Dismissal report type
documentation than Admission report was uploaded. This is caused by the fact that some
doctors create a preliminary dismissal report and a final dismissal report as two separate
documents, and some just supplement the preliminary dismissal report and create a final
dismissal report from it, and it is therefore one and the same document.

4.3 Suitable model

Part of this thesis is experimenting with existing models. This is also used for find suitable
model, which helps provide better solution of problem of this thesis.

47

From the mentioned architectures of models in 2.2, the models with LLaMA architecture
was chosen for several reasons. The first reason is the feasible requirements for computation
and memory resources, as the model is available in versions with a low number of param-
eters, specifically 13 billion parameters and 7 billion parameters. Another reason is that
the model is multilingual; it can generate text in several languages, including Czech. Addi-
tionally, the model is open-source and can be fine-tuned locally, which provides flexibility
and control over its use. Lastly, the model is relatively new, having been released recently,
which means it incorporates the latest advancements in the field.

With the chosen LLaMA-2 architecture, the following types of models were selected,
which differ from each other through the process of retraining, and some of them have
already gone through the fine-tuning process. However, this is about fine-tuning, which
does not directly solve the problem solved in the framework of this thesis, and therefore
even these models must be additionally fine-tuned.

Also, some models have increased content length than the original model of LLaMA-2.
This is due to experimentation with models where they would take the entire medical docu-
mentation as input and not just its parts. Unfortunately, due to the hardware requirements,
especially the memory of the graphics cards, which ensured the running of the model, a
smaller input was used, and thus the possibility of processing larger input text remained
unused.

Experimentation also took place with models of different number of model parameters.
These parameters are actually the weights of the neurons of the given neural network 1.3.2.
In simple terms, this means that the greater the number of these parameters, the ,smarter”
answers the model generates. This is due to the fact that the generated words have a better
connection with other generated words of the given text, and thus the overall text has a
better impression. However, with a larger number of parameters, the hardware is more
demanding, and it is mainly the small memory problem.

4-bit quantization, to reduce the model’s memory requirements, is also used when model
is loaded.

These models are:

o togethercomputer/Llama-2-7B-32K-Instruct [31]: This is a model where its
content length was increased from 4096 to 32000 tokens. Also, compared to other
used models, it has 7B parameters, which is a lower than other models with 13B
parameters.

o Yukang/Llama-2-13b-longlora-16k-ft [34]: Model has increased content length
to 16000 and it is a version with 13B parameters.

o Yukang/LongAlpaca-13B [36]: It is a fine-tuned version of the Yukang/Llama-2-
13b-longlora-16k-ft model. Finetuning was performed using the LongAlpaca-12k
[35] dataset. The given dataset contains primarily English text, which can worsen or
even make it impossible to generate text in the Czech language.

o meta-llama/Llama-2-13b-chat-hf [33]: This is the original model additionally
fine-tuned for chatting. It is therefore aimed at generating whole sentences rather
than creating structures or programming codes. It has a content length of 4096 and
its number of parameters is 13B.

48

4.3.1 Dataset

Dataset for finding a suitable model is created by extracting data as it is described in
Subsection 3.1.3. For this purpuse is used script Data__extraction.py writen in Python.
The code connects to a MySQL database, retrieves specific records, processes these records
to extract and clean text data, and saves the processed data into a json file.

The db_ config dictionary holds the MySQL database connection parameters such as
host, user, password, and database. The create__connection function establishes a con-
nection to the MySQL database using the parameters in db_ config.

The discharge_summary__extract_ label function extracts specific sections of a
discharge summary between predefined text markers.

The discharge_summary__extract__input function extracts the Current illness sec-
tion from the admission report. The dekurz__extract__input function extracts the Daily
Progress Notes section from the text.

The create__training_dataset function generates a training dataset by fetching and
processing documents of a specific type and hosp_id. It retrieves the relevant document
text, extracts and processes specific sections, concatenates text from other document types,
and then inserts the processed data into array variable.

Finally, the main part of the code establishes a connection to the database, fetches
documents of needed types, processes each document to create training dataset and create
json file to save dataset.

Metric Count
Total samples 5557
Content length below 4096 5235
Content length higher than 4096 322

Table 4.3: Evaluation of sample sizes based on model content length.

The Table 4.3 shows the total number of samples in the dataset used for selecting a
suitable model. Their number is smaller than could be expected based on the number of
occurrences of the admission report from the Table 4.2. This is due to the fact that some
patients lacked a certain type of documentation or part of it. In order to create a valid
sample, it was necessary that the hospitalization contained an Admission report, Dismissal
report and minimally one Decourse. The Table 4.3 also contains information on how many
of the given samples will be able to be actually used in relation to the smallest content
length of model from the selected models. This represents the model meta-llama/Llama-
2-13b-chat-hf with a content length of 4096 tokens.

Metric Precision | Recall | F1-score
ROUGE-1 0.170 0.431 0.233
ROUGE-2 0.092 0.269 0.130
ROUGE-L 0.168 0.426 0.230

Table 4.4: ROUGE metrics between input and reference output of dataset.

The Table 4.4 shows the values measured using the ROUGE metrics, which is described
in Section 2.4.2, between the reference output and the input of dataset for finding suitable
model. The Recall is pretty high, so reference output cover a lot of information from input.
On the other hand, the Precision is low, which means that the reference output contains

49

additional information that are no longer covered by input. This can lead to bad results
of the model, more precisely to generate output with hallucinations, since it can generate
additional information based on information, which is not related with it at all.

4.3.2 Prompt

Another part that must be chosen correctly is the prompt, which is described in Subsection
2.1.5. All chosen models do not have the same prompt structure. Some models also have
system prompts defined, which are used to define, direct and limit the model from the
point of view of its management. In this case, it is about defining the style of the text that
the given model generates and limiting the use of expletives or sentences that may sound
offensive.

For models togethercomputer /Llama-2-7B-32K-Instruct and
Yukang/Llama-2-13b-longlora-16k-ft, the system prompt is not defined and the prompt is
shown in Figure 4.2.

Examples in Figures 4.5, 4.7 and 4.9 are generated by meta-llama/Llama-2-13b-chat-hf
with inference parameters - Temperature: 0.4, Top_ k: 40 and Top_ p: 0.9 .The justification
of the setted values for inference‘s parameters is in the Subsection 4.3.3.

<s>
[INST]
{instruction + input}
[/INST]

Figure 4.2: Prompt without system prompt.

The prompt, shown in Figure 4.2, contains the beginning character of the sequence
< s> and the definition of the instruction, delimited by the tokens [INST] and [/INST].
It consists of instruction and input variables.

For models Yukang/LongAlpaca-13B and meta-llama/Llama-2-13b-chat-hf, the system
prompt is defined and the prompt is shown in Figure 4.3.

50

<s>

The prompt in Figure 4.3 contains, in addition to the prompt in Figure 4.2, also system
prompt, which is delimited by the tokens << SY'S >> and << /SY'S >>. System prompt
in Figure 4.3 sets the model to not generate words and sentences that could sound offensive.
It also set that instead of generating a false answer, model should explain why the given
question seems nonsense to itself. The Yukang/LongAlpaca-13B and meta-llama/Llama-
2-13b-chat-hf models were fine-tuned on this system prompt, so in order to be able to use
the given model correctly, the system prompt must also be defined in the same way.

The instruction variable was first defined as it is in Figure 4.4. This is a simple instruc-
tion for the model that should direct it to summarization task.

[INST]

<<SYS>>\n

You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible,

while being safe.

Your answers should not include any harmful,
unethical, racist, sexist, toxic, dangerous

or illegal content.

Please ensure that your responses are socially unbiased
and positive in nature.\n\nIf a question does not make
any sense or is not factually coherent, explain why
instead of answering something not correct.

If you don’t know the answer to a question,

please don’t share false information.\n

<</8Y$>> \n\n
{instruction + input}

[/INST]

Figure 4.3: Prompt with system prompt.

instruction= ’’’Vytvorte souhrn o onemocnéni

a dennim pribéhu.\n’’’

Figure 4.4: First definition of instruction variable.

51

Output of model with use of first definition of instruction variable

Sure, here’s a summary of the patient’s condition and daily course:

On March 10th, a patient was admitted to the hospital for coronary angiography
before being placed on the waiting list for a kidney transplant. The patient has a
history of heart disease, including an enlarged left atrium, diastolic dysfunction, and
mild hypertrophy. They also have no localized abnormalities in their cardiac function
or valve disease. The patient is experiencing symptoms such as chest pain, shortness
of breath, and palpitations.

The patient’s daily course from March 10th to March 11th includes:

* On March 10th at 8:40 AM, the patient reported feeling well without any difficulties.
* At 10:30 AM, the patient’s blood pressure was measured at 120/70 mmHg.

* At 12:00 PM, the patient’s heart rate was measured at 61 beats per minute.

* At 2:00 PM, the patient reported feeling tired and had difficulty breathing.

* At 4:00 PM, the patient’s blood pressure was measured at 130/80 mmHg.

* At 6:00 PM, the patient reported feeling better but still had some discomfort.

* At 8:00 PM, the patient’s blood pressure was measured at 120/70 mmHg.
Overall, the patient’s condition appears stable, with no significant changes over the
past 24 hours. However, they are still experiencing symptoms that may require
further monitoring or treatment.

Figure 4.5: Output from model for input in Figure 3.2, which has label in Figure 3.3.

As it is shown on output in Figure 4.5, the model did not summarize the input so much,
but on the contrary, it expanded it when every single word of information was replaced by
a whole sentence. The model also generated text with bullet points. It is structure, which
do not appear in the label. Base on that, the second definition of instruction variable is
defined as it is shown in Figure 4.6.

instruction= ’’’Vytvofte souhrn celymi vétami
o onemocnéni a dennim prib&hu.\n’’’

Figure 4.6: Second definition of instruction variable.

The second definition of instruction variable in Figure 4.6, compared to the first defini-
tion, specifies to the model that the given summary should be generated as whole sentences.
This definition should minimize the chance that the model will generate text with bullet
points as it is shown on Figure 4.7. It can be seen in the output that even the given part,
which was previously generated using bullet points, is even more concise. Still is necessary
that the output from the model be generated in the Czech language and not in English,
therefore the final definition of instruction variable is defined as it is shown in Figure 4.8.

52

Output of model with use of second definition of instruction variable

Sure, here’s a summary of the patient’s condition and daily progress:

On March 10th, a patient was admitted to the hospital for coronary angiography be-
fore being placed on the waiting list for a kidney transplant. The patient’s echocar-
diogram showed mild left ventricular hypertrophy with a left atrium ejection fraction
(EF) of 60-65%, impaired diastolic relaxation, and no localized abnormalities in con-
tractility or pump function. The patient had no symptoms of heart failure, such as
shortness of breath, edema, or syncope.

The patient’s daily progress has been monitored since March 10th. On that day,
the patient reported no difficulty breathing and had a stable vital sign reading of 61
beats per minute. The patient’s temperature, blood pressure, and oxygen saturation
were all within normal ranges. The patient also reported no chest pain, discomfort,
or other signs of disease.

Overall, the patient’s condition is stable, and there are no significant changes or
developments since their admission to the hospital. They continue to have no symp-
toms of heart failure or other concerns.

I hope this summary helps! Let me know if you need any further assistance.

Figure 4.7: Output from model for input in Figure 3.2, which has label in Figure 3.3.

instruction= ’’’Vytvorte souhrn v Ceském jazyce celymi
vétami o onemocnéni a dennim pribéhu.\n’’’

Figure 4.8: Final definition of instruction variable.

The instruction, defined as it is in Figure 4.8, directed the model to generate output
in complete sentences and in the Czech language as it is shown in Figure 4.9. Thanks to
this, it is possible to determine which model has the potential to correctly generate the
Hospitalization Course of Dismissal Report.

Output of model with use of final definition of instruction variable

Souhrn vétami o onemocnéni a dennim pribéhu:

Pacient byl prijat k provedeni diagnézy koronarniho obrance pred uvedenim na ceka-
telsky seznam pro transplantaci ledviny. Echo ukazalo srdecni selhdni s ejektivi-
tou 60-65%, poruchu diastolnihorelaxace a lehkou hypertrofuji ledviny bez mistnich
poruch v kontrakci nebo kineticich. Pacient uvedl, ze mu dochazi k bolestem v krku,
dechu a palpitacim epizodam. Denni pribéh pacienta je bez obtize.

Figure 4.9: Output from model for input in Figure 3.2, which has label in Figure 3.3.

53

4.3.3 Inference and testing

Inference is provided with parameters which need to be set before generating the output.
These parameters are described in Subsection 2.4.1. Default values of parameters were
primarily used.

Top_ k is set to 40 and Top_ p is set to 0.9. Other values were also experimented
with, for Top__k the values were: 70, 20 and for Top__p the values were: 0.7, 0.5.

The reason for choosing the default values is that the change in values was not visible
on the output of the given models or models give worse outputs. Outputs were checked
manualy by a human and since the given model is selected based on the result of a text
check by a human, it was decided to stay with the basic values of these parameters.

With the different value of temperature parameter, the change to output of the model
was visible. This parameter is a change from the default value of 1 to 0.4, when the goal
was for the model not to generate a text that is too artistic, but rather to summarize the
given facts that the text should be factual.

In order to choose the right suitable model, a manual check of the output generated
by individual models was also performed and compared with the reference output, and the
information provided to the model at the input was also considered. Individual outputs
could be categorized into 4 categories and the results are recorded in Tables 4.7, 4.10, 4.13
and 4.16. The Copied Input category includes outputs that contained an exact copy of the
input. The Nonsensical Summary category includes performances that were erroneous,
for example word cycling, an inappropriate structure, or a performance without text (only
contained white characters). Summary with Reservations is the category in which
performances with insufficient information were included. Full Summary is a category in
which performances against which there were no reservations were included. In the category
Summary with Reservations and Full Summary, it was recorded whether the model
generated the given output in the Czech language (marked as CZ) or if it was a different
language (marked as ANY). The given number in the field of the table represents a part of
the whole, where the whole is 250 samples and the number of occurrences is indicated in
the bracket.

togethercomputer/Llama-2-7B-32K-Instruct

From the Table 4.5 it follows that the given model decently summarized the input text.
The Table 4.6 shows that the output from the model and the reference output are quite
different, which can be expected since the given model is not yet fine-tuned in a doctor-like
way of summarizing of Hospital Course. When a person manually checked the output of the
model, it was found that the given model often copied the given input to the output. The
consequence of this copying is that the values measured in the Table 4.5 are very favorable,
while the result of the model itself does not correspond to this at all. Results from manual
human testing are recorded in the Table 4.7. The model was able to generate a successful
summarization in the Czech language in a few cases. But according to the occurrences, it
was rather an exception than the constant functioning of the model. Example of output
from model is shown on Figure 4.10.

54

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.5295 0.3712 0.4180
ROUGE-2 0.4574 0.3133 0.3532
ROUGE-L 0.5287 0.3707 0.4173

Table 4.5: The ROUGE metrics between output of model and input text to model.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.1307 0.2123 0.1449
ROUGE-2 0.0683 0.1053 0.0722
ROUGE-L 0.1296 0.2106 0.1436

Table 4.6: The ROUGE metrics between output of model and reference output.

Type of Summarization CZ Any
Full Summary 0.028 (7) | 0.104 (26)
Summary with Reservations | 0.096 (24) | 0.056 (41)
Nonsensical Summary 0.196 (49)
Copied Input 0.412 (103)

Table 4.7: Results of manual check of outputs by human.

Output of model

Patient was admitted for coronary angiography before being placed on the waiting
list for kidney transplantation. The patient’s echocardiogram showed an EF of 60-
65%, diastolic dysfunction, and mild hypertrophy of the left atrium. There were no
localized abnormalities in the heart’s kinetic function or valve disease. The patient
reported no chest pain, shortness of breath, syncope, or palpitations.

The daily course is as follows:

10.3.2022 8:40 Doctor’s note:

S: without difficulty

O: afebrile, euphoric, regular sinus rhythm, clear respiratory tract, soft stool, lungs
clear, skin warm, limbs free from cyanosis, blood pressure: 120/70 mmHg
Dimensions:

HR: 61 beats per minute

Respiration: 20 breaths per minute

Temperature: 36.5 degrees Celsius

SpO2: 98%

Figure 4.10: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Yukang/Llama-2-13b-longlora-16k-ft

From the Tables 4.8, 4.9 and 4.10, it is quickly understandable that this model failed in the
given task. It could not generate a meaningful sentence even once, as can be seen from the
table 4.10. There is no example of output because it was just random letters and text has
not any meaning at all.

55

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.0160 0.00004 0.00009
ROUGE-2 0.0000 0.0000 0.0000

ROUGE-L 0.0160 0.00004 0.00009

Table 4.8: The ROUGE metrics between output of model and input text to model.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.0120 0.0001 0.0002
ROUGE-2 0.0000 0.0000 0.0000
ROUGE-L 0.0120 0.0001 0.0002

Table 4.9: The ROUGE metrics between output of model and reference output.

Type of Summarization CZ | Any
Full Summary 0 (0) | 0(0)
Summary with Reservations | 0 (0) | 0 (0)
Nonsensical Summary 1 (250)
Copied Input 0 (0)

Table 4.10: Results of manual check of outputs by human.

Yukang/LongAlpaca-13B

Since it is a fine-tuned model of the Yukang/Llama-2-13b-longlora-16k-ft model, which
failed the given task as derived in Subsection 4.3.3, its results are a pleasant surprise . Ac-
cording to the Tables 4.11 and 4.12, it seems that the given model failed in summarization.
During a manual check of the model’s output, the results of which are recorded in the Table
4.13, it was found that the model summarized the given input quite successfully, even if the
language in which the output text was written was English. However, since it is necessary
for the model to generate output in the Czech language, this model is not entirely suitable
for additional fine-tuning either. Example of output from this model is shown on Figure
4.11, where can be seen that model used some Czech words.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.3002 0.1100 0.1487
ROUGE-2 0.2586 0.0888 0.1212
ROUGE-L 0.2999 0.1100 0.1485

Table 4.11: The ROUGE metrics between output of model and input text to model.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.0829 0.0662 0.0645
ROUGE-2 0.0457 0.0369 0.0355
ROUGE-L 0.0828 0.0662 0.0644

56

Table 4.12: The ROUGE metrics between output of model and reference output.

Type of Summarization CZ Any
Full Summary 0 (0) | 0.396 (99)
Summary with Reservations | 0 (0) | 0.224 (56)
Nonsensical Summary 0.164 (41)
Copied Input 0.216 (54)

Table 4.13: Results of manual check of outputs by human.

Output of model

The patient was admitted to the hospital with a diagnosis of heart failure. The
doctor recommended a transplantation of the patient’s ledviny, which was performed
successfully. After the surgery, the patient was put on medication to reduce the
symptoms of heart failure, such as shortness of breath, fatigue, and swelling. The
patient was monitored closely by the doctors and nurses for any signs of complications
or relapse.

Figure 4.11: Output from model for input in Figure 3.2, which has label in Figure 3.3.

meta-llama/Llama-2-13b-chat-hf

This model summarized the given input as shown in the Table 4.14. From results, provided
by the manual check, shown in the Table 4.10, it is clear that in part the model helped
by copying the input text with a good result in the Table 4.14. On the other hand, the
model surprisingly often generated text in the Czech language and its summarization was
also often of high quality. According to the Table 4.8, however, the given output from the
model does not match the reference output written by the doctor. Example of output from
this model is show on Figure 4.9.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.5858 0.3605 0.4282
ROUGE-2 0.3967 0.2560 0.2984
ROUGE-L 0.5780 0.3557 0.4224

Table 4.14: The ROUGE metrics between output of model and input text to model.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.1554 0.2199 0.1641
ROUGE-2 0.0498 0.0759 0.0530
ROUGE-L 0.1536 0.2172 0.1620

57

Table 4.15: The ROUGE metrics between output of model and reference output.

Type of Summarization CZ Any
Full Summary 0.312 (78) | 0.092 (23)
Summary with Reservations | 0.236 (59) | 0.084 (21)
Nonsensical Summary 0.044 (11)
Copied Input 0.232 (58)

Table 4.16: Results of manual check of outputs by human.

After evaluation of the performances of the models, meta-llama/Llama-2-13b-chat-
hf is chosen as the most suitable model. Although the output was sometimes generated
in English, the model generates an output in sentences, as it is necessary for generate the
Hospital Course of Dismissal Report. Also the output is not generated indefinitely, rather,
the model itself evaluates when it finishes. And also according to the manual check of the
individual models recorded in the tables 4.7, 4.10, 4.13 and 4.16, the meta-llama/Llama-2-
13b-chat-hf model is the most suitable model for fine-tuning.

4.4 Fine-tuning of selected model

For finetuning was choosed meta-llama/Llama-2-13b-chat-hf model as suitable model
based on test in Subsection 4.3.3.

Finetuning of this model is done by script model__training.py, writen in Python and
use Transformers and Peft libraries. Functions are executed in the following sequence:

1. All necessary libraries for working with models, datasets, and fine-tuning are imported
and script logs into Hugging Face account.

2. An AutoTokenizer is initialized for the model meta-llama/Llama-2-13b-chat-hf and
a special pad_ token is added.

3. An AutoModelForCausalLM is initialized with settings for 4-bit quantization,
which reduces the model’s memory requirements.

4. The dataset is loaded from a JSON file using the load__dataset function. The
format__instruction function creates a prompt for the model as it is defined in
Figure 4.12. The generate__instruction_ dataset function reformats the input
data into the desired format.

5. The process__dataset function shuffles the data randomly and reformats it using the
generate__instruction__dataset function. The data is limited to 5000 records for
training. The gradient_ checkpointing enable function enables gradient check-
pointing, which reduces memory usage during training.

The prepare__model_ for__kbit_ training function prepares the model for train-
ing with quantization.

6. The LoraConfig sets the parameters for Low-Rank Adaptation. The TrainingAr-
guments defines the parameters for the training process, such as batch size, number
of epochs, learning rate, and more.

7. The SFTTrainer is initialized with the model, dataset, tokenizer, and training ar-
guments. The fine-tuning process is started using the fine_ tuning.train function.
Finally, the fine-tuned model and tokenizer are saved to the specified directory.

58

The dataset was divided into testing dataset and training dataset. The testing dataset
contains 250 samples that are used for testing individual models, where the given results
decide on the correct choice of parameters or improvements of training dataset. The same
250 samples of the testing dataset were used to select a suitable model. This process is
described in the Subsection 4.3.3. Model is trained with 1 epoch and the size of the training
dataset is set to 5000 samples, which could not be observed in the case of first version of
dataset, described in Subsection 4.4.2, due to insufficient number of samples.

As in the case of finding a suitable model, as well as in the case of training the model,
the table that records the results of the manual check is divided into categories. The Bad
output category includes outputs that contained an exact copy of the input or errors,
for example word cycling, an inappropriate structure, or a outputs are without letters
(only contained white-space characters). Summary with missing informations is the
category to which outputs with a lack of information belong. Good Summary is a category
that includes outputs that can be used as a Hospital Course. In the category Summary
with Hallucinations, it was recorded whether the model generated the given output with
additional information, which was not found in the reference output or in the input. The
given number in the field of the table represents a part of the whole, where the whole is
250 samples and the number of occurrences is indicated in the bracket. One of these tables
is Table 4.19.

4.4.1 Prompt

In the training process is also used prompt defined in with slice difference. To the prompt,
label is added to learn model how should it continue to generate text. This added infor-
mation is just answer on input. Prompt for learning use same instruction as is defined in
Figure 4.8 .

59

<s>
[INST]
<<8YS>>\n
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased
and positive in nature.\n\nIf a question does not make any sense,
or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question,
please don’t share false information.\n
<</SYS>> \n\n
{instruction + input}
[/INST]
Souhrn v Ceském jazyce ve formé
celjch vét o onemocnéni a dennim pribéhu:
{output?}
</s>

Figure 4.12: Prompt for learning proccess of model.

4.4.2 Dataset improvements

LoR A method, described in Subsection 2.3, is used to reduce the computational complexity
of the fine-tuning process. For the fine-tuning of the models described in this subsection,
the default values of LoRA parameters are chosen. Rank is set to 16 and Alpha is set
to 64. Experimenting with different values of LoRA parameters is described in Subsection
4.4.3.

First version of dataset

As a first version of dataset for fine-tuning the suitable model is used dataset, which was
also used for finding suitable model for fine-tuning. This dataset is described in Subsection
4.3.1. To be able used 250 samples for testing, the 4985 samples is used to fine-tuning the
model.

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.5053 0.2893 0.3503
ROUGE-2 0.3863 0.2059 0.2520
ROUGE-L 0.5032 0.2880 0.3489

Table 4.17: The ROUGE metrics between output of model and input text to model.

60

ROUGE | Precision | Recall | Fl-score
ROUGE-1 0.2667 0.3818 0.2948
ROUGE-2 0.1511 0.2125 0.1687
ROUGE-L 0.2634 0.3773 0.2911

Table 4.18: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.056 (14)
Summary with Hallucinations 0.404 (101)
Summary with missing informations | 0.232 (58)
Bad output 0.308 (77)

Table 4.19: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce celymi vétamy o onemocnéni a dennim prubéhu:

Pacientka prijata k provedeni diag. koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Koronarograficky norméalni nélez, EF LK 60%-65%.
Vykon i hospitalizace bez komplikaci. Telemetricky sinusovy rytmus, tlakové sta-
bilni. Dimise ve stabilizovaném stavu.

Operace: 09.03.2022
Operaéni diagnoza:
Ischemické choroba srdec¢na
St.p. myokard. infarktu
Operacni vykon:
Coronarografia

Figure 4.13: Output from model for input in Figure 3.2, which has label in Figure 3.3.

In Figure 4.13, it is obvious that the output has an incorrect form of summarization.
This is due to the fact that the reference output, based on which the model was trained,
contains other parts of the Dismissal Report, not just the Hospital Course, which led to
model generate this incorrect form. During the manual check, however, these parts were
not taken into account, and thanks to this, the correctness of the model to generate the text
of the course of hospitalization could be assessed. Based on this, it was evaluated that the
model also generated correct outputs, but the model most often generated output where it
invented additional information as is shown in Table 4.19. Therefore, reducing the number
of outputs that contains incorrect information is the goal of further improvement of the
dataset.

Second version of dataset

In this version of dataset was done some improvements as anonymizing doctor names and
precise extraction of Hospital course from dismissal report.

61

Script for creating of first version of dataset is decribed in Subsection 4.3.1. For second
version of dataset is the discharge__summary__extract_ label function improved to iso-
late and clean the portion of the text that describes the course of hospitalization, excluding
certain subsections and irrelevant information. Also the replace__doc function is added
to anonymize doctor names in the text by replacing them with the word ,,doctor®.

Metric Description Count
Total samples 5557
Content length below 4096 5266
Content length higher than 4096 291

Table 4.20: Evaluation of sample sizes based on model content length.

These changes were not only reflected in the higher quality output from the model,
but also affected the number of samples with which the model can be trained as can be
seen in the Table 4.20, when compared with the Table 4.3. The main credit goes to the
improvement of the label extraction.

Metric Precision | Recall | Fl-score
ROUGE-1 0.5097 0.2751 0.3393
ROUGE-2 0.4018 0.1968 0.2487
ROUGE-L 0.5075 0.2737 0.3377

Table 4.21: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1-score
ROUGE-1 0.2740 0.3898 0.3088
ROUGE-2 0.1584 0.2400 0.1819
ROUGE-L 0.2708 0.3860 0.3055

Table 4.22: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.096 (24)
Summary with Hallucinations 0.384 (96)
Summary with missing informations | 0.336 (84)
Bad output 0.184 (46)

Table 4.23: Results of manual check of outputs by human.

62

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim pribéhu:
Pacientka prijata k provedeni selektivni koronarografie pred zafazenim na waiting list
pred transplantaci ledviny. Koronarograficky normalni nalez na koronarnich tepnéch.
Vykon probéhl nekomplikované, zapésti po intervenci klidné. Telemetricky sinusovy
rytmus, bez zachytu arytmii. Dimise do ambulantni péce ve stabilizovaném stavu.
Odvoz vlastni.

Figure 4.14: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Based on the results from manual check, which are showed in Table 4.23, the model
generates less bad outputs. It is caused by a cleaner label and thus the model’s output
structure is clearer. There were also several outputs that summarized the Hospital course
in a high quality without making up information or without missing essential information.
Also, the Table 4.22 shows a greater similarity between the generated outputs by model
and the reference outputs than in the previous version of the dataset, which has results in
the Table 4.18.

Third version of dataset

The third and final version of the dataset is improved by deleting abbreviations. These
abbreviations appear in the text together with their full word form. However, the model
does not have to be trained that it is the same thing from the point of view of meaning,
and the model can conclude that it is two different things. Therefore, replacing these
abbreviations with their full word form leads to better results because the model now
knows that it is the same thing.

The replace_other words function is designed to replace specific abbreviations in a
given text with their corresponding full words. This help in making the text more under-
standable by expanding commonly used abbreviations. Evaluation of sample sizes based on
model content length is the same as it was in the case of the second dataset, these result
are shown in the table 4.20.

Metric Precision | Recall | Fl-score
ROUGE-1 0.1890 0.4216 0.2453
ROUGE-2 0.1086 0.2615 0.1421
ROUGE-L 0.1874 0.4182 0.2432

Table 4.24: ROUGE metrics between input and reference output of dataset.

It can be seen that the changes in the dataset had a positive effect, as the results of
the ROUGE metrics between input and reference output improved, when comparing the
Tables 4.24 and 4.4. There is still low Precision value in the table 4.24 and thus the model
will probably still generate a large amount of summarization with hallucinations.

63

Metric Precision | Recall | F1-score
ROUGE-1 0.5406 0.2230 0.2991
ROUGE-2 0.4503 0.1698 0.2301
ROUGE-L 0.5389 0.2225 0.2983

Table 4.25: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1-score
ROUGE-1 0.3334 0.3093 0.3075
ROUGE-2 0.2129 0.1997 0.1973
ROUGE-L 0.3303 0.3069 0.3049

Table 4.26: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.124 (31)
Summary with Hallucinations 0.372 (93)
Summary with missing informations | 0.304 (76)
Bad output 0.2 (50)

Table 4.27: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim pritbéhu:
Pacient prijata k provedeni selektivni koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Koronarograficky normalni néalez, t.¢. bez vyzn. stenozy.
Vykon i hospitalizace bez komplikaci. Telemetricky sinusovy rytmus, tlakove stabilni.
Dimise ve stabilizovaném stavu.

Figure 4.15: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Although, based on the comparison of the example in Figure 4.15 and the example in
Figure 4.14, it shows that the model trained with the second version of the dataset generates
better output.

Third version of the dataset has the highest number of good summaries compared to
the first and second versions of the dataset. Changing the abbreviations to the full word
form had a positive effect on the model, if only the number of good summaries is taken into
account. On the other hand, there was also an increase in erroneous statements compared
to the second version of the dataset. This version of the dataset, based on the results from
the Tables 4.5, 4.6, 4.7, is used in the next steps of training and experimentation.

4.4.3 Experiments with LoRA training parameters

The aim of this experimentation is to find the values of the Rank and Alpha parameters,
which leads to models with better results by using LoRA method. LoRA with Rank = 16
and Alpha = 64, used in the Subsection 4.4.2, train a model that creates behavior with some
hallucinations and thus behaviors with some fabrication of additional false information.The
solution to this can be to use the original model to a greater extent and thereby reduce the

64

effect of fine tuning. This is done by decreasing the value of the Alpha parameter. Also,
experimenting with other values of LoRA parameters is evaluated in this subsection.

Rank 16, Alpha 16

Metric Precision | Recall | Fl-score
ROUGE-1 0.4072 0.2746 0.3042
ROUGE-2 0.3076 0.1880 0.2132
ROUGE-L 0.4051 0.2729 0.3024

Table 4.28: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1-score
ROUGE-1 0.3474 0.3330 0.3305
ROUGE-2 0.2282 0.2189 0.2179
ROUGE-L 0.3446 0.3306 0.3280

Table 4.29: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.148 (37)
Summary with Hallucinations 0.268 (67)
Summary with missing informations | 0.384 (87)
Bad output 0.236 (59)

Table 4.30: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim prubéhu:
Pacient prijata k provedeni selektivni koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Koronarograficky normélni nalez na koronarnich tep-
nach, EF 60%. Vykon probéhl nekomplikované, zapésti po intervenci klidné. Tele-
metricky po celou dobu hospitalizace sinus. rytmus, bez zachytu arytmii. Pacientku
propoustime v KP kompenzovaném stavu. Odvoz vlastni.

Figure 4.16: Output from model for input in Figure 3.2, which has label in Figure 3.3.

65

Rank 4, Alpha 16

Metric Precision | Recall | Fl-score
ROUGE-1 0.4533 0.1800 0.2441
ROUGE-2 0.3818 0.1394 0.1914
ROUGE-L 0.4515 0.1795 0.2434

Table 4.31: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | Fl-score
ROUGE-1 0.2775 0.2438 0.2447
ROUGE-2 0.1747 0.1596 0.1574
ROUGE-L 0.2738 0.2417 0.2423

Table 4.32: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.028 (7)
Summary with Hallucinations 0.08 (20)
Summary with missing informations | 0.136 (34)
Bad output 0.752 (188)

Table 4.33: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim priibéhu:
Pacient prijata k provedeni diag. koronarografie pred zarazenim na waiting list pred
transplantaci ledviny. Koronarograficky bez vyzn. stenozy, Teseni jako FIS, subj.
bez obtizi. Telemetricky sinusovy rytmus, tlakové stabilni. Dimise ve stabilizovaném
stavu.

Figure 4.17: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Rank 4, Alpha 4

Metric Precision | Recall | F1-score
ROUGE-1 0.3684 0.1546 0.2092
ROUGE-2 0.3227 0.1250 0.1711
ROUGE-L 0.3664 0.1540 0.2082

Table 4.34: The ROUGE metrics between output of model and input text to model.

66

Metric Precision | Recall | F1-score
ROUGE-1 0.1759 0.1636 0.1591
ROUGE-2 0.1065 0.1009 0.0985
ROUGE-L 0.1744 0.1623 0.1579

Table 4.35: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.028 (7)
Summary with Hallucinations 0.028 (7)
Summary with missing informations | 0.108 (27)
Bad output 0.836 (209)

Table 4.36: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim prubéhu:
Pacient prijata k provedeni diag. koronarografie pred zarazenim na waiting list pred
transplantaci ledviny. Koronarograficky bez stenozy, EF LK 60-65%. Echokardio-
graficky EF LK 60-65%, porucha diastol. relaxace LK, lehkd sym. hypertrofie LK,
bez lokalnich poruch kinetiky, bez vyznam. chlopen.vad. Telemetricky sinusovy
rytmus, bez zachytu arytmii. Pacient propusténa ve stabilizovaném stavu.

Figure 4.18: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Model, trained by LoRA method with Rank set to 16 and Alpha set to 16, provide
more good summaries based on manual check results shown in Table 4.30 and compare to
Tables 4.33, 4.36. The reason is that setting the Rank parameter to a value of 4 means
that the model will not learn the summarization sufficiently. Also, example in Figure 4.16
is better than example in Figure 4.15. However, there is also more frequent generation of
bad output.

4.5 Inference of fine-tuned model

In this section, the results of experimentation with different values of the inference param-
eter of the model will be shown. Based on them, the parameters with which the tool for
demonstrating the functionality of the model will run the fine-tuned model are selected.
This approach and its implementation will also be described in this section.

4.5.1 Experiments with Inference parameters

The experiments refer to the parameters Top_ p and Temperature. These parameters are

described in the Subsection 2.4.1.

Temperature 1.0, Top_p 0.9

67

Metric Precision | Recall | F1-score
ROUGE-1 0.2300 0.1022 0.1300
ROUGE-2 0.1323 0.0560 0.0718
ROUGE-L 0.2281 0.1013 0.1290

Table 4.37: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1-score
ROUGE-1 0.1638 0.1617 0.1531
ROUGE-2 0.0720 0.0689 0.0669
ROUGE-L 0.1609 0.1591 0.1505

Table 4.38: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.0 (0)
Summary with Hallucinations 0.476 (119)
Summary with missing informations | 0.068 (17)
Bad output 0.456 (114)

Table 4.39: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formeé celych vét o onemocnéni a dennim pribéhu: Pacient
s ICHS, s rizikovou anamnézou (silnou rodinnou anamnézou - stryc s rizikovou anam-
nézou - CHSS), objedndn na cestu RZP jako tézka polycysticka ledvina. Po prijmu
provedeno echokardiografické vysetfeni, kde znamky systolické dysfunkce. Prove-
dena nekomplikované skg s ndlezem vyzn. postizeni RIA do 30% s lehkou restenozy
distdlni RC, jinak normdlni nilez na korondrnich tepniach, EF 55%. Telemetricky
sinusovy rytmus, tlakové stabilni, pacient obéhové kompenzovan. Obtize klidové,
spontanni rekoronaracni terapie, tlakova mediika.
stabilizovaném stavu.

Dimise do ambulantni péce ve

Figure 4.19: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Temperature 0.7, Top_ p 0.9

Metric Precision | Recall | Fl-score
ROUGE-1 0.3230 0.1209 0.1679
ROUGE-2 0.2518 0.0858 0.1206
ROUGE-L 0.3202 0.1199 0.1664

68

Table 4.40: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1-score
ROUGE-1 0.1890 0.1673 0.1661
ROUGE-2 0.0978 0.0920 0.0889
ROUGE-L 0.1854 0.1642 0.1630

Table 4.41: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.008 (2)
Summary with Hallucinations 0.44 (110)
Summary with missing informations | 0.144 (36)
Bad output 0.408 (102)

Table 4.42: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim prubéhu:
Pacient prijata k provedeni selektivni koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Vykon nekomplikované, s nalezem - 70% stenoza distdlni
ACD, feseno PCI s impl. DES, trva 90% stenoza proximalni RIA, feSeno PCI s impl.
DES, jinde bez vyzn. stenozy ¢i restenozy. Po nekomplikovaném pribéhu dimise ve
stabilizovaném stavu.

Rozhovor s pacientem:

Informovana o vysledku SKG, souhlasi s vykonem.

Figure 4.20: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Temperature 0.1, Top_p 0.9

Metric Precision | Recall | F1-score
ROUGE-1 0.3151 0.1235 0.1687
ROUGE-2 0.2666 0.0970 0.1336
ROUGE-L 0.3141 0.1231 0.1682

Table 4.43: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | Fl-score
ROUGE-1 0.1818 0.1515 0.1550
ROUGE-2 0.1130 0.0993 0.0988
ROUGE-L 0.1793 0.1501 0.1533

69

Table 4.44: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.028 (7)
Summary with Hallucinations 0.0 (0)
Summary with missing informations | 0.256 (64)
Bad output 0.716 (179)

Table 4.45: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formeé celych vét o onemocnéni a dennim prubéhu: Pacient
prijata k provedeni selektivni koronarografie pred zarazenim na waiting list pred
transplantaci ledviny. Koronarograficky normalni nalez na koronarnich tepnach, EF
60%. Vykon probéhl nekomplikované. Dimise do ambulantni péce ve stabilizovaném

Temperature 0.4, Top_ p 0.5

Figure 4.21: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Metric Precision | Recall | F1-score
ROUGE-1 0.3009 0.1234 0.1654
ROUGE-2 0.2530 0.0982 0.1320
ROUGE-L 0.2995 0.1229 0.1647

Table 4.46: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | Fl-score
ROUGE-1 0.1874 0.1522 0.1588
ROUGE-2 0.1158 0.1006 0.1017
ROUGE-L 0.1855 0.1512 0.1575

Table 4.47: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.056 (14)
Summary with Hallucinations 0.072 (18)
Summary with missing informations | 0.208 (52)
Bad output 0.664 (166)

70

Table 4.48: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim prabéhu: Pa-
cient prijata k provedeni selektivni koronarografie pred zarazenim na waiting list
pred transplantaci ledviny. Koronarograficky korondrni tepny bez vyzn. stenozy,
EF 60%. Vykon probéhl nekomplikované, zapésti po intervenci klidné. Dimise ve
stabilizovaném stavu.

Figure 4.22: Output from model for input in Figure 3.2, which has label in Figure 3.3.

Temperature 0.4, Top_ p 0.2

Metric Precision | Recall | Fl-score
ROUGE-1 0.3048 0.1184 0.1619
ROUGE-2 0.2571 0.0928 0.1278
ROUGE-L 0.3033 0.1180 0.1614

Table 4.49: The ROUGE metrics between output of model and input text to model.

Metric Precision | Recall | F1l-score
ROUGE-1 0.1796 0.1471 0.1524
ROUGE-2 0.1115 0.0948 0.0961
ROUGE-L 0.1777 0.1457 0.1508

Table 4.50: The ROUGE metrics between output of model and reference output.

Type of Summarization Occassions
Good Summary 0.052 (6)
Summary with Hallucinations 0.008 (2)
Summary with missing informations | 0.268 (67)
Bad output 0.672 (168)

Table 4.51: Results of manual check of outputs by human.

Output of model

Souhrn v ¢eském jazyce ve formé celych vét o onemocnéni a dennim prubéhu: Pacient
prijata k provedeni selektivni koronarografie pred zarfazenim na waiting list pred
transplantaci ledviny. Koronarograficky normalni nalez na koronarnich tepnach, EF
LK 60%. Vykon probéhl nekomplikované. Dimise ve stabilizovaném stavu.

Figure 4.23: Output from model for input in Figure 3.2, which has label in Figure 3.3.

71

From the testing that was documented in this section, the parameters that were used in
the generation of the results in the Section 4.4.3 were selected for inference. It is based on
results from manual check by human for each of tested combination of parameters. Param-
eters used in Section 4.4.3 provide better results. These are the parameters - Temperature:
0.4, Top_p: 0.9 and Top_ k: 40.

Output of ChatGPT 3.5

Souhrn Onemocnéni a Denniho Priibéhu

Onemocnéni

Pacient byl prijat k provedeni diagnostické koronarografie pred zarazenim na ¢ekaci
listinu pro transplantaci ledviny. Echokardiografické vysetreni srdce ukézalo ejekéni
frakci levé komory (EF LK) mezi 60-65 %, poruchu diastolické relaxace levé komory,
lehkou symetrickou hypertrofii levé komory, bez lokalnich poruch kinetiky a bez
vyznamnych chlopennich vad. Subjektivné pacient neguje bolesti na hrudi, dusnost,
palpitace a predsynkopalni ¢i synkopalni stavy.

Denni Prabéh

10.3.2022 8:40 Zapsal DOKTOR:

Subjektivné (S): Pacient je bez obtizi.

Objektivné (O): Pacient je afebrilni, ma eupnoi (normélni dychani), poslechové
nalezy na srdci (AS reg.) jsou pravidelné, dychani je alveoldrni a ¢isté. Bricho je
meékké, nebolestivé. Dolni koncetiny jsou bez otoku, lytka jsou volnd, akra (konecky
prsti) jsou dobre prokrvena. Zapésti po skg (pravdépodobné po zdkroku) je klidné.
Télesnd teplota (telemetry): Sinusovy rytmus (SR) 61/min.

Pacient byl propustén (dimise).

Figure 4.24: Output from ChatGPT 3.5 for input 3.2, which has label as 3.3.

For comparison, the text was also generated by the GPT 3.5 model. The final fine-tuned
LLaMA model tries to imitate the performance of a doctor, as is shown in Figure 4.16. It
is not detailed and it can be seen that some factual information does not fit.

GPT, on the other hand, expanded the input text more and did not summarize it as
expected, as it is shown in Figure 4.24. On the other hand, since it is not fine-tuned to
imitate the summarization as the doctor does, it did not even lead to him inventing the
information.

72

4.5.2 Demonstration tool

This tool consists of two parts. It is a client-side web application and a server-side applica-
tion. The server-side application has the task of running the selected model and processing
inputs from the client for the model. The Client-side application offers the setting of the
model type that should generate the text as well as the type of output text the user wants.
Communication between these two applications is done through an API, where the se-
quence of individual requests and responses is shown on Figure 4.25. The fact that the

server communicates exclusively only with the given client application is done by using an
API key.

N - Server-side
Client-side application
application

H |

User open web application i HTTP GET !
[Igethodels ™~

return list of avvailable models

HTTP GET
loutTextTypes

retum list of available siructures of output text

HTTP POST
IgenText

refurn output text in selecied structure

Figure 4.25: Sequence diagram of API communication between client-side application and
server-side application.

73

Client-side application

The client application is written in Javascript and uses the React.js library to implement
the necessary components. The user has 2 menus available. One to choose a model that is
available on the server and can generate text. the second menu serves to select the content
of the displayed text. In the case of the second menu, the user can set that the output text
will contain only the Hospital course generated by the model, or the output text will also
contain other parts of the Admission Report that should appear in the Dismissal report.

Next, the application provides a text field for entering the entire Admission Report.
Such a field is also available for the Decor entry. However, just one hospitalization can
contain more than just one Decors document, the user has the option to add additional
text fields for the Decors entry. The resulting text received from the server application is
displayed in the text field under the ,,Generate text“ button. This button sends a request
to the server to generate the output text, and this request contains all the necessary inputs
that the model needs.

Vyberte Vyberte typ vystupniho textu
model

LLaMA2_138.v3

Figure 4.26: Client‘s application.

74

Server-side application

The server part is written in Python and the Flask framework is used for its implementation.
The server-side application offers a list of available models and types of resulting text
structures. In addition, this application ensures that the fine-tuned model is up and running.
The inference parameters are fixed to the values that had the best results in the experiments
in the Subsection 4.5.1. From the inputs from the client-side application, the appropriate
data is extracted for input into the model. This extraction takes place using functions that
were also used to create the dataset for model training and are described in subsections
4.3.1 and 4.4.2.

75

Conclusion

As part of this thesis, it was possible to create a model that, to a certain degree of success,
creates part of the medical documentation in the Czech language. Several models that
would be suitable for the given task were tested, and the best of them, which generated
text in the Czech language, was additionally fine-tuned. By choosing the right parameters
of the training process or inference, it was possible to improve the success of generating the
Hospital Course of Dismissal Report correctly compared to what was generated by the not
finetuned model. Several possible combinations of individual parameters were examined
and the tests resulted in a choice that led to the gradual improvement of the model.

It was successfully implemented a demonstration tool consisting of two applications that
simply provides the result of the finetuned model to user.

The success of the model in generating a correct speech is relatively low for its use in
practice by doctors. Another possibility to increase the success in correctly generating the
Hospital Course of Dismissal Report by model, is to use a model with a higher number of
parameters, which is more computationally demanding and therefore was not used in this
thesis. Another possibility is a dataset that will contain better data, especially regarding
the label written by the doctor. The current dataset contains many grammatical errors and
strange sentence constructions, as well as a large number of medical abbreviations, which
complicate the correct fine-tuning of the model to generate the correct output. The last but
not least improvement is to provide into the model more documentation. Thanks to this,
the model would have more information so that it can more accurately generate output,
but this again requires more memory on the graphics cards on which the calculation takes
place.

Another possible way to improve the correctness of output is the combination of artificial
intelligence methods. As part of the thesis, it was planned that expert systems could be
used in the framework of combining methods. The right combination of an expert system
with a Large Pre-Trained Language Model can lead to the generation of other parts of the
Dissmissal Report, where the model definitely needs medical knowledge. In such a case,
this medical knowledge would be provided by an expert system and the Large Pre-Trained
Language Model would generate it in text form.

76

Bibliography

1]

2]

Vyhldska ¢. 98/2012 Sb. [Ministerstvo zdravotnictvi Ceské republiky]. 2012. Dostupné
online: https://www.zakonyprolidi.cz/cs/2012-98.

ABRAHAM, A. Rule-based Expert Systems. In: SYDENHAM, P. H. and THORN, R.,
ed. Handbook of Measuring System Design. ISBN: 0-470-02143-8: John Wiley &
Sons, Ltd., 2005, p. Place the page numbers here. Oklahoma State University,
Stillwater, OK, USA.

AINSLIE, J., LEE THORP, J., JONG, M. de, ZEMLYANSKIY, Y., LEBRON, F. et al.
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head
Checkpoints. 2023. Available at: https://arxiv.org/abs/2305.13245.

BanouLA, M. What is Perceptron: A Beginners Guide for 2023. Simplilearn. May
2021. Accessed: 2024-05-17. Available at:

https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron.

CHANDRA, R. Problem Decomposition and Adaptation in Cooperative
Neuro-Evolution. january 2012. DOI: 10.26686/wgtn.16996780. Available at:
https://openaccess.wgtn.ac.nz/articles/thesis/
Problem_Decomposition_and_Adaptation_in_Cooperative_Neuro-Evolution/16996780.

CONTENT EDITOR. What is Inference: LLMs FExplained. February 2024. Accessed:
2024-07-22. Available at:
https://www.chatgptguide.ai/2024/02/29/what-is-inference-1lms-explained/.

Cotoia, A. Axon Terminal - The Definitive Guide | Biology Dictionary. Biology
Dictionary. May 16 2020. Accessed: 2024-05-17. Available at:
https://biologydictionary.net/axon-terminal/.

FLAsSINSKI, M. Introduction to Artificial Intelligence. 1st ed. Cham: Springer Nature,
2016. ISBN 3319400223.

GEEKSFORGEEKS. ReactJS Introduction. 2024. Accessed: 2024-07-22. Available at:
https://www.geeksforgeeks.org/reactjs-introduction/.

GOLDBERG, Y. Neural network methods for natural language processing. San Rafael:
Morgan Claypool Publishers, 2017. Synthesis lectures on human language
technologies. ISBN 978-1-62705-298-6.

Horev, R. BERT Explained: State of the art language model for NLP. Towards
Data Science. 2018. Accessed: 2024-05-17. Available at:

77

https://www.zakonyprolidi.cz/cs/2012-98
https://arxiv.org/abs/2305.13245
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://openaccess.wgtn.ac.nz/articles/thesis/Problem_Decomposition_and_Adaptation_in_Cooperative_Neuro-Evolution/16996780
https://openaccess.wgtn.ac.nz/articles/thesis/Problem_Decomposition_and_Adaptation_in_Cooperative_Neuro-Evolution/16996780
https://www.chatgptguide.ai/2024/02/29/what-is-inference-llms-explained/
https://biologydictionary.net/axon-terminal/
https://www.geeksforgeeks.org/reactjs-introduction/

https://towardsdatascience.com/bert-explained-state-of-the-art-language-
model-for-nlp-£8b21a9b6270.

[12] Hu, E. J., SHEN, Y., WALLIS, P., ALLEN ZHU, Z., L1, Y. et al. LoRA: Low-Rank
Adaptation of Large Language Models. ArXiv.org. Ithaca: Cornell University
Library, arXiv.org. 2021. ISSN 2331-8422.

[13] HUGGING FACE. Transformers. 2024. Accessed: 2024-07-22. Available at:
https://huggingface.co/docs/transformers/index.

[14] IBM DATA AND AI TEAM. Understanding the different types of artificial intelligence
[https://www.ibm.com/blog/understanding-the-different-types-of-
artificial-intelligence/]. 2023. Accessed: October 16, 2023.

[15] KALIRANE, M. Gradient Descent vs. Backpropagation: What’s the Difference?
January 2023. Accessed: 2024-05-17. Available at: https://www.analyticsvidhya.com/
blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/.

[16] KUusHAL Das. Introduction to Flask. 2022. Accessed: 2024-07-22. Available at:
https://pythonforundergradengineers.com/flask-introduction/.

[17] MANGRULKAR, S. and PAUL, S. Parameter-Efficient Fine-Tuning using PEFT.
February 2023. Accessed: 2024-07-22. Available at:
https://huggingface.co/blog/peft.

[18] MDN WEB Docs. What is JavaScript? - Learn web development. 2024. Accessed:
2024-07-22. Available at: https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/First_steps/What_is_JavaScript.

[19] MYSQL DOCUMENTATION TEAM. MySQL 8.4 Reference Manual: 1.2.1 What is
MySQL? 2023. Accessed: 2024-07-22. Available at:
https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html.

[20] NIEDERFAHRENHORST, A., HAKHAMANESHI, K. and AHMAD, R. Fine-Tuning LLMs:
LoRA or Full-Parameter? An In-Depth Analysis with LLAMA-2. Anyscale Blog.
September 2023. Online publication, Accessed: 2024-05-17. Available at:
https://www.anyscale.com/blog/fine-tuning-11lms-lora-or-full-parameter—an-in-
depth-analysis-with-1llama-2.

[21] OkEwuU, E., ADEWOLE, P. and SENNAIKE, O. Experimental Comparison of
Stochastic Optimizers in Deep Learning. In: Computational Science and Its
Applications — ICCSA 2019. Springer International Publishing, 2019, vol. 11623,
p. 704-715. Lecture Notes in Computer Science. ISBN 9783030243074.

[22] Paass, G. and GIESSELBACH, S. Foundation Models for Natural Language
Processing: Pre-trained Language Models Integrating Media. 1st ed. Springer Nature,
2023. Artificial Intelligence: Foundations, Theory, and Algorithms. ISBN 3031231899.

[23] PATEL, P. Guide to fine-tuning LLMs using PEFT and LoRa techniques [Webpage].
2023. Available at: https://assets-global.website-files.com/
640£56£76d313bbe39631bfd/64ac7af09311957ab6dbeccl_Peft)20finetuning.png.

78

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://huggingface.co/docs/transformers/index
https://www.ibm.com/blog/understanding-the-different-types-of-artificial-intelligence/
https://www.ibm.com/blog/understanding-the-different-types-of-artificial-intelligence/
https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/
https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/
https://pythonforundergradengineers.com/flask-introduction/
https://huggingface.co/blog/peft
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://assets-global.website-files.com/640f56f76d313bbe39631bfd/64ac7af09311957ab6dbecc1_Peft%20finetuning.png
https://assets-global.website-files.com/640f56f76d313bbe39631bfd/64ac7af09311957ab6dbecc1_Peft%20finetuning.png

[24]

[25]

[26]

[33]

[34]

[35]

[36]

PHUNG, V. and RHEE, E. A deep learning approach for classification of cloud image
patches on small datasets. Journal of Information and Communication Convergence
Engineering. january 2018, vol. 16, p. 173-178. DOI: 10.6109/jicce.2018.16.3.173.

PYTHON.ORG. What is Python? Ezxecutive Summary. 2024. Accessed: 2024-07-22.
Available at: https://www.python.org/doc/essays/blurb/.

Rour, C. and ArLpous, C. How to write a research protocol. Southern African
Journal of Anaesthesia and Analgesia. october 2016, vol. 22, p. 101-107. DOL:
10.1080/22201181.2016.1216664.

RusseLL, S. J. S. J. Artificial intelligence : a modern approach. Third edition;
Authorized adaptation from the United States edition 2010th ed. Boston ; London:
Pearson, 2016. Prentice Hall series in artificial intelligence. ISBN 978-1-292-15396-4.

SHARMA, S., SHARMA, S. and ATHAIYA, A. Activation Functions in Neural

Networks. International Journal of Engineering Applied Sciences and Technology.
2020, vol. 4, no. 12, p. 310-316. ISSN 2455-2143. Published Online April 2020 in
IJEAST (http://www.ijeast.com).

STEVE, P. Ludské telo: Ilustrovany sprievodca struktiurou, funkciami a poruchami
[The Human Body]. Ikar, a. s., 2008. ISBN 978-80-551-1731-7.

SUNDARARAJAN, N., SARATCHANDRAN, P. and L1, Y. Fully Tuned Radial Basis
Function Neural Networks for Flight Control. Boston, MA: Springer US, 2002. The
International Series on Asian Studies in Computer and Information Science. ISBN
1441949151.

TOGETHERCOMPUTER. Togethercomputer/Llama-2-7B-32K-Instruct - Hugging Face.
2024. Accessed: 2024-05-17. Available at:

https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct.

TouvRroN, H., LAVRIL, T., [ZACARD, G., MARTINET, X., LACHAUX, M.-A. et al.
LLaMA: Open and Efficient Foundation Language Models. 2023. Available at:
https://arxiv.org/abs/2302.13971.

TouvRON, H., MARTIN, L., STONE, K., ALBERT, P., ALMAHAIRI, A. et al. Llama 2:
Open Foundation and Fine-Tuned Chat Models. 2023. Available at:
https://arxiv.org/abs/2307.09288.

YUKANG. Yukang/Llama-2-13b-longlora-16k-ft - Hugging Face. 2024. Accessed:
2024-05-17. Available at:
https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft.

YUKANG. Yukang/LongAlpaca-12k - Hugging Face. 2024. Accessed: 2024-07-14.
Available at: https://huggingface.co/datasets/Yukang/LongAlpaca-12k.

YUKANG. Yukang/LongAlpaca-13B - Hugging Face. 2024. Accessed: 2024-05-17.
Available at: https://huggingface.co/Yukang/LongAlpaca-13B.

79

https://www.python.org/doc/essays/blurb/
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft
https://huggingface.co/datasets/Yukang/LongAlpaca-12k
https://huggingface.co/Yukang/LongAlpaca-13B

	Artificial Intelligence
	Symbolic Artificial Intelligence
	Rule-based Expert System

	Machine Learning
	Decision Tree and Random Forest
	Naive Bayes Classifier

	Artificial Neural Network
	Human Neuron
	Perceptron
	Basis function
	Activation function
	Layers
	Model Training
	Artificial Neural Networks for unstructured data

	Large Pre-trained Language Models
	Tokens
	Vocabulary
	Tokenization
	Token embeddings
	Special tokens
	Prompt

	Large Pre-trained Language Model`s Architectures
	Attention mechanism
	BERT
	GPT
	LLaMA

	Learning
	Inference and evaluation
	Inference
	Evaluation techniques

	Assistant for Creating Medical Reports
	Dataset
	Entities
	Dismissal reports
	Data for Supervised fine-tuning

	Implementation and testing
	Programming Languages, Libraries and Technologies
	MySQL
	Python
	Transformers and PEFT libraries
	Flask
	Javascript
	React.js

	Data preparation
	Suitable model
	Dataset
	Prompt
	Inference and testing

	Fine-tuning of selected model
	Prompt
	Dataset improvements
	Experiments with LoRA training parameters

	Inference of fine-tuned model
	Experiments with Inference parameters
	Demonstration tool

	Bibliography

